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Abstract

We propose a variable metric forward-backward splitting algorithm and prove its convergence
in real Hilbert spaces. We then use this framework to derive primal-dual splitting algorithms for
solving various classes of monotone inclusions in duality. Some of these algorithms are new even
when specialized to the fixed metric case. Various applications are discussed.
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1 Introduction

The forward-backward algorithm has a long history going back to the projected gradient method
(see [1, 12] for historical background). It addresses the problem of finding a zero of the sum of two
operators acting on a real Hilbert space H, namely,

find x € H such that 0 ¢ Az + Bz, (1.1)

under the assumption that A: H — 2% is maximally monotone and that B: H — H is B-cocoercive
for some § € 10, +oo], i.e. [4],

(Vxe H)(VYyeH) (x—y|Bx— By) > p||Bx— ByHQ. (1.2)

*Qontact author: P. L. Combettes, plc@math. jussieu.fr, phone:+33 1 4427 6319, fax:433 1 4427 7200. The work
of Bang Cong Vi was partially supported by Grant 102.01-2012.15 of the Vietnam National Foundation for Science
and Technology Development (NAFOSTED).


mailto:plc@math.jussieu.fr
mailto:vu@ljll.math.upmc.fr
mailto:plc@math.jussieu.fr

This framework is quite central due to the large class of problems it encompasses in areas such
as partial differential equations, mechanics, evolution inclusions, signal and image processing, best
approximation, convex optimization, learning theory, inverse problems, statistics, game theory, and
variational inequalities [1, 4, 7, 10, 12, 15, 18, 20, 21, 23, 24, 29, 30, 39, 40, 42]. The forward-backward
algorithm operates according to the routine

zo€H and (YneN) z,.1 = Id+7,A4) Yz, — vuBz,), where 0<7, <28. (1.3)

In classical optimization methods, the benefits of changing the underlying metric over the course
of the iterations to improve convergence profiles has long been recognized [19, 33]. In proximal
methods, variable metrics have been investigated mostly when B = 0 in (1.1). In such instances
(1.3) reduces to the proximal point algorithm

zo€H and (VneN) z,,1 = (Id+y,A4) 'z, where 7, > 0. (1.4)

In the case when A is the subdifferential of a real-valued convex function in a finite dimensional
setting, variable metric versions of (1.4) have been proposed in [5, 11, 27, 35]. These methods
draw heavily on the fact that the proximal point algorithm for minimizing a function corresponds
to the gradient descent method applied to its Moreau envelope. In the same spirit, variable metric
proximal point algorithms for a general maximally monotone operator A were considered in [8, 36].
In [8], superlinear convergence rates were shown to be achievable under suitable hypotheses (see
also [9] for further developments). The finite dimensional variable metric proximal point algorithm
proposed in [32] allows for errors in the proximal steps and features a flexible class of exogenous
metrics to implement the algorithm. The first variable metric forward-backward algorithm appears
to be that introduced in [10, Section 5]. It focuses on linear convergence results in the case when
A+ B is strongly monotone and H is finite-dimensional. The variable metric splitting algorithm of
[28] provides a framework which can be used to solve (1.1) in instances when H is finite-dimensional
and B is merely Lipschitzian. However, it does not exploit the cocoercivity property (1.2) and it
is more cumbersome to implement than the forward-backward iteration. Let us add that, in the
important case when B is the gradient of a convex function, the Baillon-Haddad theorem asserts
that the notions of cocoercivity and Lipschitz-continuity coincide [4, Corollary 18.16].

The goal of this paper is two-fold. First, we propose a general purpose variable metric forward-
backward algorithm to solve (1.1)—(1.2) in Hilbert spaces and analyze its asymptotic behavior, both
in terms of weak and strong convergence. Second, we show that this algorithm can be used to solve
a broad class of composite monotone inclusion problems in duality by formulating them as instances
of (1.1)—=(1.2) in alternate Hilbert spaces. Even when restricted to the constant metric case, some of
these results are new.

The paper is organized as follows. Section 2 is devoted to notation and background. In Section 3,
we provide preliminary results. The variable metric forward-backward algorithm is introduced and
analyzed in Section 4. In Section 5, we present a new variable metric primal-dual splitting algorithm
for strongly monotone composite inclusions. This algorithm is obtained by applying the forward-
backward algorithm of Section 4 to the dual inclusion. In Section 6, we consider a more general
class of composite inclusions in duality and show that they can be solved by applying the forward-
backward algorithm of Section 4 to a certain inclusion problem posed in the primal-dual product
space. Applications to minimization problems, variational inequalities, and best approximation are
discussed.



2 Notation and background

We recall some notation and background from convex analysis and monotone operator theory (see
[4] for a detailed account).

Throughout, H, G, and (G;)1<i<m are real Hilbert spaces. We denote the scalar product of a
Hilbert space by (- | -) and the associated norm by || - ||. The symbols — and — denote respectively
weak and strong convergence, and Id denotes the identity operator. We denote by B (H,G) the
space of bounded linear operators from H to G, we set B (%) = B (H,H) and § (H) = {L € B(H) |
L= L*}, where L* denotes the adjoint of L. The Loewner partial ordering on 8 (H) is defined by

VUeSH)(VYWeS(H) U=V < (NereH) Uz|z)=(Vz|z). (2.1)
Now let a € [0, 4+00[. We set
Pa(H)={U €8(H)|U = ald}, (2.2)

and we denote by VU the square root of U € P, (H). Moreover, for every U € P, (H), we define a
semi-scalar product and a semi-norm (a scalar product and a norm if a > 0) by

(Ve e H)(VyeH) (a]y)y=(Uzly) and |ally = /(T a). (2.3)

Notation 2.1 We denote by G = G1®- - -@G,, the Hilbert direct sum of the Hilbert spaces (G;)1<i<m.,
i.e., their product space equipped with the scalar product and the associated norm respectively

defined by

TN (@y) = ) (g and Il 2o | D ll2ill?, (2.4)
1=1

i=1

where € = (2;)1<i<m and ¥y = (y;)1<i<m denote generic elements in G.

Let A: H — 2™ be a set-valued operator. The domain and the graph of A are respectively
defined by domA = {z € H | Az # @} and grad = {(z,u) € H x H | u € Az}. We denote by
zer A = {z € H | 0 € Az} the set of zeros of A and by ranA = {u € H | (z € H) u € Az} the
range of A. The inverse of Ais A™': H +— 2": u— { € H | u € Az}, and the resolvent of A is

Ja=Id+A)"L. (2.5)
Moreover, A is monotone if
(V(z,y) € H X H)(V(u,v) € Az x Ay) (xr—y|u—v) >0, (2.6)

and maximally monotone if it is monotone and there exists no monotone operator B: H — 2% such
that gra A C gra B and A # B. The parallel sum of A and B: H — 2 is

AOB=(A"'+B HL. (2.7)
The conjugate of f: H — |—o0,+00] is

f i H — [—oo,400] s u 216171_)[ ( (x| u)y — f(x)), (2.8)



and the infimal convolution of f with g: H — |—o00, +00] is

fOg: H — [—00,+00] : x> inf (f(y) + gz —y)). (2.9)

The class of lower semicontinuous convex functions f: H — |—00,+00] such that dom f = {z € H |
f(z) < +o0} # @ is denoted by T'o(H). If f € To(H), then f* € To(H) and the subdifferential of f

is the maximally monotone operator
of it H—2" o {ueH|(VyeH) y—a|u)+ f(z) < fly)} (2.10)

with inverse (0f)! = df*. Let C be a nonempty subset of H. The indicator function and the
distance function of C' are defined on H as

0 if C,
e 1 re and do =0 |: 2z~ inf ||z —y|. (2.11)
+oo, if x ¢ C yeC

respectively. The interior of C is int C' and the support function of C'is o¢ = 1. Now suppose that
C is convex. The normal cone operator of C is defined as

{ueH|(Vyel) (y—z|u) <0}, ifzeC;

] (2.12)
g, otherwise.

chabciH%QytxH{

The strong relative interior of C, i.e., the set of points x € C' such that the conical hull of —x + C
is a closed vector subspace of H, is denoted by sriC}; if H is finite-dimensional, sri C coincides with
the relative interior of C', denoted by ri C. If C is also closed, its projector is denoted by Pg, i.e.,
Po:H — C: zw— argming ||z — yl|.

