Variable metric forward-backward splitting with applications to monotone inclusions in duality

Patrick Louis Combettes, Bang Cong Vu

To cite this version:

Patrick Louis Combettes, Bang Cong Vu. Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization, 2014, 63, pp. 1289 - 1318. 10.1080/02331934.2012.733883 . hal-01076989

HAL Id: hal-01076989

https://hal.science/hal-01076989

Submitted on 23 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Variable Metric Forward-Backward Splitting with Applications to Monotone Inclusions in Duality*

Patrick L. Combettes and Bằng C. Vũ
UPMC Université Paris 06
Laboratoire Jacques-Louis Lions - UMR CNRS 7598
75005 Paris, France
plc@math.jussieu.fr, vu@ljll.math.upmc.fr

Abstract

We propose a variable metric forward-backward splitting algorithm and prove its convergence in real Hilbert spaces. We then use this framework to derive primal-dual splitting algorithms for solving various classes of monotone inclusions in duality. Some of these algorithms are new even when specialized to the fixed metric case. Various applications are discussed.

Keywords: cocoercive operator, composite operator, demiregularity, duality, forward-backward splitting algorithm, monotone inclusion, monotone operator, primal-dual algorithm, quasi-Fejér sequence, variable metric.

Mathematics Subject Classifications (2010) 47H05, 49M29, 49M27, 90C25

1 Introduction

The forward-backward algorithm has a long history going back to the projected gradient method (see $[1,12]$ for historical background). It addresses the problem of finding a zero of the sum of two operators acting on a real Hilbert space \mathcal{H}, namely,

$$
\begin{equation*}
\text { find } x \in \mathcal{H} \quad \text { such that } \quad 0 \in A x+B x \tag{1.1}
\end{equation*}
$$

under the assumption that $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is maximally monotone and that $B: \mathcal{H} \rightarrow \mathcal{H}$ is β-cocoercive for some $\beta \in] 0,+\infty[$, i.e. [4],

$$
\begin{equation*}
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad\langle x-y \mid B x-B y\rangle \geqslant \beta\|B x-B y\|^{2} . \tag{1.2}
\end{equation*}
$$

[^0]This framework is quite central due to the large class of problems it encompasses in areas such as partial differential equations, mechanics, evolution inclusions, signal and image processing, best approximation, convex optimization, learning theory, inverse problems, statistics, game theory, and variational inequalities $[1,4,7,10,12,15,18,20,21,23,24,29,30,39,40,42]$. The forward-backward algorithm operates according to the routine

$$
\begin{equation*}
x_{0} \in \mathcal{H} \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad x_{n+1}=\left(\operatorname{Id}+\gamma_{n} A\right)^{-1}\left(x_{n}-\gamma_{n} B x_{n}\right), \quad \text { where } \quad 0<\gamma_{n}<2 \beta \tag{1.3}
\end{equation*}
$$

In classical optimization methods, the benefits of changing the underlying metric over the course of the iterations to improve convergence profiles has long been recognized [19, 33]. In proximal methods, variable metrics have been investigated mostly when $B=0$ in (1.1). In such instances (1.3) reduces to the proximal point algorithm

$$
\begin{equation*}
x_{0} \in \mathcal{H} \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad x_{n+1}=\left(\operatorname{Id}+\gamma_{n} A\right)^{-1} x_{n}, \quad \text { where } \quad \gamma_{n}>0 \tag{1.4}
\end{equation*}
$$

In the case when A is the subdifferential of a real-valued convex function in a finite dimensional setting, variable metric versions of (1.4) have been proposed in [5, 11, 27, 35]. These methods draw heavily on the fact that the proximal point algorithm for minimizing a function corresponds to the gradient descent method applied to its Moreau envelope. In the same spirit, variable metric proximal point algorithms for a general maximally monotone operator A were considered in [8, 36]. In [8], superlinear convergence rates were shown to be achievable under suitable hypotheses (see also [9] for further developments). The finite dimensional variable metric proximal point algorithm proposed in [32] allows for errors in the proximal steps and features a flexible class of exogenous metrics to implement the algorithm. The first variable metric forward-backward algorithm appears to be that introduced in [10, Section 5]. It focuses on linear convergence results in the case when $A+B$ is strongly monotone and \mathcal{H} is finite-dimensional. The variable metric splitting algorithm of [28] provides a framework which can be used to solve (1.1) in instances when \mathcal{H} is finite-dimensional and B is merely Lipschitzian. However, it does not exploit the cocoercivity property (1.2) and it is more cumbersome to implement than the forward-backward iteration. Let us add that, in the important case when B is the gradient of a convex function, the Baillon-Haddad theorem asserts that the notions of cocoercivity and Lipschitz-continuity coincide [4, Corollary 18.16].

The goal of this paper is two-fold. First, we propose a general purpose variable metric forwardbackward algorithm to solve (1.1)-(1.2) in Hilbert spaces and analyze its asymptotic behavior, both in terms of weak and strong convergence. Second, we show that this algorithm can be used to solve a broad class of composite monotone inclusion problems in duality by formulating them as instances of (1.1)-(1.2) in alternate Hilbert spaces. Even when restricted to the constant metric case, some of these results are new.

The paper is organized as follows. Section 2 is devoted to notation and background. In Section 3, we provide preliminary results. The variable metric forward-backward algorithm is introduced and analyzed in Section 4. In Section 5, we present a new variable metric primal-dual splitting algorithm for strongly monotone composite inclusions. This algorithm is obtained by applying the forwardbackward algorithm of Section 4 to the dual inclusion. In Section 6, we consider a more general class of composite inclusions in duality and show that they can be solved by applying the forwardbackward algorithm of Section 4 to a certain inclusion problem posed in the primal-dual product space. Applications to minimization problems, variational inequalities, and best approximation are discussed.

2 Notation and background

We recall some notation and background from convex analysis and monotone operator theory (see [4] for a detailed account).

Throughout, \mathcal{H}, \mathcal{G}, and $\left(\mathcal{G}_{i}\right)_{1 \leqslant i \leqslant m}$ are real Hilbert spaces. We denote the scalar product of a Hilbert space by $\langle\cdot \mid \cdot\rangle$ and the associated norm by $\|\cdot\|$. The symbols Δ and \rightarrow denote respectively weak and strong convergence, and Id denotes the identity operator. We denote by $\mathcal{B}(\mathcal{H}, \mathcal{G})$ the space of bounded linear operators from \mathcal{H} to \mathcal{G}, we set $\mathcal{B}(\mathcal{H})=\mathcal{B}(\mathcal{H}, \mathcal{H})$ and $\mathcal{S}(\mathcal{H})=\{L \in \mathcal{B}(\mathcal{H}) \mid$ $\left.L=L^{*}\right\}$, where L^{*} denotes the adjoint of L. The Loewner partial ordering on $\mathcal{S}(\mathcal{H})$ is defined by

$$
\begin{equation*}
(\forall U \in \mathcal{S}(\mathcal{H}))(\forall V \in \mathcal{S}(\mathcal{H})) \quad U \succcurlyeq V \quad \Leftrightarrow \quad(\forall x \in \mathcal{H}) \quad\langle U x \mid x\rangle \geqslant\langle V x \mid x\rangle . \tag{2.1}
\end{equation*}
$$

Now let $\alpha \in[0,+\infty[$. We set

$$
\begin{equation*}
\mathcal{P}_{\alpha}(\mathcal{H})=\{U \in \mathcal{S}(\mathcal{H}) \mid U \succcurlyeq \alpha \operatorname{Id}\}, \tag{2.2}
\end{equation*}
$$

and we denote by \sqrt{U} the square root of $U \in \mathcal{P}_{\alpha}(\mathcal{H})$. Moreover, for every $U \in \mathcal{P}_{\alpha}(\mathcal{H})$, we define a semi-scalar product and a semi-norm (a scalar product and a norm if $\alpha>0$) by

$$
\begin{equation*}
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad\langle x \mid y\rangle_{U}=\langle U x \mid y\rangle \quad \text { and } \quad\|x\|_{U}=\sqrt{\langle U x \mid x\rangle} . \tag{2.3}
\end{equation*}
$$

Notation 2.1 We denote by $\mathcal{G}=\mathcal{G}_{1} \oplus \cdots \oplus \mathcal{G}_{m}$ the Hilbert direct sum of the Hilbert spaces $\left(\mathcal{G}_{i}\right)_{1 \leqslant i \leqslant m}$, i.e., their product space equipped with the scalar product and the associated norm respectively defined by

$$
\begin{equation*}
\langle\langle\cdot \mid \cdot\rangle\rangle:(\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^{m}\left\langle x_{i} \mid y_{i}\right\rangle \quad \text { and } \quad\left\|\|\cdot\| \mid: \boldsymbol{x} \mapsto \sqrt{\sum_{i=1}^{m}\left\|x_{i}\right\|^{2}},\right. \tag{2.4}
\end{equation*}
$$

where $\boldsymbol{x}=\left(x_{i}\right)_{1 \leqslant i \leqslant m}$ and $\boldsymbol{y}=\left(y_{i}\right)_{1 \leqslant i \leqslant m}$ denote generic elements in \mathcal{G}.
Let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be a set-valued operator. The domain and the graph of A are respectively defined by $\operatorname{dom} A=\{x \in \mathcal{H} \mid A x \neq \varnothing\}$ and gra $A=\{(x, u) \in \mathcal{H} \times \mathcal{H} \mid u \in A x\}$. We denote by zer $A=\{x \in \mathcal{H} \mid 0 \in A x\}$ the set of zeros of A and by $\operatorname{ran} A=\{u \in \mathcal{H} \mid(\exists x \in \mathcal{H}) u \in A x\}$ the range of A. The inverse of A is $A^{-1}: \mathcal{H} \mapsto 2^{\mathcal{H}}: u \mapsto\{x \in \mathcal{H} \mid u \in A x\}$, and the resolvent of A is

$$
\begin{equation*}
J_{A}=(\operatorname{Id}+A)^{-1} . \tag{2.5}
\end{equation*}
$$

Moreover, A is monotone if

$$
\begin{equation*}
(\forall(x, y) \in \mathcal{H} \times \mathcal{H})(\forall(u, v) \in A x \times A y) \quad\langle x-y \mid u-v\rangle \geqslant 0, \tag{2.6}
\end{equation*}
$$

and maximally monotone if it is monotone and there exists no monotone operator $B: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ such that $\operatorname{gra} A \subset \operatorname{gra} B$ and $A \neq B$. The parallel sum of A and $B: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is

$$
\begin{equation*}
A \square B=\left(A^{-1}+B^{-1}\right)^{-1} . \tag{2.7}
\end{equation*}
$$

The conjugate of $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is

$$
\begin{equation*}
f^{*}: \mathcal{H} \rightarrow[-\infty,+\infty]: u \mapsto \sup _{x \in \mathcal{H}}(\langle x \mid u\rangle-f(x)), \tag{2.8}
\end{equation*}
$$

and the infimal convolution of f with $g: \mathcal{H} \rightarrow]-\infty,+\infty]$ is

$$
\begin{equation*}
f \square g: \mathcal{H} \rightarrow[-\infty,+\infty]: x \mapsto \inf _{y \in \mathcal{H}}(f(y)+g(x-y)) . \tag{2.9}
\end{equation*}
$$

The class of lower semicontinuous convex functions $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ such that $\operatorname{dom} f=\{x \in \mathcal{H} \mid$ $f(x)<+\infty\} \neq \varnothing$ is denoted by $\Gamma_{0}(\mathcal{H})$. If $f \in \Gamma_{0}(\mathcal{H})$, then $f^{*} \in \Gamma_{0}(\mathcal{H})$ and the subdifferential of f is the maximally monotone operator

$$
\begin{equation*}
\partial f: \mathcal{H} \rightarrow 2^{\mathcal{H}}: x \mapsto\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leqslant f(y)\} \tag{2.10}
\end{equation*}
$$

with inverse $(\partial f)^{-1}=\partial f^{*}$. Let C be a nonempty subset of \mathcal{H}. The indicator function and the distance function of C are defined on \mathcal{H} as

$$
\iota_{C}: x \mapsto\left\{\begin{array}{ll}
0, & \text { if } x \in C ; \tag{2.11}\\
+\infty, & \text { if } x \notin C
\end{array} \quad \text { and } \quad d_{C}=\iota_{C} \square\|\cdot\|: x \mapsto \inf _{y \in C}\|x-y\| .\right.
$$

respectively. The interior of C is int C and the support function of C is $\sigma_{C}=\iota_{C}^{*}$. Now suppose that C is convex. The normal cone operator of C is defined as

$$
N_{C}=\partial \iota_{C}: \mathcal{H} \rightarrow 2^{\mathcal{H}}: x \mapsto \begin{cases}\{u \in \mathcal{H} \mid(\forall y \in C)\langle y-x \mid u\rangle \leqslant 0\}, & \text { if } x \in C \tag{2.12}\\ \varnothing, & \text { otherwise }\end{cases}
$$

The strong relative interior of C, i.e., the set of points $x \in C$ such that the conical hull of $-x+C$ is a closed vector subspace of \mathcal{H}, is denoted by sri C; if \mathcal{H} is finite-dimensional, sri C coincides with the relative interior of C, denoted by ri C. If C is also closed, its projector is denoted by P_{C}, i.e., $P_{C}: \mathcal{H} \rightarrow C: x \mapsto \operatorname{argmin}_{y \in C}\|x-y\|$.

Finally, $\ell_{+}^{1}(\mathbb{N})$ denotes the set of summable sequences in $[0,+\infty[$.

3 Preliminary results

3.1 Technical results

The following properties can be found in [26, Section VI.2.6] (see [17, Lemma 2.1] for an alternate short proof).

Lemma 3.1 Let $\alpha \in] 0,+\infty[$ and $\mu \in] 0,+\infty[$, and assume that A and B are operators in $\mathcal{S}(\mathcal{H})$ such that $\mu \mathrm{Id} \succcurlyeq A \succcurlyeq B \succcurlyeq \alpha \mathrm{Id}$. Then the following hold.
(i) $\alpha^{-1} \mathrm{Id} \succcurlyeq B^{-1} \succcurlyeq A^{-1} \succcurlyeq \mu^{-1} \mathrm{Id}$.
(ii) $(\forall x \in \mathcal{H})\left\langle A^{-1} x \mid x\right\rangle \geqslant\|A\|^{-1}\|x\|^{2}$.
(iii) $\left\|A^{-1}\right\| \leqslant \alpha^{-1}$.

The next fact concerns sums of composite cocoercive operators.
Proposition 3.2 Let I be a finite index set. For every $i \in I$, let $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$, let $\beta_{i} \in$ $] 0,+\infty\left[\right.$, and let $T_{i}: \mathcal{G}_{i} \rightarrow \mathcal{G}_{i}$ be β_{i}-cocoercive. Set $T=\sum_{i \in I} L_{i}^{*} T_{i} L_{i}$ and $\beta=1 /\left(\sum_{i \in I}\left\|L_{i}\right\|^{2} / \beta_{i}\right)$. Then T is β-cocoercive.

Proof. Set $(\forall i \in I) \alpha_{i}=\beta\left\|L_{i}\right\|^{2} / \beta_{i}$. Then $\sum_{i \in I} \alpha_{i}=1$ and, using the convexity of $\|\cdot\|^{2}$ and (1.2), we have

$$
\begin{align*}
(\forall x \in \mathcal{H})(\forall y \in \mathcal{H}) \quad\langle x-y \mid T x-T y\rangle & =\sum_{i \in I}\left\langle x-y \mid L_{i}^{*} T_{i} L_{i} x-L_{i}^{*} T_{i} L_{i} y\right\rangle \\
& =\sum_{i \in I}\left\langle L_{i} x-L_{i} y \mid T_{i} L_{i} x-T_{i} L_{i} y\right\rangle \\
& \geqslant \sum_{i \in I} \beta_{i}\left\|T_{i} L_{i} x-T_{i} L_{i} y\right\|^{2} \\
& \geqslant \sum_{i \in I} \frac{\beta_{i}}{\left\|L_{i}\right\|^{2}}\left\|L_{i}^{*} T_{i} L_{i} x-L_{i}^{*} T_{i} L_{i} y\right\|^{2} \\
& =\beta \sum_{i \in I} \alpha_{i}\left\|\frac{1}{\alpha_{i}}\left(L_{i}^{*} T_{i} L_{i} x-L_{i}^{*} T_{i} L_{i} y\right)\right\|^{2} \\
& \geqslant \beta\left\|\sum_{i \in I}\left(L_{i}^{*} T_{i} L_{i} x-L_{i}^{*} T_{i} L_{i} y\right)\right\|^{2} \\
& =\beta\|T x-T y\|^{2} \tag{3.1}
\end{align*}
$$

which concludes the proof.

