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Introduction

Let C be a nonempty closed subset of the Euclidean space R N and let y be a point in its complement. In 1922, Fejér [START_REF] Fejér | Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen[END_REF] considered the problem of finding a point x ∈ R N such that (∀z ∈ C) x -z < y -z . Based on this work, the term Fejér-monotonicity was coined in [START_REF] Motzkin | The relaxation method for linear inequalities[END_REF] in connection with sequences (x n ) n∈N in R N that satisfy

(∀z ∈ C)(∀n ∈ N) x n+1 -z x n -z . (1.1) 
This concept was later broadened to that of quasi-Fejér monotonicity in [START_REF] Yu | Random Fejér and quasi-Fejér sequences[END_REF] by relaxing (1.1) to

(∀z ∈ C)(∀n ∈ N) x n+1 -z 2 x n -z 2 + ε n , (1.2) 
where (ε n ) n∈N is a summable sequence in [0, +∞[. These notions have proven to be remarkably useful in simplifying and unifying the convergence analysis of a large collection of algorithms arising in hilbertian nonlinear analysis, see for instance [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Fejér monotonicity in convex optimization[END_REF][START_REF] Eremin | Fejér mappings and convex programming[END_REF][START_REF] Eremin | Fejér processes in theory and practice: Recent results[END_REF][START_REF] Polyak | Introduction to Optimization[END_REF][START_REF] Raȋk | A class of iterative methods with Fejér-monotone sequences[END_REF][START_REF] Schott | A general iterative scheme with applications to convex optimization and related fields[END_REF] and the references therein. In recent years, there have been attempts to generalize standard algorithms such as those discussed in the above references by allowing the underlying metric to vary over the course of the iterations, e.g., [START_REF] Bonnans | A family of variable metric proximal methods[END_REF][START_REF] Burke | A variable metric proximal point algorithm for monotone operators[END_REF][START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Lotito | A class of variable metric decomposition methods for monotone variational inclusions[END_REF][START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF]. In order to better understand the convergence properties of such algorithms and lay the ground for further developments, we extend in the present paper the notion of quasi-Fejér monotonicity to the context of variable metric iterations in general Hilbert spaces and investigate its properties.

Our notation and preliminary results are presented in Section 2. The notion of variable metric quasi-Fejér monotonicity is introduced in Section 3, where weak and strong convergence results are also established. In Section 4, we focus on the special case when, as in (1.2), monotonicity is with respect to the squared norms. Finally, we illustrate the potential of these tools in the analysis of variable metric convex feasibility algorithms in Section 5 and in the design of algorithms for solving inverse problems in Section 6.

Notation and technical facts

Throughout, H is a real Hilbert space, • | • is its scalar product and • the associated norm. The symbols ⇀ and → denote respectively weak and strong convergence, Id denotes the identity operator, and B(z; ρ) denotes the closed ball of center z ∈ H and radius ρ ∈ ]0, +∞[ ; S (H) is the space of self-adjoint bounded linear operators from H to H. The Loewner partial ordering on S (H) is defined by 

(∀L 1 ∈ S (H))(∀L 2 ∈ S (H)) L 1 L 2 ⇔ (∀x ∈ H) L 1 x | x L 2 x | x . ( 2 
(i) α -1 Id B -1 A -1 µ -1 Id. (ii) (∀x ∈ H) A -1 x | x A -1 x 2 . (iii) A -1 α -1 .
Proof. These facts are known [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]Section VI.2.6]. We provide a simple convex-analytic proof.

(i): It suffices to show that

B -1 A -1 . Set (∀x ∈ H) f (x) = Ax | x /2 and g(x) = Bx | x /2. The conjugate of f is f * : H → [-∞, +∞] : u → sup x∈H x | u -f (x) = A -1 u | u /2 [5, Proposition 17.28]. Likewise, g * : H → [-∞, +∞] : u → B -1 u | u /2. Since, f g, we have g * f * , hence the result. (ii): Since A Id A, (i) yields A -1
A -1 Id.

(iii): We have A -1 ∈ S (H) and, by (i), (∀x ∈ H) x 2 /α A -1 x | x . Hence, upon taking the supremum over B(0; 1), we obtain 1/α

A -1 . Lemma 2.2 [30, Lemma 2.2.2] Let (α n ) n∈N be a sequence in [0, +∞[, let (η n ) n∈N ∈ ℓ 1 + (N), and let (ε n ) n∈N ∈ ℓ 1 + (N) be such that (∀n ∈ N) α n+1 (1 + η n )α n + ε n . Then (α n ) n∈N converges.
The following lemma extends the classical property that a uniformly bounded monotone sequence of operators in S (H) converges pointwise [START_REF] Riesz | Leçons d'Analyse Fonctionnelle[END_REF]Théorème 104.1].

Lemma 2.3 Let α ∈ ]0, +∞[, let (η n ) n∈N ∈ ℓ 1 + (N)
, and let (W n ) n∈N be a sequence in P α (H) such that µ = sup n∈N W n < +∞. Suppose that one of the following holds.

(i) (∀n ∈ N) (1 + η n )W n W n+1 . (ii) (∀n ∈ N) (1 + η n )W n+1 W n .
Then there exists W ∈ P α (H) such that W n → W pointwise.

Proof. (i): Set τ = n∈N (1 + η n ), τ 0 = 1, and, for every n ∈ N {0}, τ n = n-1 k=0 (1 + η k ). Then τ n → τ < +∞ [START_REF] Knopp | Infinite Sequences and Series[END_REF]Theorem 3.7.3] and

(∀n ∈ N) µ Id W n α Id and τ n+1 = τ n (1 + η n ). (2.5) Now define (∀n ∈ N)(∀m ∈ N) W n,m = 1 τ n W n - 1 τ n+m W n+m . (2.6) 
Then we derive from (2.5) that 

(∀n ∈ N)(∀m ∈ N {0})(∀x ∈ H) 0 = 1 τ n W n x | x - 1 τ n+m n+m-1 k=n (1 + η k ) W n x | x 1 τ n W n x | x - 1 τ n+m W n+m x | x = W n,m x | x 1 τ n W n x | x W n x | x µ x 2 . ( 2 
Wn ) n∈N converges, which implies that

x 2 Wn,m = W n,m x | x = 1 τ n x 2 Wn - 1 τ n+m x 2 W n+m → 0 as n, m → +∞.
(2.9) Therefore, using (2.8), Cauchy-Schwarz for the semi-norms ( • Wn,m ) (n,m)∈N 2 , and (2.9), we obtain

W n,m x 4 = x | W n,m x 2 Wn,m x 2 Wn,m W n,m x 2
Wn,m

x 2 Wn,m µ 3 x 2 → 0 as n, m → +∞.