Finally, £} (N) denotes the set of summable sequences in [0, +oc].

3 Preliminary results

3.1 Technical results

The following properties can be found in [26, Section VI.2.6] (see [17, Lemma 2.1] for an alternate
short proof).

Lemma 3.1 Let a € ]0,+00[ and p € |0,+00], and assume that A and B are operators in 8 (H)
such that pnld = A %= B = ald. Then the following hold.

(i) a'ld= B = A"t = pt1d.
(ii) (Vo e M) (A | z) > [|A]7 =]

(iii) A <a .
The next fact concerns sums of composite cocoercive operators.

Proposition 3.2 Let I be a finite index set. For every i € I, let 0 # L; € B(H,G;), let B; €
10, +o0[, and let T;: G; — G; be Bi-cocoercive. Set T = >, L¥T;L; and 8 = 1/( Y ;c; I1Lill*/5s)-
Then T is B-cocoercive.



Proof. Set (Vi € I) a; = B||L;||*/B;. Then Y, ; ; = 1 and, using the convexity of || - [|* and (1.2),
we have

(Vo e M)Wy eH) (w—y|Te—Ty) =S (v —y| LiTiLw — LiTiLiy)

icl
= Z (Liz — Liy | T;Lix — T; L;y)

el
> BillTiLix — TiLiy|?

i€l

/Bi * * 2
el
1 * * 2
=p Z || — (L TiLizw — LszLz?/)H
iel Qi
2
> 6| YTk - LiTiLy)|
el

= BTz — Tyl (3.1)

which concludes the proof. O

3.2 Variable metric quasi-Fejér sequences

The following results are from [17].

Proposition 3.3 Let a € |0, 400, let (Wy)nen be in Po(H), let C' be a nonempty subset of H, and
let (zp)nen be a sequence in H such that

(3 (M)nen € LL(N)) (V2 € C) (3 (en)nen € L1(N))(Vn € N)
Zn+1 — zHWnH < (T +na)llen — 2llw, +en- (3.2)

Then (xp)nen ts bounded and, for every z € C, (||zn — 2||lw, Jnen converges.

Proposition 3.4 Let a € |0, +00[, and let (W,)nen and W be operators in Po(H) such that W, —
W pointwise as n — +00, as is the case when

sup |[Wo|| < +00  and (3 (Mn)nen € L4 (N)) (VR € N) (1 +1,)W,, 3= Wi (3.3)
neN

Let C' be a nonempty subset of H, and let (xn)nen be a sequence in H such that (3.2) is satisfied.
Then (zy,)nen converges weakly to a point in C if and only if every weak sequential cluster point of
(Zn)nen s in C.

Proposition 3.5 Let o € |0, 400, let (Wy,)nen be a sequence in Po(H) such that sup,cy |[|[Whll <
+00, let C' be a nonempty closed subset of H, and let (x,)nen be a sequence in H such that

(3 (Enhnen € L (N)) (3 ()nen € L (N)) (V2 € C)(¥n € N)
lnss = 2lwors < U+ m)llan — 2w, +en. (3.4)

Then (zy)nen converges strongly to a point in C' if and only if lim dco(x,) = 0.



Proposition 3.6 Let o € 10,400, let (vy)nen € €L(N), and let (Wy)nen be a sequence in Po(H)
such that sup, ey [|Wh|l < +o0o and (VYn € N) (1 + v,)Wyi1 = W,,. Furthermore, let C' be a subset
of H such that int C # @, let z € C and p € ]0,+00[ be such that B(z;p) C C, and let (xy)nen be a
sequence in H such that

(3 (en)nen € £4(N) (3 (nn)nen € £5(N)) (V2 € B(z;p))(vn € N)
a1 = 2lfy,,, < (L4 m)len — 2lfy, + 0 (3.5)

Then (zp)nen converges strongly.

3.3 Monotone operators

We establish some results on monotone operators in a variable metric environment.

Lemma 3.7 Let A: H — 2" be maximally monotone, let o € ]0,4o00[, let U € Po(H), and let
G be the real Hilbert space obtained by endowing H with the scalar product (z,y) — (x| y)y— =
<x | U_1y>. Then the following hold.

(i) UA: G — 29 is mazimally monotone.
(ii)) Jua: G — G is 1-cocoercive, i.e., firmly nonexpansive, hence nonerpansive.
(iii) Jya= (Ut +A)toU L

Proof. (i): Set B = UA and V = U~!. For every (z,u) € graB and every (y,v) € graB,
Vu e VBx = Ax and Vv € V By = Ay, so that

(x—ylu—v)y=(@—-y|Vu-Vv) >0 (3.6)
by monotonicity of A on H. This shows that B is monotone on G. Now let (y,v) € H? be such that

(V(z,u) € graB) (x—y|u—wv), >0. (3.7)
Then, for every (z,u) € gra A, (x,Uu) € gra B and we derive from (3.7) that

(x—ylu—-Vv)y=(x—y|Uu—-v), >0. (3.8)

Since A is maximally monotone on H, (3.8) gives (y, Vv) € gra A, which implies that (y,v) € gra B.
Hence, B is maximally monotone on G.

(ii): This follows from (i) and [4, Corollary 23.8].

(iii): Let z and p bein G. Then p = Jyax & = € p+Udp & U le € (U 4+ A)p &
p=U"t+ A (U ). 0

Remark 3.8 let a € ]0,+ocf, let U € Po(H), set f: H — R:z — (U lz|z)/2, and let
D: (z,y) — f(x)— f(y)—(x —y | Vf(y)) be the associated Bregman distance. Then Lemma 3.7(iii)
asserts that Jya = (Vf + A)~! o Vf. In other words, Jya is the D-resolvent of A introduced in [3,
Definition 3.7].



Let U € P,(H) for some o € ]0,400[. The proximity operator of f € I'g(H) relative to the
metric induced by U is [25, Section XV .4]

1
proxgc]: H—H:xz— arger%in(f(y) + EHm - yH%), (3.9)
y

and the projector onto a nonempty closed convex subset C' of H relative to the norm || - || is denoted
by Pg . We have
proxSc] = Jy-19y and Pg = proxfjc7 (3.10)

and we write proxﬁcd = prox;.

In the case when U = Id in Lemma 3.7, examples of closed form expressions for Jiy4 and basic
resolvent calculus rules can be found in [4, 15, 18]. A few examples illustrating the case when

U # Id are provided below. The first result is an extension of the well-known resolvent identity
JA + JAfl - Id

Example 3.9 Let o € ]0,+00[, let v € ]0,+oc], and let U € P,(H). Then the following hold.

(i) Let A: H — 2 be maximally monotone. Then

71 _ _
Jywa=VUIL jgaygVU — =1d=AUJag-14-1(y'UH). (3.11)

. -1 _ _ B
(ii) Let f € To(#H). Then prong =VU Prox_ . -1 VU =1d —U lproxfyj_llf* (v~ tU).

(iii) Let C be a nonempty closed convex subset of H. Then prox,lyjo e = VU - prox -t VU =
1d—U-'PY " (v 10).

Proof. (i): Let = and p be in H. Then

p=Jywar & xz—pecyUAp

& \/ﬁilx—\/ﬁilpefy\/ﬁfl\/ﬁ\/ﬁilp
-1 -1
s VU p:J»y\FUA\FU(\/E x)

& p=VUIL gae(VU 2). (3.12)

Furthermore, by [4, Proposition 23.23(ii)], J SO AT = Id—VU (U + (’yA)_l)_lx/v. Hence, (3.12)
yields

Jyoa =1d=U(U + (vA)™) " (3.13)

However

p=(U+0A N 'z & zeUp+(A
& 77 'pe Az —Up)
& z-Upe A (v 'p)
& v WUz e (ld+y ' U A Y (v p)
& Y lp=Jgaaa (U ). (3.14)

7



Hence, (U + (vA) ™)™t =yJ —1py-14-1(y"'U 1) and, using (3.13), we obtain the rightmost identity
in (i).