3.2 Variable metric quasi-Fejér sequences

The following results are from [17].
Proposition 3.3 Let $\alpha \in] 0,+\infty\left[\right.$, let $\left(W_{n}\right)_{n \in \mathbb{N}}$ be in $\mathcal{P}_{\alpha}(\mathcal{H})$, let C be a nonempty subset of \mathcal{H}, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that

$$
\begin{align*}
\left(\exists\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)(\forall z \in C)\left(\exists\left(\varepsilon_{n}\right)_{n \in \mathbb{N}} \in\right. & \left.\ell_{+}^{1}(\mathbb{N})\right)(\forall n \in \mathbb{N}) \\
& \left\|x_{n+1}-z\right\|_{W_{n+1}} \leqslant\left(1+\eta_{n}\right)\left\|x_{n}-z\right\|_{W_{n}}+\varepsilon_{n} \tag{3.2}
\end{align*}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded and, for every $z \in C,\left(\left\|x_{n}-z\right\|_{W_{n}}\right)_{n \in \mathbb{N}}$ converges.
Proposition 3.4 Let $\alpha \in] 0,+\infty\left[\right.$, and let $\left(W_{n}\right)_{n \in \mathbb{N}}$ and W be operators in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that $W_{n} \rightarrow$ W pointwise as $n \rightarrow+\infty$, as is the case when

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|W_{n}\right\|<+\infty \quad \text { and } \quad\left(\exists\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)(\forall n \in \mathbb{N}) \quad\left(1+\eta_{n}\right) W_{n} \succcurlyeq W_{n+1} \tag{3.3}
\end{equation*}
$$

Let C be a nonempty subset of \mathcal{H}, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that (3.2) is satisfied. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a point in C if and only if every weak sequential cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ is in C.

Proposition 3.5 Let $\alpha \in] 0,+\infty\left[\right.$, let $\left(W_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that $\sup _{n \in \mathbb{N}}\left\|W_{n}\right\|<$ $+\infty$, let C be a nonempty closed subset of \mathcal{H}, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that

$$
\begin{align*}
&\left(\exists\left(\varepsilon_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)\left(\exists\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)(\forall z \in C)(\forall n \in \mathbb{N}) \\
&\left\|x_{n+1}-z\right\|_{W_{n+1}} \leqslant\left(1+\eta_{n}\right)\left\|x_{n}-z\right\|_{W_{n}}+\varepsilon_{n} \tag{3.4}
\end{align*}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges strongly to a point in C if and only if $\lim d_{C}\left(x_{n}\right)=0$.

Proposition 3.6 Let $\alpha \in] 0,+\infty\left[\right.$, let $\left(\nu_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, and let $\left(W_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that $\sup _{n \in \mathbb{N}}\left\|W_{n}\right\|<+\infty$ and $(\forall n \in \mathbb{N})\left(1+\nu_{n}\right) W_{n+1} \succcurlyeq W_{n}$. Furthermore, let C be a subset of \mathcal{H} such that int $C \neq \varnothing$, let $z \in C$ and $\rho \in] 0,+\infty\left[\right.$ be such that $B(z ; \rho) \subset C$, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that

$$
\begin{align*}
&\left(\exists\left(\varepsilon_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)\left(\exists\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})\right)(\forall x \in B(z ; \rho))(\forall n \in \mathbb{N}) \\
&\left\|x_{n+1}-x\right\|_{W_{n+1}}^{2} \leqslant\left(1+\eta_{n}\right)\left\|x_{n}-x\right\|_{W_{n}}^{2}+\varepsilon_{n} . \tag{3.5}
\end{align*}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges strongly.

3.3 Monotone operators

We establish some results on monotone operators in a variable metric environment.
Lemma 3.7 Let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be maximally monotone, let $\left.\alpha \in\right] 0,+\infty\left[\right.$, let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$, and let \mathcal{G} be the real Hilbert space obtained by endowing \mathcal{H} with the scalar product $(x, y) \mapsto\langle x \mid y\rangle_{U^{-1}}=$ $\left\langle x \mid U^{-1} y\right\rangle$. Then the following hold.
(i) $U A: \mathcal{G} \rightarrow 2^{\mathcal{G}}$ is maximally monotone.
(ii) $J_{U A}: \mathcal{G} \rightarrow \mathcal{G}$ is 1-cocoercive, i.e., firmly nonexpansive, hence nonexpansive.
(iii) $J_{U A}=\left(U^{-1}+A\right)^{-1} \circ U^{-1}$.

Proof. (i): Set $B=U A$ and $V=U^{-1}$. For every $(x, u) \in \operatorname{gra} B$ and every $(y, v) \in \operatorname{gra} B$, $V u \in V B x=A x$ and $V v \in V B y=A y$, so that

$$
\begin{equation*}
\langle x-y \mid u-v\rangle_{V}=\langle x-y \mid V u-V v\rangle \geqslant 0 \tag{3.6}
\end{equation*}
$$

by monotonicity of A on \mathcal{H}. This shows that B is monotone on \mathcal{G}. Now let $(y, v) \in \mathcal{H}^{2}$ be such that

$$
\begin{equation*}
(\forall(x, u) \in \operatorname{gra} B) \quad\langle x-y \mid u-v\rangle_{V} \geqslant 0 . \tag{3.7}
\end{equation*}
$$

Then, for every $(x, u) \in \operatorname{gra} A,(x, U u) \in \operatorname{gra} B$ and we derive from (3.7) that

$$
\begin{equation*}
\langle x-y \mid u-V v\rangle=\langle x-y \mid U u-v\rangle_{V} \geqslant 0 . \tag{3.8}
\end{equation*}
$$

Since A is maximally monotone on $\mathcal{H},(3.8)$ gives $(y, V v) \in \operatorname{gra} A$, which implies that $(y, v) \in \operatorname{gra} B$. Hence, B is maximally monotone on \mathcal{G}.
(ii): This follows from (i) and [4, Corollary 23.8].
(iii): Let x and p be in \mathcal{G}. Then $p=J_{U A} x \Leftrightarrow x \in p+U A p \Leftrightarrow U^{-1} x \in\left(U^{-1}+A\right) p \Leftrightarrow$ $p=\left(U^{-1}+A\right)^{-1}\left(U^{-1} x\right)$.

Remark 3.8 let $\alpha \in] 0,+\infty\left[\right.$, let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$, set $f: \mathcal{H} \rightarrow \mathbb{R}: x \mapsto\left\langle U^{-1} x \mid x\right\rangle / 2$, and let $D:(x, y) \mapsto f(x)-f(y)-\langle x-y \mid \nabla f(y)\rangle$ be the associated Bregman distance. Then Lemma 3.7(iii) asserts that $J_{U A}=(\nabla f+A)^{-1} \circ \nabla f$. In other words, $J_{U A}$ is the D-resolvent of A introduced in [3, Definition 3.7].

Let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$ for some $\left.\alpha \in\right] 0,+\infty\left[\right.$. The proximity operator of $f \in \Gamma_{0}(\mathcal{H})$ relative to the metric induced by U is [25, Section XV.4]

$$
\begin{equation*}
\operatorname{prox}_{f}^{U}: \mathcal{H} \rightarrow \mathcal{H}: x \mapsto \underset{y \in \mathcal{H}}{\operatorname{argmin}}\left(f(y)+\frac{1}{2}\|x-y\|_{U}^{2}\right), \tag{3.9}
\end{equation*}
$$

and the projector onto a nonempty closed convex subset C of \mathcal{H} relative to the norm $\|\cdot\|_{U}$ is denoted by P_{C}^{U}. We have

$$
\begin{equation*}
\operatorname{prox}_{f}^{U}=J_{U^{-1} \partial f} \quad \text { and } \quad P_{C}^{U}=\operatorname{prox}_{\iota_{C}}^{U} \tag{3.10}
\end{equation*}
$$

and we write $\operatorname{prox}_{f}^{\mathrm{Id}}=\operatorname{prox}_{f}$.
In the case when $U=$ Id in Lemma 3.7, examples of closed form expressions for $J_{U A}$ and basic resolvent calculus rules can be found in $[4,15,18]$. A few examples illustrating the case when $U \neq \mathrm{Id}$ are provided below. The first result is an extension of the well-known resolvent identity $J_{A}+J_{A^{-1}}=\mathrm{Id}$.

Example 3.9 Let $\alpha \in] 0,+\infty[$, let $\gamma \in] 0,+\infty\left[\right.$, and let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$. Then the following hold.
(i) Let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be maximally monotone. Then

$$
\begin{equation*}
J_{\gamma U A}=\sqrt{U} J_{\gamma \sqrt{U} A \sqrt{U}} \sqrt{U}^{-1}=\mathrm{Id}-\gamma U J_{\gamma^{-1} U^{-1} A^{-1}}\left(\gamma^{-1} U^{-1}\right) \tag{3.11}
\end{equation*}
$$

(ii) Let $f \in \Gamma_{0}(\mathcal{H})$. Then $\operatorname{prox}_{\gamma f}^{U}=\sqrt{U}^{-1} \operatorname{prox}_{\gamma f \circ \sqrt{U}}{ }^{-1} \sqrt{U}=\operatorname{Id}-\gamma U^{-1} \operatorname{prox}_{\gamma^{-1} f^{*}}^{U^{-1}}\left(\gamma^{-1} U\right)$.
(iii) Let C be a nonempty closed convex subset of \mathcal{H}. Then $\operatorname{prox}_{\gamma \sigma_{C}}^{U}=\sqrt{U}^{-1} \operatorname{prox}_{\gamma \sigma_{C} \circ \sqrt{U}}{ }^{-1} \sqrt{U}=$ $\operatorname{Id}-\gamma U^{-1} P_{C}^{U^{-1}}\left(\gamma^{-1} U\right)$.

Proof. (i): Let x and p be in \mathcal{H}. Then

$$
\begin{align*}
p=J_{\gamma U A} x & \Leftrightarrow x-p \in \gamma U A p \\
& \Leftrightarrow \sqrt{U}^{-1} x-\sqrt{U}^{-1} p \in \gamma \sqrt{U} A \sqrt{U} \sqrt{U}^{-1} p \\
& \Leftrightarrow \sqrt{U}^{-1} p=J_{\gamma \sqrt{U} A \sqrt{U}}\left(\sqrt{U}^{-1} x\right) \\
& \Leftrightarrow p=\sqrt{U} J_{\gamma \sqrt{U} A \sqrt{U}}\left(\sqrt{U}^{-1} x\right) \tag{3.12}
\end{align*}
$$

Furthermore, by [4, Proposition 23.23(ii)], $J_{\sqrt{U}(\gamma A) \sqrt{U}}=\operatorname{Id}-\sqrt{U}\left(U+(\gamma A)^{-1}\right)^{-1} \sqrt{U}$. Hence, (3.12) yields

$$
\begin{equation*}
J_{\gamma U A}=\operatorname{Id}-U\left(U+(\gamma A)^{-1}\right)^{-1} \tag{3.13}
\end{equation*}
$$

However

$$
\begin{align*}
p=\left(U+(\gamma A)^{-1}\right)^{-1} x & \Leftrightarrow x \in U p+(\gamma A)^{-1} p \\
& \Leftrightarrow \gamma^{-1} p \in A(x-U p) \\
& \Leftrightarrow x-U p \in A^{-1}\left(\gamma^{-1} p\right) \\
& \Leftrightarrow \gamma^{-1} U^{-1} x \in\left(\operatorname{Id}+\gamma^{-1} U^{-1} A^{-1}\right)\left(\gamma^{-1} p\right) \\
& \Leftrightarrow \gamma^{-1} p=J_{\gamma^{-1} U^{-1} A^{-1}}\left(\gamma^{-1} U^{-1} x\right) . \tag{3.14}
\end{align*}
$$

Hence, $\left(U+(\gamma A)^{-1}\right)^{-1}=\gamma J_{\gamma^{-1} U^{-1} A^{-1}\left(\gamma^{-1} U^{-1}\right) \text { and, using (3.13), we obtain the rightmost identity }}$ in (i).
(ii): Apply (i) to $A=\partial f$, and use (3.10) and the fact that $\partial\left(f \circ \sqrt{U}^{-1}\right)=\left({ }_{U}{ }^{-1}\right) * \circ(\partial f) \circ \sqrt{U}^{-1}=$ $\sqrt{U}^{-1} \circ(\partial f) \circ \sqrt{U}^{-1}$ [4, Corollary 16.42(i)].
(iii): Apply (ii) to $f=\sigma_{C}$, and use (3.10).

Example 3.10 Define \mathcal{G} as in Notation 2.1, let $\alpha \in \mathbb{R}$, and, for every $i \in\{1, \ldots, m\}$, let $A_{i}: \mathcal{G}_{i} \rightarrow$ $2^{\mathcal{G}_{i}}$ be maximally monotone and let $U_{i} \in \mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$. Set $\boldsymbol{A}: \mathcal{G} \rightarrow 2^{\mathcal{G}}:\left(x_{i}\right)_{1 \leqslant i \leqslant m} \mapsto$ X $_{i=1}^{m} A_{i} x_{i}$ and $\boldsymbol{U}: \mathcal{G} \rightarrow \boldsymbol{\mathcal { G }}:\left(x_{i}\right)_{1 \leqslant i \leqslant m} \mapsto\left(U_{i} x_{i}\right)_{1 \leqslant i \leqslant m}$. Then $\boldsymbol{U} \boldsymbol{A}$ is maximally monotone and

$$
\begin{equation*}
\left(\forall\left(x_{i}\right)_{1 \leqslant i \leqslant m} \in \boldsymbol{\mathcal { G }}\right) \quad J_{\boldsymbol{U} \boldsymbol{A}}\left(x_{i}\right)_{1 \leqslant i \leqslant m}=\left(J_{U_{i} A_{i}} x_{i}\right)_{1 \leqslant i \leqslant m} . \tag{3.15}
\end{equation*}
$$

Proof. This follows from Lemma 3.7(i) and [4, Proposition 23.16].
Example 3.11 Let $\alpha \in] 0,+\infty\left[\right.$, let $\xi \in \mathbb{R}$, let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$, let $\phi \in \Gamma_{0}(\mathbb{R})$, suppose that $0 \neq u \in \mathcal{H}$, and set $H=\{x \in \mathcal{H} \mid\langle x \mid u\rangle \leqslant \xi\}$ and $g=\phi(\langle\cdot \mid u\rangle)$. Then $g \in \Gamma_{0}(\mathcal{H})$ and

$$
\begin{equation*}
(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{g}^{U} x=x+\frac{\operatorname{prox}_{\left\|\sqrt{U^{-1}} u\right\|^{2} \phi}\langle x \mid u\rangle-\langle x \mid u\rangle}{\left\|\sqrt{U^{-1}} u\right\|^{2}} U^{-1} u \tag{3.16}
\end{equation*}
$$

and

$$
P_{H}^{U} x= \begin{cases}x, & \text { if }\langle x \mid u\rangle \leqslant \xi ; \tag{3.17}\\ x+\frac{\xi-\langle x \mid u\rangle}{\left\langle u \mid U^{-1} u\right\rangle} U^{-1} u, & \text { if }\langle x \mid u\rangle>\xi .\end{cases}
$$

Proof. It follows from Example 3.9(ii) that

$$
\begin{equation*}
(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{g}^{U} x=\sqrt{U^{-1}} \operatorname{prox}_{g \circ \sqrt{U^{-1}}} \sqrt{U} x . \tag{3.18}
\end{equation*}
$$

Moreover, $g \circ \sqrt{U^{-1}}=\phi\left(\left\langle\cdot \mid \sqrt{U^{-1}} u\right\rangle\right)$. Hence, using (3.18) and [4, Corollary 23.33], we obtain

$$
\begin{align*}
(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{g}^{U} x & =\sqrt{U^{-1}} \operatorname{prox}_{\phi\left(\left\langle\cdot \mid \sqrt{U^{-1}} u\right\rangle\right)} \sqrt{U} x \\
& =x+\frac{\operatorname{prox}_{\left\|\sqrt{U^{-1}} u\right\|^{2} \phi}\langle x \mid u\rangle-\langle x \mid u\rangle}{\left\|\sqrt{U^{-1}} u\right\|^{2}} U^{-1} u . \tag{3.19}
\end{align*}
$$

Finally, upon setting $\phi=\iota_{]}-\infty, \xi$, we obtain (3.17) from (3.16).
Example 3.12 Let $\alpha \in] 0,+\infty\left[\right.$, let $\gamma \in \mathbb{R}$, let $A \in \mathcal{P}_{0}(\mathcal{H})$, let $u \in \mathcal{H}$, let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$, and set $\varphi: \mathcal{H} \rightarrow \mathbb{R}: x \mapsto\langle A x \mid x\rangle / 2+\langle x \mid u\rangle+\gamma$. Then $\varphi \in \Gamma_{0}(\mathcal{H})$ and

$$
\begin{equation*}
(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{\varphi}^{U} x=\left(\operatorname{Id}+U^{-1} A\right)^{-1}\left(x-U^{-1} u\right) . \tag{3.20}
\end{equation*}
$$

Proof. Let $x \in \mathcal{H}$. Then $p=\operatorname{prox}_{\varphi}^{U} x \Leftrightarrow x-p=U^{-1} \nabla \varphi(p) \Leftrightarrow x-p=U^{-1}(A p+u) \Leftrightarrow x-U^{-1} u=$ $\left(\operatorname{Id}+U^{-1} A\right) p \Leftrightarrow p=\left(\operatorname{Id}+U^{-1} A\right)^{-1}\left(x-U^{-1} u\right)$.

