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We propose a variable metric forward-backward splitting algorithm and prove its convergence in real Hilbert spaces. We then use this framework to derive primal-dual splitting algorithms for solving various classes of monotone inclusions in duality. Some of these algorithms are new even when specialized to the fixed metric case. Various applications are discussed.

Introduction

The forward-backward algorithm has a long history going back to the projected gradient method (see [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] for historical background). It addresses the problem of finding a zero of the sum of two operators acting on a real Hilbert space H, namely, find x ∈ H such that 0 ∈ Ax + Bx, (1.1) under the assumption that A : H → 2 H is maximally monotone and that B : H → H is β-cocoercive for some β ∈ ]0, +∞[, i.e. [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF],

(∀x ∈ H)(∀y ∈ H) x -y | Bx -By β Bx -By 2 . (1.2)
This framework is quite central due to the large class of problems it encompasses in areas such as partial differential equations, mechanics, evolution inclusions, signal and image processing, best approximation, convex optimization, learning theory, inverse problems, statistics, game theory, and variational inequalities [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Briceño-Arias | Monotone operator methods for Nash equilibria in nonpotential games[END_REF][START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Vito | A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Glowinski | Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF][START_REF] Zhu | Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[END_REF]. The forward-backward algorithm operates according to the routine

x 0 ∈ H and (∀n ∈ N) x n+1 = (Id +γ n A) -1 (x n -γ n Bx n ), where 0 < γ n < 2β. (1.3) In classical optimization methods, the benefits of changing the underlying metric over the course of the iterations to improve convergence profiles has long been recognized [START_REF] Davidon | Variable metric method for minimization[END_REF][START_REF] Pearson | Variable metric methods of minimisation[END_REF]. In proximal methods, variable metrics have been investigated mostly when B = 0 in (1.1). In such instances (1.3) reduces to the proximal point algorithm

x 0 ∈ H and (∀n ∈ N) x n+1 = (Id +γ n A) -1 x n , where γ n > 0.

(1.4)

In the case when A is the subdifferential of a real-valued convex function in a finite dimensional setting, variable metric versions of (1.4) have been proposed in [START_REF] Bonnans | A family of variable metric proximal methods[END_REF][START_REF] Chen | Proximal quasi-Newton methods for nondifferentiable convex optimization[END_REF][START_REF] Lemaréchal | Variable metric bundle methods: from conceptual to implementable forms[END_REF][START_REF] Qi | A preconditioning proximal Newton method for nondifferentiable convex optimization[END_REF]. These methods draw heavily on the fact that the proximal point algorithm for minimizing a function corresponds to the gradient descent method applied to its Moreau envelope. In the same spirit, variable metric proximal point algorithms for a general maximally monotone operator A were considered in [START_REF] Burke | A variable metric proximal point algorithm for monotone operators[END_REF][START_REF] Qian | The Variable Metric Proximal Point Algorithm: Theory and Application[END_REF].

In [START_REF] Burke | A variable metric proximal point algorithm for monotone operators[END_REF], superlinear convergence rates were shown to be achievable under suitable hypotheses (see also [START_REF] Burke | On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating[END_REF] for further developments). The finite dimensional variable metric proximal point algorithm proposed in [START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF] allows for errors in the proximal steps and features a flexible class of exogenous metrics to implement the algorithm. The first variable metric forward-backward algorithm appears to be that introduced in [10, Section 5]. It focuses on linear convergence results in the case when A + B is strongly monotone and H is finite-dimensional. The variable metric splitting algorithm of [START_REF] Lotito | A class of variable metric decomposition methods for monotone variational inclusions[END_REF] provides a framework which can be used to solve (1.1) in instances when H is finite-dimensional and B is merely Lipschitzian. However, it does not exploit the cocoercivity property (1.2) and it is more cumbersome to implement than the forward-backward iteration. Let us add that, in the important case when B is the gradient of a convex function, the Baillon-Haddad theorem asserts that the notions of cocoercivity and Lipschitz-continuity coincide [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 18.16].