(ii): Apply (i) to A = 9f, and use (3.10) and the fact that a(fox/Uil) = (\/ﬁil)*O(af)O\/ﬁil =
VU o (0f) o N [4, Corollary 16.42(i)].

(iii): Apply (ii) to f = o¢, and use (3.10). O
Example 3.10 Define G as in Notation 2.1, let « € R, and, for every i € {1,...,m}, let A;: G; —

2% be maximally monotone and let U; € Po(G;). Set A: G — 29: (2;)1<icm — X?;A,wi and
U:G—G: (2)1<icm — (Uizi)1<i<m- Then U A is maximally monotone and

(V(zi)1<icm € G)  Jua(@i)icicm = (Ju,a4,%i)1<i<m- (3.15)

Proof. This follows from Lemma 3.7(i) and [4, Proposition 23.16]. O

Example 3.11 Let o € |0,+o0[, let £ € R, let U € P (H), let ¢ € T'o(R), suppose that 0 # u € H,
and set H = {z € H | (z|u) <&} and g = (- | u)). Then g € ['o(H) and

PIOX| /7=y 124 (x| u) — (x| u) .
Ve e H) prox’z=z+ U u 3.16
Vo €3 prowg VT Tul? o
and
z, if (z]u) <&
Pio={"" ¢—@|w, , (3.17)
if .
(u|U*1u>U u, if (z]u)>¢
Proof. Tt follows from Example 3.9(ii) that
(Vz e H) proxgac =VU-1 Prox /5=t VUz. (3.18)

Moreover, go VU~ = ¢((- | VU~ 1u)). Hence, using (3.18) and [4, Corollary 23.33|, we obtain

(Vx e H) proxgx =VU-! PIOX (| VT Tu)) VUz

proxy g=raeg {2 | 4 — (& | )
— g4 —IWUTTuPS U~ lu. (3.19)

VU ulf?

Finally, upon setting ¢ = 1j_ ¢, we obtain (3.17) from (3.16). O

Example 3.12 Let a € ]0,+00], let v € R, let A € Py(H), let u € H, let U € Py(H), and set
o:H—Riaz— (Az | z) /24 (x| u) + . Then ¢ € I'y(H) and

Ve eH) proxtz=Od+U Az —U" ). 3.20
©

Proof. Let x € H. Thenp:proxgx sr-p=UVep)eoz-p=UtAp+tu) & r-Ulu=
(Id+UtA)p & p=Id+U1A) Yz - U u). O



Example 3.13 Let o € |0,+o0o[ and let U € P, (H). For every i € {1,...,m}, let r; € G;, let
w; € 10, +oo|, and let L; € B (H,Gi). Set p: z+— (1/2) S wi||Liz — r;||%. Then ¢ € T'o(H) and

m -1 m
(Vx € H) proxg T = <Id +U 1 ZwiLIL,) <x +U! ZwiLfrZ). (3.21)
i=1 i=1

Proof. We have ¢: x +— (Az | z) /2 + (x| u) +, where A = > w;L¥L;, u=—Y ;" w;Lr;, and
v =" willri||?/2. Hence, (3.21) follows from (3.20). O

3.4 Demiregularity

Definition 3.14 [1, Definition 2.3] An operator A: H — 27 is demiregular at x € dom A if, for
every sequence ((Ty,un))nen in gra A and every u € Ax such that x, — x and u, — u asn — 400,
we have x, — T as n — +00.

Lemma 3.15 [1, Proposition 2.4] Let A: H — 2" be monotone and suppose that x € dom A. Then
A is demiregular at x in each of the following cases.

(i) A is uniformly monotone at x, i.e., there exists an increasing function ¢: [0,+oo[ — [0, +00]
that vanishes only at 0 such that (Yu € Ax)(¥(y,v) € graA) (x —y | u—v) = ¢(||lz — yl|)-
(ii) A is strongly monotone, i.e., there exists o € ]0,+00[ such that A — a1d is monotone.

(iii) Ja is compact, i.e., for every bounded set C C H, the closure of Jao(C) is compact. In
particular, dom A is boundedly relatively compact, i.e., the intersection of its closure with
every closed ball is compact.

(iv) A: H — H is single-valued with a single-valued continuous inverse.

(v) A is single-valued on dom A and Id —A is demicompact, i.e., for every bounded sequence
(Tn)nen in dom A such that (Ax,)nen converges strongly, (x,)nen admits a strong cluster
point.

(vi) A = 0f, where f € To(H) is uniformly conver at x, i.e., there exists an increasing function
¢: [0,+00] — [0,400] that vanishes only at 0 such that (Yo € ]0,1[)(Vy € dom f) f(az + (1 -

a)y) +a(l —a)¢(lz —yll) < af(@) + (1 - a)f ().

(vii) A=0f, where f € To(H) and, for every § € R, {x € H | f(x) < &} is boundedly compact.

4 Algorithm and convergence

Our main result is stated in the following theorem.

Theorem 4.1 Let A: H — 2" be mazimally monotone, let o € 10,+o0|, let 3 € ]0,4o0[, let
B:H — H be B-cocoercive, let (ny)nen € €4 (N), and let (Up)nen be a sequence in Po(H) such that

pw=supl||Upy]| < +o00 and (YneN) (1+n,)Ups1 = Up. (4.1)
neN



Let ¢ € ]0,min{1,28/(n+ 1)}[, let (A\n)nen be a sequence in [e,1], let (yn)nen be a sequence in
e, (28 —€)/ul, let xo € H, and let (an)nen and (by)nen be absolutely summable sequences in H.
Suppose that

Z =zer(A+ B) # @, (4.2)
and set
(vneny | o= %~ mUn(Bentbo) (4.3)
Tn+l1 = Tn + )\n(J'ynUnA (yn) +an — xn)
Then the following hold for some® € Z.
(i) xp, =T as n — +oo.
(i) > ,en [[Bzn — BT||? < +00.
(iii) Suppose that one of the following holds.
(a) imdy(z,) = 0.
(b) At every point in Z, A or B is demiregular (see Lemma 3.15 for special cases).
(¢) int Z # @ and there exists (Vn)nen € L1 (N) such that (Vn € N) (1 + v,)Uy, 3= Upy1.
Then x, > T as n — 40o0.
Proof. Set
Pn = Ja Un
A =7 UnA "
(Vn € N) 7 and qn = Ja, (xn, — Bpxy) (4.4)
B, = U, B
Sp = Tp + )\n(Qn - xn)
Then (4.3) can be written as
(YneN) zp11 =2+ A\(Dn + an — ). (4.5)
On the other hand, (4.1) and Lemma 3.1(i)&(iii) yield
_ 1 _ _ _
(fneN) UM <= Uit €Pyp(M), and (L+0)Up" = Upyy (4.6)
and, therefore,
(vneN)(Ve e H) (1+m)llzl? 1 > |zl . (4.7)
n n+1
Hence, we derive from (4.5), (4.4), Lemma 3.7(ii), (4.6) and (4.1) that
(v €N) Jansr = sully=r < An(llanllyzr + I1on = gallyz2)
< HanHU,jl + lyn — zn + ann”U;l
< HanHU;l +’7n||Unbn||U;1
< AVNTH Hanll + V1T 0]l
1 28 —¢
< —|lan|| + bn |- 4.8
\/aH | i [[bn| (4.8)



Now let z € Z. Since B is (8-cocoercive,
(Vvn €N) (z, — 2| Bx, — Bz) > || Bz, — Bz|*.
On the other hand, it follows from (4.1) that

(Vn €N)  |[Buzn — Buzllf—1 < villUnll | Bon — B2|* < yaul| Ban — Bz|*.