Example 3.13 Let $\alpha \in] 0,+\infty\left[\right.$ and let $U \in \mathcal{P}_{\alpha}(\mathcal{H})$. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let $\left.\omega_{i} \in\right] 0,+\infty\left[\right.$, and let $L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. Set $\varphi: x \mapsto(1 / 2) \sum_{i=1}^{m} \omega_{i}\left\|L_{i} x-r_{i}\right\|^{2}$. Then $\varphi \in \Gamma_{0}(\mathcal{H})$ and

$$
\begin{equation*}
(\forall x \in \mathcal{H}) \quad \operatorname{prox}_{\varphi}^{U} x=\left(\operatorname{Id}+U^{-1} \sum_{i=1}^{m} \omega_{i} L_{i}^{*} L_{i}\right)^{-1}\left(x+U^{-1} \sum_{i=1}^{m} \omega_{i} L_{i}^{*} r_{i}\right) \tag{3.21}
\end{equation*}
$$

Proof. We have $\varphi: x \mapsto\langle A x \mid x\rangle / 2+\langle x \mid u\rangle+\gamma$, where $A=\sum_{i=1}^{m} \omega_{i} L_{i}^{*} L_{i}, u=-\sum_{i=1}^{m} \omega_{i} L_{i}^{*} r_{i}$, and $\gamma=\sum_{i=1}^{m} \omega_{i}\left\|r_{i}\right\|^{2} / 2$. Hence, (3.21) follows from (3.20).

3.4 Demiregularity

Definition 3.14 [1, Definition 2.3] An operator $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ is demiregular at $x \in \operatorname{dom} A$ if, for every sequence $\left(\left(x_{n}, u_{n}\right)\right)_{n \in \mathbb{N}}$ in gra A and every $u \in A x$ such that $x_{n} \rightharpoonup x$ and $u_{n} \rightarrow u$ as $n \rightarrow+\infty$, we have $x_{n} \rightarrow x$ as $n \rightarrow+\infty$.

Lemma 3.15 [1, Proposition 2.4] Let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be monotone and suppose that $x \in \operatorname{dom} A$. Then A is demiregular at x in each of the following cases.
(i) A is uniformly monotone at x, i.e., there exists an increasing function $\phi:[0,+\infty[\rightarrow[0,+\infty]$ that vanishes only at 0 such that $(\forall u \in A x)(\forall(y, v) \in \operatorname{gra} A)\langle x-y \mid u-v\rangle \geqslant \phi(\|x-y\|)$.
(ii) A is strongly monotone, i.e., there exists $\alpha \in] 0,+\infty[$ such that $A-\alpha \operatorname{Id}$ is monotone.
(iii) J_{A} is compact, i.e., for every bounded set $C \subset \mathcal{H}$, the closure of $J_{A}(C)$ is compact. In particular, $\operatorname{dom} A$ is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is compact.
(iv) $A: \mathcal{H} \rightarrow \mathcal{H}$ is single-valued with a single-valued continuous inverse.
(v) A is single-valued on $\operatorname{dom} A$ and $\operatorname{Id}-A$ is demicompact, i.e., for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in dom A such that $\left(A x_{n}\right)_{n \in \mathbb{N}}$ converges strongly, $\left(x_{n}\right)_{n \in \mathbb{N}}$ admits a strong cluster point.
(vi) $A=\partial f$, where $f \in \Gamma_{0}(\mathcal{H})$ is uniformly convex at x, i.e., there exists an increasing function $\phi:[0,+\infty[\rightarrow[0,+\infty]$ that vanishes only at 0 such that $(\forall \alpha \in] 0,1[)(\forall y \in \operatorname{dom} f) f(\alpha x+(1-$ $\alpha) y)+\alpha(1-\alpha) \phi(\|x-y\|) \leqslant \alpha f(x)+(1-\alpha) f(y)$.
(vii) $A=\partial f$, where $f \in \Gamma_{0}(\mathcal{H})$ and, for every $\xi \in \mathbb{R},\{x \in \mathcal{H} \mid f(x) \leqslant \xi\}$ is boundedly compact.

4 Algorithm and convergence

Our main result is stated in the following theorem.
Theorem 4.1 Let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be maximally monotone, let $\left.\alpha \in\right] 0,+\infty[$, let $\beta \in] 0,+\infty[$, let $B: \mathcal{H} \rightarrow \mathcal{H}$ be β-cocoercive, let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, and let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that

$$
\begin{equation*}
\mu=\sup _{n \in \mathbb{N}}\left\|U_{n}\right\|<+\infty \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad\left(1+\eta_{n}\right) U_{n+1} \succcurlyeq U_{n} \tag{4.1}
\end{equation*}
$$

Let $\varepsilon \in] 0, \min \{1,2 \beta /(\mu+1)\}\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon,(2 \beta-\varepsilon) / \mu]$, let $x_{0} \in \mathcal{H}$, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{H}. Suppose that

$$
\begin{equation*}
Z=\operatorname{zer}(A+B) \neq \varnothing \tag{4.2}
\end{equation*}
$$

and set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
y_{n}=x_{n}-\gamma_{n} U_{n}\left(B x_{n}+b_{n}\right) \tag{4.3}\\
x_{n+1}=x_{n}+\lambda_{n}\left(J_{\gamma_{n} U_{n} A}\left(y_{n}\right)+a_{n}-x_{n}\right)
\end{array}\right.
$$

Then the following hold for some $\bar{x} \in Z$.
(i) $x_{n} \rightharpoonup \bar{x}$ as $n \rightarrow+\infty$.
(ii) $\sum_{n \in \mathbb{N}}\left\|B x_{n}-B \bar{x}\right\|^{2}<+\infty$.
(iii) Suppose that one of the following holds.
(a) $\underline{\lim } d_{Z}\left(x_{n}\right)=0$.
(b) At every point in Z, A or B is demiregular (see Lemma 3.15 for special cases).
(c) $\operatorname{int} Z \neq \varnothing$ and there exists $\left(\nu_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$ such that $(\forall n \in \mathbb{N})\left(1+\nu_{n}\right) U_{n} \succcurlyeq U_{n+1}$.

Then $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.

Proof. Set

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array} { l }
{ A _ { n } = \gamma _ { n } U _ { n } A } \tag{4.4}\\
{ B _ { n } = \gamma _ { n } U _ { n } B }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
p_{n}=J_{A_{n}} y_{n} \\
q_{n}=J_{A_{n}}\left(x_{n}-B_{n} x_{n}\right) \\
s_{n}=x_{n}+\lambda_{n}\left(q_{n}-x_{n}\right)
\end{array}\right.\right.
$$

Then (4.3) can be written as

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}+\lambda_{n}\left(p_{n}+a_{n}-x_{n}\right) \tag{4.5}
\end{equation*}
$$

On the other hand, (4.1) and Lemma 3.1(i)\&(iii) yield

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\|U_{n}^{-1}\right\| \leqslant \frac{1}{\alpha}, \quad U_{n}^{-1} \in \mathcal{P}_{1 / \mu}(\mathcal{H}), \quad \text { and } \quad\left(1+\eta_{n}\right) U_{n}^{-1} \succcurlyeq U_{n+1}^{-1} \tag{4.6}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
(\forall n \in \mathbb{N})(\forall x \in \mathcal{H}) \quad\left(1+\eta_{n}\right)\|x\|_{U_{n}^{-1}}^{2} \geqslant\|x\|_{U_{n+1}^{-1}}^{2} \tag{4.7}
\end{equation*}
$$

Hence, we derive from (4.5), (4.4), Lemma 3.7(ii), (4.6) and (4.1) that

$$
\begin{align*}
(\forall n \in \mathbb{N})\left\|x_{n+1}-s_{n}\right\|_{U_{n}^{-1}} & \leqslant \lambda_{n}\left(\left\|a_{n}\right\|_{U_{n}^{-1}}+\left\|p_{n}-q_{n}\right\|_{U_{n}^{-1}}\right) \\
& \leqslant\left\|a_{n}\right\|_{U_{n}^{-1}}+\left\|y_{n}-x_{n}+B_{n} x_{n}\right\|_{U_{n}^{-1}} \\
& \leqslant\left\|a_{n}\right\|_{U_{n}^{-1}}+\gamma_{n}\left\|U_{n} b_{n}\right\|_{U_{n}^{-1}} \\
& \leqslant \sqrt{\left\|U_{n}^{-1}\right\|}\left\|a_{n}\right\|+\gamma_{n} \sqrt{\left\|U_{n}\right\|}\left\|b_{n}\right\| \\
& \leqslant \frac{1}{\sqrt{\alpha}}\left\|a_{n}\right\|+\frac{2 \beta-\varepsilon}{\sqrt{\mu}}\left\|b_{n}\right\| \tag{4.8}
\end{align*}
$$

Now let $z \in Z$. Since B is β-cocoercive,

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\langle x_{n}-z \mid B x_{n}-B z\right\rangle \geqslant \beta\left\|B x_{n}-B z\right\|^{2} . \tag{4.9}
\end{equation*}
$$

On the other hand, it follows from (4.1) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\|B_{n} x_{n}-B_{n} z\right\|_{U_{n}^{-1}}^{2} \leqslant \gamma_{n}^{2}\left\|U_{n}\right\|\left\|B x_{n}-B z\right\|^{2} \leqslant \gamma_{n}^{2} \mu\left\|B x_{n}-B z\right\|^{2} . \tag{4.10}
\end{equation*}
$$

We also note that, since $-B z \in A z$, (4.4) yields

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad z=J_{A_{n}}\left(z-B_{n} z\right) . \tag{4.11}
\end{equation*}
$$

Altogether, it follows from (4.4), (4.11), Lemma 3.7(ii), (4.9), and (4.10) that

$$
\begin{align*}
(\forall n \in \mathbb{N})\left\|q_{n}-z\right\|_{U_{n}^{-1}}^{2} \leqslant & \left\|\left(x_{n}-z\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \\
& -\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \\
= & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-2\left\langle x_{n}-z \mid B_{n} x_{n}-B_{n} z\right\rangle_{U_{n}^{-1}}+\left\|B_{n} x_{n}-B_{n} z\right\|_{U_{n}^{-1}}^{2} \\
& -\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \\
= & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-2 \gamma_{n}\left\langle x_{n}-z \mid B x_{n}-B z\right\rangle+\left\|B_{n} x_{n}-B_{n} z\right\|_{U_{n}^{-1}}^{2} \\
& -\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \\
\leqslant & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\gamma_{n}\left(2 \beta-\mu \gamma_{n}\right)\left\|B x_{n}-B z\right\|^{2} \\
& -\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \\
\leqslant & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\varepsilon^{2}\left\|B x_{n}-B z\right\|^{2} \\
& -\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} . \tag{4.12}
\end{align*}
$$

In turn, we derive from (4.7) and (4.4) that

$$
\begin{align*}
(\forall n \in \mathbb{N}) \quad\left(1+\eta_{n}\right)^{-1}\left\|s_{n}-z\right\|_{U_{n+1}^{-1}}^{2} \leqslant & \left\|s_{n}-z\right\|_{U_{n}^{-1}}^{2} \\
\leqslant & \left(1-\lambda_{n}\right)\left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}+\lambda_{n}\left\|q_{n}-z\right\|_{U_{n}^{-1}}^{2} \\
\leqslant & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\varepsilon^{3}\left\|B x_{n}-B z\right\|^{2} \\
& -\varepsilon\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2}, \tag{4.13}
\end{align*}
$$

which implies that

$$
\begin{align*}
(\forall n \in \mathbb{N}) \quad\left\|s_{n}-z\right\|_{U_{n+1}^{-1}}^{2} \leqslant & \left(1+\eta_{n}\right)\left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\varepsilon^{3}\left\|B x_{n}-B z\right\|^{2} \\
& -\varepsilon\left\|\left(x_{n}-q_{n}\right)-\left(B_{n} x_{n}-B_{n} z\right)\right\|_{U_{n}^{-1}}^{2} \tag{4.14}\\
\leqslant & \delta^{2}\left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}, \tag{4.15}
\end{align*}
$$

where

$$
\begin{equation*}
\delta=\sup _{n \in \mathbb{N}} \sqrt{1+\eta_{n}} \tag{4.16}
\end{equation*}
$$

Next, we set

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \varepsilon_{n}=\delta\left(\frac{1}{\sqrt{\alpha}}\left\|a_{n}\right\|+\frac{2 \beta-\varepsilon}{\sqrt{\mu}}\left\|b_{n}\right\|\right) . \tag{4.17}
\end{equation*}
$$

Then our assumptions yield

$$
\begin{equation*}
\sum_{n \in \mathbb{N}} \varepsilon_{n}<+\infty \tag{4.18}
\end{equation*}
$$

Moreover, using (4.7), (4.14), and (4.8), we obtain

$$
\begin{align*}
(\forall n \in \mathbb{N}) \quad\left\|x_{n+1}-z\right\|_{U_{n+1}^{-1}} & \leqslant\left\|x_{n+1}-s_{n}\right\|_{U_{n+1}^{-1}}+\left\|s_{n}-z\right\|_{U_{n+1}^{-1}} \\
& \leqslant \sqrt{1+\eta_{n}}\left\|x_{n+1}-s_{n}\right\|_{U_{n}^{-1}}+\sqrt{1+\eta_{n}}\left\|x_{n}-z\right\|_{U_{n}^{-1}} \\
& \leqslant \delta\left\|x_{n+1}-s_{n}\right\|_{U_{n}^{-1}}+\sqrt{1+\eta_{n}}\left\|x_{n}-z\right\|_{U_{n}^{-1}} \\
& \leqslant \sqrt{1+\eta_{n}}\left\|x_{n}-z\right\|_{U_{n}^{-1}}+\varepsilon_{n} \\
& \leqslant\left(1+\eta_{n}\right)\left\|x_{n}-z\right\|_{U_{n}^{-1}}+\varepsilon_{n} \tag{4.19}
\end{align*}
$$

In view of (4.6), (4.18), and (4.19), we can apply Proposition 3.3 to assert that $\left(\left\|x_{n}-z\right\|_{U_{n}^{-1}}\right)_{n \in \mathbb{N}}$ converges and, therefore, that

$$
\begin{equation*}
\zeta=\sup _{n \in \mathbb{N}}\left\|x_{n}-z\right\|_{U_{n}^{-1}}<+\infty \tag{4.20}
\end{equation*}
$$

