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1. Introduction. Traditional monotone operator splitting techniques [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF]Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Spingarn | Partial inverse of a monotone operator[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF] have their roots in matrix decomposition methods in numerical analysis [START_REF] Douglas | On the numerical solution of heat conduction problems in two or three space variables[END_REF][START_REF] Varga | Matrix Iterative Analysis[END_REF] and in nonlinear methods for solving optimization and variational inequality problems [START_REF] Bakušinskiȋ | The solution of variational inequalities[END_REF][START_REF] Brézis | Méthodes d'approximation et d'itération pour les opérateurs monotones[END_REF][START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF][START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Sibony | Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone[END_REF]. These methods are designed to solve inclusions of the type 0 ∈ B 1 x + B 2 x, where B 1 and B 2 are maximally monotone operators acting on a Hilbert space H. Extensions to sums of the type 0 ∈ K k=1 B k x are typically handled via reformulations in product spaces [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Spingarn | Partial inverse of a monotone operator[END_REF]. In recent years, new splitting algorithms have emerged for problems involving more complex models featuring compositions with linear operators [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] and parallel sums [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]; we recall that the parallel sum of two set-valued operators B and D is (1.1)

B D = B -1 + D -1 -1 .
These algorithms rely on reformulations of the inclusions as two-operator problems in a primal-dual space, in which the splitting is performed via an existing method. This construct makes it possible to activate separately each of the operators involved in the model, and it leads to flexible algorithms implementable on parallel architectures.

In the present paper, we pursue this strategy towards more sophisticated models featuring systems of structured coupled inclusions in duality. The primal-dual problem under consideration is the following. Problem 1.1. Let m and K be strictly positive integers, let (H i ) 1 i m and (G k ) 1 k K be real Hilbert spaces, let (µ i ) 1 i m ∈ [0, +∞[ m , and let (ν k ) 1 i K ∈ [0, +∞[ K . For every i ∈ {1, . . . , m} and k ∈ {1, . . . , K}, let C i : H i → H i be monotone and µ i -Lipschitzian, let A i : H i → 2 Hi and B k :

G k → 2 G k be maximally monotone, let D k : G k → 2 G k be maximally monotone and such that D -1 k : G k → G k is ν k - Lipschitzian, let z i ∈ H i , let r k ∈ G k , and let L ki ∈ B (H i , G k ). It is assumed that (1.2) β = max max 1 i m µ i , max 1 k K ν k + √ λ > 0,
where λ ∈ sup

m i=1 xi 2 1 K k=1 m i=1 L ki x i 2
, +∞ , and that the system of coupled inclusions

(1.3) find x 1 ∈ H 1 , . . . , x m ∈ H m such that                z 1 ∈ A 1 x 1 + K k=1 L * k1 (B k D k ) m i=1 L ki x i -r k + C 1 x 1 . . . z m ∈ A m x m + K k=1 L * km (B k D k ) m i=1 L ki x i -r k + C m x m
possesses at least one solution. Solve (1.3) together with the dual problem

(1.4) find v 1 ∈ G 1 , . . . , v K ∈ G K such that                -r 1 ∈ - m i=1 L 1i A i + C i -1 z i - K k=1 L * ki v k + B -1 1 v 1 + D -1 1 v 1 . . . -r K ∈ - m i=1 L Ki A i + C i -1 z i - K k=1 L * ki v k + B -1 K v K + D -1 K v K .
The primal system (1.3) captures a broad class of problems in nonlinear analysis in which m variables x 1 , . . . , x m interact. The ith inclusion in (1.3) features two operators A i and C i which model some abstract utility of the variable x i , while the operator (B k ) 1 k K , (D k ) 1 k K , and (L ki ) 1 i m 1 k K model the interaction between x i and the remaining variables. One of the simplest realizations of (1.3) is the problem considered in [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF], namely (1.5) find

x 1 ∈ H, x 2 ∈ H such that 0 ∈ A 1 x 1 + x 1 -x 2 0 ∈ A 2 x 2 -x 1 + x 2 ,
where (H, • ) is a real Hilbert space, and where A 1 and A 2 are maximally monotone operators acting on H. In particular, if A 1 = ∂f 1 and A 2 = ∂f 2 are the subdifferentials of proper lower semicontinuous convex functions f 1 and f 2 from H to ]-∞, +∞], (1.5) becomes (1.6) minimize

x1∈H, x2∈H f 1 (x 1 ) + f 2 (x 2 ) + 1 2 x 1 -x 2 2 .
This formulation arises in areas such as optimization [START_REF] Acker | Convergence d'un schéma de minimisation alternée[END_REF], the cognitive sciences [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF], image recovery [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], signal synthesis [START_REF] Goldburg | Signal synthesis in the presence of an inconsistent set of constraints[END_REF], best approximation [START_REF] Bauschke | Finding best approximation pairs relative to two closed convex sets in Hilbert spaces[END_REF], and mechanics [START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF].

In [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF], we considered the extension of (1.6) which amounts to setting in Problem 1.1, for every i ∈ {1, . . . , m} and k ∈ {1, . . . , K}, A i = ∂f i , C i = 0, and B k = ∇g k , where f i : H → ]-∞, +∞] is a proper lower semicontinuous convex function and g k : G k → R is convex and differentiable with a Lipschitzian gradient. This leads to the minimization problem L ki x i , which has numerous applications in signal processing, machine learning, image recovery, partial differential equations, and game theory; see [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF][START_REF] Bach | Optimization with sparsityinducing penalties, Found[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF][START_REF] Frankel | Alternating proximal algorithm with costs-to-move, dual description and application to PDE's[END_REF][START_REF] Gilles | Noisy image decomposition: a new structure, texture and noise model based on local adaptivity[END_REF][START_REF] Starck | Image decomposition via the combination of sparse representations and a variational approach[END_REF] and the references therein. This minimization problem arose in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF] as an instance of a multivariate inclusion problem which is a special case of (1.3) in which the operators (C i ) 1 i m and (D -1 k ) 1 k K are zero, and the coupling operators (B k ) 1 k K are restricted to be single-valued and to satisfy jointly a cocoercivity property.

The goals of the present paper is to develop a flexible algorithm to solve Problem 1.1 without the restrictions imposed by current methods, and to illustrate its flexibility by applying it to a variety of problems for which no solution method exists currently. Our setting places no additional hypotheses on the coupling operators (B k ) 1 k K and (D k ) 1 k K , or on the number m of variables. In the proposed parallel splitting algorithm, the structure of the problem is fully exploited to the extent that the operators are all used individually, either explicitly if they are single-valued, or by means of their resolvent if they are set-valued. In the case when m = 1 in Problem 1.1, we obtain the univariate primal-dual problem investigated in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] (see also [START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] for special cases), namely

(1.8) find x ∈ H such that z ∈ Ax + K k=1 L * k (B k S k )(L k x -r k ) + Cx and (1.9) find v 1 ∈ G 1 , . . . , v K ∈ G K such that (∀k ∈ {1, . . . , K}) -r k ∈ -L k (A + C) -1 z - K l=1 L * l v l + B -1 k v k + S -1 k v k .
Conversely, formulating these inclusions in a suitable product space H formally leads to (1.3)-(1.4). However, transcribing the algorithm of [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] and its convergence analysis in such a product setting would lead to much weaker results than those to be presented in Section 2, which will employ a finer analysis and leverage the properties of each of the operators involved in the model. Our problem formulation and its asymptotic analysis will enable us to extend existing results and solve much more complex problems than those afforded by the state-of-the-art. These advances are highlighted by the following applications of the results of Section 2.

• In Section 3, we revisit (1.8)-(1.9) and solve it without the restriction that the operators (S -1 k ) 1 k K be Lipschitzian, as is required in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]. This is achieved by showing that, through the introduction of auxiliary variables, the problem is reducible to an instance of (1.3).