IQJ,:I
We also note that, since —Bz € Az, (4.4) yields
(VneN) z=Ja,(z— Bp2).
Altogether, it follows from (4.4), (4.11), Lemma 3.7(ii), (4.9), and (4.10) that
(€ N) g~ 21s < an — 2) — (Bun — Bur)
~(@n = @n) = (Bazn — Ba2)|[F;1

= ||zn — Z”%ng —2({xyp — 2| Bpn — Bpz)y—1 + || Bpn — anHQUgl

—[(@n — ¢n) — (Bnan — BnZ)H?];l

= ||zn — Z”%;;l — 29, (zy, — 2z | Bxy, — Bz) + || Bpxy, — anHQU;l

~ (@n = @n) = (Bazn — Ba2)|[F;1
< N = 2l 1 =028 — g1 B — B
— (@n = @n) = (Bazn — Ba2)|[F;1
<o = 2171 = €% Ban — Bef?
~ (@n = an) = (Bazn — Bu2)|F-1-
In turn, we derive from (4.7) and (4.4) that
(¥ €M) (Ut m) s — 2y < llsn 21
< (U= Ao = 2t + Anllan — 21
< lom = 2[[f-1 — €| Bon — Bz|f?
—ell(zn — an) = (Buzn — Bn2)||7-1,
which implies that
(VneN) |sp — Z”?fﬂl < (14 np)||zn — ZH2U,71 — &%||Bx,, — Bz|?
— ell(zn — an) = (Bazn — Bn2)llf -
< Plfon — 221,

where

d =sup /14 n,.

neN

Next, we set

e & = 5(Jzlonl + =gl ).

11

(4.12)

(4.13)

(4.17)



Then our assumptions yield

D en < +o0. (4.18)
neN

Moreover, using (4.7), (4.14), and (4.8), we obtain

(YneN) |lzpp1 — ZHU;_;I < Tngr — SnHU;jl + [[8n — ZHU;_;I

Sv1i+ Nnl|Tn1 — SnHU;1 +v1+ Nl 2n — ZHU,jl

<Ol zngr — SnHU;l +V1+ Nl 2n — ZHU;l

< V1t nlzn — ZHUgl +én

< (L +m)llzn = 2l +en (4.19)

In view of (4.6), (4.18), and (4.19), we can apply Proposition 3.3 to assert that ([|zn — 2[|y;—1)nen
converges and, therefore, that

¢ =sup ||z, — 2| ;-1 < +o0. (4.20)
neN "

On the other hand, (4.7), (4.8), and (4.17) yield
(n €N) Jents = snllf-s < (L4 ) ons = sallfos < (4.21)
Hence, using (4.14), (4.15), (4.16), and (4.20), we get
(¥ €M) lrmir — 2021 < w212+ 2lon — 2llyr, Boner = sllyos, + honer = sl
< (A +m0)llen = 2llf -1 — €°| Ban — Bz|)®
— éllzn — gn — Bty + Bnzlf;-1 +20Cen +
< oy — ZHQU# — &3||Bx,, — Bz||* — €||zn — qn — Bpy + anH%];l
+ Py 4 20Ce, + 2. (4.22)

Consequently, for every N € N,

N N
&> 1Ben = B2|* < llwo = 2[fs = lona = 2l51 + D (¢ + 20Cen + €7)
n=0 n=0

N
<+ (P +20Cen +€7). (4.23)

n=0
Appealing to (4.18) and the summability of (7, )nen, taking the limit as N — +oo, yields

Z | Bz, — Bz”2 < €i3<€2 + Z (Can +26Cen + 6%)) < Ho00. (4.24)

neN neN

We likewise derive from (4.22) that

Z Hxn — qn — Bpop + BnZH?]’;l < +00. (4.25)
neN
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(i): Let = be a weak sequential cluster point of (zy,)nen, say xx, — = as n — +oo. In view of
(4.19), (4.6), and Proposition 3.4, it is enough to show that z € Z. On the one hand, (4.24) yields
Bzy, — Bz as n — +o0o. On the other hand, since B is cocoercive, it is maximally monotone
[4, Example 20.28] and its graph is therefore sequentially closed in HYeak x #{strong [4  Proposi-
tion 20.33(ii)]. This implies that Bz = Bz and hence that Bxy, — Bx as n — +o0o. Thus, in view
of (4.24),

> |[Bay — Ba||* < +oc. (4.26)
neN
Now set
1
(VneN) wu, = —U, (2, — q,) — Bxy. (4.27)

n

Then it follows from (4.4) that
(Vn eN) wu, € Agy. (4.28)
In addition, (4.4), (4.6), and (4.25) yield

1 _

|un + Bz = 'y_”Un l(xn — Gn — Bpy + Bp)||
n
1

< _Hxn —Qqn — ann + anH
EQ
1w
< £||xn —Qqn — Bhx, + anHU_1
EQ "
—0 as n— 4oo. (4.29)

Moreover, it follows from (4.4), (4.1), and (4.26) that

< ||l#n — g — Bran + Bpz|| + || Bpxy, — Bpz|

< l#n = gn = Buttn + Bpz|| + nl|Un | | Ben — Bz||

< ||z — gn — Brap + Bpz|| + (28 — €)|| Bz, — Bz||

—0 as n— +oo. (4.30)

|20 — gnll

and, therefore, since xp, — x as n — +o0, that ¢, — = as n — 4+o00. To sum up,

{qk” v asn — +oo, and (YneN) (qx,,ur,) € graA. (4.31)
ug, — —Bx

Hence, using the sequential closedness of gra A in H¥eak x Hstrone [4 Proposition 20.33(ii)], we
conclude that —Bx € Az, i.e., x € Z.

(ii): Since T € Z, the claim follows from (4.24).
(iii): We now prove strong convergence.

(iii)(a): Since A and B are maximally monotone and dom B = H, A + B is maximally monotone
[4, Corollary 24.4(i)] and Z is therefore closed [4, Proposition 23.39]. Hence, the claim follows from
(i), (4.19), and Proposition 3.5.

13



(iii)(b): It follows from (i) and (4.30) that ¢, = T € Z as n — +oo and from (4.29) that
u, — —BT € AT as n — +o00. Hence, if A is demiregular at Z, (4.28) yields ¢, — T as n — +oo.
In view of (4.30), we conclude that z,, — T as n — +00. Now suppose that B is demiregular at .
Then since x,, = T € Z as n — 400 by (i) and Bz, - BT as n — 400 by (ii), we conclude that
Ty, — T as n — +0o0.

(iii)(c): Suppose that z € int C' and fix p € |0, +oo[ such that B(z;p) C C. It follows from (4.20)

that 6 = supsep(sp) SWnen |20 — zlly1 < (V@) (Suppen |20 — 2]l + suPsep(ayp) 2 — 2I]) < 400
and from (4.22) that

(Vn € N)(Vz € B(z;p) |zner — 2|21 < |lzn — 2?1 + 620, + 2002, + 2. (4.32)
n+1 n
Hence, the claim follows from (i), Lemma 3.1, and Proposition 3.6. O

Remark 4.2 Here are some observations on Theorem 4.1.

(i) Suppose that (Vn € N) U,, = Id. Then (4.3) relapses to the forward-backward algorithm studied
in [1, 12], which itself captures those of [27, 29, 40]. Theorem 4.1 extends the convergence
results of these papers.

(ii) As shown in [18, Remark 5.12], the convergence of the forward-backward iterates to a solu-
tion may be only weak and not strong, hence the necessity of the additional conditions in
Theorem 4.1(iii).

(iii) In Euclidean spaces, condition (4.1) was used in [32] in a variable metric proximal point
algorithm and then in [28] in a more general splitting algorithm.

Next, we describe direct applications of Theorem 4.1, which yield new variable metric splitting
schemes. We start with minimization problems, an area in which the forward-backward algorithm
has found numerous applications, e.g., [15, 18, 21, 39, 40].