On the other hand, (4.7), (4.8), and (4.17) yield

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\|x_{n+1}-s_{n}\right\|_{U_{n+1}^{-1}}^{2} \leqslant\left(1+\eta_{n}\right)\left\|x_{n+1}-s_{n}\right\|_{U_{n}^{-1}}^{2} \leqslant \varepsilon_{n}^{2} \tag{4.21}
\end{equation*}
$$

Hence, using (4.14), (4.15), (4.16), and (4.20), we get

$$
\begin{align*}
(\forall n \in \mathbb{N})\left\|x_{n+1}-z\right\|_{U_{n+1}^{-1}}^{2} \leqslant & \left\|s_{n}-z\right\|_{U_{n+1}^{-1}}^{2}+2\left\|s_{n}-z\right\|_{U_{n+1}^{-1}}\left\|x_{n+1}-s_{n}\right\|_{U_{n+1}^{-1}}+\left\|x_{n+1}-s_{n}\right\|_{U_{n+1}^{-1}}^{2} \\
\leqslant & \left(1+\eta_{n}\right)\left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\varepsilon^{3}\left\|B x_{n}-B z\right\|^{2} \\
& -\varepsilon\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} z\right\|_{U_{n}^{-1}}^{2}+2 \delta \zeta \varepsilon_{n}+\varepsilon_{n}^{2} \\
\leqslant & \left\|x_{n}-z\right\|_{U_{n}^{-1}}^{2}-\varepsilon^{3}\left\|B x_{n}-B z\right\|^{2}-\varepsilon\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} z\right\|_{U_{n}^{-1}}^{2} \\
& +\zeta^{2} \eta_{n}+2 \delta \zeta \varepsilon_{n}+\varepsilon_{n}^{2} . \tag{4.22}
\end{align*}
$$

Consequently, for every $N \in \mathbb{N}$,

$$
\begin{align*}
\varepsilon^{3} \sum_{n=0}^{N}\left\|B x_{n}-B z\right\|^{2} & \leqslant\left\|x_{0}-z\right\|_{U_{0}^{-1}}^{2}-\left\|x_{N+1}-z\right\|_{U_{N+1}^{-1}}^{2}+\sum_{n=0}^{N}\left(\zeta^{2} \eta_{n}+2 \delta \zeta \varepsilon_{n}+\varepsilon_{n}^{2}\right) \\
& \leqslant \zeta^{2}+\sum_{n=0}^{N}\left(\zeta^{2} \eta_{n}+2 \delta \zeta \varepsilon_{n}+\varepsilon_{n}^{2}\right) \tag{4.23}
\end{align*}
$$

Appealing to (4.18) and the summability of $\left(\eta_{n}\right)_{n \in \mathbb{N}}$, taking the limit as $N \rightarrow+\infty$, yields

$$
\begin{equation*}
\sum_{n \in \mathbb{N}}\left\|B x_{n}-B z\right\|^{2} \leqslant \frac{1}{\varepsilon^{3}}\left(\zeta^{2}+\sum_{n \in \mathbb{N}}\left(\zeta^{2} \eta_{n}+2 \delta \zeta \varepsilon_{n}+\varepsilon_{n}^{2}\right)\right)<+\infty \tag{4.24}
\end{equation*}
$$

We likewise derive from (4.22) that

$$
\begin{equation*}
\sum_{n \in \mathbb{N}}\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} z\right\|_{U_{n}^{-1}}^{2}<+\infty \tag{4.25}
\end{equation*}
$$

(i): Let x be a weak sequential cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$, say $x_{k_{n}} \rightharpoonup x$ as $n \rightarrow+\infty$. In view of (4.19), (4.6), and Proposition 3.4, it is enough to show that $x \in Z$. On the one hand, (4.24) yields $B x_{k_{n}} \rightarrow B z$ as $n \rightarrow+\infty$. On the other hand, since B is cocoercive, it is maximally monotone [4, Example 20.28] and its graph is therefore sequentially closed in $\mathcal{H}^{\text {weak }} \times \mathcal{H}^{\text {strong }}$ [4, Proposition 20.33(ii)]. This implies that $B x=B z$ and hence that $B x_{k_{n}} \rightarrow B x$ as $n \rightarrow+\infty$. Thus, in view of (4.24),

$$
\begin{equation*}
\sum_{n \in \mathbb{N}}\left\|B x_{n}-B x\right\|^{2}<+\infty \tag{4.26}
\end{equation*}
$$

Now set

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad u_{n}=\frac{1}{\gamma_{n}} U_{n}^{-1}\left(x_{n}-q_{n}\right)-B x_{n} \tag{4.27}
\end{equation*}
$$

Then it follows from (4.4) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad u_{n} \in A q_{n} \tag{4.28}
\end{equation*}
$$

In addition, (4.4), (4.6), and (4.25) yield

$$
\begin{align*}
\left\|u_{n}+B x\right\| & =\frac{1}{\gamma_{n}}\left\|U_{n}^{-1}\left(x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right)\right\| \\
& \leqslant \frac{1}{\varepsilon \alpha}\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right\| \\
& \leqslant \frac{\sqrt{\mu}}{\varepsilon \alpha}\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right\|_{U_{n}^{-1}} \\
& \rightarrow 0 \text { as } n \rightarrow+\infty \tag{4.29}
\end{align*}
$$

Moreover, it follows from (4.4), (4.1), and (4.26) that

$$
\begin{align*}
\left\|x_{n}-q_{n}\right\| & \leqslant\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right\|+\left\|B_{n} x_{n}-B_{n} x\right\| \\
& \leqslant\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right\|+\gamma_{n}\left\|U_{n}\right\|\left\|B x_{n}-B x\right\| \\
& \leqslant\left\|x_{n}-q_{n}-B_{n} x_{n}+B_{n} x\right\|+(2 \beta-\varepsilon)\left\|B x_{n}-B x\right\| \\
& \rightarrow 0 \text { as } n \rightarrow+\infty \tag{4.30}
\end{align*}
$$

and, therefore, since $x_{k_{n}} \rightharpoonup x$ as $n \rightarrow+\infty$, that $q_{k_{n}} \rightharpoonup x$ as $n \rightarrow+\infty$. To sum up,

$$
\left\{\begin{array}{l}
q_{k_{n}} \rightharpoonup x \tag{4.31}\\
u_{k_{n}} \rightarrow-B x
\end{array} \quad \text { as } n \rightarrow+\infty, \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad\left(q_{k_{n}}, u_{k_{n}}\right) \in \operatorname{gra} A\right.
$$

Hence, using the sequential closedness of gra A in $\mathcal{H}^{\text {weak }} \times \mathcal{H}^{\text {strong }}$ [4, Proposition 20.33(ii)], we conclude that $-B x \in A x$, i.e., $x \in Z$.
(ii): Since $\bar{x} \in Z$, the claim follows from (4.24).
(iii): We now prove strong convergence.
(iii)(a): Since A and B are maximally monotone and $\operatorname{dom} B=\mathcal{H}, A+B$ is maximally monotone [4, Corollary 24.4(i)] and Z is therefore closed [4, Proposition 23.39]. Hence, the claim follows from (i), (4.19), and Proposition 3.5.
(iii)(b): It follows from (i) and (4.30) that $q_{n} \rightharpoonup \bar{x} \in Z$ as $n \rightarrow+\infty$ and from (4.29) that $u_{n} \rightarrow-B \bar{x} \in A \bar{x}$ as $n \rightarrow+\infty$. Hence, if A is demiregular at \bar{x}, (4.28) yields $q_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$. In view of (4.30), we conclude that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$. Now suppose that B is demiregular at \bar{x}. Then since $x_{n} \rightharpoonup \bar{x} \in Z$ as $n \rightarrow+\infty$ by (i) and $B x_{n} \rightarrow B \bar{x}$ as $n \rightarrow+\infty$ by (ii), we conclude that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.
(iii)(c): Suppose that $z \in \operatorname{int} C$ and fix $\rho \in] 0,+\infty[$ such that $B(z ; \rho) \subset C$. It follows from (4.20) that $\theta=\sup _{x \in B(z ; \rho)} \sup _{n \in \mathbb{N}}\left\|x_{n}-x\right\|_{U_{n}^{-1}} \leqslant(1 / \sqrt{\alpha})\left(\sup _{n \in \mathbb{N}}\left\|x_{n}-z\right\|+\sup _{x \in B(z ; \rho)}\|x-z\|\right)<+\infty$ and from (4.22) that

$$
\begin{equation*}
(\forall n \in \mathbb{N})(\forall x \in B(z ; \rho)) \quad\left\|x_{n+1}-x\right\|_{U_{n+1}^{-1}}^{2} \leqslant\left\|x_{n}-x\right\|_{U_{n}^{-1}}^{2}+\theta^{2} \eta_{n}+2 \delta \theta \varepsilon_{n}+\varepsilon_{n}^{2} \tag{4.32}
\end{equation*}
$$

Hence, the claim follows from (i), Lemma 3.1, and Proposition 3.6.
Remark 4.2 Here are some observations on Theorem 4.1.
(i) Suppose that $(\forall n \in \mathbb{N}) U_{n}=$ Id. Then (4.3) relapses to the forward-backward algorithm studied in [1, 12], which itself captures those of [27, 29, 40]. Theorem 4.1 extends the convergence results of these papers.
(ii) As shown in [18, Remark 5.12], the convergence of the forward-backward iterates to a solution may be only weak and not strong, hence the necessity of the additional conditions in Theorem 4.1(iii).
(iii) In Euclidean spaces, condition (4.1) was used in [32] in a variable metric proximal point algorithm and then in [28] in a more general splitting algorithm.

Next, we describe direct applications of Theorem 4.1, which yield new variable metric splitting schemes. We start with minimization problems, an area in which the forward-backward algorithm has found numerous applications, e.g., $[15,18,21,39,40]$.

Example 4.3 Let $f \in \Gamma_{0}(\mathcal{H})$, let $\left.\alpha \in\right] 0,+\infty[$, let $\beta \in] 0,+\infty[$, let $g: \mathcal{H} \rightarrow \mathbb{R}$ be convex and differentiable with a $1 / \beta$-Lipschitzian gradient, let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, and let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that (4.1) holds. Furthermore, let $\left.\varepsilon \in\right] 0, \min \{1,2 \beta /(\mu+1)\}[$ where μ is given by (4.1), let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon,(2 \beta-\varepsilon) / \mu]$, let $x_{0} \in \mathcal{H}$, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{H}. Suppose that $\operatorname{Argmin}(f+g) \neq \varnothing$ and set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
y_{n}=x_{n}-\gamma_{n} U_{n}\left(\nabla g\left(x_{n}\right)+b_{n}\right) \tag{4.33}\\
x_{n+1}=x_{n}+\lambda_{n}\left(\operatorname{prox}_{\gamma_{n} f}^{U_{n}^{-1}} y_{n}+a_{n}-x_{n}\right)
\end{array}\right.
$$

Then the following hold for some $\bar{x} \in \operatorname{Argmin}(f+g)$.
(i) $x_{n} \rightharpoonup \bar{x}$ as $n \rightarrow+\infty$.
(ii) $\sum_{n \in \mathbb{N}}\left\|\nabla g\left(x_{n}\right)-\nabla g(\bar{x})\right\|^{2}<+\infty$.
(iii) Suppose that one of the following holds.
(a) $\underline{\lim } d_{\operatorname{Argmin}(f+g)}\left(x_{n}\right)=0$.
(b) At every point in $\operatorname{Argmin}(f+g)$, f or g is uniformly convex (see Lemma 3.15(vi)).
(c) $\operatorname{int} \operatorname{Argmin}(f+g) \neq \varnothing$ and there exists $\left(\nu_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$ such that $(\forall n \in \mathbb{N})\left(1+\nu_{n}\right) U_{n} \succcurlyeq$ U_{n+1}.

Then $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.

Proof. An application of Theorem 4.1 with $A=\partial f$ and $B=\nabla g$, since the Baillon-Haddad theorem [4, Corollary 18.16] ensures that ∇g is β-cocoercive and since, by [4, Corollary 26.3], $\operatorname{Argmin}(f+g)=$ $\operatorname{zer}(A+B)$.

The next example addresses variational inequalities, another area of application of forwardbackward splitting [4, 23, 39, 40].

Example 4.4 Let $f \in \Gamma_{0}(\mathcal{H})$, let $\left.\alpha \in\right] 0,+\infty[$, let $\beta \in] 0,+\infty[$, let $B: \mathcal{H} \rightarrow \mathcal{H}$ be β-cocoercive, let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, and let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ that satisfies (4.1). Furthermore, let $\varepsilon \in] 0, \min \{1,2 \beta /(\mu+1)\}\left[\right.$ where μ is given by (4.1), let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon,(2 \beta-\varepsilon) / \mu]$, let $x_{0} \in \mathcal{H}$, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{H}. Suppose that the variational inequality

$$
\begin{equation*}
\text { find } \quad x \in \mathcal{H} \quad \text { such that } \quad(\forall y \in \mathcal{H}) \quad\langle x-y \mid B x\rangle+f(x) \leqslant f(y) \tag{4.34}
\end{equation*}
$$

admits at least one solution and set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
y_{n}=x_{n}-\gamma_{n} U_{n}\left(B x_{n}+b_{n}\right) \tag{4.35}\\
x_{n+1}=x_{n}+\lambda_{n}\left(\operatorname{prox}_{\gamma_{n} f}^{U_{n}^{-1}} y_{n}+a_{n}-x_{n}\right)
\end{array}\right.
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a solution \bar{x} to (4.34).

Proof. Set $A=\partial f$ in Theorem 4.1(i).

5 Strongly monotone inclusions in duality

In [13], strongly convex composite minimization problems of the form

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} f(x)+g(L x-r)+\frac{1}{2}\|x-z\|^{2}, \tag{5.1}
\end{equation*}
$$

where $z \in \mathcal{H}, r \in \mathcal{G}, f \in \Gamma_{0}(\mathcal{H}), g \in \Gamma_{0}(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$, were solved by applying the forward-backward algorithm to the Fenchel-Rockafellar dual problem

$$
\begin{equation*}
\underset{v \in \mathcal{G}}{\operatorname{minimize}} \widetilde{f^{*}}\left(z-L^{*} v\right)+g^{*}(v)+\langle v \mid r\rangle \tag{5.2}
\end{equation*}
$$

where $\widetilde{f^{*}}=f^{*} \square\left(\|\cdot\|^{2} / 2\right)$ denotes the Moreau envelope of f^{*}. This framework was shown to capture and extend various formulations in areas such as sparse signal recovery, best approximation theory, and inverse problems. In this section, we use the results of Section 4 to generalize this framework in several directions simultaneously. First, we consider general monotone inclusions, not just minimization problems. Second, we incorporate parallel sum components (see (2.7)) in the model. Third, our algorithm allows for a variable metric. The following problem is formulated using the duality framework of [16], which itself extends those of $[2,22,31,34,37,38]$.