• In Section 4, we address the problem of approximating -by means of parallel sums -inconsistent common zero problems. By reformulating this univariate problem as an instance of Problem 1.1, we obtain a framework which allows for relaxations with operators possessing strictly monotone inverses, while existing results [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] are limited to relaxations with multiples of identity. • In Section 5, we apply the results of Section 2 to multivariate structured convex minimization problems, thus obtaining notable improvements over the results of [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF]. • In Section 6, we use the results of Section 3 to solve univariate minimization problems featuring infimal convolutions with general lower semicontinuous convex functions. In such models, the state-of-the-art is limited to strongly convex functions [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]. • Another application of the results of Section 2 is that developed in [START_REF] Becker | An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery[END_REF] after the submission of the present paper. In this work, inclusions of the form (1.10)

find x ∈ H such that z ∈ Ax + r k=1 (L * k • B k • L k ) (M * k • D k • M k ) x + Cx
together with their duals were considered for the first time. We reformulated this problem as a special case of (1.3) and showed it captured variational formulations in the area of signal recovery for which no solution method was available until now. Notation. We denote the scalar product of a Hilbert space by • | • and the associated norm by • . The symbols ⇀ and → denote, respectively, weak and strong convergence, and Id denotes the identity operator. Let H and G be real Hilbert spaces and let 2 H be the power set of H. The space of bounded linear operators from

H to G is denoted by B (H, G). Let A : H → 2 H . We denote by ranA = u ∈ H (∃ x ∈ H) u ∈ Ax the range A, by dom A = x ∈ H Ax = ∅ the domain of A, by zer A = x ∈ H 0 ∈ Ax the set of zeros of A, by graA = (x, u) ∈ H × H u ∈ Ax the graph of A,
and by A -1 the inverse of A, i.e., the operator with graph (u,

x) ∈ H × H u ∈ Ax . The resolvent of A is J A = (Id + A) -1 . Moreover, A is declared monotone if (1.11) (∀(x, u) ∈ graA)(∀(y, v) ∈ graA) x -y | u -v 0,
and maximally monotone if there exists no monotone operator B : H → 2 H such that graA ⊂ graB = graA. In this case, J A is a nonexpansive operator defined everywhere on H. Furthermore, A is uniformly monotone at x ∈ dom A if there exists an increasing function φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(1.12) (∀u ∈ Ax)(∀(y, v) ∈ graA) x -y | u -v φ( x -y ),
and A is couniformly monotone at u ∈ ranA if A -1 is uniformly monotone at u. The parallel sum of A and B : H → 2 H is A B = (A -1 +B -1 ) -1 . The infimal convolution of two functions g and ℓ from H to ]-∞, +∞] is

(1.13) g ℓ : H → [-∞, +∞] : x → inf y∈H g(y) + ℓ(x -y) .
We denote by Γ 0 (H) the class of lower semicontinuous convex functions f : 

H → ]-∞, +∞] such that dom f = x ∈ H f (x) < +∞ = ∅. Let f ∈ Γ 0 (H). The conjugate of f is Γ 0 (H) ∋ f * : u → sup x∈H ( x | u -f (x)),
∈ dom f )(∀α ∈ ]0, 1[) f (αx+(1-α)y)+α(1-α)φ( x-y ) αf (x)+(1-α)f (y).
For every x ∈ H, f + x -• 2 /2 possesses a unique minimizer, which is denoted by prox f x. We have (1.15) prox f = J ∂f , where

∂f : H → 2 H : x → u ∈ H (∀y ∈ H) y -x | u + f (x) f (y)
is the subdifferential of f . Let C be a convex subset of H. [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF] for background on convex analysis and monotone operators.

2. General algorithm. We start with three preliminary results. The first one is an error-tolerant version of a forward-backward-forward splitting algorithm originally proposed by Tseng [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF]Theorem 3.4(b)].

Lemma 2.1. [14, Theorem 2.5(i)-(ii)] Let K be a real Hilbert space, let P : K → 2 K be maximally monotone, and let Q : K → K be monotone and χ-Lipschitzian for some χ ∈ ]0, +∞[. Suppose that zer (P +Q) = ∅. Let (a n ) n∈N , (b n ) n∈N , and (c n ) n∈N be absolutely summable sequences in K, let w 0 ∈ K, let ε ∈ ]0, 1/(χ + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/χ], and set (2.1)

For n = 0, 1, . . .       s n = w n -γ n (Qw n + a n ) p n = J γnP s n + b n q n = p n -γ n (Qp n + c n ) w n+1 = w n -s n + q n .
Then n∈N w np n 2 < +∞ and there exists w ∈ zer (P + Q) such that w n ⇀ w and p n ⇀ w.

Lemma 2.2. Let H be a real Hilbert space, let A : H → 2 H be a maximally monotone operator, let γ ∈ ]0, +∞[, and let x and r be in H. Then J γ(r+A -1 ) x = x -γ(r + J γ -1 A (γ -1 x -r)).

Proof. It follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 23.15(ii)] that J γ(r+A -1 ) x = J γr+γA -1 x = J γA -1 (x-γr). On the other hand, we derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 23.18] that (∀y ∈ H) J γA -1 y = y -γJ γ -1 A (γ -1 y). Applying this identity to y = x -γr yields the result.

Lemma 2.3. [14, Proposition 2.8] Let H and G be two real Hilbert spaces, let

E : H → 2 H and F : G → 2 G be maximally monotone, let L ∈ B (H, G), let z ∈ H, and let r ∈ G. Set K = H ⊕ G, (2.2) M : K → 2 K : (x, v) → (-z + Ex) × (r + F -1 v) S : K → K : (x, v) → (L * v, -Lx), and 
(2.3) P = x ∈ H z ∈ Ex + L * (F (Lx -r)) D = v ∈ G -r ∈ -L(E -1 (z -L * v)) + F -1 v .
Then zer (M +S) is a closed convex subset of P×D, and

P = ∅ ⇔ zer (M +S) = ∅ ⇔ D = ∅.
The following theorem contains our algorithm for solving Problem 1.1 and states its main asymptotic properties. In this primal-dual splitting algorithm, each singlevalued operator is used explicitly, while each set-valued operator is activated via its resolvent. Approximations in the evaluations of the operators are tolerated and modeled by absolutely summable error sequences. The algorithm consists of three main loops, each of which can be implemented on a parallel architecture.

Theorem 2.4. Consider the setting of Problem 1.1. For every i ∈ {1, . . . , m}, let (a 1,i,n ) n∈N , (b 1,i,n ) n∈N , and (c 1,i,n ) n∈N be absolutely summable sequences in H i and, for every k ∈ {1, . . . , K}, let (a 2,k,n ) n∈N , (b 2,k,n ) n∈N , and (c 2,k,n ) n∈N be absolutely summable sequences in 

G k . Let x 1,0 ∈ H 1 , . . . , x m,0 ∈ H m , v 1,0 ∈ G 1 , . . . , v K,0 ∈ G K , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
For n = 0, 1, . . .                           For i = 1, . . . , m s 1,i,n = x i,n -γ n C i x i,n + K k=1 L * ki v k,n + a 1,i,n p 1,i,n = J γnAi (s 1,i,n + γ n z i ) + b 1,i,n For k = 1, . . . , K          s 2,k,n = v k,n -γ n D -1 k v k,n - m i=1 L ki x i,n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + J γ -1 n B k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n D -1 k p 2,k,n - m i=1 L ki p 1,i,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n For i = 1, . . . , m q 1,i,n = p 1,i,n -γ n C i p 1,i,n + K k=1 L * ki p 2,k,n + c 1,i,n x i,n+1 = x i,n -s 1,i,n + q 1,i,n .
Then the following hold.

(i) (∀i ∈ {1, . . . , m}) n∈N x i,n -p 1,i,n 2 < +∞. (ii) (∀k ∈ {1, . . . , K}) n∈N v k,n -p 2,k,n 2 < +∞. (iii) There exist a solution (x 1 , . . . , x m ) to (1.3) and a solution (v 1 , . . . , v K ) to (1.4) such that the following hold. (a) (∀i ∈ {1, . . . , m}) z i - K k=1 L * ki v k ∈ A i x i + C i x i . (b) (∀k ∈ {1, . . . , K}) m i=1 L ki x i -r k ∈ B -1 k v k + D -1 k v k . (c) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i and p 1,i,n ⇀ x i . (d) (∀k ∈ {1, . . . , K}) v k,n ⇀ v k and p 2,k,n ⇀ v k .
(e) Suppose that, for some j ∈ {1, . . . , m}, A j or C j is uniformly monotone at x j . Then x j,n → x j and p 1,j,n → x j . (f) Suppose that, for some l ∈ {1, . . . , K}, B l or D l is couniformly monotone at v l . Then v l,n → v l and p 2,l,n → v l .