(2.10) Thus, we derive from (2.6) that (τ -1 n W n x) n∈N is a Cauchy sequence. Hence, it converges strongly, and so does (W n x) n∈N . If we call W x the limit of (W n x) n∈N , the above construction yields the desired operator

W ∈ P α (H). (ii): Set (∀n ∈ N) L n = W -1 n . It follows from Lemma 2.1(i)&(iii) that (L n ) n∈N lies in P 1/µ (H), sup n∈N L n 1/α, and (∀n ∈ N) (1 + η n )L n L n+1
. Hence, appealing to (i), there exists L ∈ P 1/µ (H) such that L 1/α and L n → L pointwise. Now let x ∈ H, and set

W = L -1 and (∀n ∈ N) x n = L n (W x). Then W ∈ P α (H) and x n → L(W x) = x. Moreover, W n x -W x = W n (x -x n ) µ x n -x → 0.

Variable metric quasi-Fejér monotone sequences

Our paper hinges on the following extension of (1.2). 

(i) φ-quasi-Fejér monotone with respect to the target set C relative to (W n ) n∈N if ∃ (η n ) n∈N ∈ ℓ 1 + (N) ∀z ∈ C ∃ (ε n ) n∈N ∈ ℓ 1 + (N) (∀n ∈ N) φ( x n+1 -z W n+1 ) (1 + η n )φ( x n -z Wn ) + ε n ; (3.1) (ii) stationarily φ-quasi-Fejér monotone with respect to the target set C relative to (W n ) n∈N if ∃ (ε n ) n∈N ∈ ℓ 1 + (N) ∃ (η n ) n∈N ∈ ℓ 1 + (N) (∀z ∈ C)(∀n ∈ N) φ( x n+1 -z W n+1 ) (1 + η n )φ( x n -z Wn ) + ε n . (3.2)
We start with basic properties. Proposition 3.2 Let α ∈ ]0, +∞[, let φ : [0, +∞[ → [0, +∞[ be strictly increasing and such that lim t→+∞ φ(t) = +∞, let (W n ) n∈N be in P α (H), let C be a nonempty subset of H, and let (x n ) n∈N be a sequence in H such that (3.1) is satisfied. Then the following hold.

(i) Let z ∈ C. Then ( x n -z Wn ) n∈N converges. (ii) (x n ) n∈N is bounded.
Proof. (i): Set (∀n ∈ N) ξ n = x n -z Wn . It follows from (3.1) and Lemma 2.2 that (φ(ξ n )) n∈N converges, say φ(ξ n ) → λ. In turn, since lim t→+∞ φ(t) = +∞, (ξ n ) n∈N is bounded and, to show that it converges, it suffices to show that it cannot have two distinct cluster points. Suppose to the contrary that we can extract two subsequences (ξ kn ) n∈N and (ξ ln ) n∈N such that ξ kn → η and ξ ln → ζ > η, and fix ε ∈ ]0, (ζ -η)/2[. Then, for n sufficiently large, ξ kn η + ε < ζ -ε ξ ln and, since φ is strictly increasing, φ(ξ kn ) φ(η + ε) < φ(ζ -ε) φ(ξ ln ). Taking the limit as

n → +∞ yields λ φ(η + ε) < φ(ζ -ε) λ, which is impossible. (ii): Let z ∈ C. Since (W n ) n∈N lies in P α (H), we have (∀n ∈ N) α x n -z 2 x n -z | W n (x n -z) = x n -z 2 Wn . (3.3) 
Hence, since (i) asserts that (

x n -z Wn ) n∈N is bounded, so is (x n ) n∈N .
The next result concerns weak convergence. In the case of standard Fejér monotonicity (1.1), it appears in [9, Lemma 6] and, in the case of quasi-Fejér monotonicity (1.2), it appears in [ Proof. Necessity is clear. To show sufficiency, suppose that every weak sequential cluster point of (x n ) n∈N is in C, and let x and y be two such points, say x kn ⇀ x and x ln ⇀ y. Then it follows from Proposition 3.2(i) that ( x n -x Wn ) n∈N and ( x n -y Wn ) n∈N converge. Moreover,

x 2 Wn = W n x | x → W x | x and, likewise, y 2 Wn → W y | y . Therefore, since (∀n ∈ N) W n x n | x -y = 1 2 x n -y 2 Wn -x n -x 2 Wn + x 2 Wn -y 2 Wn , (3.4) 
the sequence (

W n x n | x -y ) n∈N converges, say W n x n | x -y → λ ∈ R, which implies that x n | W n (x -y) → λ ∈ R. (3.5)
However, since x kn ⇀ x and W kn (x-y) → W (x-y), it follows from (3.5) and [5, Lemma 2.41(iii)] that x | W (x -y) = λ. Likewise, passing to the limit along the subsequence (x ln ) n∈N in (3.5) yields y | W (x -y) = λ. Thus,

0 = x | W (x -y) -y | W (x -y) = x -y | W (x -y) α x -y 2 . (3.6)
This shows that x = y. Upon invoking Proposition 3.2(ii) and [5, Lemma 2.38], we conclude that x n ⇀ x.

Lemma 2.3 provides instances in which the conditions imposed on (W n ) n∈N in Theorem 3.3 are satisfied. Next, we present a characterization of strong convergence which can be found in [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF]Theorem 3.11] in the special case of quasi-Fejér monotonicity (1.2). 

∀(ξ 1 , ξ 2 ) ∈ [0, +∞[ 2 φ(ξ 1 + ξ 2 ) χ φ(ξ 1 ) + φ(ξ 2 ) . (3.7) Let (W n ) n∈N be a sequence in P α (H) such that µ = sup n∈N W n < +∞, let C be a nonempty closed subset of H, and let (x n ) n∈N be a sequence in H such that (3.2) is satisfied. Then (x n ) n∈N converges strongly to a point in C if and only if lim d C (x n ) = 0.
Proof. Necessity is clear. For sufficiency, suppose that lim d C (x n ) = 0 and set (∀n

∈ N) ξ n = inf z∈C x n -z Wn . For every n ∈ N, let (z n,k ) k∈N be a sequence in C such that x n -z n,k Wn → ξ n . Then, since φ is increasing, (3.2) yields (∀n ∈ N)(∀k ∈ N) φ(ξ n+1 ) φ( x n+1 -z n,k W n+1 ) (1 + η n )φ( x n -z n,k Wn ) + ε n . (3.8)
Hence, it follows from the upper semicontinuity of φ that

(∀n ∈ N) φ(ξ n+1 ) (1 + η n ) lim k→+∞ φ( x n -z n,k Wn ) + ε n (1 + η n )φ(ξ n ) + ε n . (3.9)
Therefore, by Lemma 2.2, φ(ξ n ) n∈N converges.