Problem 5.1 Let $z \in \mathcal{H}$, let $\rho \in] 0,+\infty\left[\right.$, let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be maximally monotone, and let m be a strictly positive integer. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let $B_{i}: \mathcal{G}_{i} \rightarrow 2^{\mathcal{G}_{i}}$ be maximally monotone, let $\left.\nu_{i} \in\right] 0,+\infty\left[\right.$, let $D_{i}: \mathcal{G}_{i} \rightarrow 2^{\mathcal{G}_{i}}$ be maximally monotone and ν_{i}-strongly monotone, and suppose that $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. Furthermore, suppose that

$$
\begin{equation*}
z \in \operatorname{ran}\left(A+\sum_{i=1}^{m} L_{i}^{*}\left(\left(B_{i} \square D_{i}\right)\left(L_{i} \cdot-r_{i}\right)\right)+\rho \mathrm{Id}\right) \tag{5.3}
\end{equation*}
$$

The problem is to solve the primal inclusion

$$
\begin{equation*}
\text { find } \bar{x} \in \mathcal{H} \text { such that } z \in A \bar{x}+\sum_{i=1}^{m} L_{i}^{*}\left(\left(B_{i} \square D_{i}\right)\left(L_{i} \bar{x}-r_{i}\right)\right)+\rho \bar{x} \text {, } \tag{5.4}
\end{equation*}
$$

together with the dual inclusion
find $\overline{v_{1}} \in \mathcal{G}_{1}, \ldots, \overline{v_{m}} \in \mathcal{G}_{m}$ such that

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad r_{i} \in L_{i}\left(J_{\rho^{-1} A}\left(\rho^{-1}\left(z-\sum_{j=1}^{m} L_{j}^{*} \overline{v_{j}}\right)\right)\right)-B_{i}^{-1} \overline{v_{i}}-D_{i}^{-1} \overline{v_{i}} \tag{5.5}
\end{equation*}
$$

Let us start with some properties of Problem 5.1.
Proposition 5.2 In Problem 5.1, set

$$
\begin{equation*}
\bar{x}=J_{\rho^{-1} M}\left(\rho^{-1} z\right), \quad \text { where } \quad M=A+\sum_{i=1}^{m} L_{i}^{*} \circ\left(B_{i} \square D_{i}\right) \circ\left(L_{i} \cdot-r_{i}\right) \tag{5.6}
\end{equation*}
$$

Then the following hold.
(i) \bar{x} is the unique solution to the primal problem (5.4).
(ii) The dual problem (5.5) admits at least one solution.
(iii) Let $\left(\overline{v_{1}}, \ldots, \overline{v_{m}}\right)$ be a solution to (5.5). Then $\bar{x}=J_{\rho^{-1} A}\left(\rho^{-1}\left(z-\sum_{i=1}^{m} L_{i}^{*} \overline{v_{i}}\right)\right)$.
(iv) Condition (5.3) is satisfied for every z in \mathcal{H} if and only if M is maximally monotone. This is true when one of the following holds.
(a) The conical hull of

$$
\begin{equation*}
E=\left\{\left(L_{i} x-r_{i}-v_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \operatorname{dom} A \text { and }\left(v_{i}\right)_{1 \leqslant i \leqslant m} \in{\underset{i=1}{m}}^{X} \operatorname{ran}\left(B_{i}^{-1}+D_{i}^{-1}\right)\right\} \tag{5.7}
\end{equation*}
$$

is a closed vector subspace.
(b) $A=\partial f$ for some $f \in \Gamma_{0}(\mathcal{H})$, for every $i \in\{1, \ldots, m\}, B_{i}=\partial g_{i}$ for some $g_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$ and $D_{i}=\partial \ell_{i}$ for some strongly convex function $\ell_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$, and one of the following holds.
$1 /\left(r_{1}, \ldots, r_{m}\right) \in \operatorname{sri}\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in \operatorname{dom} f\right.$ and

$$
\left.(\forall i \in\{1, \ldots, m\}) y_{i} \in \operatorname{dom} g_{i}+\operatorname{dom} \ell_{i}\right\}
$$

2/ For every $i \in\{1, \ldots, m\}, g_{i}$ or ℓ_{i} is real-valued.

3/ \mathcal{H} and $\left(\mathcal{G}_{i}\right)_{1 \leqslant i \leqslant m}$ are finite-dimensional, and there exists $x \in \operatorname{ri} \operatorname{dom} f$ such that

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad L_{i} x-r_{i} \in \text { ri } \operatorname{dom} g_{i}+\text { ri } \operatorname{dom} \ell_{i} . \tag{5.8}
\end{equation*}
$$

Proof. (i): It follows from our assumptions and [4, Proposition 20.10] that $\rho^{-1} M$ is a monotone operator. Hence, $J_{\rho^{-1} M}$ is a single-valued operator with domain $\operatorname{ran}\left(\operatorname{Id}+\rho^{-1} M\right)$ [4, Proposition 23.9(ii)]. Moreover, $(5.3) \Leftrightarrow \rho^{-1} z \in \operatorname{ran}\left(\operatorname{Id}+\rho^{-1} M\right)=\operatorname{dom} J_{\rho^{-1} M}$, and, in view of (2.5), the inclusion in (5.4) is equivalent to $\bar{x}=J_{\rho^{-1} M}\left(\rho^{-1} z\right)$.
(ii)\&(iii): It follows from (2.5) and (2.7) that

$$
\begin{align*}
(i) & \Leftrightarrow\left(\exists \overline{v_{1}} \in \mathcal{G}_{1}\right) \cdots\left(\exists \overline{v_{m}} \in \mathcal{G}_{m}\right) \quad\left\{\begin{array}{l}
(\forall i \in\{1, \ldots, m\}) \\
z-\sum_{i=1}^{m} L_{i}^{*} \overline{v_{i}} \in A \bar{x}+\rho \bar{x}
\end{array}\right. \\
& \Leftrightarrow\left(\exists \overline{v_{1}} \in B_{i} \square D_{i}\right)\left(L_{i} \bar{x}-r_{i}\right) \\
& \Leftrightarrow\left(\exists \overline{v_{m}} \in \mathcal{G}_{m}\right) \quad\left\{\begin{array}{l}
(\forall i \in\{1, \ldots, m\}) \quad r_{i} \in L_{i} \bar{x}-B_{i}^{-1} \overline{v_{i}}-D_{i}^{-1} \overline{v_{i}} \\
\bar{x}=J_{\rho^{-1} A}\left(\rho^{-1}\left(z-\sum_{j=1}^{m} L_{j}^{*} \overline{v_{j}}\right)\right)
\end{array}\right. \tag{5.9}\\
& \Leftrightarrow\left\{\begin{array}{l}
\left(\overline{v_{1}}, \ldots, \overline{v_{m}}\right) \text { solves (5.5)} \\
\bar{x}=J_{\rho^{-1} A}\left(\rho^{-1}\left(z-\sum_{j=1}^{m} L_{j}^{*} \overline{v_{j}}\right)\right) .
\end{array}\right.
\end{align*}
$$

(iv): It follows from Minty's theorem [4, Theorem 21.1], that $M+\rho$ Id is surjective if and only if M is maximally monotone.
(iv)(a): Using Notation 2.1, let us set

$$
\begin{equation*}
\boldsymbol{L}: \mathcal{H} \rightarrow \mathcal{G}: x \mapsto\left(L_{i} x\right)_{1 \leqslant i \leqslant m} \quad \text { and } \quad \boldsymbol{B}: \mathcal{G} \rightarrow 2^{\mathcal{G}}: \boldsymbol{y} \mapsto\left(\left(B_{i} \square D_{i}\right)\left(y_{i}-r_{i}\right)\right)_{1 \leqslant i \leqslant m} . \tag{5.10}
\end{equation*}
$$

Then it follows from (5.6) that $M=A+\boldsymbol{L}^{*} \circ \boldsymbol{B} \circ \boldsymbol{L}$ and from (5.7) that $E=\boldsymbol{L}(\operatorname{dom} A)-\operatorname{dom} \boldsymbol{B}$. Hence, since cone $(E)=\overline{\operatorname{span}}(E)$, in view of $[6$, Section 24], to conclude that M is maximally monotone, it is enough to show that \boldsymbol{B} is. For every $i \in\{1, \ldots, m\}$, since D_{i} is maximally monotone and strongly monotone, $\operatorname{dom} D_{i}^{-1}=\operatorname{ran} D_{i}=\mathcal{G}_{i}$ [4, Proposition 22.8(ii)] and it follows from [4, Proposition 20.22 and Corollary 24.4(i)] that $B_{i} \square D_{i}$ is maximally monotone. This shows that \boldsymbol{B} is maximally monotone.
(iv)(b): This follows from [16, Proposition 4.3].

Remark 5.3 In connection with Proposition 5.2(iv), let us note that even in the simple setting of normal cone operators in finite dimension, some constraint qualification is required to ensure the existence of a primal solution for every $z \in \mathcal{H}$. To see this, suppose that, in Problem 5.1, \mathcal{H} is the Euclidean plane, $m=1, \rho=1, \mathcal{G}_{1}=\mathcal{H}, L_{1}=\mathrm{Id}$, $z=\left(\zeta_{1}, \zeta_{2}\right), r_{1}=0, D_{1}=\{0\}^{-1}, A=N_{C}$, and $B_{1}=N_{K}$, where $C=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \mid\left(\xi_{1}-1\right)^{2}+\xi_{2}^{2} \leqslant 1\right\}$ and $K=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \mid \xi_{1} \leqslant 0\right\}$. Then $\operatorname{dom}\left(A+B_{1}+\mathrm{Id}\right)=\operatorname{dom} A \cap \operatorname{dom} B_{1}=C \cap K=\{0\}$ and the primal inclusion $z \in A \bar{x}+B_{1} \bar{x}+\bar{x}$ reduces to $\left.\left.\left(\zeta_{1}, \zeta_{2}\right) \in N_{C} 0+N_{K} 0=\right]-\infty, 0\right] \times\{0\}+[0,+\infty[\times\{0\}=\mathbb{R} \times\{0\}$, which has no solution if $\zeta_{2} \neq 0$. Here cone $\left(\operatorname{dom} A-\operatorname{dom} B_{1}\right)=\operatorname{cone}(C-K)=-K$ is not a vector subspace.

In the following result we derive from Theorem 4.1 a parallel primal-dual algorithm for solving Problem 5.1.

Corollary 5.4 In Problem 5.1, set

$$
\begin{equation*}
\beta=\frac{1}{\max _{1 \leqslant i \leqslant m} \frac{1}{\nu_{i}}+\frac{1}{\rho} \sum_{1 \leqslant i \leqslant m}\left\|L_{i}\right\|^{2}} . \tag{5.11}
\end{equation*}
$$

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an absolutely summable sequence in \mathcal{H}, let $\left.\alpha \in\right] 0,+\infty\left[\right.$, and let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$. For every $i \in\{1, \ldots, m\}$, let $v_{i, 0} \in \mathcal{G}_{i}$, let $\left(b_{i, n}\right)_{n \in \mathbb{N}}$ and $\left(d_{i, n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{G}_{i}, and let $\left(U_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$. Suppose that

$$
\begin{equation*}
\mu=\max _{1 \leqslant i \leqslant m} \sup _{n \in \mathbb{N}}\left\|U_{i, n}\right\|<+\infty \quad \text { and } \quad(\forall i \in\{1, \ldots, m\})(\forall n \in \mathbb{N}) \quad\left(1+\eta_{n}\right) U_{i, n+1} \succcurlyeq U_{i, n} . \tag{5.12}
\end{equation*}
$$

Let $\varepsilon \in] 0, \min \{1,2 \beta /(\mu+1)\}\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, and let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon,(2 \beta-\varepsilon) / \mu]$. Set

$$
(\forall n \in \mathbb{N}) \quad\left\{\begin{array}{l}
s_{n}=z-\sum_{i=1}^{m} L_{i}^{*} v_{i, n} \\
x_{n}=J_{\rho^{-1} A}\left(\rho^{-1} s_{n}\right)+a_{n} \\
\text { For } i=1, \ldots, m
\end{array} \left\lvert\, \begin{array}{l}
w_{i, n}=v_{i, n}+\gamma_{n} U_{i, n}\left(L_{i} x_{n}-r_{i}-D_{i}^{-1} v_{i, n}-d_{i, n}\right) \tag{5.13}\\
v_{i, n+1}=v_{i, n}+\lambda_{n}\left(J_{\left.\gamma_{n} U_{i, n} B_{i}^{-1}\left(w_{i, n}\right)+b_{i, n}-v_{i, n}\right)}\right.
\end{array}\right.\right.
$$

Then the following hold for the solution \bar{x} to (5.4) and for some solution $\left(\overline{v_{1}}, \ldots, \overline{v_{m}}\right)$ to (5.5).
(i) $(\forall i \in\{1, \ldots, m\}) v_{i, n} \rightharpoonup \overline{v_{i}}$ as $n \rightarrow+\infty$. In addition, $\bar{x}=J_{\rho^{-1} A}\left(\rho^{-1}\left(z-\sum_{i=1}^{m} L_{i}^{*} \overline{v_{i}}\right)\right)$.
(ii) $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.

Proof. For every $i \in\{1, \ldots, m\}$, since D_{i} is maximally monotone and ν_{i}-strongly monotone, D_{i}^{-1} is ν_{i}-cocoercive with $\operatorname{dom} D_{i}^{-1}=\operatorname{ran} D_{i}=\mathcal{G}_{i}[4$, Proposition 22.8(ii)]. Let us define \mathcal{G} as in Notation 2.1, and let us introduce the operators

$$
\left\{\begin{array}{l}
T: \mathcal{H} \rightarrow \mathcal{H}: x \mapsto J_{\rho^{-1} A}\left(\rho^{-1}(z-x)\right) \tag{5.14}\\
\boldsymbol{A}: \mathcal{G} \rightarrow 2^{\mathcal{G}}: \boldsymbol{v} \mapsto\left(B_{i}^{-1} v_{i}\right)_{1 \leqslant i \leqslant m} \\
\boldsymbol{D}: \mathcal{G} \rightarrow \boldsymbol{\mathcal { G }}: \boldsymbol{v} \mapsto\left(r_{i}+D_{i}^{-1} v_{i}\right)_{1 \leqslant i \leqslant m} \\
\boldsymbol{L}: \mathcal{H} \rightarrow \boldsymbol{\mathcal { G }}: x \mapsto\left(L_{i} x\right)_{1 \leqslant i \leqslant m}
\end{array}\right.
$$

and

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \boldsymbol{U}_{n}: \mathcal{G} \rightarrow \mathcal{G}: \boldsymbol{v} \mapsto\left(U_{i, n} v_{i}\right)_{1 \leqslant i \leqslant m} \tag{5.15}
\end{equation*}
$$

(i): In view of (2.4) and (5.14),
\boldsymbol{A} is maximally monotone,
\boldsymbol{D} is $\left(\min _{1 \leqslant i \leqslant m} \nu_{i}\right)$-cocoercive, Lemma 3.7(ii) implies that
$-T$ is ρ-cocoercive,
while $\|\boldsymbol{L}\|^{2} \leqslant \sum_{i=1}^{m}\left\|L_{i}\right\|^{2}$. Hence, we derive from (5.11) and Proposition 3.2 that

$$
\begin{equation*}
\boldsymbol{B}=\boldsymbol{D}-\boldsymbol{L} T \boldsymbol{L}^{*} \text { is } \beta \text {-cocoercive. } \tag{5.18}
\end{equation*}
$$

Moreover, it follows from (5.12), (5.15), and (2.4) that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\boldsymbol{U}_{n}\right\|=\mu \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad\left(1+\eta_{n}\right) \boldsymbol{U}_{n+1} \succcurlyeq \boldsymbol{U}_{n} \in \mathcal{P}_{\alpha}(\mathcal{G}) \tag{5.19}
\end{equation*}
$$

Now set

$$
(\forall n \in \mathbb{N})\left\{\begin{array}{l}
\boldsymbol{a}_{n}=\left(b_{i, n}\right)_{1 \leqslant i \leqslant m} \tag{5.20}\\
\boldsymbol{b}_{n}=\left(d_{i, n}-L_{i} a_{n}\right)_{1 \leqslant i \leqslant m} \\
\boldsymbol{v}_{n}=\left(v_{i, n}\right)_{1 \leqslant i \leqslant m} \\
\boldsymbol{w}_{n}=\left(w_{i, n}\right)_{1 \leqslant i \leqslant m}
\end{array}\right.
$$

Then $\sum_{n \in \mathbb{N}}\left|\left\|\boldsymbol{a}_{n}\right\|\right|<+\infty, \sum_{n \in \mathbb{N}} \mid\left\|\boldsymbol{b}_{n}\right\| \|<+\infty$, and (5.13) can be rewritten as

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
\boldsymbol{w}_{n}=\boldsymbol{v}_{n}-\gamma_{n} \boldsymbol{U}_{n}\left(\boldsymbol{B} \boldsymbol{v}_{n}+\boldsymbol{b}_{n}\right) \tag{5.21}\\
\boldsymbol{v}_{n+1}=\boldsymbol{v}_{n}+\lambda_{n}\left(J_{\gamma_{n}} \boldsymbol{U}_{n} \boldsymbol{A}\left(\boldsymbol{w}_{n}\right)+\boldsymbol{a}_{n}-\boldsymbol{v}_{n}\right)
\end{array}\right.
$$