Proof. Let us introduce the Hilbert direct sums

(2.5) H = H 1 ⊕ • • • ⊕ H m , G = G 1 ⊕ • • • ⊕ G K , and K = H ⊕ G,
and let us denote by x = (x i ) 1 i m and v = (v k ) 1 k K generic elements in H and G, respectively. We also define

(2.6)                        A : H → 2 H : x → m × i=1 A i x i C : H → H : x → (C i x i ) 1 i m E = A + C L : H → G : x → m i=1 L ki x i 1 k K z = (z i ) 1 i m and                    B : G → 2 G : v → K × k=1 B k v k D : G → 2 G : v → K × k=1 D k v k F = B D r = (r k ) 1 k K .
It 

L ∈ B (H, G), L * : G → H : v → ( K k=1 L * ki v k ) 1 i m , and (2.7) 
(∀x ∈ H) Lx 2 = K k=1 m i=1 L ki x i 2 λ x 2 .
Next, we set (2.8)

               M : K → 2 K : (x, v) → (-z + Ex) × (r + F -1 v) P : K → 2 K : (x, v) → (-z + Ax) × (r + B -1 v) Q : K → K : (x, v) → Cx + L * v, D -1 v -Lx R : K → K : (x, v) → (Cx, D -1 v) S : K → K : (x, v) → (L * v, -Lx).
Note that (2.9) zer ( 

P + Q) = (x, v) ∈ H ⊕ G z -L * v ∈ Ax + Cx and Lx -r ∈ B -1 v + D -1 v . Furthermore,
∈ ]0, +∞[)(∀x ∈ H)(∀v ∈ G) J γP (x, v) = J γA1 (x 1 + γz 1 ), . . . , J γAm (x m + γz m ), v 1 -γ r 1 + J γ -1 B1 (γ -1 v 1 -r 1 ) , . . . , v K -γ r K + J γ -1 BK (γ -1 v K -r K ) .
On the other hand, since C and D -1 are monotone and Lipschitzian with, respectively, constants µ = max 1 i m µ i and ν = max 

1 k K ν k , R
P = x ∈ H z ∈ Ex + L * (F (Lx -r)) D = v ∈ G -r ∈ -L(E -1 (z -L * v)) + F -1 v .
Hence, since P = ∅ by assumption, we deduce from Lemma 2.3 that

(2.13) ∅ = zer (M + S) = zer (P + Q) ⊂ P × D.
Thus, to solve Problem 1.1, it is enough to find a zero of P + Q. For every n ∈ N, let us set

(2.14)          w n = (x 1,n , . . . , x m,n , v 1,n , . . . , v K,n ) s n = (s 1,1,n , . . . , s 1,m,n , s 2,1,n , . . . , s 2,K,n ) p n = (p 1,1,n , . . . , p 1,m,n , p 2,1,n , . . . , p 2,K,n ) q n = (q 1,1,n , . . . , q 1,m,n , q 2,1,n , . . . , q 2,K ,n ) and (2.15) 
     a n = (a 1,1,n , . . . , a 1,m,n , a 2,1,n , . . . , a 2,K,n ) b n = (b 1,1,n , . . . , b 1,m,n , -γ n b 2,1,n , . . . , -γ n b 2,K,n ) c n = (c 1,1,n , . . . , c 1,m,n , c 2,1,n , . . . , c 2,K,n ).
Then, using (2.6), (2.8), and (2.10), we see that (2.4) reduces to (2.1). Moreover, our assumptions and (2.5) imply that (a n ) n∈N , (b n ) n∈N , and (c n ) n∈N are absolutely summable sequences in K. Hence, it follows from (2.11), (2.13), and Lemma 2.1 that n∈N w np n 2 < +∞ and that there exists w ∈ zer (P + Q) such that w n ⇀ w and p n ⇀ w. Upon setting w = (x 1 , . . . , x m , v 1 , . . . , v K ) and appealing to (2.5) and (2.9), we thus obtain assertions (i), (ii), and (iii)(a)-(iii)(d).

(iii)(e): Let us introduce the variables

(2.16) (∀i ∈ {1, . . . , m})(∀n ∈ N)      s 1,i,n = x i,n -γ n C i x i,n + K k=1 L * ki v k,n p 1,i,n = J γnAi ( s 1,i,n + γ n z i ) and
(2.17)

(∀k ∈ {1, . . . , K})(∀n ∈ N)        s 2,k,n = v k,n -γ n D -1 k v k,n - m i=1 L ki x i,n p 2,k,n = s 2,k,n -γ n r k + J γ -1 n B k (γ -1 n s 2,k,n -r k ) . It follows from (2.4) that (2.18) (∀i ∈ {1, . . . , m})(∀n ∈ N) s 1,i,n -s 1,i,n = γ n a 1,i,n β -1 a 1,i,n .
Hence, by virtue of the nonexpansiveness of the resolvents [8, Proposition 23.7], we have

(∀i ∈ {1, . . . , m})(∀n ∈ N) p 1,i,n -p 1,i,n = J γnAi (s 1,i,n + γ n z i ) + b 1,i,n -J γnAi ( s 1,i,n + γ n z i ) s 1,i,n -s 1,i,n + b 1,i,n β -1 a 1,i,n + b 1,i,n . (2.19)
In turn, since, for every i ∈ {1, . . . , m}, (a On the other hand, we deduce from (iii)(a) that

(2.22) (∀i ∈ {1, . . . , m})(∃ u i ∈ H i ) u i ∈ A i x i and z i = u i + K k=1 L * ki v k + C i x i ,
and from (iii

)(b) that (2.23) (∀k ∈ {1, . . . , K}) v k ∈ B k m i=1 L ki x i -r k -D -1 k v k .
In addition, (2.16) yields (2.24) (∀i ∈ {1, . . . , m})(∀n ∈ N)

x i,n -p 1,i,n γ n - K k=1 L * ki v k,n -C i x i,n +z i ∈ A i p 1,i,n , while (2.17) yields (2.25) (∀k ∈ {1, . . . , K})(∀n ∈ N) p 2,k,n ∈ B k v k,n -p 2,k,n γ n + m i=1 L ki x i,n -r k -D -1 k v k,n . Now, for every n ∈ N, let us set (2.26) δ n = K k=1 1 ε + ν k v k,n -p 2,k,n p 2,k,n -v k and (∀i ∈ {1, . . . , m}) α i,n = p 1,i,n -x i,n 1 ε p 1,i,n -x i + µ i x i,n -x i + K k=1 L ki v k,n -v k .
It follows from (i), (ii), (iii)(c), (iii)(d), (2.20), and (2.21) that (2.27) δ n → 0 and (∀i ∈ {1, . . . , m}) α i,n → 0.

Using the Cauchy-Schwarz inequality, the Lipschitz-continuity and the monotonicity of the operators (C i ) 1 i m , (2.22), (2.24), and the monotonicity of the operators (A i ) 1 i m , we obtain

(∀i ∈ {1, . . . , m})(∀n ∈ N) α i,n + x i,n -x i K k=1 L * ki (v k -v k,n ) p 1,i,n -x i,n ε -1 p 1,i,n -x i + C i x i,n -C i x i + p 1,i,n -x i,n K k=1 L * ki (v k -v k,n ) + x i,n -x i K k=1 L * ki (v k -v k,n ) = p 1,i,n -x i,n ε -1 p 1,i,n -x i + C i x i,n -C i x i + p 1,i,n -x i K k=1 L * ki (v k -v k,n ) p 1,i,n -x i x i,n -p 1,i,n γ n + K k=1 L * ki (v k -v k,n ) + p 1,i,n -x i,n | C i x i -C i x i,n = p 1,i,n -x i x i,n -p 1,i,n γ n - K k=1 L * ki v k,n -C i x i,n + K k=1 L * ki v k + C i x i + x i,n -x i | C i x i,n -C i x i = p 1,i,n -x i x i,n -p 1,i,n γ n - K k=1 L * ki v k,n -C i x i,n + z i -u i + x i,n -x i | C i x i,n -C i x i (2.28) p 1,i,n -x i x i,n -p 1,i,n γ n - K k=1 L * ki v k,n -C i x i,n + z i -u i (2.29) 0. (2.30)
On the other hand, since the operators (D -1 k ) 1 k K are Lipschitzian and monotone, and since the operators (B k ) 1 k K are monotone, we deduce from (2.26), (2.23), and

(2.25) that (∀l ∈ {1. . . . , K})(∀n ∈ N) δ n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k ) K k=1 v k,n -p 2,k,n γ n + D -1 k p 2,k,n -D -1 k v k,n + m i=1 L ki (x i,n -x i ) p 2,k,n -v k = K k=1 v k,n -p 2,k,n γ n + m i=1 L ki x i,n -r k -D -1 k v k,n - m i=1 L ki x i -r k -D -1 k v k p 2,k,n -v k + K k=1 D -1 k p 2,k,n -D -1 k v k | p 2,k,n -v k (2.31) v l,n -p 2,l,n γ n + m i=1 L li x i,n -r l -D -1 l v l,n - m i=1 L li x i -r l -D -1 l v l p 2,l,n -v l + D -1 l p 2,l,n -D -1 l v l | p 2,l,n -v l (2.32) v l,n -p 2,l,n γ n + m i=1 L li x i,n -r l -D -1 l v l,n - m i=1 L li x i -r l -D -1 l v l p 2,l,n -v l (2.33) 0. (2.34)
We consider two cases.

• If A j is uniformly monotone at x j , then, in view of (2.29), (2.22), (2.24), and (1.12), there exists an increasing function φ Aj : [0, +∞[ → [0, +∞] that vanishes only at 0 such that (2.35)

(∀n ∈ N) α j,n + x j,n -x j K k=1 L * kj (v k -v k,n ) φ Aj ( p 1,j,n -x j ).
Combining (2.34), (2.30), and (2.35) yields

(2.36) (∀n ∈ N) δ n + m i=1 α i,n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k,n ) φ Aj ( p 1,j,n -x j ).
It follows from (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)] that φ Aj ( p 1,j,nx j ) → 0 and, in turn, that p 1,j,n → x j . In view of (i) and (2.20), we get p 1,j,n → x j and x j,n → x j .