(3.10)

Moreover, since

(∀n ∈ N)(∀m ∈ N)(∀x ∈ H) α x n -x 2 x n -x 2 Wm µ x n -x 2 , (3.11) 
we have

(∀n ∈ N) √ αd C (x n ) ξ n √ µd C (x n ). (3.12)
Consequently, since lim d C (x n ) = 0, we derive from (3.12) that lim ξ n = 0. Let us extract a subsequence (ξ kn ) n∈N such that ξ kn → 0. Since φ is upper semicontinuous, we have 0 lim φ(ξ kn ) lim φ(ξ kn ) φ(0) = 0. In view of (3.10), we therefore obtain φ(ξ n ) → 0 and, in turn, ξ n → 0. Hence, we deduce from (3.12) that

d C (x n ) → 0. (3.13)
Next, let N be the smallest integer such that N > √ µ, and set

ρ = χ N -1 + N -1 k=1 χ k if N > 1; ρ = 1 if N = 1.
Moreover, let x ∈ C and let m and n be strictly positive integers. Using (3.11), the monotonicity of φ, and (3.7), we obtain 

φ x n -x Wm φ √ µ x n -x φ N x n -x ρφ x n -x . ( 3 
χ -1 φ x n+m -x n W n+m χ -1 φ( x n+m -x W n+m + x n -x W n+m φ x n+m -x W m+n + φ x n -x W m+n τ φ x n -x Wn + n+m-1 k=n ε k + φ x n -x W m+n ρ(1 + τ )φ x n -x + τ k n ε k . (3.15)
Therefore, upon taking the infimum over x ∈ C, we obtain by upper semicontinuity of φ

φ x n+m -x n W n+m χρ(1 + τ )φ d C (x n ) + χτ k n ε k . (3.16)
Hence, appealing to (3.13) and the summability of (ε k ) k∈N , we deduce from (3.16) that, as 

n → +∞, φ( x n+m -x n W n+m ) → 0 and, hence, α x n+m -x n 2 x n+m -x n 2 W n+m → 0. Thus, (x n ) n∈N is a

The quadratic case

In this section, we focus on the important case when φ = | • | 2 in Definition 3.1. Our first result states that variable metric quasi-Fejér monotonicity "spreads" to the convex hull of the target set.

Proposition 4.1 Let α ∈ ]0, +∞[, let (η n ) n∈N be a sequence in ℓ 1 + (N), let (W n ) n∈N be a sequence in P α (H) such that µ = sup n∈N W n < +∞ and (∀n ∈ N) (1 + η n )W n W n+1 . (4.1)
Let C be a nonempty subset of H and let (x n ) n∈N be a sequence in H such that

∃ (η n ) n∈N ∈ ℓ 1 + (N) ∀z ∈ C ∃ (ε n ) n∈N ∈ ℓ 1 + (N) (∀n ∈ N) x n+1 -z 2 W n+1 (1 + η n ) x n -z 2 Wn + ε n . (4.2)
Then the following hold.

(i) (x n ) n∈N is | • | 2 -quasi-Fejér monotone with respect to conv C relative to (W n ) n∈N .
(ii) For every y ∈ conv C, ( x n -y Wn ) n∈N converges.

Proof. Let us fix z ∈ conv C. There exist finite sets

{z i } i∈I ⊂ C and {λ i } i∈I ⊂ ]0, 1] such that i∈I λ i = 1 and z = i∈I λ i z i . (4.3) 
For every i ∈ I, it follows from (4.2) that there exists a sequence (ε i,n

) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) x n+1 -z i 2 W n+1 (1 + η n ) x n -z i 2 Wn + ε i,n . (4.4) Now set (∀n ∈ N)      α n = 1 2 i∈I j∈I λ i λ j z i -z j 2 Wn ε n = (1 + η n )α n -α n+1 + max{ε 1,n , . . . , ε m,n }. (4.5) 
Then (max{ε 1,n , . . . , ε m,n }) n∈N ∈ ℓ 1 + (N) and, by (4.1), (∀n

∈ N) (1 + η n )α n α n+1 . Hence, Lemma 2.2 asserts that (α n ) n∈N converges, which implies that (ε n ) n∈N ∈ ℓ 1 + (N). (i): Using (4.
3), [5, Lemma 2.13(ii)], and (4.4), we obtain

(∀n ∈ N) x n+1 -z 2 W n+1 = i∈I λ i x n+1 -z i 2 W n+1 -α n+1 (1 + η n ) i∈I λ i x n -z i 2 Wn -α n+1 + max{ε 1,n , . . . , ε m,n } = (1 + η n ) x n -z 2 Wn + (1 + η n )α n -α n+1 + max{ε 1,n , . . . , ε m,n } = (1 + η n ) x n -z 2 Wn + ε n . (4.6) (ii): It follows from [5, Lemma 2.13(ii)] that (∀n ∈ N) x n -z 2 Wn = i∈I λ i x n -z i 2 Wn -α n . (4.7) 
However, (α n ) n∈N converges and, for every i ∈ I, Proposition 3.2(i) asserts that ( x n -z i Wn ) n∈N converges. Hence, ( x n -z Wn ) n∈N converges. Now let y ∈ conv C. Then there exists a sequence (y k ) k∈N in conv C such that y k → y. It follows from (i) and Proposition 3.2(i) that, for every k ∈ N, ( x n -y k Wn ) n∈N converges. Moreover, we have

(∀k ∈ N)(∀n ∈ N) - √ µ y k -y -y k -y Wn x n -y Wn -x n -y k Wn y k -y Wn √ µ y k -y . (4.8) 
Consequently,

(∀k ∈ N) - √ µ y k -y lim x n -y Wn -lim x n -y k Wn lim x n -y Wn -lim x n -y k Wn √ µ y k -y . (4.9)
Taking the limit as k → +∞ yields lim n→+∞ x n -y Wn = lim k→+∞ lim n→+∞ x n -y k Wn .

Standard Fejér monotone sequences may fail to converge weakly and, even when they converge weakly, strong convergence may fail [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF][START_REF] Hundal | An alternating projection that does not converge in norm[END_REF]. However, if the target set C is closed and convex in (1.1), the projected sequence (P C x n ) n∈N converges strongly; see [2, Theorem 2.16(iv)] and [START_REF] Reich | Weak convergence theorems for nonexpansive mappings in Banach spaces[END_REF]Remark 1]. This property, which remains true in the quasi-Fejérian case [12, Proposition 3.6(iv)], is extended below.