Furthermore, the dual problem (5.5) is equivalent to

$$
\begin{equation*}
\text { find } \quad \overline{\boldsymbol{v}} \in \mathcal{G} \quad \text { such that } \quad \mathbf{0} \in \boldsymbol{A} \overline{\boldsymbol{v}}+\boldsymbol{B} \overline{\boldsymbol{v}} \tag{5.22}
\end{equation*}
$$

which, in view of (5.16), (5.18), and Proposition 5.2(ii), can be solved using (5.21). Altogether, the claims follow from Theorem 4.1(i) and Proposition 5.2(iii).
(ii): Set $(\forall n \in \mathbb{N}) z_{n}=x_{n}-a_{n}$. It follows from (i), (5.13) and (5.14) that

$$
\begin{equation*}
\bar{x}=T\left(\boldsymbol{L}^{*} \overline{\boldsymbol{v}}\right) \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad z_{n}=T\left(\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right) \tag{5.23}
\end{equation*}
$$

In turn, we deduce from (5.17), (i), (5.18), and the monotonicity of \boldsymbol{D} that

$$
\begin{align*}
\rho\left\|z_{n}-\bar{x}\right\|^{2} & =\rho\left\|T\left(\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right)-T\left(\boldsymbol{L}^{*} \overline{\boldsymbol{v}}\right)\right\|^{2} \\
& \leqslant\left\langle\boldsymbol{L}^{*}\left(\boldsymbol{v}_{n}-\overline{\boldsymbol{v}}\right) \mid T\left(\boldsymbol{L}^{*} \overline{\boldsymbol{v}}\right)-T\left(\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right)\right\rangle \\
& \leqslant\left\langle\left\langle\boldsymbol{v}_{n}-\overline{\boldsymbol{v}} \mid \boldsymbol{L} T\left(\boldsymbol{L}^{*} \overline{\boldsymbol{v}}\right)-\boldsymbol{L} T\left(\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right)\right\rangle\right\rangle \\
& \leqslant\left\langle\left\langle\boldsymbol{v}_{n}-\overline{\boldsymbol{v}} \mid \boldsymbol{D} \boldsymbol{v}_{n}-\boldsymbol{D} \overline{\boldsymbol{v}}\right\rangle\right\rangle-\left\langle\left\langle\boldsymbol{v}_{n}-\overline{\boldsymbol{v}} \mid \boldsymbol{L} T\left(\boldsymbol{L}^{*} \boldsymbol{v}_{n}\right)-\boldsymbol{L} T\left(\boldsymbol{L}^{*} \overline{\boldsymbol{v}}\right)\right\rangle\right\rangle \\
& =\left\langle\left\langle\boldsymbol{v}_{n}-\overline{\boldsymbol{v}} \mid \boldsymbol{B} \boldsymbol{v}_{n}-\boldsymbol{B} \overline{\boldsymbol{v}}\right\rangle\right\rangle \\
& \leqslant \delta\left\|\mid \boldsymbol{B} \boldsymbol{v}_{n}-\boldsymbol{B} \overline{\boldsymbol{v}}\right\| \tag{5.24}
\end{align*}
$$

where $\delta=\sup _{n \in \mathbb{N}}\left|\left\|\boldsymbol{v}_{n}-\overline{\boldsymbol{v}}\right\|\right|<+\infty$ by (i). Therefore, it follows from (5.21) and Theorem 4.1(ii) that $\left\|z_{n}-\bar{x}\right\| \rightarrow 0$. Since $a_{n} \rightarrow 0$ as $n \rightarrow+\infty$, we conclude that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.

Remark 5.5 Here are some observations on Corollary 5.4.
(i) At iteration n, the vectors $a_{n}, b_{i, n}$, and $d_{i, n}$ model errors in the implementation of the nonlinear operators. Note also that, thanks to Example 3.9(i), the computation of $v_{i, n+1}$ in (5.13) can be implemented using $J_{\gamma_{n}^{-1} U_{i, n}^{-1} B_{i}}$ rather than $J_{\gamma_{n} U_{i, n} B_{i}^{-1}}$.
(ii) Corollary 5.4 provides a general algorithm for solving strongly monotone composite inclusions which is new even in the fixed standard metric case, i.e., $(\forall i \in\{1, \ldots, m\})(\forall n \in \mathbb{N}) U_{i, n}=\mathrm{Id}$.

The following example describes an application of Corollary 5.4 to strongly convex minimization problems which extends the primal-dual formulation (5.1)-(5.2) of [13] and solves it with a variable metric scheme. It also extends the framework of [14], where $f=0$ and $(\forall i \in\{1, \ldots, m\}) \ell_{i}=\iota_{\{0\}}$ and $(\forall n \in \mathbb{N}) U_{i, n}=\mathrm{Id}$.

Example 5.6 Let $z \in \mathcal{H}$, let $f \in \Gamma_{0}(\mathcal{H})$, let $\left.\alpha \in\right] 0,+\infty\left[\right.$, let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an absolutely summable sequence in \mathcal{H}, and let m be a strictly positive integer. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let $g_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$, let $\left.\nu_{i} \in\right] 0,+\infty\left[\right.$, let $\ell_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$ be ν_{i}-strongly convex, let $v_{i, 0} \in \mathcal{G}_{i}$, let $\left(b_{i, n}\right)_{n \in \mathbb{N}}$ and $\left(d_{i, n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{G}_{i}, let $\left(U_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$, and suppose that $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. Furthermore, suppose that (see Proposition $5.2(\mathrm{iv})(\mathrm{b})$ for special cases)

$$
\begin{equation*}
z \in \operatorname{ran}\left(\partial f+\sum_{i=1}^{m} L_{i}^{*}\left(\partial g_{i} \square \partial \ell_{i}\right)\left(L_{i} \cdot-r_{i}\right)+\mathrm{Id}\right) . \tag{5.25}
\end{equation*}
$$

The primal problem is

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} f(x)+\sum_{i=1}^{m}\left(g_{i} \square \ell_{i}\right)\left(L_{i} x-r_{i}\right)+\frac{1}{2}\|x-z\|^{2}, \tag{5.26}
\end{equation*}
$$

and the dual problem is

$$
\begin{equation*}
\underset{v_{1} \in \mathcal{G}_{1}, \ldots, v_{m} \in \mathcal{G}_{m}}{\operatorname{minimize}} \widetilde{f^{*}}\left(z-\sum_{i=1}^{m} L_{i}^{*} v_{i}\right)+\sum_{i=1}^{m}\left(g_{i}^{*}\left(v_{i}\right)+\ell_{i}^{*}\left(v_{i}\right)+\left\langle v_{i} \mid r_{i}\right\rangle\right) . \tag{5.27}
\end{equation*}
$$

Suppose that (5.12) holds, let $\varepsilon \in] 0, \min \{1,2 \beta /(\mu+1)\}\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, and let $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon,(2 \beta-\varepsilon) / \mu]$, where β is defined in (5.11) and μ in (5.12). Set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
s_{n}=z-\sum_{i=1}^{m} L_{i}^{*} v_{i, n} \\
x_{n}=\operatorname{prox}_{f} s_{n}+a_{n} \\
\operatorname{For} i=1, \ldots, m \tag{5.28}\\
{\left[\begin{array}{l}
w_{i, n}=v_{i, n}+\gamma_{n} U_{i, n}\left(L_{i} x_{n}-r_{i}-\nabla \ell_{i}^{*}\left(v_{i, n}\right)-d_{i, n}\right) \\
v_{i, n+1}=v_{i, n}+\lambda_{n}\left(\operatorname{prox}_{\gamma_{n} g_{i}^{n}}^{U_{i, n}^{-1}} w_{i, n}+b_{i, n}-v_{i, n}\right) .
\end{array}\right.}
\end{array}\right.
$$

Then (5.26) admits a unique solution \bar{x} and the following hold for some solution $\left(\overline{v_{1}}, \ldots, \overline{v_{m}}\right)$ to (5.27).
(i) $(\forall i \in\{1, \ldots, m\}) v_{i, n} \rightharpoonup \overline{v_{i}}$ as $n \rightarrow+\infty$. In addition, $\bar{x}=\operatorname{prox}_{f}\left(z-\sum_{i=1}^{m} L_{i}^{*} \overline{v_{i}}\right)$.
(ii) $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.

Proof. Set

$$
\begin{equation*}
\rho=1, \quad A=\partial f, \quad \text { and } \quad(\forall i \in\{1, \ldots, m\}) \quad B_{i}=\partial g_{i} \quad \text { and } \quad D_{i}=\partial \ell_{i} . \tag{5.29}
\end{equation*}
$$

It follows from [4, Theorem 20.40] that the operators $A,\left(B_{i}\right)_{1 \leqslant i \leqslant m}$, and $\left(D_{i}\right)_{1 \leqslant i \leqslant m}$ are maximally monotone. We also observe that (5.25) implies that (5.3) is satisfied. Moreover, for every $i \in$ $\{1, \ldots, m\}, D_{i}$ is ν_{i}-strongly monotone [4, Example 22.3(iv)], ℓ_{i}^{*} is Fréchet differentiable on \mathcal{G}_{i} [4, Corollary 13.33 and Theorem 18.15], and $D_{i}^{-1}=\left(\partial \ell_{i}\right)^{-1}=\partial \ell_{i}^{*}=\left\{\nabla \ell_{i}^{*}\right\}$ [4, Corollary 16.24 and Proposition 17.26(i)]. Since, for every $i \in\{1, \ldots, m\}$, dom $\ell_{i}^{*}=\mathcal{G}_{i}$, [4, Proposition 24.27] yields

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad B_{i} \square D_{i}=\partial g_{i} \square \partial \ell_{i}=\partial\left(g_{i} \square \ell_{i}\right), \tag{5.30}
\end{equation*}
$$

while [4, Corollaries 16.24 and 16.38(iii)] yield

$$
\begin{equation*}
(\forall i \in\{1, \ldots, m\}) \quad B_{i}^{-1}+D_{i}^{-1}=\partial g_{i}^{*}+\left\{\nabla \ell_{i}^{*}\right\}=\partial\left(g_{i}^{*}+\ell_{i}^{*}\right) \tag{5.31}
\end{equation*}
$$

Moreover, (3.10) implies that (5.28) is a special case of (5.13). Hence, in view of Corollary 5.4, it remains to show that (5.4) and (5.5) yield (5.26) and (5.27), respectively. Let us set $q=\|\cdot\|^{2} / 2$. We derive from [4, Example 16.33] that

$$
\begin{equation*}
\partial(f+q(\cdot-z))=\partial f+\mathrm{Id}-z \tag{5.32}
\end{equation*}
$$

On the other hand, it follows from (5.25) and [4, Proposition 16.5(ii)] that

$$
\begin{equation*}
\partial(f+q(\cdot-z))+\sum_{i=1}^{m} L_{i}^{*}\left(\partial\left(g_{i} \square \ell_{i}\right)\right)\left(L_{i} \cdot-r_{i}\right) \subset \partial\left(f+q(\cdot-z)+\sum_{i=1}^{m}\left(g_{i} \square \ell_{i}\right) \circ\left(L_{i} \cdot-r_{i}\right)\right) \tag{5.33}
\end{equation*}
$$

and that $x \mapsto f(x)+\sum_{i=1}^{m}\left(g_{i} \square \ell_{i}\right)\left(L_{i} x-r_{i}\right)+\|x-z\|^{2} / 2$ is a strongly convex function in $\Gamma_{0}(\mathcal{H})$. Therefore [4, Corollary 11.16] asserts that (5.26) possesses a unique solution \bar{x}. Next, we deduce from (5.32), (5.29), (5.30), and Fermat's rule [4, Theorem 16.2] that, for every $x \in \mathcal{H}$,

$$
\begin{align*}
x \text { solves (5.4) } & \Leftrightarrow z \in \partial f(x)+\sum_{i=1}^{m} L_{i}^{*}\left(\left(\partial g_{i} \square \partial \ell_{i}\right)\left(L_{i} x-r_{i}\right)\right)+x \\
& \Leftrightarrow 0 \in \partial(f+q(\cdot-z))(x)+\left(\sum_{i=1}^{m} L_{i}^{*} \circ \partial\left(g_{i} \square \ell_{i}\right) \circ\left(L_{i} \cdot-r_{i}\right)\right)(x) \\
& \Rightarrow 0 \in \partial\left(f+q(\cdot-z)+\sum_{i=1}^{m}\left(g_{i} \square \ell_{i}\right) \circ\left(L_{i} \cdot-r_{i}\right)\right)(x) \\
& \Leftrightarrow x \text { solves }(5.26) \tag{5.34}
\end{align*}
$$

Finally, set $\boldsymbol{L}: \mathcal{H} \rightarrow \mathcal{G}: x \mapsto\left(L_{i} x\right)_{1 \leqslant i \leqslant m}$ and $\left.\left.\boldsymbol{h}: \mathcal{G} \rightarrow\right]-\infty,+\infty\right]: \boldsymbol{v} \mapsto \sum_{i=1}^{m}\left(g_{i}^{*}\left(v_{i}\right)+\ell_{i}^{*}\left(v_{i}\right)+\right.$ $\left\langle v_{i} \mid r_{i}\right\rangle$). We recall that $\widetilde{f^{*}}=f^{*} \square q$ is Fréchet differentiable on \mathcal{H} with $\nabla \widetilde{f^{*}}=\operatorname{prox}_{f}[4$, Remark 14.4]. Hence, it follows from (5.29), (5.31), [4, Proposition 16.8 and Theorem 16.37(i)], and Fermat's rule [4, Theorem 16.2] that, for every $\boldsymbol{v}=\left(v_{i}\right)_{1 \leqslant i \leqslant m} \in \mathcal{G}$,

$$
\begin{align*}
\boldsymbol{v} \text { solves }(5.5) & \Leftrightarrow(\forall i \in\{1, \ldots, m\}) r_{i} \in L_{i}\left(J_{A}\left(z-\sum_{j=1}^{m} L_{j}^{*} v_{j}\right)\right)-B_{i}^{-1} v_{i}-D_{i}^{-1} v_{i} \\
\Leftrightarrow & \Leftrightarrow(\forall i \in\{1, \ldots, m\}) r_{i} \in L_{i}\left(\operatorname{prox}_{f}\left(z-\sum_{j=1}^{m} L_{j}^{*} v_{j}\right)\right)-\partial\left(g_{i}^{*}+\ell_{i}^{*}\right)\left(v_{i}\right) \\
\Leftrightarrow & (0, \ldots, 0) \in-\boldsymbol{L}\left(\nabla \widetilde{f^{*}}\left(z-\boldsymbol{L}^{*} \boldsymbol{v}\right)\right)+{\underset{i=1}{X} \partial\left(g_{i}^{*}+\ell_{i}^{*}+\left\langle\cdot \mid r_{i}\right\rangle\right)\left(v_{i}\right)} \begin{aligned}
& =\left(-\boldsymbol{L}^{*}\right)^{*}\left(\nabla \widetilde{f^{*}}\left(z-\boldsymbol{L}^{*} \boldsymbol{v}\right)\right)+\partial \boldsymbol{h}(\boldsymbol{v})=\partial\left(\widetilde{f^{*}}\left(z-\boldsymbol{L}^{*} \cdot\right)+\boldsymbol{h}\right)(\boldsymbol{v}) \\
& \Leftrightarrow \boldsymbol{v} \text { solves }(5.27)
\end{aligned}
\end{align*}
$$

which completes the proof.
We conclude this section with an application to a composite best approximation problem.
Example 5.7 Let $z \in \mathcal{H}$, let C be a closed convex subset of \mathcal{H}, let $\alpha \in] 0,+\infty\left[\right.$, let $\left(\eta_{n}\right)_{n \in \mathbb{N}} \in \ell_{+}^{1}(\mathbb{N})$, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be an absolutely summable sequence in \mathcal{H}, and let m be a strictly positive integer. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let D_{i} be a closed convex subset of \mathcal{G}_{i}, let $v_{i, 0} \in \mathcal{G}_{i}$, let $\left(b_{i, n}\right)_{n \in \mathbb{N}}$ be an absolutely summable sequence in \mathcal{G}_{i}, let $\left(U_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$, and suppose that $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. The problem is

$$
\begin{gather*}
\underset{x \in C}{\operatorname{minimize}} \quad\|x-z\| . \tag{5.36}\\
L_{1} x \in r_{1}+D_{1} \\
\vdots \\
L_{m} x \in r_{m}+D_{m}
\end{gather*}
$$

Suppose that (5.12) holds, that $\left(\max _{1 \leqslant i \leqslant m} \sup _{n \in \mathbb{N}}\left\|U_{i, n}\right\|\right) \sum_{i=1}^{m}\left\|L_{i}\right\|^{2}<2$, and that

$$
\begin{equation*}
\left(r_{1}, \ldots, r_{m}\right) \in \operatorname{sri}\left\{\left(L_{i} x-y_{i}\right)_{1 \leqslant i \leqslant m} \mid x \in C \text { and }(\forall i \in\{1, \ldots, m\}) y_{i} \in D_{i}\right\} . \tag{5.37}
\end{equation*}
$$

Set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
s_{n}=z-\sum_{i=1}^{m} L_{i}^{*} v_{i, n} \\
x_{n}=P_{C} s_{n}+a_{n} \\
\text { For } i=1, \ldots, m
\end{array} \left\lvert\, \begin{array}{l}
w_{i, n}=v_{i, n}+U_{i, n}\left(L_{i} x_{n}-r_{i}\right) \tag{5.38}\\
v_{i, n+1}=w_{i, n}-U_{i, n}\left(P_{D_{i}}^{U_{i, n}}\left(U_{i, n}^{-1} w_{i, n}\right)+b_{i, n}\right) .
\end{array}\right.\right.
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges strongly to the unique solution \bar{x} to (5.36).