The goal of this paper is two-fold. First, we propose a general purpose variable metric forwardbackward algorithm to solve (1.1)-(1.2) in Hilbert spaces and analyze its asymptotic behavior, both in terms of weak and strong convergence. Second, we show that this algorithm can be used to solve a broad class of composite monotone inclusion problems in duality by formulating them as instances of (1.1)- (1.2) in alternate Hilbert spaces. Even when restricted to the constant metric case, some of these results are new.

The paper is organized as follows. Section 2 is devoted to notation and background. In Section 3, we provide preliminary results. The variable metric forward-backward algorithm is introduced and analyzed in Section 4. In Section 5, we present a new variable metric primal-dual splitting algorithm for strongly monotone composite inclusions. This algorithm is obtained by applying the forwardbackward algorithm of Section 4 to the dual inclusion. In Section 6, we consider a more general class of composite inclusions in duality and show that they can be solved by applying the forwardbackward algorithm of Section 4 to a certain inclusion problem posed in the primal-dual product space. Applications to minimization problems, variational inequalities, and best approximation are discussed.

Notation and background

We recall some notation and background from convex analysis and monotone operator theory (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] for a detailed account).

Throughout, H, G, and (G i ) 1 i m are real Hilbert spaces. We denote the scalar product of a Hilbert space by • | • and the associated norm by • . The symbols ⇀ and → denote respectively weak and strong convergence, and Id denotes the identity operator. We denote by B (H, G) the space of bounded linear operators from H to G, we set B (H) = B (H, H) and S (H) = L ∈ B (H) | L = L * , where L * denotes the adjoint of L. The Loewner partial ordering on S (H) is defined by

(∀U ∈ S (H))(∀V ∈ S (H)) U V ⇔ (∀x ∈ H) U x | x V x | x . (2.1)
Now let α ∈ [0, +∞[. We set

P α (H) = U ∈ S (H) | U α Id , (2.2) 
and we denote by √ U the square root of U ∈ P α (H). Moreover, for every U ∈ P α (H), we define a semi-scalar product and a semi-norm (a scalar product and a norm if α > 0) by

(∀x ∈ H)(∀y ∈ H) x | y U = U x | y and x U = U x | x . (2.3) Notation 2.1 We denote by G = G 1 ⊕• • •⊕G m the Hilbert direct sum of the Hilbert spaces (G i ) 1 i m , i.e.
, their product space equipped with the scalar product and the associated norm respectively defined by

• | • : (x, y) → m i=1 x i | y i and ||| • ||| : x → m i=1 x i 2 , (2.4) 
where x = (x i ) 1 i m and y = (y i ) 1 i m denote generic elements in G.

Let A : H → 2 H be a set-valued operator. The domain and the graph of A are respectively defined by dom

A = x ∈ H | Ax = ∅ and gra A = (x, u) ∈ H × H | u ∈ Ax . We denote by zer A = x ∈ H | 0 ∈ Ax the set of zeros of A and by ran A = u ∈ H | (∃ x ∈ H) u ∈ Ax the range of A. The inverse of A is A -1 : H → 2 H : u → x ∈ H | u ∈ Ax , and the resolvent of A is J A = (Id +A) -1 .
(2.5)

Moreover, A is monotone if (∀(x, y) ∈ H × H)(∀(u, v) ∈ Ax × Ay) x -y | u -v 0, (2.6) 
and maximally monotone if it is monotone and there exists no monotone operator B : H → 2 H such that gra A ⊂ gra B and A = B. The parallel sum of A and B :

H → 2 H is A B = (A -1 + B -1 ) -1 . (2.7)
The conjugate of f : H → ]-∞, +∞] is

f * : H → [-∞, +∞] : u → sup x∈H x | u -f (x) , (2.8) 
and the infimal convolution of f with g : H → ]-∞, +∞] is

f g : H → [-∞, +∞] : x → inf y∈H f (y) + g(x -y) .
(2.9)

The class of lower semicontinuous convex functions f :

H → ]-∞, +∞] such that dom f = x ∈ H | f (x) < +∞ = ∅ is denoted by Γ 0 (H). If f ∈ Γ 0 (H), then f * ∈ Γ 0 (H)
and the subdifferential of f is the maximally monotone operator