Example 4.3 Let f € T'o(H), let « € ]0,+o00[, let 8 € ]0,400], let g: H — R be convex and
differentiable with a 1/3-Lipschitzian gradient, let (1, )nen € 2 (N), and let (Uy,)nen be a sequence
in P, (#H) such that (4.1) holds. Furthermore, let ¢ € |0, min{1,25/(x + 1)} where p is given by
(4.1), let (An)nen be a sequence in [g, 1], let (v, )nen be a sequence in [g, (26 —¢)/ul, let g € H, and
let (an)nen and (b, )nen be absolutely summable sequences in H. Suppose that Argmin (f + g) # &
and set

Yn = Tp — 'YnUn(v.g(xn) + bn)

Ut

(4.33)
Tptl = Ty + )\n(prox%f Yn + Gpn — xn)

(Vn € N) {

Then the following hold for some T € Argmin (f + g).

(i) xp, =T as n — +o0.

(i) Ynen Vg(an) — Vo@)I* < +o00.

(iii) Suppose that one of the following holds.

(a) h_mdArgmin (f+9) ('In) =0.
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(b) At every point in Argmin (f + g), f or g is uniformly convex (see Lemma 3.15(vi)).
(¢) int Argmin (f+g) # @ and there exists (v, )nen € £ (N) such that (Vn € N) (14v,,)U, =
Unt1.

Then z,, - T as n — +oo.

Proof. An application of Theorem 4.1 with A = 0f and B = Vg, since the Baillon-Haddad theorem
[4, Corollary 18.16] ensures that Vg is S-cocoercive and since, by [4, Corollary 26.3], Argmin(f+g) =
zer(A+ B). 0O

The next example addresses variational inequalities, another area of application of forward-
backward splitting [4, 23, 39, 40].

Example 4.4 Let f € To(H), let « € ]0,400[, let 8 € ]0,+00[, let B: H — H be [-cocoercive,
let (mn)nen € 1(N), and let (U, )nen be a sequence in P, (H) that satisfies (4.1). Furthermore, let
e €10, min{1,25/(p + 1)} where p is given by (4.1), let (An)nen be a sequence in [g, 1], let (75)nen
be a sequence in [g, (208 — ¢)/ul, let zy € H, and let (ay)nen and (by)nen be absolutely summable
sequences in H. Suppose that the variational inequality

find zeH suchthat (VyeH) (z—y|Bx)+ f(z) < f(y) (4.34)

admits at least one solution and set

(Vn S N) —1 (435)
Tp+l = Ty + An(proxflyj:f Yn + ap — xn)
Then (x,)nen converges weakly to a solution T to (4.34).
Proof. Set A = 0f in Theorem 4.1(i). O
5 Strongly monotone inclusions in duality
In [13], strongly convex composite minimization problems of the form
1
minimize f(x)+ g(Lx — )+ =]z — z||?, (5.1)
zeH 2

where z € H, r € G, f € To(H), g € To(G), and L € B(H,G), were solved by applying the
forward-backward algorithm to the Fenchel-Rockafellar dual problem

minirgize [z = L) +g*@) + | 1), (5.2)
IS
where f* = f*0(] - ||?/2) denotes the Moreau envelope of f*. This framework was shown to

capture and extend various formulations in areas such as sparse signal recovery, best approximation
theory, and inverse problems. In this section, we use the results of Section 4 to generalize this
framework in several directions simultaneously. First, we consider general monotone inclusions, not
just minimization problems. Second, we incorporate parallel sum components (see (2.7)) in the
model. Third, our algorithm allows for a variable metric. The following problem is formulated using
the duality framework of [16], which itself extends those of [2, 22, 31, 34, 37, 38|.
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Problem 5.1 Let z € H, let p € ]0,+oo], let A: H — 2 be maximally monotone, and let m be
a strictly positive integer. For every i € {1,...,m}, let r; € G;, let B;: G; — 29 be maximally
monotone, let v; € ]0,400[, let D;: G; — 29 be maximally monotone and v;-strongly monotone,
and suppose that 0 # L; € B (H,G;). Furthermore, suppose that

z € ran (A + Zm:L’;((BiDDi)(Li c—1y)) + pId). (5.3)
i=1

The problem is to solve the primal inclusion

find T € H such that z € AT + Z L ((BiOD;)(LiT — ;) + p7, (5.4)
i=1

together with the dual inclusion

find 771 € G1, ..., Uy € G, such that

(Vie{l,....,m}) r, €L, <JP1A<p_1 <z - ZL;‘@))) — B'%; - D5 (5.5)
j=1

Let us start with some properties of Problem 5.1.

Proposition 5.2 In Problem 5.1, set

T = Jp_lM(,o_lz), where M = A+ Z L} o(B;0OD;)o (L;-—1;). (5.6)
=1

Then the following hold.

(i) T is the unique solution to the primal problem (5.4).

)

(ii) The dual problem (5.5) admits at least one solution.

(iii) Let (01,...,m) be a solution to (5.5). ThenT = J,~14(p~ ' (z — Y1ty Liw7)).
)

Condition (5.3) is satisfied for every z in H if and only if M is mazximally monotone. This is
true when one of the following holds.

(iv
(a) The conical hull of

E = {(L,x — 78— Vi) i, | @ € dom A and (vi)1<icm € X ran (BZ._1 + Di_l)} (5.7)
SIS i=1
18 a closed vector subspace.
(b) A= 0f for some f € To(H), for everyi € {1,...,m}, B; = dg; for some g; € T'9(G;) and
D; = 0¢; for some strongly convez function {; € T'4(G;), and one of the following holds.

1/ (ri,...,mm) € sri {(sz — Yi)i<i<m | ® € dom f and
(Vi€ {1,...,m}) y; € domg; + dom¥;}.
2/ For everyi € {1,...,m}, g; or {; is real-valued.
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3/ H and (Gi)i<i<m are finite-dimensional, and there exists x € ri dom f such that

(Vie{l,...,m}) Ljz—r; €ridomg; + ri dom¥;. (5.8)

Proof. (i): Tt follows from our assumptions and [4, Proposition 20.10] that p~! M is a monotone oper-
ator. Hence, J,-1)/ is a single-valued operator with domain ran(Id +p~'M) [4, Proposition 23.9(ii)].
Moreover, (5.3) < p~'z € ran(Id +p~'M) = dom J,-1);, and, in view of (2.5), the inclusion in (5.4)
is equivalent to T = J,~1/(p "' 2).

(ii)&(iii): It follows from (2.5) and (2.7) that

z— " LT € AT + pT
(Vie{l,...,m}) r € LT~ B ', — D;'%;
7= Jpa(07 (= T 157)

o {(v_l, ..., Um) solves (5.5) (5.9)

(i) & @A EG) - (3Tm € Gm) {

& 3 eG) - (3tm €Gn) {

7= Jpralp™ e — S 7).

(iv): It follows from Minty’s theorem [4, Theorem 21.1], that M + pId is surjective if and only if
M is maximally monotone.

(iv)(a): Using Notation 2.1, let us set

L:H—G:az— (Lix) and B:G —29:y— (B;0D;)(y; — 1)) (5.10)

1<i<m 1<is<m”

Then it follows from (5.6) that M = A+ L* o Bo L and from (5.7) that E = L(dom A) — dom B.
Hence, since cone(E) = span(F), in view of [6, Section 24], to conclude that M is maximally
monotone, it is enough to show that B is. For every i € {1,...,m}, since D; is maximally monotone
and strongly monotone, dom D; ' = ran D; = G; [4, Proposition 22.8(ii)] and it follows from [4,
Proposition 20.22 and Corollary 24.4(i)] that B; 0 D; is maximally monotone. This shows that B is
maximally monotone.