• If C j is uniformly monotone at x j , then we derive from (2.34), (2.28), and (2.30) that there exists an increasing function φ Cj : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(2.37) (∀n ∈ N) δ n + m i=1 α i,n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k,n ) φ Cj ( x j,n -x j ).
This implies that φ Cj ( x j,n -x j ) → 0 and hence that x j,n → x j . Finally, (i) yields p 1,j,n → x j . (iii)(f): We consider two cases.

• If B l is couniformly monotone at v l , then (2.33), (2.23), and (2.25) imply that there exists an increasing function φ B -1 l : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀n ∈ N) δ n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k ) v l,n -p 2,l,n γ n + m i=1 L li x i,n -r l -D -1 l v l,n - m i=1 L li x i -r l -D -1 l v l p 2,l,n -v l φ B -1 l ( p 2,l,n -v l ). (2.38)
Combining this with (2.30) yields

(2.39) (∀n ∈ N) δ n + m i=1 α i,n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k,n ) φ B -1 l ( p 2,l,n -v l ).
Hence, using (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)], we get φ B -1 l ( p 2,l,n -v l ) → 0 and, in turn, p 2,l,n → v l . Using to (2.21) and (ii), we conclude that p 2,l,n → v l and v l,n → v l .

• If D l is couniformly monotone at v l , then it follows from (2.32) and (2.34) that there exists an increasing function φ D -1 l : [0, +∞[ → [0, +∞] that vanishes only at 0 such that

(∀n ∈ N) δ n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k ) D -1 l p 2,l,n -D -1 l v l | p 2,l,n -v l φ D -1 l ( p 2,l,n -v l ). (2.40) Thus, (2.30) yields (2.41) (∀n ∈ N) δ n + m i=1 α i,n + m i=1 x i,n -x i K k=1 L * ki ( p 2,k,n -v k,n ) φ D -1 l ( p 2,l,n -v l ),
and we conclude as above.

Remark 2.5. When m = 1, (1.3)-(1.4) assume the form of (1.8)-(1.9), and Theorem 2.4 specializes to [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]Theorem 3.1]. Our proof of Theorem 2.4(i)-(iii)(d) hinges on a self-contained application of Lemmas 2.1 and 2.3 in the primal-dual product space K of (2.5). Alternatively, these results could be obtained as an application of [20, Theorem 3.1] using the product space H of (2.5) as a primal space. This strategy, however, would not enable us to recover the strong convergence results of Theorem 2.4(iii)(e) since [20, Theorem 3.1] would impose uniform monotonicity properties on the product operators A or C of (2.6) which, in general, do not translate easily into properties of the individual operators (A i ) 1 i m and (C i ) 1 i m . By contrast, our framework exploits properties of the each operator individually, without imposing a global uniform monotonicity property on their product.

Remark 2.6. It follows from the Cauchy-Schwarz inequality that, for every

(x i ) 1 i m ∈ m i=1 H i , (2.42) K k=1 m i=1 L ki x i 2 K k=1 m i=1 L ki x i 2 K k=1 m i=1 L ki 2 m i=1 x i 2 .
Hence, in general, one can use

λ = K k=1 m i=1 L ki 2 in (1.
2). However, as will be seen in subsequent sections, this bound can be improved when the operator L of (2.6) has a special structure.

In the remainder the paper, we highlight a few instantiations of Theorem 2.4 that illustrate the variety of problems to which it can be applied and which are not explicitly solvable via existing techniques (see also [START_REF] Becker | An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery[END_REF] for additional applications).

Inclusions involving general parallel sums.

The first special case of Problem 1.1 we feature is an extension of a univariate inclusion problem investigated in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], which involves parallel sums with monotone operators admitting Lipschitzian inverses. In the following formulation, we lift this restriction.

Problem 3.1. Let H be a real Hilbert space, let K 1 , K 2 , and K be integers such that 0

K 1 K 2 K 1, let z ∈ H, let A : H → 2 H be
maximally monotone, and let C : H → H be monotone and µ-Lipschitzian for some µ ∈ [0, +∞[. For every integer k ∈ {1, . . . , K}, let G k be a real Hilbert space, let

r k ∈ G k , let B k : G k → 2 G k and S k : G k → 2 G k be maximally monotone, and let L k ∈ B (H, G k ); moreover, if K 1 + 1 k K 2 , S k : G k → G k is β k -Lipschitzian for some β k ∈ [0, +∞[, and, if K 2 + 1 k K, S -1 k : G k → G k is β k -Lipschitzian for some β k ∈ [0, +∞[. It is assumed that (3.1) β = max µ, β K1+1 , . . . , β K + 1 + K k=1 L k 2 > 0,
and that the inclusion

(3.2) find x ∈ H such that z ∈ Ax + K k=1 L * k (B k S k )(L k x -r k ) + Cx
possesses at least one solution. Solve (3.2) together with the dual problem

(3.3) find v 1 ∈ G 1 , . . . , v K ∈ G K such that (∀k ∈ {1, . . . , K}) -r k ∈ -L k (A + C) -1 z - K l=1 L * l v l + B -1 k v k + S -1 k v k .
Proposition 3.2. Consider the setting of Problem 3.1. Let (a 1,1,n ) n∈N , (b 1,1,n ) n∈N , and (c 1,1,n ) n∈N be absolutely summable sequences in H. For every integer k ∈ {1, . . . , K}, let (a 2,k,n ) n∈N , (b 2,k,n ) n∈N , and (c 2,k,n ) n∈N be absolutely summable sequences in G k ; moreover, if 1 k K 1 , let (b 1,k+1,n ) n∈N be an absolutely summable sequence in G k , and, if

K 1 + 1 k K 2 , let (a 1,k+1,n ) n∈N and (c 1,k+1,n ) n∈N be abso- lutely summable sequences in G k . Let x 0 ∈ H, y 1,0 ∈ G 1 , . . . , y K2,0 ∈ G K2 , v 1,0 ∈ G 1 , . . . , and v K,0 ∈ G K , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set (3.4)

For n = 0, 1, . . .                                                          s 1,1,n = x n -γ n Cx n + K k=1 L * k v k,n + a 1,1,n p 1,1,n = J γnA (s 1,1,n + γ n z) + b 1,1,n If K 1 = 0, f or k = 1, . . . , K 1           s 1,k+1,n = y k,n + γ n v k,n p 1,k+1,n = J γnS k s 1,k+1,n + b 1,k+1,n s 2,k,n = v k,n -γ n y k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + J γ -1 n B k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n p 1,k+1,n -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n If K 1 = K 2 , for k = K 1 + 1, . . . , K 2           s 1,k+1,n = y k,n -γ n S k y k,n -v k,n + a 1,k+1,n p 1,k+1,n = s 1,k+1,n s 2,k,n = v k,n -γ n y k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + J γ -1 n B k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n p 1,k+1,n -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n If K 2 = K, for k = K 2 + 1, . . . , K       s 2,k,n = v k,n -γ n S -1 k v k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + J γ -1 n B k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n S -1 k p 2,k,n -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n q 1,1,n = p 1,1,n -γ n Cp 1,1,n + K k=1 L * k p 2,k,n + c 1,1,n x n+1 = x n -s 1,1,n + q 1,1,n If K 1 = 0, for k = 1, . . . , K 1 q 1,k+1,n = p 1,k+1,n + γ n p 2,k,n y k,n+1 = y k,n -s 1,k+1,n + q 1,k+1,n If K 1 = K 2 , for k = K 1 + 1, . . . , K 2 q 1,k+1,n = p 1,k+1,n -γ n S k p 1,k+1,n -p 2,k,n + c 1,k+1,n y k,n+1 = y k,n -s 1,k+1,n + q 1,k+1,n .
Then the following hold for some solution x to (3.2) and some solution (v 1 , . . . , v K ) to (3.3). (i) x n ⇀ x and (∀k ∈ {1, . . . , K}) v k,n ⇀ v k .

(ii) Suppose that A or C is uniformly monotone at x. Then x n → x.