∂f : H → 2 H : x → u ∈ H | (∀y ∈ H) y -x | u + f (x) f (y) (2.10)
with inverse (∂f ) -1 = ∂f * . Let C be a nonempty subset of H. The indicator function and the distance function of C are defined on H as

ι C : x → 0, if x ∈ C; +∞, if x / ∈ C and d C = ι C • : x → inf y∈C x -y . (2.11)
respectively. The interior of C is int C and the support function of C is σ C = ι * C . Now suppose that C is convex. The normal cone operator of C is defined as

N C = ∂ι C : H → 2 H : x → u ∈ H | (∀y ∈ C) y -x | u 0 , if x ∈ C; ∅, otherwise.
(2.12)

The strong relative interior of C, i.e., the set of points x ∈ C such that the conical hull of -x + C is a closed vector subspace of H, is denoted by sri C; if H is finite-dimensional, sri C coincides with the relative interior of C, denoted by ri C. If C is also closed, its projector is denoted by P C , i.e., P C : H → C : x → argmin y∈C x -y .

Finally, ℓ 1 + (N) denotes the set of summable sequences in [0, +∞[.

Preliminary results

Technical results

The following properties can be found in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] 

(i) α -1 Id B -1 A -1 µ -1 Id. (ii) (∀x ∈ H) A -1 x | x A -1 x 2 . (iii) A -1 α -1 .
The next fact concerns sums of composite cocoercive operators.

Proposition 3.2 Let I be a finite index set. For every i ∈ I,

let 0 = L i ∈ B (H, G i ), let β i ∈ ]0, +∞[, and let T i : G i → G i be β i -cocoercive. Set T = i∈I L * i T i L i and β = 1/ i∈I L i 2 /β i . Then T is β-cocoercive. Proof. Set (∀i ∈ I) α i = β L i 2 /β i .
Then i∈I α i = 1 and, using the convexity of • 2 and (1.2), we have

(∀x ∈ H)(∀y ∈ H) x -y | T x -T y = i∈I x -y | L * i T i L i x -L * i T i L i y = i∈I L i x -L i y | T i L i x -T i L i y i∈I β i T i L i x -T i L i y 2 i∈I β i L i 2 L * i T i L i x -L * i T i L i y 2 = β i∈I α i 1 α i (L * i T i L i x -L * i T i L i y) 2 β i∈I (L * i T i L i x -L * i T i L i y) 2 = β T x -T y 2 , (3.1) 
which concludes the proof.

Variable metric quasi-Fejér sequences

The following results are from [START_REF] Combettes | Variable metric quasi-Fejér monotonicity[END_REF]. 

Proposition
∃ (η n ) n∈N ∈ ℓ 1 + (N) ∀z ∈ C ∃ (ε n ) n∈N ∈ ℓ 1 + (N) (∀n ∈ N) x n+1 -z W n+1 (1 + η n ) x n -z Wn + ε n . (3.2)
Then (x n ) n∈N is bounded and, for every z ∈ C, ( x n -z Wn ) n∈N converges.

Proposition 3.4 Let α ∈ ]0, +∞[, and let (W n ) n∈N and W be operators in P α (H) such that W n → W pointwise as n → +∞, as is the case when 

sup n∈N W n < +∞ and (∃ (η n ) n∈N ∈ ℓ 1 + (N))(∀n ∈ N) (1 + η n )W n W n+1 . ( 3 
∃ (ε n ) n∈N ∈ ℓ 1 + (N) ∃ (η n ) n∈N ∈ ℓ 1 + (N) (∀z ∈ C)(∀n ∈ N) x n+1 -z W n+1 (1 + η n ) x n -z Wn + ε n . (3.
∃ (ε n ) n∈N ∈ ℓ 1 + (N) ∃ (η n ) n∈N ∈ ℓ 1 + (N) (∀x ∈ B(z; ρ))(∀n ∈ N) x n+1 -x 2 W n+1 (1 + η n ) x n -x 2 Wn + ε n . (3.5)
Then (x n ) n∈N converges strongly.

Monotone operators

We establish some results on monotone operators in a variable metric environment.