(iv)(b): This follows from [16, Proposition 4.3]. O

Remark 5.3 In connection with Proposition 5.2(iv), let us note that even in the simple setting of
normal cone operators in finite dimension, some constraint qualification is required to ensure the
existence of a primal solution for every z € H. To see this, suppose that, in Problem 5.1, H is the
Euclidean plane, m =1, p=1, G =H, L1 =1d, z = (¢1,{), r1 = 0, D1 = {0}~!, A = N, and
By = Nk, where C = {(&1,&) e R? | (& —1)? +& <1} and K = {(&,&) € R? | & <0}. Then
dom(A + By +1d) =domANdom B; = C N K = {0} and the primal inclusion z € AT+ BiT + 7T
reduces to (¢1,¢2) € NoO+ Ng0 = ]—00,0] x {0} + [0, +00[ x {0} = R x {0}, which has no solution
if (2 # 0. Here cone(dom A — dom B;) = cone(C — K) = —K is not a vector subspace.

In the following result we derive from Theorem 4.1 a parallel primal-dual algorithm for solving
Problem 5.1.
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Corollary 5.4 In Problem 5.1, set

5= 1 (5.11)

max — 4 1 Z | L; ||2

1<i<m 1 1< >
<m

Let (ap)nen be an absolutely summable sequence in H, let o € 10,400, and let (n,)nen € €1 (N).
For every i € {1,...,m}, let vig € G;, let (bjn)nen and (din)nen be absolutely summable sequences
in Gi, and let (U; p)nen be a sequence in Py (G;). Suppose that

p = max sup WUin|| <400 and (Vie{l,....m})(VneN) (1+n,)Uins1 = Uin. (5.12)
i neN

Let e € ]0,min{1,28/(n + 1)}[, let (An)nen be a sequence in [,1], and let (yn)nen be a sequence in
e, (26 —¢)/ul. Set

Vn e N _ 5.13
( ) Win = Vin + 'YnUi,n (len — T = Dz LUi,n - dz,n) ( )
Vi1 = Vi + An (Jani,anl (Win) +bin = vz”)
Then the following hold for the solution T to (5.4) and for some solution (v1,...,Um) to (5.5).
(i) (Vie{l,....,m}) vin =T as n — +oo. In addition, T = J,~14(p~(z — > 1%, Li%)).
(ii) zp, =T as n — +o0.
Proof. For every ¢ € {1,...,m}, since D; is maximally monotone and v;-strongly monotone, D, 1

is v;-cocoercive with dom D; ! = ran D; = G; [4, Proposition 22.8(ii)]. Let us define G as in Nota-
tion 2.1, and let us introduce the operators

T:H—H:x—Ja(p(z—2))
A:G =29 v (B;lvi)

[isism (5.14)
D:G—G:vw— (r;+D; 1v,~)1<i<m
L:H—>G: z— (Lix)lgigm
and
(VneN) U,:G—G:v— (Uivnvi)lgz‘gm' (5.15)
(i): In view of (2.4) and (5.14),
A is maximally monotone, (5.16)
D is (minj i< v4)-cocoercive, Lemma 3.7(ii) implies that
—T is p-cocoercive, (5.17)
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while | L|* < Y-, || Li||*. Hence, we derive from (5.11) and Proposition 3.2 that
B =D - LTL" is f-cocoercive. (5.18)
Moreover, it follows from (5.12), (5.15), and (2.4) that
ilelIN)HUnH =p and (VneN) (14+n,)Upt1=U, € Pu(G). (5.19)
Now set
an = (bm) 1<i<m

b, = (dz,n - Lzan)

Uy =

(Vn € N) Lsism (5.20)

(”ivn) 1<i<m

Wn = (wm) 1<i<m”

Then > oy lllanl|| < 400, >, cn l[|bal]]| < 400, and (5.13) can be rewritten as

Wy = Up — VnUn(BUn + bn)

(Vn € N) (5.21)
Up4+1 = U + >\n (J'ynUnA (wn) +a, — 'Un)-
Furthermore, the dual problem (5.5) is equivalent to
find 7€ G suchthat 0€ Av+ Bv (5.22)

which, in view of (5.16), (5.18), and Proposition 5.2(ii), can be solved using (5.21). Altogether, the
claims follow from Theorem 4.1(i) and Proposition 5.2(iii).

(ii): Set (Vn € N) z, = z,, — ay. It follows from (i), (5.13) and (5.14) that
Z=T(L*v) and (VneN) z,=T(L"v,). (5.23)

In turn, we deduce from (5.17), (i), (5.18), and the monotonicity of D that

pllzn = | = p|T(L*v,) — T(L*D)|?
< (L*(v, — ) | T(L'B) — T(Lv,))
< (v, —v | LT(L*0) — LT (L*v,)))
< ({(v, —v | Dv,, — Dv)) — {(v,, — v | LT(L*v,) — LT(L*0)))
= ((v, — v | Bv, — Bv))
< 6| Bvn, — By, (5.24)

where 6 = sup,,cy |||vn, — D||| < 400 by (i). Therefore, it follows from (5.21) and Theorem 4.1(ii)
that ||z, — Z|| — 0. Since a,, — 0 as n — 400, we conclude that =, - T as n — +o0. O

Remark 5.5 Here are some observations on Corollary 5.4.

(i) At iteration n, the vectors ay,, b;n, and d; , model errors in the implementation of the nonlinear
operators. Note also that, thanks to Example 3.9(i), the computation of v; 11 in (5.13) can

be implemented using J%f ULl B, rather than J’YnUi,n B
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(ii) Corollary 5.4 provides a general algorithm for solving strongly monotone composite inclusions
which is new even in the fixed standard metric case, i.e., (Vi € {1,...,m})(Vn € N) U; , = 1d.

The following example describes an application of Corollary 5.4 to strongly convex minimization
problems which extends the primal-dual formulation (5.1)—(5.2) of [13] and solves it with a variable
metric scheme. It also extends the framework of [14], where f = 0 and (Vi € {1,...,m}) £; = 10
and (Vn € N) U; , = 1d.

Example 5.6 Let z € H, let f € ['o(H), let a € ]0,+00], let (nn)nen € €L(N), let (ay)nen be an
absolutely summable sequence in H, and let m be a strictly positive integer. For every i € {1,...,m},
let 7, € G, let g; € T'o(Gi), let v; € ]0,400], let ¢; € T'y(G;) be v;-strongly convex, let v; o € G;,
let (bin)nen and (dipn)nen be absolutely summable sequences in G;, let (U )nen be a sequence in
Pa(G;), and suppose that 0 # L; € B (H,G;). Furthermore, suppose that (see Proposition 5.2(iv)(b)
for special cases)

i=1
The primal problem is

m

1
minimize f(z) + ; (9:04:)(Liz — i) + 5llz = 2%, (5.26)

and the dual problem is

minimize }v*<z - Z Lfvi> + Z (97 (i) + €5 (vi) + (i | 13)). (5.27)
i=1

V1€G1,...,UmEGm =1

Suppose that (5.12) holds, let € € |0, min{1,25/(x + 1)}[, let (A, )nen be a sequence in [e, 1], and let
(Yn)nen be a sequence in [e, (28 — ¢)/p], where § is defined in (5.11) and g in (5.12). Set

_ m *
Sp=2—) i1 Livp
Tp = ProXy Sp + an
Fori=1,...,m

Vn € N . 5.28
( " ) Win = Vin + 'YnUi,n (len — T = vgz (vi,n) - dz,n) ( )
—1
i Vint+l = Vip + An(PTOXV:;} Wi n + bi,n - Ui,n) .
Then (5.26) admits a unique solution T and the following hold for some solution (7y,...,7n) to
(5.27).
(i) (Vie{l,...,m}) v — U as n — +oo. In addition, T = prox,(z — Y| L7;).
(ii) xp, = T as n — +o0.
Proof. Set
p=1 A=0f, and (Vie{l,...,m}) B;=0g; and D;=0¢;. (5.29)
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It follows from [4, Theorem 20.40] that the operators A, (B;)1<i<m, and (D;)1<i<m are maximally
monotone. We also observe that (5.25) implies that (5.3) is satisfied. Moreover, for every i €
{1,...,m}, D; is v;-strongly monotone [4, Example 22.3(iv)], ¢ is Fréchet differentiable on G; [4,
Corollary 13.33 and Theorem 18.15], and D; ' = (9¢;)~' = 9¢f = {V¢} [4, Corollary 16.24 and
Proposition 17.26(i)]. Since, for every ¢ € {1,...,m}, dom ¢ = G;, [4, Proposition 24.27] yields