(iii) Suppose that, for some l ∈ {1, . . . , K}, B l is couniformly monotone at v l . Then v l,n → v l . (iv) Suppose that K 2 = K and that, for some l ∈ {K 2 + 1, . . . , K}, S l is couniformly monotone at v l . Then v l,n → v l . Proof. We assume that K 2 = 0 and consider the auxiliary problem 

(3.5) find x ∈ H, y 1 ∈ G 1 , . . . , y K2 ∈ G K2 such that                  z ∈ Ax + K2 k=1 L * k B k (L k x -y k -r k ) + K k=K2+1 L * k (B k S k )(L k x -r k ) + Cx 0 ∈ S 1 y 1 -B 1 (L 1 x -y 1 -r 1 ) . . . 0 ∈ S K2 y K2 -B K2 (L K2 x -y K2 -
                       m = K 2 + 1 H 1 = H A 1 = A C 1 = C µ 1 = µ x 1 = x z 1 = z, (∀k ∈ {1, . . . , K 2 })                                        H k+1 = G k A k+1 = S k , if 1 k K 1 ; 0, if K 1 + 1 k K 2 C k+1 = 0, if 1 k K 1 ; S k , if K 1 + 1 k K 2 µ k+1 = 0, if 1 k K 1 ; β k , if K 1 + 1 k K 2 x k+1 = y k z k+1 = 0, and (3.7) (∀k ∈ {1, . . . , K})                            D k = {0} -1 , if 1 k K 2 ; S k , if K 2 + 1 k K ν k+1 = 0, if 1 k K 2 ; β k , if K 2 + 1 k K L k1 = L k (∀i ∈ {2, . . . , K 2 + 1}) L ki = -Id , if i = k + 1; 0, otherwise.
First, we note that, in this setting, (1.3) reduces to (3.5), and (1.4) to (3.3). Now define H and G as in (2.5), let x ∈ H, let (y k )

1 k K2 ∈ K2 k=1 G k , set (x i ) 1 i m = (x, y 1 , . . . , y K2 ) ∈ H, set y = (y 1 , . . . , y K2 , 0, . . . , 0) ∈ G, and set λ = 1 + K2 k=1 L k 2 .
Then, using the Cauchy-Schwarz inequality in R 2 , (3.8)

K k=1 m i=1 L ki x i 2 = (L k x) 1 k K2 -y 2 y + (L k x) 1 k K2 2   y + K2 k=1 L k 2 x   2 1 + K2 k=1 L k 2 y 2 + x 2 = λ m i=1 x i 2 .
Thus, (3.1) is a special case of (1.2). On the other hand, by assumption, (3.2) has a solution, say x. Therefore, there exist

v 1 ∈ G 1 , . . . , v K2 ∈ G K2 such that (3.9)        z ∈ Ax + K2 k=1 L * k v k + K k=K2+1 L * k (B k S k )(L k x -r k ) + Cx (∀k ∈ {1, . . . , K 2 }) v k ∈ (B k S k )(L k x -r k ).
Therefore, in view of (1.1), there exist

y 1 ∈ G 1 , . . . , y K2 ∈ G K2 such that (3.10)        z ∈ Ax + K2 k=1 L * k v k + K k=K2+1 L * k (B k S k )(L k x -r k ) + Cx (∀k ∈ {1, . . . , K 2 }) y k ∈ S -1 k v k and L k x -y k -r k ∈ B -1 k v k , which implies that (3.11)        z ∈ Ax + K2 k=1 L * k v k + K k=K2+1 L * k (B k S k )(L k x -r k ) + Cx (∀k ∈ {1, . . . , K 2 }) v k ∈ S k y k and v k ∈ B k (L k x -y k -r k ),
and therefore that (3.12)

       z ∈ Ax + K2 k=1 L * k B k (L k x -y k -r k ) + K k=K2+1 L * k (B k S k )(L k x -r k ) + Cx (∀k ∈ {1, . . . , K 2 }) 0 ∈ S k y k -B k (L k x -y k -r k ).
This shows that (3.5) possesses a solution. Next, upon defining

(3.13) (∀n ∈ N) x 1,n = x n and (∀k ∈ {1, . . . , K 2 })          x k+1,n = y k,n ; a 1,k+1,n = 0, if 1 k K 1 ; b 1,k+1,n = 0, if K 1 + 1 k K 2 ; c 1,k+1,n = 0, if 1 k K 1 ,
we see that ( 

z - K k=1 L * k v k ∈ Ax + Cx, (∀k ∈ {1, . . . , K 2 }) L k x -y k -r k ∈ B -1 k v k v k ∈ S k y k , and (∀k ∈ {K 2 + 1, . . . , K}) L k x -r k ∈ B -1 k v k + S -1 k v k .
Since the strong convergence claims (ii)-(iv) are immediate consequences of Theorem 2.4(iii)(e)-(iii)(f), it remains to show that x solves (3.2). We derive from (3.15) that, for every k ∈ {1, . . . ,

K 2 }, L k x -y k -r k ∈ B -1 k v k and y k ∈ S -1 k v k , and, for every k ∈ {K 2 + 1, . . . , K}, L k x -r k ∈ B -1 k v k + S -1 k v k . Altogether, (3.16) (∀k ∈ {1, . . . , K}) L k x -r k ∈ B -1 k + S -1 k v k
and, therefore, (3.17)

K k=1 L * k v k ∈ K k=1 L * k B -1 k +S -1 k -1 (L k x-r k ) = K k=1 L * k (B k S k )(L k x-r k ) .
Thus, since (3.15) also asserts that z -

K k=1 L * k v k ∈ Ax + Cx, we conclude that x solves (3.2).
Remark 3.3. Problem 3.1 encompasses more general scenarios than that of [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], which corresponds to the case when K 1 = K 2 = 0, i.e., when all the operators (D -1 k ) 1 k K are restricted to be Lipschitzian. This extension has been made possible by reformulating the original primal problem (3.2), which involves only one variable, as the extended primal problem (3.5), in which we added K 2 auxiliary variables. We also note that Algorithm (3.4) uses all the single-valued operators present in Problem 3.1, including (S k ) K1+1 k K2 and (S -1 k ) K2+1 k K , through explicit steps.

Relaxation of inconsistent common zero problems.

A standard problem in nonlinear analysis is to find a common zero of maximally monotone operators A and (B k ) 1 k K acting on a real Hilbert space H [START_REF] Combettes | Construction d'un point fixe commun à une famille de contractions fermes[END_REF][START_REF] Dye | Unrestricted iterations of nonexpansive mappings in Hilbert space[END_REF][START_REF] Lehdili | The barycentric proximal method[END_REF], i.e., (4.1) find x ∈ H such that 0

∈ Ax ∩ K k=1 B k x.
In many situations, this problem may be inconsistent (see [START_REF] Combettes | Hard-constrained inconsistent signal feasibility problems[END_REF] and the references therein) and it must be approximated. We study the following relaxation of (4.1), together with its dual problem. Problem 4.1. Let H be a real Hilbert space, let K be a strictly positive integer, and let A : H → 2 H be maximally monotone. For every k ∈ {1, . . . , K}, let B k : H → 2 H be maximally monotone and let S k : H → 2 H be maximally monotone and such that S -1 k is at most single-valued and strictly monotone, with S -1 k 0 = {0}. It is assumed that the inclusion

(4.2) find x ∈ H such that 0 ∈ Ax + K k=1 (B k S k )x
possesses at least one solution. Solve (4.2) together with the dual problem

(4.3) find v 1 ∈ H, . . . , v K ∈ H such that (∀k ∈ {1, . . . , K}) 0 ∈ -A -1 - K l=1 v l + B -1 k v k + S -1 k v k .
First, we justify the fact that (4.2) is indeed a relaxation of (4.1). Proof. It is clear that every point in Z solves (4.2). Conversely, let x be a solution to (4.2) and let z ∈ Z. We first note that the operators (B k S k ) 1 k K are at most single-valued. Indeed, let k ∈ {1, . . . , K} and let (y, p) and (y, q) be in gra(B k S k ). Then we must show that p = q. We have p

= (B k S k )y ⇔ y ∈ B -1 k p + S -1 k p ⇔ y -S -1 k p ∈ B -1 k p. Likewise, y -S -1 k q ∈ B -1 k q and, by monotonicity of B k , -p -q | S -1 k p -S -1 k q = p -q | (y -S -1 k p) -(y -S -1 k q) 0. Consequently, by strict monotonicity of S -1 k , p -q | S -1 k p -S -1
k q = 0 and p = q. Hence, since x solves (4.2), there exists (p k ) 0 k K ∈ H K+1 such that (4.4)

K k=0 p k = 0, p 0 ∈ Ax, and (∀k ∈ {1, . . . , K}) p k = (B k S k )x.
Therefore, we have (4.5)

p 0 ∈ Ax, 0 ∈ Az, and (∀k ∈ {1, . . . , K}) p k ∈ B k x -S -1 k p k and 0 ∈ B k z,
and, by monotonicity of the operators A and (B k )

1 k K , (4.6) 
x -z | p 0 0 and (∀k ∈ {1, . . . , K}) x -S -1

k p k -z | p k 0.
Hence, since K k=0 p k = 0, it follows from the monotonicity of the operators