Proposition 4.2 Let α ∈ ]0, +∞[, let (η n ) n∈N be a sequence in ℓ 1 + (N), let (W n
) n∈N be a uniformly bounded sequence in P α (H), let C be a nonempty closed convex subset of H, and let (x n ) n∈N be a sequence in H such that

∃ (ε n ) n∈N ∈ ℓ 1 + (N) ∃ (η n ) n∈N ∈ ℓ 1 + (N) (∀z ∈ C)(∀n ∈ N) x n+1 -z 2 W n+1 (1 + η n ) x n -z 2 Wn + ε n . (4.10)
Then (P Wn C x n ) n∈N converges strongly. Proof. Set (∀n ∈ N) z n = P Wn C x n . For every (m, n) ∈ N 2 , since z n ∈ C and z m+n = P W n+m C
x n+m , the well-known convex projection theorem [5, Theorem 3.14] yields

z n -z n+m | x n+m -z n+m W n+m 0, (4.11) 
which implies that

z n -x n+m | x n+m -z n+m W n+m = z n -z n+m | x n+m -z n+m W n+m -x n+m -z n+m 2 W n+m -x n+m -z n+m 2 W n+m . (4.12) 
Therefore, for every (m, 

n) ∈ N 2 , z n -z n+m 2 W n+m = z n -x n+m 2 W n+m + 2 z n -x n+m | x n+m -z n+m W n+m + x n+m -z n+m 2 W n+m z n -x n+m 2 W n+m -x n+m -z n+m 2 W n+m . ( 4 
x n+m -z n 2 W n+m x n -z n 2 Wn + n+m-1 k=n η k x k -z n 2 W k + ε k x n -z n 2 Wn + n+m-1 k=n 2η k x k -z 2 W k + z n -z 2 W k + ε k x n -z n 2 Wn + n+m-1 k=n 2η k ρ + µ α P Wn C x n -P Wn C z 2 Wn + ε k x n -z n 2 Wn + n+m-1 k=n 2η k ρ + µ α x n -z 2 Wn + ε k x n -z n 2 Wn + n+m-1 k=n 2ρη k 1 + µ α + ε k . (4.14)
Combining (4.13) and (4.14), we obtain that for every n ∈ N and every m ∈ N {0},

α z n+m -z n 2 z n+m -z n 2 W n+m x n -z n 2 Wn -x n+m -z n+m 2 W n+m + k n 2ρη k 1 + µ α + ε k . (4.15)
On the other hand, (4.10) yields

(∀n ∈ N) x n+1 -z n+1 2 W n+1 x n+1 -z n 2 W n+1 (1 + η n ) x n -z n 2 Wn + ε n , (4.16) 
which, by Lemma 2.2, implies that ( x n -z n Wn ) n∈N converges. Consequently, since (η k ) k∈N and (ε k ) k∈N are in ℓ 1 + (N), we derive from (4.15) that (z n ) n∈N is a Cauchy sequence and hence that it converges strongly.

In the case of classical Fejér monotone sequences, it has been known since [START_REF] Raȋk | A class of iterative methods with Fejér-monotone sequences[END_REF] that strong convergence is achieved when the interior of the target set is nonempty (see also [12, Proposition 3.10] for the case of quasi-Fejér monotonicity). The following result extends this fact in the context of variable metric quasi-Fejér sequences.

Proposition 4.3 Let α ∈ ]0, +∞[, let (ν n ) n∈N ∈ ℓ 1 + (N)
, and let (W n ) n∈N be a sequence in

P α (H) such that µ = sup n∈N W n < +∞ and (∀n ∈ N) (1 + ν n )W n+1 W n .
(4.17)

Furthermore, let C be a subset of H such that int C = ∅, let z ∈ C and ρ ∈ ]0, +∞[ be such that B(z; ρ) ⊂ C, and let (x n ) n∈N be a sequence in H such that

∃ (ε n ) n∈N ∈ ℓ 1 + (N) ∃ (η n ) n∈N ∈ ℓ 1 + (N) (∀x ∈ B(z; ρ))(∀n ∈ N) x n+1 -x 2 W n+1 (1 + η n ) x n -x 2 Wn + ε n . (4.18)
Then (x n ) n∈N converges strongly.

Proof. We derive from (4.17 It follows from (4.18) and (4. [START_REF] Eremin | Fejér processes in theory and practice: Recent results[END_REF]) that

(∀n ∈ N)(∀x ∈ B(z; ρ)) x n+1 -x 2 W n+1 x n -x 2 Wn + ξ n , where ξ n = ζη n + ε n . (4.20) Now set (∀n ∈ N) v n = W n+1 (x n+1 -z) -W n (x n -z), (4.21) 
and define a sequence (z n ) n∈N in B(z; ρ) by

(∀n ∈ N) z n = z -ρu n , where u n = 0, if v n = 0; v n / v n , if v n = 0. (4.22) Then (∀n ∈ N)      x n+1 -z n 2 W n+1 = x n+1 -z 2 W n+1 + 2ρ W n+1 (x n+1 -z) | u n + ρ 2 u n 2 W n+1 ; x n -z n 2 Wn = x n -z 2 Wn + 2ρ W n (x n -z) | u n + ρ 2 u n 2 
Wn .

(4.23)

On the other hand, (4.20) yields (∀n

∈ N) x n+1 -z n 2 W n+1
x n -z n 2

Wn + ξ n . Therefore, it follows from (4.23), (4.21), and (4.17) that

(∀n ∈ N) x n+1 -z 2 W n+1 x n -z 2 Wn -2ρ v n + ρ 2 u n 2 Wn -u n 2 W n+1 + ξ n x n -z 2 Wn -2ρ v n + ρ 2 µν n + ξ n . (4.24) Since (ρ 2 µν n + ξ n ) n∈N ∈ ℓ 1 + (N), this implies that n∈N w n+1 -w n = n∈N v n < +∞, where (∀n ∈ N) w n = W n (x n -z). (4.25) 
Hence, (w n ) n∈N is a Cauchy sequence in H and, therefore, there exists w ∈ H such that w n → w.

On the other hand, we deduce from (4.17) and Lemma 2.3(ii) that there exists W ∈ P α (H) such that W n → W . Now set x = z + W -1 w. Then, since (W n ) n∈N lies in P α (H), it follows from Cauchy-Schwarz that

α x n -x W n x n -W n x = w n -W n W -1 w w n -w + w -W n W -1 w → 0, (4.26)
which concludes the proof.

Application to convex feasibility

We illustrate our results through an application to the convex feasibility problem, i.e., the generic problem of finding a common point of a family of closed convex sets. As in [START_REF] Bauschke | A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces[END_REF], given α ∈ ]0, +∞[ and W ∈ P α (H), we say that an operator T : H → H with fixed point set Fix T belongs to

T(W ) if (∀x ∈ H)(∀y ∈ Fix T ) y -T x | x -T x W 0. (5.1)
If T ∈ T(W ), then [12, Proposition 2.3(ii)] yields

(∀x ∈ H)(∀y ∈ Fix T )(∀λ ∈ [0, 2]) (Id +λ(T -Id))x -y 2 W x -y 2 W -λ(2 -λ) T x -x 2 W . (5.
2)

The usefulness of the class T(W ) stems from the fact that it contains many of the operators commonly encountered in nonlinear analysis: firmly nonexpansive operators (in particular resolvents of maximally monotone operators and proximity operators of proper lower semicontinuous convex functions), subgradient projection operators, projection operators, averaged quasi-nonexpansive operators, and several combinations thereof [START_REF] Bauschke | A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces[END_REF][START_REF] Bauschke | Extrapolation algorithm for affine-convex feasibility problems[END_REF][START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF]. 