(Vi € {1, R ,m}) B;OD; = dg; 00¢; = ({9(92 Dgi), (5.30)
while [4, Corollaries 16.24 and 16.38(iii)] yield

Vie{l,...,m}) B;'+D;j'=adg +{vVe}=0(g +1). (5.31)
Moreover, (3.10) implies that (5.28) is a special case of (5.13). Hence, in view of Corollary 5.4, it
remains to show that (5.4) and (5.5) yield (5.26) and (5.27), respectively. Let us set ¢ = | - ||?/2.
We derive from [4, Example 16.33] that

If+q(-—2)) =0f +1d—=. (5.32)

On the other hand, it follows from (5.25) and [4, Proposition 16.5(ii)] that

m m
OF + 0l 2)) 4 Y L 0(@06)) (L =) € 0 S+l =)+ @080 (Li- =) ) 6.33)
i=1 i=1
and that @ — f(z) + Y1t (¢:04;)(Liz — ;) + ||z — 2||?/2 is a strongly convex function in To(H).
Therefore [4, Corollary 11.16] asserts that (5.26) possesses a unique solution Z. Next, we deduce
from (5.32), (5.29), (5.30), and Fermat’s rule [4, Theorem 16.2] that, for every x € H,

x solves (5.4) < ze€df(z)+ Z Li ((0g; 004;)(Liw — 1;)) + @

i—1
& 0eo(f ot~ )@ + (S L0000 (L —r) )@
i—1
= 0¢ (9<f +q(-—2)+ Z(Qzﬂfz‘) o (L; - —Tz)>(33)
i—1
< x solves (5.26). (5.34)

Finally, set L: H — G: x — (Liz),_,_and h: G — |—oco,400]: v = Y7 (g5 (vi) + € (vi) +

(vi | 7). We recall that f* = f*Oqis Fréchet differentiable on A with V f* = prox 7 [4, Remark 14.4].
Hence, it follows from (5.29), (5.31), [4, Proposition 16.8 and Theorem 16.37(i)], and Fermat’s rule
[4, Theorem 16.2] that, for every v = (v;)1<i<m € G,

v solves (5.5) & (Vi e {1,...,m}) r; € L; (JA (z - ZL;v])) — B; 'v; — D My
j=1
e Vie{l,...,m})r; € Li<proxf <z - ZL;UJ)) — (g +£7)(vi)
j=1
= (0,...,0) € —L(VF(Z - L*v)> £ Xog 41+ 7)) (@)

= (- L) (VF(z = L)) + 0h(v) = 0(f* (=~ L") + h) (v)
< v solves (5.27), (5.35)
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which completes the proof. O

We conclude this section with an application to a composite best approximation problem.

Example 5.7 Let z € H, let C be a closed convex subset of H, let a € 0, +oo[, let (17, )nen € €1 (N),
let (an)nen be an absolutely summable sequence in H, and let m be a strictly positive integer. For
every i € {1,...,m}, let r; € G;, let D; be a closed convex subset of G;, let v;o € G;, let (bin)nen
be an absolutely summable sequence in G;, let (U; »)nen be a sequence in Py (G;), and suppose that
0+# L; € B(H,G;). The problem is

minimize ||z — z||. (5.36)
zeC
Lizeri+Dy

L@ €rmt- D
Suppose that (5.12) holds, that (maxi<i<m Suppey |Uinll) Soiey || Lil|* < 2, and that

(r1,...,mm) €sti{(Liz — yi)i<i<m | € C and (Vi € {1,...,m}) y; € D;}. (5.37)
Set

_ moorx
Sp=2— i1 Livip
Tp = PC'Sn + ay
Fori=1,...,m

Wi = Vi + Ui (Littn — 15)

(Vn €N) (5.38)

Ui, -1
Vi1 = Win — Uip <PDZ " (Ui win) + bz‘,n)-

Then (x,)nen converges strongly to the unique solution Z to (5.36).

Proof. Set f =1c and (Vi € {1,...,m}) gi = tp,, &i = t{}, and (Vn € N) 7, = A, = 1 and d;,, = 0.
Then (5.37) and Proposition 5.2(iv)((b))1/ imply that (5.25) is satisfied. Moreover, in view of
Example 3.9(iii), (5.38) is a special case of (5.28). Hence, the claim follows from Example 5.6(ii). O

6 Inclusions involving cocoercive operators

We revisit a primal-dual problem investigated first in [16], and then in [41] with the scenario described
below.

Problem 6.1 Let z € H, let A: H — 27 be maximally monotone, let i € |0, 4+o00|, let C: H — H
be u-cocoercive, and let m be a strictly positive integer. For every i € {1,...,m}, let r; € G;, let
B;: G; — 29 be maximally monotone, let v; € ]0,+o0[, let D;: G; — 29 be maximally monotone
and v;-strongly monotone, and suppose that 0 # L; € B (H,G;). The problem is to solve the primal
inclusion

find T €H suchthat ze€ AT+ Z Li ((BiO D) (LT — ;) + Cx, (6.1)
i=1
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together with the dual inclusion

find 77 € Gy, ..., Uy € G, such that
—-ym Lt e A C
Goen) {7 2imlivicdr+Co (6.2)
(V’L € {1, ce ,m}) V; € (BZDDZ)(sz — T@')-

Corollary 6.2 In Problem 6.1, suppose that

z € ran <A + ZL;‘((B, OD;)(L; - —r5)) + C), (6.3)

i=1

and set

B =min{u,v1,...,Un}. (6.4)

Let € € |10, min{1, B}[, let a € ]0,400[, let (An)nen be a sequence in [e,1], let zg € H, let (an)nen
and (¢p)nen be absolutely summable sequences in H, and let (Up)nen be a sequence in Py (H) such
that (Vn € N) Uyq1 = Up. For every i € {1,...,m}, let vig € Gi, and let (bin)nen and (din)nen be
absolutely summable sequences in G;, and let (U; »)nen be a sequence in Po(G;) such that (Vn € N)
Uint1 = Ui . For everyn € N, set

- -1
6n = < Z H V Uz,nLl V Un||2) - 1’ (65)
=1

and suppose that

o = O > o (6.6)
" (U 0n) max{[|UnlL 1Tl - [ Umnll} ~ 28 — & '
Set
P = Ju, A (mn - Un(2211 Livip + Cxp +cp — z)) + an
Yn = 2Pn — T
Tn+l1 = T + )\n(pn - xn)
(Vn €N) Fori=1,...,m (6.7)
\‘ dijn = JUi,anl <Ui,n + Ui,n (Liyn - Dl'_lvi,n - di,n - Tz)) + bi,n
Vin+1 = Vin + )\n(Qi,n - Ui,n)-
Then the following hold for some solution T to (6.1) and some solution (v1,...,Ty) to (6.2).
(i) zp, =T as n — +o0.
(i) (Vie{l,...,m}) vi,, = 0 as n — +oo.
(iii) Suppose that C is demiregular at T. Then x, — T as n — +00.
(iv) Suppose that, for some j € {1,...,m}, Dj_1 is demiregular at vj. Then v;, — Vj as n — +00.
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Proof. Define G as in Notation 2.1 and set IC = H & G. We denote the scalar product and the norm
of IC by (((- | -))) and ||| - ||||, respectively. As shown in [16, 41], the operators

A= 25 (zyug,. o) = (00 Livg — 2+ Ax) x (r1 — Lz + By hog) x ..o %
(7 — L + B o)
B:K—K:(x,v1,...,0p) (Cm,Dl_lvl,...,D;fvm) (6.8)

S:K—=K: (z,v1,...,0n)— (Zglevi,—le,...,—me>

\

are maximally monotone and, moreover, B is 8-cocoercive [41, Eq. (3.12)]. Furthermore, as shown
in [16, Section 3], under condition (6.3), zer(A + B) # & and

(z,v) € zer(A+ B) = T solves (6.1) and v solves (6.2). (6.9)
Next, for every n € N, define

Uy: K= K: (z,v1,...,0m) — (Unx,Ul,nvl,...,Um,nvm>

Vi K=K (2,01, 0m) = (Upte =30 Livg, (— Liz + Ui,nlyi)Kigm) (6.10)
T, H—>G:x— («/U1,nL19U, cee Umanmx>.