(S -1 k ) 1 k K that 0 - K k=1 p k -0 | S -1 k p k -S -1 k 0 = K k=0 x -z | p k - K k=1 S -1 k p k | p k = x -z | p 0 + K k=1 x -S -1 k p k -z | p k 0. (4.7) Thus, K k=1 p k -0 | S -1 k p k -S -1 k 0 = 0 and, therefore, (4.8) 
(∀k ∈ {1, . . . , K}) p k -0 | S -1 k p k -S -1 k 0 = 0.
The strict monotonicity of the operators (S -1 k ) 1 k K implies that for every k ∈ {1, . . . , K} p k = 0, i.e., x ∈ B -1

k p k + S -1 k p k = B -1 k 0 + S -1 k 0 = B -1 k 0. In turn, p 0 = - K k=1 p k = 0, i.e., x ∈ A -1 0. Altogether, x ∈ Z.
Remark 4.3. Suppose that in Problem 4.1 we set, for every k ∈ {1, . . . , K}, Proposition 23.6(ii)]. Then (4.2) reduces to the setting investigated in [18, Section 6.3], namely (4.9) find x ∈ H such that 0

S k = γ -1 k Id where γ k ∈ ]0, +∞[, i.e., B k S k = γ k B k is the Yosida approximation of B k of index γ k [8,
∈ Ax + K k=1 γ k B k x,
which itself covers the frameworks of [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF][START_REF] Combettes | Hard-constrained inconsistent signal feasibility problems[END_REF][START_REF] Mahey | Partial regularization of the sum of two maximal monotone operators[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF] and the references therein. In this case, Proposition 4.2 specializes to [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Proposition 6.10]. Now let us further specialize to the case when H = R N , A = 0, and (4.10)

(∀k ∈ {1, . . . , K})      γ k = 1 B k : x → span {u k }, if x | u k = ρ k ; ∅, if x | u k = ρ k ,
where

     u k ∈ R N u k = 1 ρ k ∈ R.
Then (4.1) amounts to solving the system of linear equalities

(4.11) find x ∈ R N such that (∀k ∈ {1, . . . , K}) x | u k = ρ k , whereas (4. 
2) amounts to solving the least-squares problem (4.12) minimize

x∈R N m k=1 | x | u k -ρ k | 2 .
The idea of relaxing (4.11) to (4.12) is due to Legendre [START_REF] Legendre | Nouvelles Méthodes pour la Détermination de l'Orbite des Comètes[END_REF] and Gauss [START_REF] Gauss | Theoria Motus Corporum Coelestium[END_REF].

To solve Problem 4.1, we use Proposition 3.2 to derive the following algorithm. 

) 1 k K ∈ H K , (v k,0 ) 1 k K ∈ H K , and ε ∈ ]0, 1/( √ K + 1 + 1)[ , let (γ n ) n∈N be a sequence in [ε, (1 -ε)/ √ K + 1], and set (4.13) 
For n = 0, 1, . . .

                p 1,1,n = J γnA x n -γ n K k=1 v k,n + b 1,1,n For k = 1, . . . , K       p 1,k+1,n = J γnS k (y k,n + γ n v k,n ) + b 1,k+1,n s 2,k,n = v k,n -γ n (y k,n -x n ) p 2,k,n = s 2,k,n -γ n J γ -1 n B k (γ -1 n s 2,k,n ) + b 2,k,n v k,n+1 = v k,n -s 2,k,n + p 2,k,n -γ n p 1,k+1,n -p 1,1,n x n+1 = p 1,1,n + γ n K k=1 (v k,n -p 2,k,n ) For k = 1, . . . , K y k,n+1 = p 1,k+1,n + γ n (p 2,k,n -v k,n )
Then the following hold for some solution x to (4.2) and some solution

(v 1 , . . . , v K ) to (4.3). (i) x n ⇀ x and (∀k ∈ {1, . . . , K}) v k,n ⇀ v k .
(ii) Suppose that A is uniformly monotone at x. Then x n → x.

(iii) Suppose that, for some l ∈ {1, . . . , K}, B l is couniformly monotone at v l . Then v l,n → v l .

Proof. Problem 4.1 is a special case of Problem 3.1 with

K 1 = K 2 = K, z = 0, C = 0, µ = 0, β = √ K + 1
, and (∀k ∈ {1, . . . , K}) G k = H, L k = Id , and r k = 0. In this context, (3.4) can be reduced to (4.13), and the claims therefore follow from Proposition 3.2.

Remark 4.5. For brevity, we have presented an algorithm for solving Problem 4.1 in its general form. However, if some of the operators (S k ) 1 k K or their inverses are Lipschitzian, we can apply Proposition 3.2 with K 1 = K and/or K 2 = K to obtain a more efficient algorithm in which each Lipschitzian operator is used through an explicit step, rather than through its resolvent.

5. Multivariate structured convex minimization problems. We derive from Theorem 2.4 a primal-dual minimization algorithm for multivariate convex minimization problems involving infimal convolutions and composite functions.

Problem 5.1. Let m and K be strictly positive integers, let (H i ) 1 i m and (G k ) 1 k K be real Hilbert spaces, let (µ i ) 1 i m ∈ [0, +∞[ m , and let (ν k )

1 i K ∈ ]0, +∞[ K .
For every i ∈ {1, . . . , m} and k ∈ {1, . . . , K}, let h i : H i → R be convex and differentiable and such that ∇h i is µ i -Lipschitzian, let

f i ∈ Γ 0 (H i ), let g k ∈ Γ 0 (G k ), let ℓ k ∈ Γ 0 (G k ) be 1/ν k -strongly convex, let z i ∈ H i , let r k ∈ G k , and let L ki ∈ B (H i , G k ). Set β = max max 1 i m µ i , max 1 k K ν k + √ λ > 0, where λ ∈ sup m i=1 xi 2 1 K k=1 m i=1 L ki x i 2
, +∞ , and assume that (5.1)

(∀i ∈ {1, . . . , m}) z i ∈ ran ∂f i + K k=1 L * ki • (∂g k ∂ℓ k ) • m j=1 L kj • -r k + ∇h i .
Solve the primal problem (5. 

f i (x i ) + K k=1 (g k ℓ k ) m i=1 L ki x i -r k + m i=1 h i (x i ) -x i | z i ,
together with the dual problem

(5.3) minimize v1∈G1,..., vK ∈GK m i=1 f * i h * i z i - K k=1 L * ki v k + K k=1 g * k (v k )+ℓ * k (v k )+ v k | r k .
Remark 5.2. Problem 5.1 extends significantly the multivariate minimization framework of [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Briceño-Arias | Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery[END_REF]. The minimization problem under consideration there was the following specialization of (5.2)

(5.4) minimize x1∈H1,..., xm∈Hm m i=1 f i (x i ) + K k=1 g k m i=1 L ki x i ,
where, in addition, the functions (g k ) 1 k K were required to be differentiable everywhere with a Lipschitzian gradient. Furthermore, no dual problem was considered. Proposition 5.3. Consider the setting of Problem 5.1. Suppose that (5.2) has a solution, and set (5.5)

E = m i=1 L ki x i -y k 1 k K (∀i ∈ {1, . . . , m}) x i ∈ dom f i (∀k ∈ {1, . . . , K}) y k ∈ dom g k + dom ℓ k .
Then (5.1) is satisfied in each of the following cases.

(i) (r k ) 1 k K ∈ sri E. (ii) E -(r k ) 1 k K is a closed vector subspace.
(iii) For every i ∈ {1, . . . , m}, f i is real-valued and, for every k ∈ {1, . . . , K}, the operator

m j=1 H j → G k : (x j ) 1 j m → m j=1
L kj x j is surjective. (iv) For every k ∈ {1, . . . , K}, g k or ℓ k is real-valued. (v) (H i ) 1 i m and (G k ) 1 k K are finite-dimensional, and (∀i ∈ {1, . . . , m})(∃ x i ∈ ri dom f i )(∀k ∈ {1, . . . , K}) m i=1 L ki x i -r k ∈ ri dom g k + ri dom ℓ k . Proof. Define H and G as in (2.5), and L, z, and r as in (2.6). Set (5.6) f

: H → ]-∞, +∞] : x → m i=1 f i (x i ) g : G → ]-∞, +∞] : y → K k=1 g k (y k ) and h : H → R : x → m i=1 h i (x i ) ℓ : G → ]-∞, +∞] : y → K k=1 ℓ k (y k ).
Then (5.5) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 12.6(ii)] yield Propositions 11.16 and 14.15] and therefore [8, Propositions 15.7(iv) and 24.27] imply that ∂g ∂ℓ = ∂(g ℓ) and g ℓ ∈ Γ 0 (G). On the other hand, (5.8) yields

E = Lx -y x ∈ dom f and y ∈ dom g + dom ℓ = L dom f -dom g + dom ℓ (5.7) = L dom (f + h -• | z ) -dom g ℓ . (5.8) (i): Since the functions (ℓ k ) 1 k K are strongly convex, so is ℓ. Hence, dom ℓ * = G [8,
0 ∈ sri (L(dom (f + h -• | z )) -dom (g ℓ)(• -r))
. Thus, we derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.37(i)] that (5.10) ri E = ri L dom f -dom g -dom ℓ = L ri dom f -ri dom g -ri dom ℓ.