Theorem
N) (1 + η n )W n W n+1 . ( 5 

.3)

Let i : N → I be such that

(∀j ∈ I)(∃ M j ∈ N {0})(∀n ∈ N) j ∈ {i(n), . . . , i(n + M j -1)}. (5.4)
For every i ∈ I, let (T i,n ) n∈N be a sequence of operators such that

(∀n ∈ N) T i,n ∈ T(W n ) and Fix T i,n = C i . (5.5) Fix ε ∈ ]0, 1[ and x 0 ∈ H, let (λ n ) n∈N be a sequence in [ε, 2 -ε],
and set

(∀n ∈ N) x n+1 = x n + λ n T i(n),n x n + a n -x n .
(5.6)

Suppose that, for every strictly increasing sequence (p n ) n∈N in N, every x ∈ H, and every j ∈ I,

     x pn ⇀ x T j,pn x pn -x pn → 0 (∀n ∈ N) j = i(p n ) ⇒ x ∈ C j .
(5.7)

Then the following hold for some x ∈ C.

(i) x n ⇀ x.
(ii) Suppose that int C = ∅ and that there exists

(ν n ) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) (1 + ν n )W n+1 W n . Then x n → x. (iii) Suppose that lim d C (x n ) = 0. Then x n → x.
(iv) Suppose that there exists an index j ∈ I of demicompact regularity: for every strictly increasing sequence

(p n ) n∈N in N,     
sup n∈N x pn < +∞ T j,pn x pn -x pn → 0 (∀n ∈ N) j = i(p n ) ⇒ (x pn ) n∈N has a strong sequential cluster point. (5.8)

Then x n → x.
Proof. Fix z ∈ C and set

(∀n ∈ N) y n = x n + λ n T i(n),n x n -x n .
(5.9)

Appealing to (5.2) and the fact that, by virtue of (5.4), z

∈ i∈I C i = n∈N Fix T i(n),n , we obtain, (∀n ∈ N) y n -z 2 Wn x n -z 2 Wn -λ n (2 -λ n ) T i(n),n x n -x n 2 Wn x n -z 2 Wn -ε 2 T i(n),n x n -x n 2 
Wn .

(5.10)

Moreover, it follows from (5.3) that

(∀n ∈ N) y n -z 2 W n+1 (1 + η n ) y n -z 2 Wn .
(5.11) Thus,

(∀n ∈ N) y n -z 2 W n+1 (1 + η n ) x n -z 2 Wn -ε 2 (1 + η n ) T i(n),n x n -x n 2 Wn (1 + η n ) x n -z 2 Wn -ε 2 T i(n),n x n -x n 2 Wn
(5.12)

(1 + η n ) x n -z 2 Wn .
(5.13) Using (5.6), (5.9), and (5.13), we get x n -z Wn → ξ ∈ R.

(∀n ∈ N) x n+1 -z W n+1 y n -z W n+1 + λ n a n W n+1 1 + η n x n -z Wn + √ µλ n a n (1 + η n ) x n -z Wn + 2 √ µ a n , ( 5 
(5.16)

We therefore derive from (5.14) that y n -z W n+1 → ξ and then from (5.12) that

αε 2 T i(n),n x n -x n 2 ε 2 T i(n),n x n -x n 2 Wn (1 + η n ) x n -z 2 Wn -y n -z 2 W n+1 → 0.
(5.17) (i): It follows from (5.6) and (5.17) that

x n+1 -x n = λ n T i(n),n x n + a n -x n 2 T i(n),n x n -x n + a n 2 T i(n),n x n -x n Wn / √ α + a n → 0. (5.18)
Now, fix j ∈ I and let x be a weak sequential cluster point of (x n ) n∈N . According to (5.4), there exist strictly increasing sequences (k n ) n∈N and (p n ) n∈N in N such that x kn ⇀ x and

(∀n ∈ N) k n p n k n + M j -1 < k n+1 p n+1 , j = i(p n ). (5.19)
Therefore, we deduce from (5.18) that

x pn -x kn kn+M j -2 l=kn x l+1 -x l (M j -1) max kn l kn+M j -2 x l+1 -x l → 0, (5.20) 
which implies that x pn ⇀ x. We also derive from (5.17) and (5.19) that T j,pn x pn -x pn = T i(pn),pn x pn -x pn → 0. Altogether, it follows from (5.7) that x ∈ C j . Since j was arbitrarily chosen in I, we obtain x ∈ C and, in view of Lemma 2.3(i) and Theorem 3.3, we conclude that x n ⇀ x. 

(∀n ∈ N) ε n = 4 ζ µ(1 + η) a n + µ a n 2 .
(5.21)

Then η < +∞ and, as in (4.19), ζ < +∞. Therefore (ε n ) n∈N ∈ ℓ 1 + (N). Furthermore, we derive from (5.6), (5.9), and (5.13) that, for every x ∈ B(z; ρ) and every n ∈ N,

x n+1 -x 2 W n+1 y n -x 2 W n+1 + 2λ n y n -x W n+1 a n W n+1 + λ 2 n a n 2 W n+1 (1 + η n ) x n -x 2 Wn + 4 µ(1 + η n ) x n -x Wn a n + 4µ a n 2 (1 + η n ) x n -x 2 Wn + ε n . (5.22)
Altogether, the assertion follows from (i) and Proposition 4.3.

(iii): This follows from (5.15), Proposition 3.4, and (i).

(iv): Let j ∈ I be an index of demicompact regularity and let (p n ) n∈N be a strictly increasing sequence such that (∀n ∈ N) j = i(p n ). Then (x pn ) n∈N is bounded, while (5.17) asserts that T j,pn x pn -x pn → 0. In turn, (5.8) and (i) imply that x pn → x ∈ C. Therefore lim d C (x n ) x pn -x → 0 and (iii) yields the result. Condition (5.4) first appeared in [9, Definition 5]. Property (5.7) was introduced in [2, Definition 3.7] and property (5.8) in [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF]Definition 6.5]. Examples of sequences of operators that satisfy (5.7) can be found in [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Bauschke | Extrapolation algorithm for affine-convex feasibility problems[END_REF][START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF]. Here is a simple application of Theorem 5.1 to a variable metric periodic projection method.