Proof. Set $f=\iota_{C}$ and $(\forall i \in\{1, \ldots, m\}) g_{i}=\iota_{D_{i}}, \ell_{i}=\iota_{\{0\}}$, and $(\forall n \in \mathbb{N}) \gamma_{n}=\lambda_{n}=1$ and $d_{i, n}=0$. Then (5.37) and Proposition $5.2(\mathrm{iv})((\mathrm{b})) 1 /$ imply that (5.25) is satisfied. Moreover, in view of Example 3.9(iii), (5.38) is a special case of (5.28). Hence, the claim follows from Example 5.6(ii).

6 Inclusions involving cocoercive operators

We revisit a primal-dual problem investigated first in [16], and then in [41] with the scenario described below.

Problem 6.1 Let $z \in \mathcal{H}$, let $A: \mathcal{H} \rightarrow 2^{\mathcal{H}}$ be maximally monotone, let $\left.\mu \in\right] 0,+\infty[$, let $C: \mathcal{H} \rightarrow \mathcal{H}$ be μ-cocoercive, and let m be a strictly positive integer. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let $B_{i}: \mathcal{G}_{i} \rightarrow 2^{\mathcal{G}_{i}}$ be maximally monotone, let $\left.\nu_{i} \in\right] 0,+\infty\left[\right.$, let $D_{i}: \mathcal{G}_{i} \rightarrow 2^{\mathcal{G}_{i}}$ be maximally monotone and ν_{i}-strongly monotone, and suppose that $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$. The problem is to solve the primal inclusion

$$
\begin{equation*}
\text { find } \quad \bar{x} \in \mathcal{H} \quad \text { such that } \quad z \in A \bar{x}+\sum_{i=1}^{m} L_{i}^{*}\left(\left(B_{i} \square D_{i}\right)\left(L_{i} \bar{x}-r_{i}\right)\right)+C \bar{x} \text {, } \tag{6.1}
\end{equation*}
$$

together with the dual inclusion
find $\overline{v_{1}} \in \mathcal{G}_{1}, \ldots, \overline{v_{m}} \in \mathcal{G}_{m}$ such that

$$
(\exists x \in \mathcal{H}) \quad\left\{\begin{array}{l}
z-\sum_{i=1}^{m} L_{i}^{*} \bar{v}_{i} \in A x+C x \tag{6.2}\\
(\forall i \in\{1, \ldots, m\}) \bar{v}_{i} \in\left(B_{i} \square D_{i}\right)\left(L_{i} x-r_{i}\right)
\end{array}\right.
$$

Corollary 6.2 In Problem 6.1, suppose that

$$
\begin{equation*}
z \in \operatorname{ran}\left(A+\sum_{i=1}^{m} L_{i}^{*}\left(\left(B_{i} \square D_{i}\right)\left(L_{i} \cdot-r_{i}\right)\right)+C\right), \tag{6.3}
\end{equation*}
$$

and set

$$
\begin{equation*}
\beta=\min \left\{\mu, \nu_{1}, \ldots, \nu_{m}\right\} \tag{6.4}
\end{equation*}
$$

Let $\varepsilon \in] 0, \min \{1, \beta\}[$, let $\alpha \in] 0,+\infty\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, let $x_{0} \in \mathcal{H}$, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(c_{n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{H}, and let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that $(\forall n \in \mathbb{N}) U_{n+1} \succcurlyeq U_{n}$. For every $i \in\{1, \ldots, m\}$, let $v_{i, 0} \in \mathcal{G}_{i}$, and let $\left(b_{i, n}\right)_{n \in \mathbb{N}}$ and $\left(d_{i, n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{G}_{i}, and let $\left(U_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$ such that $(\forall n \in \mathbb{N})$ $U_{i, n+1} \succcurlyeq U_{i, n}$. For every $n \in \mathbb{N}$, set

$$
\begin{equation*}
\delta_{n}=\left(\sqrt{\sum_{i=1}^{m}\left\|\sqrt{U_{i, n}} L_{i} \sqrt{U_{n}}\right\|^{2}}\right)^{-1}-1 \tag{6.5}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
\zeta_{n}=\frac{\delta_{n}}{\left(1+\delta_{n}\right) \max \left\{\left\|U_{n}\right\|,\left\|U_{1, n}\right\|, \ldots,\left\|U_{m, n}\right\|\right\}} \geqslant \frac{1}{2 \beta-\varepsilon} \tag{6.6}
\end{equation*}
$$

Set

$$
(\forall n \in \mathbb{N}) \quad\left[\begin{array}{l}
p_{n}=J_{U_{n} A}\left(x_{n}-U_{n}\left(\sum_{i=1}^{m} L_{i}^{*} v_{i, n}+C x_{n}+c_{n}-z\right)\right)+a_{n} \tag{6.7}\\
y_{n}=2 p_{n}-x_{n} \\
x_{n+1}=x_{n}+\lambda_{n}\left(p_{n}-x_{n}\right) \\
\text { For } i=1, \ldots, m
\end{array} \quad \begin{array}{l}
q_{i, n}=J_{U_{i, n} B_{i}^{-1}}\left(v_{i, n}+U_{i, n}\left(L_{i} y_{n}-D_{i}^{-1} v_{i, n}-d_{i, n}-r_{i}\right)\right)+b_{i, n} \\
v_{i, n+1}=v_{i, n}+\lambda_{n}\left(q_{i, n}-v_{i, n}\right)
\end{array}\right.
$$

Then the following hold for some solution \bar{x} to (6.1) and some solution $\left(\overline{v_{1}}, \ldots, \overline{v_{m}}\right)$ to (6.2).
(i) $x_{n} \rightharpoonup \bar{x}$ as $n \rightarrow+\infty$.
(ii) $(\forall i \in\{1, \ldots, m\}) v_{i, n} \rightharpoonup \overline{v_{i}}$ as $n \rightarrow+\infty$.
(iii) Suppose that C is demiregular at \bar{x}. Then $x_{n} \rightarrow \bar{x}$ as $n \rightarrow+\infty$.
(iv) Suppose that, for some $j \in\{1, \ldots, m\}, D_{j}^{-1}$ is demiregular at $\overline{v_{j}}$. Then $v_{j, n} \rightarrow \overline{v_{j}}$ as $n \rightarrow+\infty$.

Proof. Define \mathcal{G} as in Notation 2.1 and set $\mathcal{K}=\mathcal{H} \oplus \mathcal{G}$. We denote the scalar product and the norm of \mathcal{K} by $\langle\langle\langle\cdot \mid \cdot\rangle\rangle\rangle$ and $|\||\cdot||\||$, respectively. As shown in $[16,41]$, the operators

$$
\left\{\begin{array}{l}
\boldsymbol{A}: \mathcal{K} \rightarrow 2^{\mathcal{K}}:\left(x, v_{1}, \ldots, v_{m}\right) \mapsto\left(\sum_{i=1}^{m} L_{i}^{*} v_{i}-z+A x\right) \times\left(r_{1}-L_{1} x+B_{1}^{-1} v_{1}\right) \times \ldots \times \tag{6.8}\\
\boldsymbol{B}: \mathcal{K} \rightarrow \mathcal{K}:\left(x, v_{1}, \ldots, v_{m}\right) \mapsto\left(C x, D_{1}^{-1} v_{1}, \ldots, D_{m}^{-1} v_{m}\right) \\
\boldsymbol{S}: \mathcal{K} \rightarrow \mathcal{K}:\left(x, v_{m}, \ldots, v_{m}\right) \mapsto\left(\sum_{i=1}^{m} L_{i}^{*} v_{i},-L_{1} x, \ldots,-L_{m} x\right)
\end{array}\right.
$$

are maximally monotone and, moreover, \boldsymbol{B} is β-cocoercive [41, Eq. (3.12)]. Furthermore, as shown in $[16$, Section 3], under condition (6.3), $\operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}) \neq \varnothing$ and

$$
\begin{equation*}
(\bar{x}, \overline{\boldsymbol{v}}) \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}) \quad \Rightarrow \quad \bar{x} \text { solves (6.1) and } \overline{\boldsymbol{v}} \text { solves }(6.2) \tag{6.9}
\end{equation*}
$$

Next, for every $n \in \mathbb{N}$, define

$$
\left\{\begin{array}{l}
\boldsymbol{U}_{n}: \mathcal{K} \rightarrow \mathcal{K}:\left(x, v_{1}, \ldots, v_{m}\right) \mapsto\left(U_{n} x, U_{1, n} v_{1}, \ldots, U_{m, n} v_{m}\right) \tag{6.10}\\
\boldsymbol{V}_{n}: \mathcal{K} \rightarrow \mathcal{K}:\left(x, v_{1}, \ldots, v_{m}\right) \mapsto\left(U_{n}^{-1} x-\sum_{i=1}^{m} L_{i}^{*} v_{i},\left(-L_{i} x+U_{i, n}^{-1} v_{i}\right)_{1 \leqslant i \leqslant m}\right) \\
\boldsymbol{T}_{n}: \mathcal{H} \rightarrow \mathcal{G}: x \mapsto\left(\sqrt{U_{1, n}} L_{1} x, \ldots, \sqrt{U_{m, n}} L_{m} x\right)
\end{array}\right.
$$

It follows from our assumptions and Lemma 3.1(iii) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \boldsymbol{U}_{n+1} \succcurlyeq \boldsymbol{U}_{n} \in \mathcal{P}_{\alpha}(\mathcal{K}) \quad \text { and } \quad\left\|\boldsymbol{U}_{n}^{-1}\right\| \leqslant \frac{1}{\alpha} \tag{6.11}
\end{equation*}
$$

Moreover, for every $n \in \mathbb{N}, \boldsymbol{V}_{n} \in \mathcal{S}(\mathcal{K})$ since $\boldsymbol{U}_{n} \in \mathcal{S}(\mathcal{K})$. In addition, (6.10) and (6.11) yield

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\|\boldsymbol{V}_{n}\right\| \leqslant\left\|\boldsymbol{U}_{n}^{-1}\right\|+\|\boldsymbol{S}\| \leqslant \rho, \quad \text { where } \quad \rho=\frac{1}{\alpha}+\sqrt{\sum_{i=1}^{m}\left\|L_{i}\right\|^{2}} \tag{6.12}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
(\forall n \in \mathbb{N})(\forall x \in \mathcal{H}) \quad\left\|\mid \boldsymbol{T}_{n} x\right\|^{2} & =\sum_{i=1}^{m} \| \sqrt{U_{i, n}} L_{i} \sqrt{U_{n}} \sqrt{U_{n}}
\end{align*}
$$

where $(\forall n \in \mathbb{N}) \beta_{n}=\sum_{i=1}^{m}\left\|\sqrt{U_{i, n}} L_{i} \sqrt{U_{n}}\right\|^{2}$. Hence, (6.5) yields

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left(1+\delta_{n}\right) \beta_{n}=\frac{1}{1+\delta_{n}} \tag{6.14}
\end{equation*}
$$

Therefore, for every $n \in \mathbb{N}$ and every $\boldsymbol{x}=\left(x, v_{1}, \ldots, v_{m}\right) \in \mathcal{K}$, using (6.10), (6.13), (6.14), Lemma 3.1(ii), and (6.6), we obtain

$$
\begin{align*}
\left\langle\left\langle\left\langle\boldsymbol{x} \mid \boldsymbol{V}_{n} \boldsymbol{x}\right\rangle\right\rangle\right\rangle= & \left\langle x \mid U_{n}^{-1} x\right\rangle+\sum_{i=1}^{m}\left\langle v_{i} \mid U_{i, n}^{-1} v_{i}\right\rangle-2 \sum_{i=1}^{m}\left\langle L_{i} x \mid v_{i}\right\rangle \\
= & \|x\|_{U_{n}^{-1}}^{2}+\sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}-2 \sum_{i=1}^{m}\left\langle\sqrt{U_{i, n}} L_{i} x \mid{\sqrt{U_{i, n}}}^{-1} v_{i}\right\rangle \\
= & \|x\|_{U_{n}^{-1}}^{2}+\sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}}^{2-1} \\
& -2\left\langle\left\langle\sqrt{\left(1+\delta_{n}\right) \beta_{n}}{ }^{-1} \boldsymbol{T}_{n} x \mid \sqrt{\left(1+\delta_{n}\right) \beta_{n}}\left({\sqrt{U_{1, n}}}^{-1} v_{1}, \ldots, \sqrt{U_{m, n}}-1 v_{m}\right)\right\rangle\right\rangle \\
\geqslant & \|x\|_{U_{n}^{-1}}^{2}+\sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}-\left(\frac{\left\|\left|\boldsymbol{T}_{n} x\right|\right\|^{2}}{\left(1+\delta_{n}\right) \beta_{n}}+\left(1+\delta_{n}\right) \beta_{n} \sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}\right) \\
\geqslant & \|x\|_{U_{n}^{-1}}^{2}+\sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}-\left(\frac{\|x\|_{U_{n}^{-1}}^{2}}{\left(1+\delta_{n}\right)}+\left(1+\delta_{n}\right) \beta_{n} \sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}\right) \\
= & \frac{\delta_{n}}{1+\delta_{n}}\left(\|x\|_{U_{n}^{-1}}^{2}+\sum_{i=1}^{m}\left\|v_{i}\right\|_{U_{i, n}^{-1}}^{2}\right) \\
\geqslant & \frac{\delta_{n}}{1+\delta_{n}}\left(\left\|U_{n}\right\|^{-1}\|x\|^{2}+\sum_{i=1}^{m}\left\|U_{i, n}\right\|^{-1}\left\|v_{i}\right\|^{2}\right) \\
\geqslant & \zeta_{n}\| \| \boldsymbol{x}\| \| \|^{2} . \tag{6.15}
\end{align*}
$$

In turn, it follows from Lemma 3.1(iii) and (6.6) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad\left\|\boldsymbol{V}_{n}^{-1}\right\| \leqslant \frac{1}{\zeta_{n}} \leqslant 2 \beta-\varepsilon . \tag{6.16}
\end{equation*}
$$

Moreover, by Lemma 3.1(i), $(\forall n \in \mathbb{N})\left(\boldsymbol{U}_{n+1} \succcurlyeq \boldsymbol{U}_{n} \Rightarrow \boldsymbol{U}_{n}^{-1} \succcurlyeq \boldsymbol{U}_{n+1}^{-1} \Rightarrow \boldsymbol{V}_{n} \succcurlyeq \boldsymbol{V}_{n+1} \Rightarrow \boldsymbol{V}_{n+1}^{-1} \succcurlyeq\right.$ \boldsymbol{V}_{n}^{-1}). Furthermore, we derive from Lemma 3.1(ii) and (6.12) that

$$
\begin{equation*}
(\forall \boldsymbol{x} \in \mathcal{K}) \quad\left\langle\left\langle\left\langle\boldsymbol{V}_{n}^{-1} \boldsymbol{x} \mid \boldsymbol{x}\right\rangle\right\rangle\right\rangle \geqslant\left\|\boldsymbol{V}_{n}\right\|^{-1}\left|\| \| \boldsymbol{x}\| \|\left\|^{2} \geqslant \frac{1}{\rho}| |\right\| \boldsymbol{x}\| \| \|^{2} .\right. \tag{6.17}
\end{equation*}
$$