It follows from our assumptions and Lemma 3.1(iii) that

(VneN) Upp1 = U, € Py (K) and [|U,Y| < (6.11)

1
a

Moreover, for every n € N, V,, € § (K) since U,, € 8§ (K). In addition, (6.10) and (6.11) yield

1 m
(neN) [Val < IO +1SI <p, where p==+ |3 L2 (6.12)
=1

On the other hand,

Ui —1
(vneN) (Ve e H) [|Tazll? = |VUinkivVUa\V/Un 2|
i=1
< )2 Z VT i/ U
=1

= muxnﬁ,;h (6.13)
where (Yn € N) 8, = > || \/UinLivVU H Hence, (6.5) yields
1
(VneN) (1+46,)58, = s (6.14)
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Lemma 3.1(ii), and (6.6

({({z | Vaz))) =

Therefore, for every n € N and every * = (z,v1,...,v,) € K, using (6.10), (6.13), (6.14),
), we obtain
<x ] U;1x> + Z <v,~ ] Ul_nlvz> — 22 (Lix | vy)
' i=1
“ -1
= |l=]2 1 + Z il =23~ (VUinLiw | VTin0i)
i=1
el + 3 ol
i=1 ’
-1 —1 —1
- << (1 + 0 )/871 Tnx | \/(1 + 6n)ﬁn(\/Ul,n V1y..., Um,n vm)>>

> Jle|? _1+Zuv@||2 _1—<
a2, .

> e 1+Zuvzu —( e
s (\|:c||2_1+2uv@u2 )

T ][]
1+0,)5n

On _ _
<||Un|| el + 3 Vsl 1||viu2>

REALS SECRY
(1+6n) ﬁnz HUZHQ >

1 T 5 i=1
> Galllla 112, (6.15)
In turn, it follows from Lemma 3.1(iii) and (6.6) that
1
(YneN) |V 1 < o <28 —e. (6.16)

Moreover, by Lemma 3.1(i), (Vn € N) (U1 = U, = U}

-1
= Un+1 =V,

-1
= Vn+1 = Vn+1 =

V. 1). Furthermore, we derive from Lemma 3.1(ii) and (6.12) that
-1 -1 2 1 2
(Ve e i) (Vi z[x) = [Val llll2lllI” = —[lll=[||I"- (6.17)
Altogether,
sup [V 1| <28 —¢ and (YneN) Vi, =V, e? ,(K). (6.18)
neN
Now set, for every n € N,
Ty = (xn, Vl,n, 5 vm,n)
Yn = (pna q1,n, an,n)
an = (an; b1 -5 bmn) and b, = (54 Vy)a, +cp — dy. (6.19)
Cp = (Cn7 dl,n7 7dm,n)
dp = (U an, Uy pbin, -, U ubinn)
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Then 3, cn llanllll < +00, Soellllenllll < +00, and Senlllldallll < -+o0. Therefore (6.12)
implies that >y |[||bnl||] < +00. Furthermore, using the same arguments as in [41, Eqgs. (3.22)-
(3.35)], we derive from (6.7) and (6.8) that

(VneN) x4 =x,+ Ny <JV;1A(a:n -V Bz, + bn)) +a, — a:n> (6.20)

We observe that (6.20) has the structure of the variable metric forward-backward splitting algorithm
(4.3), where (Vn € N) v, = 1. Finally, (6.16) and (6.18) imply that all the conditions in Theorem 4.1
are satisfied.

(1)&(ii): Theorem 4.1(i) asserts that there exists
T = (T,1,...,0m) € zer(A+ B) (6.21)

such that &, — T as n — +o00. In view of (6.9), the assertions are proved.

(iii)&(iv): It follows from Theorem 4.1(ii) that Bx,, — B® as n — +oo. Hence, (6.8), (6.19),
and (6.21) yield
Cx, — CT and (W e{l,... ,m}) Dflvi,n — D;lv_i as n — +oo. (6.22)

(2

Hence the results follow from (i)&(ii) and Definition 3.14. O

Remark 6.3 In the case when C' = pId for some p € ]0, 4+o00[, Problem 6.1 reduces to Problem 5.1.
However, the algorithm obtained in Corollary 5.2 is quite different from that of Corollary 6.2. Indeed,
the former was obtained by applying the forward-backward algorithm (4.3) to the dual inclusion,
which was made possible by the strong monotonicity of the primal problem. By contrast, the latter
relies on an application of (4.3) in a primal-dual product space.

Example 6.4 Let z € H, let f € To(H), let u € ]0,+00], let h: H — R be convex and differentiable
with a p~!-Lipschitzian gradient, let (a,)nen and (¢, )nen be absolutely summable sequences in H,
let a € ]0,+00], let m be a strictly positive integer, and let (U, )nen be a sequence in P, (H) such
that (Vn € N) U,41 = Uy,. For every i € {1,...,m}, let r; € G;, let g; € T'9(G;), let v; € |0, +00], let
¢; € T9(G;) be v-strongly convex, let v; g € G;, let (b n)nen and (d;,)nen be absolutely summable
sequences in G;, suppose that 0 # L; € B (H,G;), and let (U;n)nen be a sequence in Py (G;) such
that (Vn € N) U; p41 = U, . Furthermore, suppose that

z € ran <8f + ZL:(agi 000;)(L; - —r;) + Vh>. (6.23)
i=1

The primal problem is

m

mirmliG%ize flx)+ Z:(gZ 06;)(Liz —1i) + h(z) — (z | 2), (6.24)
i=1

and the dual problem is

minimize  (f*0OA") (z — ZL?U,) + Z (97 (i) + €5 (v5) + (i | r4) ). (6.25)

V1€G1,...,umE ‘ ‘
1 gl m gm i=1 i=1
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Let 8 = min{u,v1,...,vn}, let € € |0, min{l, S}[, let (A\,)nen be a sequence in [, 1], suppose that
(6.6) holds, and set

—1

Pn = proxg{" (mn — Un(2211 L¥vip + Vh(zy) + cp — z)) + an,
Yn = 2Pp — T
Tn+l1 = T + )\n(pn - xn)
(Vn € N) Fori=1,...,m (6.26)
U;ri %
\‘ Qin = PI“OXg;’ (Ui,n + Ui,n (Llyn - Vﬁz (Ui,n) - di,n - Tz)) + bi,n
L Vin+1 = Vin + )\n(Qi,n - Ui,n)-
Then (xy,)nen converges weakly to a solution to (6.24), for every ¢ € {1,...,m} (vin)nen converges
weakly to some 7; € G;, and (U1, ...,7y,,) is a solution to (6.25).

Proof. Set A=090f, C =Vh,and (Vi € {1,...,m}) B; = dg; and D; = 9¢;. In this setting, it follows
from the analysis of [16, Section 4] that (6.24)—(6.25) is a special case of Problem 6.1 and, using
(3.10), that (6.26) is a special case of (6.7). Thus, the claims follow from Corollary 6.2(i)&(ii). O

Remark 6.5 Suppose that, in Corollary 6.2 and Example 6.4, there exist 7 and (0;)1<i<m in |0, +00]
such that (Vn € N) U, = 71d and (Vi € {1,...,m}) U;, = 0;1d. Then (6.7) and (6.26) reduce to
the fixed metric methods appearing in [41, Eq. (3.3)] and [41, Eq. (4.5)], respectively (see [41] for
further connections with existing work).
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