∂f + L * • (∂g ∂ℓ k ) • (L • -r) + ∇h -z = ∂ f + h -• | z + L * • ∂(g ℓ) • (L • -r) = ∂ f + h -• | z + (g ℓ) • (L • -r) .
Thus, r ∈ sri E ⇔ (∃ x ∈ ri dom f = × m i=1 ri dom f i ) Lx -r ∈ ri dom g + ri dom ℓ = × K k=1 (ri dom g k + ri dom ℓ k ).
Proposition 5.4. Consider the setting of Problem 5.1. For every i ∈ {1, . . . , m}, let (a 1,i,n ) n∈N , (b 1,i,n ) n∈N , and (c 1,i,n ) n∈N be absolutely summable sequences in H i and, for every k ∈ {1, . . . , K}, let (a 2,k,n ) n∈N , (b 2,k,n ) n∈N , and (c 2,k,n ) n∈N be absolutely summable sequences in G k . Furthermore, let 

x 1,0 ∈ H 1 , . . . , x m,0 ∈ H m , v 1,0 ∈ G 1 , . . . , v K,0 ∈ G K , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
For n = 0, 1, . . .                        For i = 1, . . . , m s 1,i,n = x i,n -γ n ∇h i (x i,n ) + K k=1 L * ki v k,n + a 1,i,n p 1,i,n = prox γnfi (s 1,i,n + γ n z i ) + b 1,i,n For k = 1, . . . , K         s 2,k,n = v k,n -γ n ∇ℓ * k (v k,n ) - m i=1 L ki x i,n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + prox γ -1 n g k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n ∇ℓ * k (p 2,k,n ) - m i=1 L ki p 1,i,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n For i = 1, . . . , m q 1,i,n = p 1,i,n -γ n ∇h i (p 1,i,n ) + K k=1 L * ki p 2,k,n + c 1,i,n x i,n+1 = x i,n -s 1,i,n + q 1,i,n .
Then the following hold.

(i) (∀i ∈ {1, . . . , m}) n∈N x i,n -p 1,i,n 2 < +∞, and (∀k ∈ {1, . . . , K}) n∈N v -p 2,k,n 2 < +∞. (ii) There exist a solution (x 1 , . . . , x m ) to (5.2) and a solution (v 1 , . . . , v K ) to (5.3) such that the following hold.

(a) (∀i ∈ {1, . . . , m}) x i,n ⇀ x i and z i -

K k=1 L * ki v k ∈ ∂f i (x i ) + ∇h i (x i ). (b) (∀k ∈ {1, . . . , K}) v k,n ⇀ v k and m i=1 L ki x i -r k ∈ ∂g * k (v k )+∇ℓ * k (v k ). (c 
) Suppose that, for some j ∈ {1, . . . , m}, f j or h j is uniformly convex at x j . Then x j,n → x j . (d) Suppose that, for some l ∈ {1, . . . , K}, g 

(i)] that D -1 k = (∂ℓ k ) -1 = ∂ℓ * k = {∇ℓ * k }.
On the other hand, (5.1) implies that (1.3) possesses a solution, and (1.15) implies that (5.11) is a special case of (2.4). We also recall that the uniform convexity of a function ϕ ∈ Γ 0 (H) at x ∈ dom ∂ϕ implies the uniform monotonicity of ∂ϕ at x [47, Section 3.4]. Altogether, the claims will follow at once from Theorem 2.4 provided we show that, in the setting of (5.1) and (5.12), (1.3) becomes (5.2) and (1.4) becomes (5.3) 

+ D -1 k = ∂g * k + {∇ℓ * k } = ∂ g * k + ℓ * k . β = max µ, β K1+1 , . . . , β K + 1 + K k=1 L k 2
, and assume that (6.1)

z ∈ ran ∂f + K k=1 L * k • (∂g k ∂ϕ k ) • L k • -r k + ∇h and (6.2) (∀k ∈ {1, . . . , K 2 }) 0 ∈ sri (dom g * k -dom ϕ * k ).
Solve the primal problem

(6.3) minimize x∈H f (x) + K k=1 (g k ϕ k )(L k x -r k ) + h(x) -x | z ,
together with the dual problem (6.4) minimize v1∈G1,...,vK ∈GK 

f * h * z - K k=1 L * k v k + m k=1 g * k (v k ) + ϕ * k (v k ) + v k | r k . Remark 
ϕ k ∈ Γ 0 (G k ) and ∂g k ∂ϕ k = ∂(g k ϕ k ).
Hence, using the same type of arguments as in the proof of Proposition 5.3, we can deduce similar conditions for (6.1) to hold, e.g., that (6.3) have a solution and that (r k ) 1 k K lie in the strong relative interior of (6.6) (L k x-y k ) 

k ; moreover, if 1 k K 1 , let (b 1,k+1,n ) n∈N be an absolutely summable sequence in G k , and, if K 1 + 1 k K 2 , let (a 1,k+1,n ) n∈N and (c 1,k+1,n ) n∈N be abso- lutely summable sequences in G k . Let x 0 ∈ H, y 1,0 ∈ G 1 , . . . , y K2,0 ∈ G K2 , v 1,0 ∈ G 1 , . . . , and v K,0 ∈ G K , let ε ∈ ]0, 1/(β + 1)[, let (γ n ) n∈N be a sequence in [ε, (1 -ε)/β],
and set (6.7) n g k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n p 1,k+1,n -

For n = 0, 1, . . .                                                         
L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n If K 1 = K 2 , for k = K 1 + 1, . . . , K 2           s 1,k+1,n = y k,n -γ n ∇ϕ k (y k,n ) -v k,n + a 1,k+1,n p 1,k+1,n = s 1,k+1,n s 2,k,n = v k,n -γ n y k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + prox γ -1 n g k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n p 1,k+1,n -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n If K 2 = K, for k = K 2 + 1, . . . , K       s 2,k,n = v k,n -γ n ∇ϕ * k (v k,n ) -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + prox γ -1 n g k (γ -1 n s 2,k,n -r k ) + b 2,k,n q 2,k,n = p 2,k,n -γ n ∇ϕ * k (p 2,k,n ) -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n q 1,1,n = p 1,1,n -γ n ∇h(p 1,1,n ) + K k=1 L * k p 2,k,n + c 1,1,n x n+1 = x n -s 1,1,n + q 1,1,n
If K 1 = 0, for k = 1, . . . , K 1 q 1,k+1,n = p 1,k+1,n + γ n p 2,k,n y k,n+1 = y k,n -s 1,k+1,n + q 1,k+1,n If K 1 = K 2 , for k = K 1 + 1, . . . , K 2 q 1,k+1,n = p 1,k+1,n -γ n ∇ϕ k (p 1,k+1,n ) -p 2,k,n + c 1,k+1,n y k,n+1 = y k,n -s 1,k+1,n + q 1,k+1,n .

Then the following hold for some solution x to (6.3) and some solution (v 1 , . . . , v K ) to (6.4). (i) x n ⇀ x and (∀k ∈ {1, . . . , K}) v k,n ⇀ v k .

(ii) Suppose that f or h is uniformly convex at x. Then x n → x.

(iii) Suppose that, for some l ∈ {1, . . . , K}, g * l is uniformly convex at v l . Then v l,n → v l . (iv) Suppose that K 2 = K and that, for some l ∈ {K 2 +1, . . . , K}, ϕ * l is uniformly convex at v l . Then v l,n → v l . Proof. Using (6.5) and the same arguments as in the proof of Proposition 5.4, we first identify Problem 6.1 as a special case of Problem 3.1 with A = ∂f , C = ∇h, and (∀k ∈ {1, . . . , K}) B k = ∂g k and S k = ∂ϕ k . Using (1.15), we then deduce the results from Proposition 3.2.

We conclude this section with an application to the approximation of inconsistent convex feasibility problems where, for the sake of brevity, we discuss only the primal problem.

Example 6.4. In Problem 6.1, set K 1 = K 2 = K, z = 0, h = 0, f = 0, and, for every k ∈ {1, . . . , K} r k = 0 and g k = ι C k , where C k is a nonempty closed convex subset of G k with projection operator P k . In addition, suppose that (6.8) (∀k ∈ {1, . . . , K}) Argmin ϕ k = {0}, ϕ k (0) = 0, and 0 ∈ sri (dom ι * C k -dom ϕ * k ). It follows from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 15.7(i)] that the infimal convolutions (ι C k ϕ k ) 1 k K are exact. Hence, (6.3) becomes (6.9) minimize

x∈H K k=1 min y k ∈C k ϕ k (L k x -y k ),
and it is assumed to have at least one solution. We can interpret (6.9) as a relaxation of the (possibly inconsistent) convex feasibility problem (6.10) find x ∈ H such that (∀k ∈ {1, . . . , K}) L k x ∈ C k .