Altogether,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\boldsymbol{V}_{n}^{-1}\right\| \leqslant 2 \beta-\varepsilon \quad \text { and } \quad(\forall n \in \mathbb{N}) \quad \boldsymbol{V}_{n+1}^{-1} \succcurlyeq \boldsymbol{V}_{n}^{-1} \in \mathcal{P}_{1 / \rho}(\mathcal{K}) . \tag{6.18}
\end{equation*}
$$

Now set, for every $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{n}=\left(x_{n}, v_{1, n}, \ldots, v_{m, n}\right) \tag{6.19}\\
\boldsymbol{y}_{n}=\left(p_{n}, q_{1, n}, \ldots, q_{m, n}\right) \\
\boldsymbol{a}_{n}=\left(a_{n}, b_{1, n}, \ldots, b_{m, n}\right) \\
\boldsymbol{c}_{n}=\left(c_{n}, d_{1, n}, \ldots, d_{m, n}\right) \\
\boldsymbol{d}_{n}=\left(U_{n}^{-1} a_{n}, U_{1, n}^{-1} b_{1, n}, \ldots, U_{m, n}^{-1} b_{m, n}\right)
\end{array} \quad \text { and } \boldsymbol{b}_{n}=\left(\boldsymbol{S}+\boldsymbol{V}_{n}\right) \boldsymbol{a}_{n}+\boldsymbol{c}_{n}-\boldsymbol{d}_{n}\right.
$$

Then $\sum_{n \in \mathbb{N}} \mid\| \| \boldsymbol{a}_{n}\| \|\left\|<+\infty, \sum_{n \in \mathbb{N}}\right\|\left\|\boldsymbol{c}_{n}\right\|\| \|<+\infty$, and $\sum_{n \in \mathbb{N}}\| \| \boldsymbol{d}_{n}\| \| \mid<+\infty$. Therefore (6.12) implies that $\sum_{n \in \mathbb{N}}\| \| \boldsymbol{b}_{n}\| \|<+\infty$. Furthermore, using the same arguments as in [41, Eqs. (3.22)(3.35)], we derive from (6.7) and (6.8) that

$$
\begin{equation*}
(\forall n \in \mathbb{N}) \quad \boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}+\lambda_{n}\left(J_{\boldsymbol{V}_{n}^{-1} \boldsymbol{A}}\left(\boldsymbol{x}_{n}-\boldsymbol{V}_{n}^{-1}\left(\boldsymbol{B} \boldsymbol{x}_{n}+\boldsymbol{b}_{n}\right)\right)+\boldsymbol{a}_{n}-\boldsymbol{x}_{n}\right) \tag{6.20}
\end{equation*}
$$

We observe that (6.20) has the structure of the variable metric forward-backward splitting algorithm (4.3), where $(\forall n \in \mathbb{N}) \gamma_{n}=1$. Finally, (6.16) and (6.18) imply that all the conditions in Theorem 4.1 are satisfied.
(i) \&(ii): Theorem 4.1(i) asserts that there exists

$$
\begin{equation*}
\overline{\boldsymbol{x}}=\left(\bar{x}, \overline{v_{1}}, \ldots, \overline{v_{m}}\right) \in \operatorname{zer}(\boldsymbol{A}+\boldsymbol{B}) \tag{6.21}
\end{equation*}
$$

such that $\boldsymbol{x}_{n} \rightharpoonup \overline{\boldsymbol{x}}$ as $n \rightarrow+\infty$. In view of (6.9), the assertions are proved.
(iii) \&(iv): It follows from Theorem 4.1(ii) that $\boldsymbol{B} \boldsymbol{x}_{n} \rightarrow \boldsymbol{B} \overline{\boldsymbol{x}}$ as $n \rightarrow+\infty$. Hence, (6.8), (6.19), and (6.21) yield

$$
\begin{equation*}
C x_{n} \rightarrow C \bar{x} \quad \text { and } \quad(\forall i \in\{1, \ldots, m\}) \quad D_{i}^{-1} v_{i, n} \rightarrow D_{i}^{-1} \overline{v_{i}} \quad \text { as } \quad n \rightarrow+\infty \tag{6.22}
\end{equation*}
$$

Hence the results follow from (i)\&(ii) and Definition 3.14.
Remark 6.3 In the case when $C=\rho \mathrm{Id}$ for some $\rho \in] 0,+\infty[$, Problem 6.1 reduces to Problem 5.1. However, the algorithm obtained in Corollary 5.2 is quite different from that of Corollary 6.2. Indeed, the former was obtained by applying the forward-backward algorithm (4.3) to the dual inclusion, which was made possible by the strong monotonicity of the primal problem. By contrast, the latter relies on an application of (4.3) in a primal-dual product space.

Example 6.4 Let $z \in \mathcal{H}$, let $f \in \Gamma_{0}(\mathcal{H})$, let $\left.\mu \in\right] 0,+\infty[$, let $h: \mathcal{H} \rightarrow \mathbb{R}$ be convex and differentiable with a μ^{-1}-Lipschitzian gradient, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(c_{n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{H}, let $\alpha \in] 0,+\infty\left[\right.$, let m be a strictly positive integer, and let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}(\mathcal{H})$ such that $(\forall n \in \mathbb{N}) U_{n+1} \succcurlyeq U_{n}$. For every $i \in\{1, \ldots, m\}$, let $r_{i} \in \mathcal{G}_{i}$, let $g_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$, let $\left.\nu_{i} \in\right] 0,+\infty[$, let $\ell_{i} \in \Gamma_{0}\left(\mathcal{G}_{i}\right)$ be ν_{i}-strongly convex, let $v_{i, 0} \in \mathcal{G}_{i}$, let $\left(b_{i, n}\right)_{n \in \mathbb{N}}$ and $\left(d_{i, n}\right)_{n \in \mathbb{N}}$ be absolutely summable sequences in \mathcal{G}_{i}, suppose that $0 \neq L_{i} \in \mathcal{B}\left(\mathcal{H}, \mathcal{G}_{i}\right)$, and let $\left(U_{i, n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}_{\alpha}\left(\mathcal{G}_{i}\right)$ such that $(\forall n \in \mathbb{N}) U_{i, n+1} \succcurlyeq U_{i, n}$. Furthermore, suppose that

$$
\begin{equation*}
z \in \operatorname{ran}\left(\partial f+\sum_{i=1}^{m} L_{i}^{*}\left(\partial g_{i} \square \partial \ell_{i}\right)\left(L_{i} \cdot-r_{i}\right)+\nabla h\right) \tag{6.23}
\end{equation*}
$$

The primal problem is

$$
\begin{equation*}
\underset{x \in \mathcal{H}}{\operatorname{minimize}} f(x)+\sum_{i=1}^{m}\left(g_{i} \square \ell_{i}\right)\left(L_{i} x-r_{i}\right)+h(x)-\langle x \mid z\rangle \tag{6.24}
\end{equation*}
$$

and the dual problem is

$$
\begin{equation*}
\operatorname{minimize}_{v_{1} \in \mathcal{G}_{1}, \ldots, v_{m} \in \mathcal{G}_{m}}\left(f^{*} \square h^{*}\right)\left(z-\sum_{i=1}^{m} L_{i}^{*} v_{i}\right)+\sum_{i=1}^{m}\left(g_{i}^{*}\left(v_{i}\right)+\ell_{i}^{*}\left(v_{i}\right)+\left\langle v_{i} \mid r_{i}\right\rangle\right) . \tag{6.25}
\end{equation*}
$$

Let $\beta=\min \left\{\mu, \nu_{1}, \ldots, \nu_{m}\right\}$, let $\left.\varepsilon \in\right] 0, \min \{1, \beta\}\left[\right.$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $[\varepsilon, 1]$, suppose that (6.6) holds, and set

$$
(\forall n \in \mathbb{N}) \quad\left|\begin{array}{l}
p_{n}=\operatorname{prox}_{f}^{U_{n}^{-1}}\left(x_{n}-U_{n}\left(\sum_{i=1}^{m} L_{i}^{*} v_{i, n}+\nabla h\left(x_{n}\right)+c_{n}-z\right)\right)+a_{n} \\
y_{n}=2 p_{n}-x_{n} \\
x_{n+1}=x_{n}+\lambda_{n}\left(p_{n}-x_{n}\right) \tag{6.26}\\
\text { For } i=1, \ldots, m
\end{array}\right| \begin{aligned}
& q_{i, n}=\operatorname{prox}_{g_{i, n}^{*}}^{U_{i}^{-1}}\left(v_{i, n}+U_{i, n}\left(L_{i} y_{n}-\nabla \ell_{i}^{*}\left(v_{i, n}\right)-d_{i, n}-r_{i}\right)\right)+b_{i, n} \\
& v_{i, n+1}=v_{i, n}+\lambda_{n}\left(q_{i, n}-v_{i, n}\right) .
\end{aligned}
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges weakly to a solution to (6.24), for every $i \in\{1, \ldots, m\}\left(v_{i, n}\right)_{n \in \mathbb{N}}$ converges weakly to some $\overline{v_{i}} \in \mathcal{G}_{i}$, and $\left(\bar{v}_{1}, \ldots, \bar{v}_{m}\right)$ is a solution to (6.25).

Proof. Set $A=\partial f, C=\nabla h$, and $(\forall i \in\{1, \ldots, m\}) B_{i}=\partial g_{i}$ and $D_{i}=\partial \ell_{i}$. In this setting, it follows from the analysis of $[16$, Section 4] that (6.24)-(6.25) is a special case of Problem 6.1 and, using (3.10), that (6.26) is a special case of (6.7). Thus, the claims follow from Corollary 6.2(i)\&(ii).

Remark 6.5 Suppose that, in Corollary 6.2 and Example 6.4 , there exist τ and $\left(\sigma_{i}\right)_{1 \leqslant i \leqslant m}$ in $] 0,+\infty[$ such that $(\forall n \in \mathbb{N}) U_{n}=\tau \operatorname{Id}$ and $(\forall i \in\{1, \ldots, m\}) U_{i, n}=\sigma_{i}$ Id. Then (6.7) and (6.26) reduce to the fixed metric methods appearing in [41, Eq. (3.3)] and [41, Eq. (4.5)], respectively (see [41] for further connections with existing work).

References

[1] H. Attouch, L. M. Briceño-Arias, and P. L. Combettes, A parallel splitting method for coupled monotone inclusions, SIAM J. Control Optim., vol. 48, pp. 3246-3270, 2010.
[2] H. Attouch and M. Théra, A general duality principle for the sum of two operators, J. Convex Anal., vol. 3, pp. 1-24, 1996.
[3] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim., vol. 42, pp. 596-636, 2003.
[4] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York, 2011.
[5] J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, A family of variable metric proximal methods, Math. Programming, vol. 68, pp. 15-47, 1995.
[6] R. I. Bots, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, New York, 2010.
[7] L. M. Briceño-Arias and P. L. Combettes, Monotone operator methods for Nash equilibria in nonpotential games, in Computational and Analytical Mathematics, (D. Bailey, H. H. Bauschke, P. Borwein, F. Garvan, M. Théra, J. Vanderwerff, and H. Wolkowicz, eds.). Springer, New York, 2013.
[8] J. V. Burke and M. Qian, A variable metric proximal point algorithm for monotone operators, SIAM J. Control Optim., vol. 37, pp. 353-375, 1999.
[9] J. V. Burke and M. Qian, On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating, Math. Programming, vol. 88, pp. 157-181, 2000.
[10] G. H.-G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., vol. 7, pp. 421-444, 1997.
[11] X. Chen and M. Fukushima, Proximal quasi-Newton methods for nondifferentiable convex optimization, Math. Program., vol. 85, pp. 313-334, 1999.
[12] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol. 53, pp. 475-504, 2004.
[13] P. L. Combettes, Đinh Dũng, and B. C. Vũ, Dualization of signal recovery problems, Set-Valued Var. Anal., vol. 18, pp. 373-404, 2010.
[14] P. L. Combettes, Đinh Dũng, and B. C. Vũ, Proximity for sums of composite functions, J. Math. Anal. Appl., vol. 380, pp. 680-688, 2011.
[15] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (H. H. Bauschke et al., eds), pp. 185-212. Springer, New York, 2011.
[16] P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal., vol. 20, pp. 307-330, 2012.
[17] P. L. Combettes and B. C. Vũ, Variable metric quasi-Fejér monotonicity, Nonlinear Anal., to appear.
[18] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., vol. 4, pp. 1168-1200, 2005.
[19] W. C. Davidon, Variable metric method for minimization, Argonne National Laboratory research and development report 5990, 1959; reprinted in SIAM J. Optim., vol. 1, pp. 1-17, 1991.
[20] E. De Vito, V. Umanità, and S. Villa, A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization, J. Complexity, vol. 27, pp. 188-200, 2011.
[21] J. Duchi and Y. Singer, Efficient online and batch learning using forward backward splitting, J. Mach. Learn. Res., vol. 10, pp. 2899-2934, 2009.
[22] J. Eckstein and M. C. Ferris, Smooth methods of multipliers for complementarity problems, Math. Programming, vol. 86, pp. 65-90, 1999.
[23] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York, 2003.
[24] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, 1989.
[25] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. Springer-Verlag, New York, 1993.
[26] T. Kato, Perturbation Theory for Linear Operators, 2nd ed. Springer-Verlag, New York, 1980.
[27] C. Lemaréchal and C. Sagastizábal, Variable metric bundle methods: from conceptual to implementable forms, Math. Programming, vol. 76, pp. 393-410, 1997.
[28] P. A. Lotito, L. A. Parente, and M. V. Solodov, A class of variable metric decomposition methods for monotone variational inclusions, J. Convex Anal., vol. 16, pp. 857-880, 2009.
[29] B. Mercier, Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, no. 63). Tata Institute of Fundamental Research, Bombay, 1979.
[30] B. Mercier, Inéquations Variationnelles de la Mécanique (Publications Mathématiques d'Orsay, no. 80.01). Université de Paris-XI, Orsay, France, 1980.
[31] U. Mosco, Dual variational inequalities, J. Math. Anal. Appl., vol. 40, pp. 202-206, 1972.
[32] L. A. Parente, P. A. Lotito, and M. V. Solodov, A class of inexact variable metric proximal point algorithms, SIAM J. Optim., vol. 19, pp. 240-260, 2008.
[33] J. D. Pearson, Variable metric methods of minimisation, Comput. J., vol. 12, pp. 171-178, 1969.
[34] T. Pennanen, Dualization of generalized equations of maximal monotone type, SIAM J. Optim., vol. 10, pp. 809-835, 2000.
[35] L. Qi and X. Chen, A preconditioning proximal Newton method for nondifferentiable convex optimization, Math. Programming, vol. 76, pp. 411-429, 1997.
[36] M. Qian, The Variable Metric Proximal Point Algorithm: Theory and Application, Ph.D. thesis, University of Washington, Seattle, WA, 1992.
[37] S. M. Robinson, Composition duality and maximal monotonicity, Math. Programming, vol. 85, pp. 1-13, 1999.
[38] R. T. Rockafellar, Duality and stability in extremum problems involving convex functions, Pacific J. Math., vol. 21, pp. 167-187, 1967.
[39] P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Math. Programming, vol. 48, pp. 249-263, 1990.
[40] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim., vol. 29, pp. 119-138, 1991.
[41] B. C. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math., published on-line 2011. http://www.springerlink.com/content/m177247u22644173/
[42] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim., vol. 6, pp. 714-726, 1996.

[^0]: ${ }^{*}$ Contact author: P. L. Combettes, plc@math.jussieu.fr, phone:+33 144276319 , fax:+33 14427 7200. The work of Băng Công Vũ was partially supported by Grant 102.01-2012.15 of the Vietnam National Foundation for Science and Technology Development (NAFOSTED).