Corollary 5.2 Let α ∈ ]0, +∞[, let m be a strictly positive integer, let I = {1, . . . , m}, let

(C i ) i∈I be family of closed convex subsets of H such that C = i∈I C i = ∅, let (a n ) n∈N be a sequence in H such that n∈N a n < +∞, let (η n ) n∈N be a sequence in ℓ 1 + (N), and let (W n ) n∈N be a sequence in P α (H) such that sup n∈N W n < +∞ and (∀n ∈ N) (1 + η n )W n W n+1 . Fix ε ∈ ]0, 1[ and x 0 ∈ H, let (λ n ) n∈N be a sequence in [ε, 2 -ε],
and set

(∀n ∈ N) x n+1 = x n + λ n P Wn C 1+rem(n,m) x n + a n -x n , (5.23) 
where rem(•, m) is the remainder function of the division by m. Then the following hold for some x ∈ C.

(i) x n ⇀ x.
(ii) Suppose that int C = ∅ and that there exists

(ν n ) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) (1 + ν n )W n+1 W n . Then x n → x.
(iii) Suppose that there exists j ∈ I such that C j is boundedly compact, i.e., its intersection with every closed ball of H is compact. Then x n → x.

Proof. The function i :

N → I : n → 1 + rem(n, m) satisfies (5.4) with (∀j ∈ I) M j = m. Now, set (∀i ∈ I)(∀n ∈ N) T i,n = P Wn C i . Then (∀i ∈ I)(∀n ∈ N) T i,n ∈ T(W n ) and Fix T i,n = C i .
Hence, (5.23) is a special case of (5.6).

(i)-(ii): Fix j ∈ I and let (x pn ) n∈N be a weakly convergent subsequence of (x n ) n∈N , say x pn ⇀ x, such that T j,pn x pn -x pn → 0 and (∀n ∈ N) j = i(p n ). Then C j ∋ P Wp n C j x pn = T j,pn x pn ⇀ x and, since C j is weakly closed [5, Theorem 3.32], we have x ∈ C j . This shows that (5.7) holds. Altogether, the claims follow from Theorem 5.1(i)-(ii).

(iii): Let (p n ) n∈N be a strictly increasing sequence in N such that P Wp n C j x pn -x pn = T j,pn x pnx pn → 0 and (∀n ∈ N) j = i(p n ). Then

P C j x pn -x pn P Wp n C j x pn -x pn → 0. (5.24)
On the other hand, since (x pn ) n∈N is bounded and P C j is nonexpansive, (P C j x pn ) n∈N is a bounded sequence in the boundedly compact set C j . Hence, (P C j x pn ) n∈N admits a strong sequential cluster point and so does (x pn ) n∈N since P C j x pn -x pn → 0. Thus, j ∈ I is an index of demicompact regularity and the claim therefore follows from Theorem 5.1(iv).

Remark 5.3 In the special case when, for every n ∈ N, W n = Id and η n = 0, Corollary 5.2(i) was established in [START_REF] Bregman | The method of successive projection for finding a common point of convex sets[END_REF] (with (∀n ∈ N) λ n = 1), and Corollary 5.2(ii) in [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF].

Next is an application of Corollary 5.2 to the problem of solving linear inequalities. In Euclidean spaces, the use of periodic projection methods to solve this problem goes back to [START_REF] Motzkin | The relaxation method for linear inequalities[END_REF].

Example 5.4 Let α ∈ ]0, +∞[, let m be a strictly positive integer, let I = {1, . . . , m}, let (η i ) i∈I be real numbers, and suppose that (u i ) i∈I are nonzero vectors in H such that

C = x ∈ H | (∀i ∈ I) x | u i η i = ∅. (5.25) 
Let (η n ) n∈N be a sequence in ℓ 1 + (N), and let (W n ) n∈N be a sequence in P α (H) such that sup n∈N W n < +∞ and (∀n

∈ N) (1 + η n )W n W n+1 . Fix ε ∈ ]0, 1[ and x 0 ∈ H, let (λ n ) n∈N be a sequence in [ε, 2 -ε], and set (∀n ∈ N)               i(n) = 1 + rem(n, m) if x n | u i(n) η i(n) y n = x n if x n | u i(n) > η i(n) y n = x n + η i(n) -x n | u i(n) u i(n) | W -1 n u i(n) W -1 n u i(n) x n+1 = x n + λ n (y n -x n ).
(5.26)

Then there exists x ∈ C such that x n ⇀ x.

Proof. Set (∀i ∈ I) C i = x ∈ H | x | u i η i .
Then it follows from [5, Example 28.16(iii)] that (5.26) can be rewritten as

(∀n ∈ N) x n+1 = x n + λ n P Wn C 1+rem(n,m) x n -x n .
(5.27)

The claim is therefore a consequence of Corollary 5.2(i).

We now turn our attention to the problem of finding a zero of a maximally monotone operator A : H → 2 H (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] for background) via a variable metric proximal point algorithm. Let α ∈ ]0, +∞[, let γ ∈ ]0, +∞[, let W ∈ P α (H), and let A : H → 2 H be maximally monotone with graph gra A. It follows from [3, Corollary 3.14(ii)] (applied with f :

x → W x | x /2) that J W γA : H → H : x → (W + γA) -1 (W x) (5.28)
is well-defined, and that 

J W γA ∈ T(W ) and Fix J W γA = z ∈ H | 0 ∈ Az . ( 5 
N) (1 + η n )W n W n+1 . Fix ε ∈ ]0, 1[ and x 0 ∈ H, let (λ n ) n∈N be a sequence in [ε, 2 -ε], let (γ n ) n∈N be a sequence in [ε, +∞[, and set (∀n ∈ N) x n+1 = x n + λ n J Wn γnA x n + a n -x n .
(5.30)

Then the following hold for some x ∈ C.

(i) x n ⇀ x.

(ii) Suppose that int C = ∅ and that there exists

(ν n ) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) (1 + ν n )W n+1 W n . Then x n → x.
(iii) Suppose that A is pointwise uniformly monotone on C, i.e., for every x ∈ C there exists an increasing function φ : [0, +∞[ → [0, +∞] vanishing only at 0 such that

(∀u ∈ Ax)(∀(y, v) ∈ gra A) x -y | u -v φ( x -y ).
(5.31)

Then x n → x.
Proof. In view of (5.29), (5.30) is a special case of (5.6) with I = {1} and (∀n ∈ N) T 1,n = J Wn γnA . Hence, using Theorem 5.1(i)-(ii), to show (i)-(ii), it suffices to prove that (5.7) holds. To this end, let (x pn ) n∈N be a weakly convergent subsequence of (x n ) n∈N , say x pn ⇀ x, such that J (5.34)

Since v pn → 0, we get φ( y pn -x ) → 0 and, in turn, y pn -x → 0. It follows that x pn -x → 0 and hence that lim d C (x n ) = 0. In view of Theorem 5.1(iii), we conclude that x n → x.