Indeed, it follows from (6.8) that, if (6.10) is consistent, then its solutions coincide with those of (6.9). Furthermore, in view of (1.15), Algorithm (6.7) can be written as (6.11) For n = 0, 1, . . .

                        p 1,1,n = x n -γ n K k=1 L * k v k,n + a 1,1,n For k = 1, . . . , K           s 1,k+1,n = y k,n + γ n v k,n p 1,k+1,n = prox γnϕ k s 1,k+1,n + b 1,k+1,n s 2,k,n = v k,n -γ n y k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n P k (γ -1 n s 2,k,n ) + b 2,k,n q 2,k,n = p 2,k,n -γ n p 1,k+1,n -L k p 1,1,n + c 2,k,n v k,n+1 = v k,n -s 2,k,n + q 2,k,n q 1,1,n = p 1,1,n -γ n K k=1 L *
k p 2,k,n + c 1,1,n x n+1 = x n -p 1,1,n + q 1,1,n For k = 1, . . . , K q 1,k+1,n = p 1,k+1,n + γ n p 2,k,n y k,n+1 = y k,n -s 1,k+1,n + q 1,k+1,n .

By Proposition 6.3(i), (x n ) n∈N converges weakly to a solution to (6.9) if inf n∈N γ n > 0 and sup n∈N γ n < 1 + K k=1 L k 2 -1/2 . Now suppose that, for every k ∈ {1, . . . , K}, G k = H, L k = Id , ϕ k = ι {0} if k = 1, and ϕ k = ω k • 2 , where ω k ∈ ]0, +∞[, if k = 1. Then (6.10) reduces to the feasibility problem of finding x ∈ K k=1 C k and (6.9) reduces to the constrained least-squares relaxation studied in [START_REF] Combettes | Hard-constrained inconsistent signal feasibility problems[END_REF], namely, minimize

x∈C1 K k=2 ω k d 2 C k (x).

2 . 4 )

 24 specializes to(3.4). Hence, in view of (3.6)-(3.7) and Theorem 2.4(iii)(a)-(iii)(d), there exist a solution (x, y 1 , . . . , y K2 ) to (3.5) and a solution (v 1 , . . . , v K ) to (3.3) such that(3.14) x n ⇀ x and (∀k ∈ {1, . . . , K}) v k,n ⇀ v k , with(3.15) 

Proposition 4 . 2 .

 42 In the setting of Problem 4.1, set Z = (zer A) ∩ K k=1 zer B k and suppose that Z = ∅. Then the set of solutions to the primal problem (4.2) is Z.

Proposition 4 . 4 .

 44 Consider the setting of Problem 4.1. Let (b 1,1,n ) n∈N and, for every k ∈ {1, . . . , K}, (b 1,k+1,n ) n∈N and (b 2,k,n ) n∈N be absolutely summable sequences in H. Let x 0 ∈ H, (y k,0

  has a solution and is equivalent to minimizing f +h-• | z +(g ℓ)•(L•-r) over H, Fermat's rule [8, Theorem 16.2] implies that 0 ∈ ran ∂(f +h-• | z +(g ℓ)• (L • -r)). Hence (5.9) yields z ∈ ran(∂f + L * • (∂g ∂ℓ k ) • (L • -r) + ∇h)and we conclude that (5.1) is satisfied. (ii)⇒(i): [8, Proposition 6.19(i)]. (iii)⇒(i): We have L(dom f ) = L(H) = G. Hence, (5.7) yields E = G. (iv)⇒(i): We have dom g + dom ℓ = G. Hence, (5.7) yields E = G. (v)⇒(i): Since dim G < +∞, sri E = ri E. On the other hand, by (5.7) and [8, Corollary 6.15],

s 1 ,

 1 1,n = x n -γ n ∇h(x n ) + K k=1 L * k v k,n + a 1,1,n p 1,1,n = prox γnf (s 1,1,n + γ n z) + b 1,1,n If K 1 = 0, for k = 1, . . . , K 1 k+1,n = y k,n + γ n v k,n p 1,k+1,n = prox γnϕ k s 1,k+1,n + b 1,k+1,n s 2,k,n = v k,n -γ n y k,n -L k x n + a 2,k,n p 2,k,n = s 2,k,n -γ n r k + prox γ -1

  The indicator function of C is denoted by ι C and the distance function to C by d C . The relative interior [respectively, the strong relative interior] of C, i.e., the set of points x ∈ C such that the cone generated by -x + C is a vector subspace [respectively, closed vector subspace] of H, by ri C [respectively, sri C]. See

  1,i,n ) n∈N and (b 1,i,n ) n∈N are absolutely summable, we get (2.20) (∀i ∈ {1, . . . , m}) s 1,i,n -s 1,i,n → 0 and p 1,i,n -p 1,i,n → 0. . . . , K}) s 2,k,n -s 2,k,n → 0 and p 2,k,n -p 2,k,n → 0.

	Likewise, we derive from (2.4) and (2.17) that
	(2.21)	(∀k ∈ {1,

  * l or ℓ * l is uniformly convex at v l . Then v l,n → v l .

	Proof. Set	
	(5.12)	(∀i ∈ {1, . . . , m}) A

i = ∂f i and C i = ∇h i (∀k ∈ {1, . . . , K}) B k = ∂g k and D k = ∂ℓ k . It follows from [8, Proposition 17.10] that the operators (C i ) 1 i m are monotone, and from [8, Theorem 20.40] that the operators (A i ) 1 i m , (B k ) 1 k m , and (D k ) 1 k K are maximally monotone. Moreover, for every k ∈ {1, . . . , K}, we derive from [8, Corollary 13.33 and Theorem 18.15] that ℓ * k is Fréchet differentiable on G k and ∇ℓ * k is ν k -Lipschitzian, and from [8, Corollary 16.24 and Proposition 17.26

  . To this end, let us first observe that since, for every k ∈ {1, . . . , K}, dom ℓ * k = G k , [8, Proposition 24.27] yields (5.13) (∀k ∈ {1, . . . , K}) B k D k = ∂g k ∂ℓ k = ∂(g k ℓ k ),

	while [8, Corollaries 16.24 and 16.38(iii)] yield
	(5.14)	(∀k ∈ {1, . . . , K}) B -1 k

  1 k K x ∈ dom f and (∀k ∈ {1, . . . , K}) y k ∈ dom g k + dom ϕ k . Proposition 6.3. Consider the setting of Problem 6.1. Let (a 1,1,n ) n∈N , (b 1,1,n ) n∈N ,and (c 1,1,n) n∈N be absolutely summable sequences in H. For every integer k ∈ {1, . . . , K}, let (a 2,k,n ) n∈N , (b 2,k,n ) n∈N , and (c 2,k,n ) n∈N be absolutely summable sequences in G
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Likewise, using [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 15.3], we obtain (5.15) (∀i ∈ {1, . . . , m})

Now let us define H and G as in (2.5), L, z, and r as in (2.6), and f , h, g, and ℓ as in (5.6). We derive from (5.12), (5. 

Then we derive from (5.14), (5.15), and the same subdifferential calculus rules as above that

⇔ v solves (5.3), (5.17) which completes the proof.

Remark 5.5. Proposition 5.4 provides a framework that captures and suggests extensions of multivariate and/or infimal convolution variational formulations found in areas such as partial differential equations [START_REF] Attouch | Alternating proximal algorithms for linearly constrained variational inequalities: application to domain decomposition for PDE's[END_REF], machine learning [START_REF] Bach | Optimization with sparsityinducing penalties, Found[END_REF], and image recovery [START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF][START_REF] Cai | Image restoration: Total variation, wavelet frames, and beyond[END_REF][START_REF] Setzer | Infimal convolution regularizations with discrete ℓ1-type functionals[END_REF].

6. Univariate structured convex minimization problems. Minimization problems involving a single primal variable can be obtained by setting m = 1 in Problem 5.1. However, this approach imposes that infimal convolutions be performed exclusively with strongly convex functions. We use a different strategy relying on Proposition 3.2, which leads to a formulation allowing for infimal convolutions with general lower semicontinuous convex functions. Problem 6.1. Let H be a real Hilbert space, let K 1 , K 2 , and K be integers such that 0 K 1 K 2 K 1, let z ∈ H, let f ∈ Γ 0 (H), and let h : H → R be convex and differentiable and such that ∇h is µ-Lipschitzian for some µ ∈ [0, +∞[. For every integer k ∈ {1, . . . , K}, let G k be a real Hilbert space, let