Remark 5.6 Corollary 5.5(i) reduces to the classical result of [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF]Theorem 1] when (∀n ∈ N) W n = Id, η n = 0, and λ n = 1. In this context, Corollary 5.5(ii) appears in [START_REF] Nevanlinna | Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces[END_REF]Section 6]. In a finite-dimensional setting, an alternative variable metric proximal point algorithm is proposed in [START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF], which also uses the above conditions on (W n ) n∈N but alternative error terms and relaxation parameters.

6 Application to inverse problems 

f (x) + 1 2 i∈I µ i L i x -r i 2 i . (6.1) 
This formulation covers many inverse problems (see [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]Section 5] and the references therein) and it can be interpreted as follows: an ideal object x ∈ H is to be recovered from noisy linear measurements r i = L i x + w i ∈ G i , where w i represents noise (i ∈ I), and the function f penalizes the violation of prior information on x. Thus, (6.1) attempts to strike a balance between the observation model, represented by the data fitting term x → (1/2) i∈I µ i L i x -r i 2 i , and a priori knowledge, represented by f . To solve this problem within our framework, we require the following facts.

Let α ∈ ]0, +∞[, let W ∈ P α (H), and let ϕ ∈ Γ 0 (H). The proximity operator of ϕ relative to the metric induced by W is prox

W ϕ : H → H : x → argmin y∈H ϕ(y) + 1 2 x -y 2 W . (6.2) 
Now, let ∂ϕ be the subdifferential of ϕ [5, Chapter 16]. Then, in connection with (5.28), ∂ϕ is maximally monotone and we have [16, Section 3.3] 

(∀γ ∈ ]0, +∞[) prox W γϕ = J W γ∂ϕ = (W + γ∂ϕ) -1 • W. ( 6 
= J W γB x ⇔ W x ∈ W p + γBp ⇔ W x -γu ∈ p + γAp ⇔ p = J γA W x -γu , (6.5) 
which completes the proof. 

Proposition 6.3 Let ε ∈ 0, 1/(1 + i∈I µ i L i 2 ) , let (a n ) n∈N be a sequence in H such that n∈N a n < +∞, let (η n ) n∈N be a sequence in ℓ 1 + (N), and let (γ n ) n∈N be a sequence in R such that (∀n ∈ N) ε γ n 1 -ε i∈I µ i L i 2 and (1 + η n )γ n -γ n+1 η n i∈I µ i L i 2 . ( 6 
(∀n ∈ N) x n+1 = x n + λ n prox γnf x n + γ n i∈I µ i L * i r i -L i x n + a n -x n . (6.7)
Then the following hold for some x ∈ C.

(i) Suppose that lim x →+∞ f (x) + 1 2 i∈I µ i L i x -r i 2 i = +∞. (6.8) 
Then x n ⇀ x.

(ii) Suppose that there exists j ∈ I such that L j is bounded below, say,

(∃ β ∈ ]0, +∞[)(∀x ∈ H) L j x j β x . ( 6 

.9)

Then C = {x} and x n → x.

Proof. Set U = i∈I µ i L * i L i and u = -i∈I µ i L * i r i . Then Then (6.1) is equivalent to minimizing g. Furthermore, it follows from (6.6) that (W n ) n∈N lies in P ε (H) and that sup n∈N W n 2 -ε. In addition, we have (∀n ∈ N) η n (1 + η n )γ n -γ n+1 U . (6.13) Indeed if, for some n ∈ N, (1 + η n )γ n γ n+1 then η n 0 ((1 + η n )γ n -γ n+1 ) U ; otherwise we deduce from (6.6) and (6.10) that η n ((1+η n )γ n -γ n+1 ) i∈I µ i L i 2 ((1+η n )γ n -γ n+1 ) U . Thus, since U ∈ P 0 (H), we have U = sup x 1 U x | x and therefore (6.13) ⇒ (∀n ∈ N)(∀x ∈ H) η n x 2

(1

+ η n )γ n -γ n+1 U x | x ⇒ (∀n ∈ N)(∀x ∈ H) (1 + η n )( x 2 -γ n U x | x ) x 2 -γ n+1 U x | x ⇒ (∀n ∈ N) (1 + η n )W n W n+1 . (6.14) 
Now set A = ∂f and B = A+U +{u}. Then we derive from [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 16.38(iii)] that B = ∂g. Hence, using (6.3), (6.12), and Lemma 6.2, (6.7) can be rewritten as (ii): It follows from (6.9) that L * j L j ∈ P β 2 (H). Therefore, U ∈ P µ j β 2 (H) and, since f ∈ Γ 0 (H), we derive from (6.11) that g ∈ Γ 0 (H) is strongly convex. Hence, [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 11.16] asserts that (6.1) possesses a unique solution, while [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Example 22.3(iv)] asserts that B is strongly -hence uniformly -monotone. Altogether, the claim follows from Corollary 5.5(iii). Remark 6.4 In Problem 6.1 suppose that I = {1}, µ 1 = 1, L 1 = L, and r 1 = r, and that lim x →+∞ f (x) + Lx -r 2 1 /2 = +∞. Then (6.7) reduces to the proximal Landweber method (∀n ∈ N) x n+1 = x n + λ n prox γnf x n + γ n L * (r -Lx n ) + a n -x n , (6.17) and we derive from Proposition 6.3(i) that (x n ) n∈N converges weakly to a minimizer of x → f (x) + Lx -r 2 1 /2 if (∀n ∈ N) and we obtain convergence under the new condition (6.18) (see also [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF] for potential signal and image processing applications of this result).

     ε γ n (1 -ε)/ L 2 (1 + η n )γ n γ n+1 + η n / L 2 ε λ n 2 -ε.

. 1 )Lemma 2 . 1

 121 Now let α ∈ [0, +∞[, setP α (H) = L ∈ S (H) | L α Id ,(2.2)and fix W ∈ P α (H). We define a semi-scalar product and a semi-norm (a scalar product and a norm if α > 0) by(∀x ∈ H)(∀y ∈ H) x | y W = W x | y and x W = W x | x . (2.3) Let C be a nonempty subset of H, let α ∈ ]0, +∞[, and let W ∈ P α (H). The interior of C is int C, the distance function of C is d C , and the convex envelope of C is conv C, with closure conv C. If C is closed and convex, the projection operator onto C relative to the metric induced by W in (2.3) is P W C : H → C : x → argmin y∈C x -y W . (2.4) We write P Id C = P C . Finally, ℓ 1 + (N) denotes the set of summable sequences in [0, +∞[. Let α ∈ ]0, +∞[, let µ ∈ ]0, +∞[, and let A and B be operators in S (H) such that µ Id A B α Id. Then the following hold.

Proposition 3 . 4

 34 Let α ∈ ]0, +∞[, let χ ∈ [1, +∞[, and let φ : [0, +∞[ → [0, +∞[ be an increasing upper semicontinuous function vanishing only at 0 and such that

. 14 )

 14 Now set τ = k∈N (1 + η k ). Then τ < +∞ [25, Theorem 3.7.3] and we derive from (3.7), (3.2), and (3.14) that

  Cauchy sequence in H and there exists x ∈ H such that x n → x. By continuity of d C and (3.13), we obtain d C (x) = 0 and, since C is closed, x ∈ C.

. 13 )

 13 Now fix z ∈ C, and set µ = sup n∈N W n and ρ = sup n∈N x n -z 2 Wn . Then µ < +∞ and, in view of Proposition 3.2(i), ρ < +∞. It follows from (4.10) that, for every n ∈ N and every m ∈ N {0}, since P Wn C is nonexpansive with respect to • Wn [5, Proposition 4.8], we have

x n -x 2

 2 ) and Proposition 3.2(ii) that ζ = sup x∈B(z;ρ) sup n∈N Wn 2µ sup n∈N x n -z 2 + sup x∈B(z;ρ) x -z 2 < +∞. (4.19)

. 14 )

 14 which shows that (x n ) n∈N satisfies (3.2) -and hence (3.1) -with φ = | • |. (5.15) It follows from (5.15) and Proposition 3.2(i) that ( x n -z Wn ) n∈N converges, say

(

  ii): Suppose that z ∈ int C and fix ρ ∈ ]0, +∞[ such that B(z; ρ) ⊂ C. Set η = sup n∈N η n , ζ = sup x∈B(z;ρ) sup n∈N x n -x Wn , and

  Wp n γp n A x pn -x pn → 0. To show that 0 ∈ Ax, let us set(∀n ∈ N) y n = J Wn γnA x n and v n = 1 γ n W n (x n -y n ).(5.32)Then (5.28) yields (∀n ∈ N) v n ∈ Ay n . On the other hand, since y pn -x pn → 0, we havev pn = W pn (x pn -y pn ) γ pn µ ε x pn -y pn → 0. (5.33) Thus, y pn ⇀ x and Ay pn ∋ v pn → 0. Since gra A is sequentially closed in H weak × H strong [5, Proposition 20.33(ii)], we conclude that 0 ∈ Ax. Let us now show (iii). We have 0 ∈ Ax and (∀n ∈ N) v pn ∈ Ay pn . Hence, it follows from (5.31) that there exists an increasing function φ : [0, +∞[ → [0, +∞] vanishing only at 0 such that (∀n ∈ N) y pn -x | v pn φ( y pn -x ).

  imply that 0 = U ∈ P 0 (H) and that (∀n∈ N) ε γ n (1 -ε)/ U . Now set g : H → ]-∞, +∞] : x → f (x) + 1 2 U x | x + x | u (6.11)and (∀n ∈ N) W n = Id -γ n U. (6.12)

(

  ∀n ∈ N) x n+1 = x n + λ n prox γnf x n -γ n (U x n + u) + a n -x n = x n + λ n J γnA W n x n -γ n u + a n -x n = x n + λ n J Wn γnB x n + a n -x n . (6.15) On the other hand, it follows from Fermat's rule [5, Theorem 16.2] that z ∈ H | 0 ∈ Bz = Argmin g = C. (6.16) (i): Since f ∈ Γ 0 (H) and U ∈ P 0 (H), it follows from [5, Proposition 11.14(i)] that Problem 6.1 admits at least one solution. Altogether, the result follows from Corollary 5.5(i).

(6. 18 )

 18 This result complements[START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] Theorem 5.5(i)], which establishes weak convergence under alternative conditions on the parameters (γ n ) n∈N and (λ n ) n∈N , namely(∀n ∈ N) ε γ n (2 -ε)/ L 2 ε λ n 1. (6.19)In particular, suppose that H is separable, let (e k ) k∈N be an orthonormal basis of H, and set f :x → k∈N φ k ( x | e k ), where (∀k ∈ N) Γ 0 (R) ∋ φ k φ k (0) = 0. Moreover, for every n ∈ N, let (α n,k ) k∈N be a sequence in ℓ 2 (N) and suppose that n∈N k∈N |α n,k | 2 < +∞. Now set (∀n ∈ N) a n = k∈N α n,k e k . Then, arguing as in[START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] Section 5.4], (6.17) becomes(∀n ∈ N) x n+1 = x n + λ n k∈N α n,k + prox γnφ k x n + γ n L * (r -Lx n ) | e k e k -x n ,(6.20) 

  = +∞, let (W n ) n∈N and W be operators in P α (H) such that W n → W pointwise, let C be a nonempty subset of H, and let (x n ) n∈N be a sequence in H such that (3.1) is satisfied. Then (x n ) n∈N converges weakly to a point in C if and only if every weak sequential cluster point of (x n ) n∈N is in C.

	1,
	Proposition 1.3].
	Theorem 3.3 Let α ∈ ]0, +∞[, let φ : [0, +∞[ → [0, +∞[ be strictly increasing and such that lim t→+∞ φ(t)

  .[START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF] We write J Id γA = J γA . Let α ∈ ]0, +∞[, let A : H → 2 H be a maximally monotone operator such thatC = z ∈ H | 0 ∈ Az = ∅, let (a n ) n∈N be a sequence in H such that n∈N a n < +∞, let (η n ) n∈N be a sequence in ℓ 1 + (N), and let (W n ) n∈N be a sequence in P α (H) such that µ = sup n∈N W n < +∞ and (∀n ∈

	Corollary 5.5

  In this section, we consider an application to a structured variational inverse problem. Henceforth, Γ 0 (H) denotes the class of proper lower semicontinuous convex functions from H to ]-∞, +∞]. Let f ∈ Γ 0 (H) and let I be a nonempty finite index set. For every i ∈ I, let (G i , • i ) be a real Hilbert space, let L i : H → G i be a nonzero bounded linear operator, let r i ∈ G i , and let µ i ∈ ]0, +∞[. The problem is to minimize x∈H

	Problem 6.1

  Let A : H → 2 H be maximally monotone, let U be a nonzero operator in P 0 (H), let γ ∈ ]0, 1/ U [, let u ∈ H, set W = Id -γU , and set B = A + U + {u}. Then Proof. Since U ∈ P 0 (H), U is maximally monotone[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Example 20.29]. In turn, it follows from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Corollary 24.4(i)] that B is maximally monotone. Moreover, W ∈ P α (H), where α = 1 -γ U . Now, let x and p be in H. Then it follows from (5.28) that

	p	
		.3)
	We write prox Id γϕ = prox γϕ .	
	Lemma 6.2 (∀x ∈ H) J W γB x = J γA W x -γu .	(6.4)
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