Lemma 3.7 Let A : H → 2 H be maximally monotone, let α ∈ ]0, +∞[, let U ∈ P α (H), and let G be the real Hilbert space obtained by endowing H with the scalar product (x, y)

→ x | y U -1 = x | U -1 y .
Then the following hold.

(i) U A : G → 2 G is maximally monotone. (ii) J U A : G → G is 1-cocoercive, i.e.
, firmly nonexpansive, hence nonexpansive.

(iii) J U A = (U -1 + A) -1 • U -1 .
Proof. (i): Set B = U A and V = U -1 . For every (x, u) ∈ gra B and every (y, v) ∈ gra B, V u ∈ V Bx = Ax and V v ∈ V By = Ay, so that

x -y | u -v V = x -y | V u -V v 0 (3.6)
by monotonicity of A on H. This shows that B is monotone on G. Now let (y, v) ∈ H 2 be such that

(∀(x, u) ∈ gra B) x -y | u -v V 0. (3.7) 
Then, for every (x, u) ∈ gra A, (x, U u) ∈ gra B and we derive from (3.7) that

x -y | u -V v = x -y | U u -v V 0. (3.8)
Since A is maximally monotone on H, (3.8) gives (y, V v) ∈ gra A, which implies that (y, v) ∈ gra B. Hence, B is maximally monotone on G.

(ii): This follows from (i) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 23.8].

(iii): Let x and p be in G.

Then p = J U A x ⇔ x ∈ p + U Ap ⇔ U -1 x ∈ (U -1 + A)p ⇔ p = (U -1 + A) -1 (U -1 x). Remark 3.8 let α ∈ ]0, +∞[, let U ∈ P α (H), set f : H → R : x → U -1 x | x /2,
and let D : (x, y) → f (x) -f (y) -x -y | ∇f (y) be the associated Bregman distance. Then Lemma 3.7(iii) asserts that J U A = (∇f + A) -1 • ∇f . In other words, J U A is the D-resolvent of A introduced in [3, Definition 3.7].

Let U ∈ P α (H) for some α ∈ ]0, +∞[. The proximity operator of f ∈ Γ 0 (H) relative to the metric induced by U is [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]Section XV.4]

prox U f : H → H : x → argmin y∈H f (y) + 1 2 x -y 2 U , (3.9) 
and the projector onto a nonempty closed convex subset C of H relative to the norm • U is denoted by

P U C . We have prox U f = J U -1 ∂f and P U C = prox U ι C , (3.10) 
and we write prox Id f = prox f . In the case when U = Id in Lemma 3.7, examples of closed form expressions for J U A and basic resolvent calculus rules can be found in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF]. A few examples illustrating the case when U = Id are provided below. The first result is an extension of the well-known resolvent identity

J A + J A -1 = Id.
Example 3.9 Let α ∈ ]0, +∞[, let γ ∈ ]0, +∞[, and let U ∈ P α (H). Then the following hold.

(i) Let A : H → 2 H be maximally monotone. Then

J γU A = √ U J γ √ U A √ U √ U -1 = Id -γU J γ -1 U -1 A -1 (γ -1 U -1 ). (3.11) (ii) Let f ∈ Γ 0 (H). Then prox U γf = √ U -1 prox γf • √ U -1 √ U = Id -γU -1 prox U -1 γ -1 f * (γ -1 U ). (iii) Let C be a nonempty closed convex subset of H. Then prox U γσ C = √ U -1 prox γσ C • √ U -1 √ U = Id -γU -1 P U -1 C (γ -1 U ).
Proof. (i): Let x and p be in H. Then

p = J γU A x ⇔ x -p ∈ γU Ap ⇔ √ U -1 x - √ U -1 p ∈ γ √ U A √ U √ U -1 p ⇔ √ U -1 p = J γ √ U A √ U √ U -1 x ⇔ p = √ U J γ √ UA √ U √ U -1 x . (3.12) Furthermore, by [4, Proposition 23.23(ii)], J √ U (γA) √ U = Id - √ U U + (γA) -1 -1 √ U .
Hence, (3.12) yields

J γU A = Id -U U + (γA) -1 -1 .
(3.13)

However p = U + (γA) -1 -1 x ⇔ x ∈ U p + (γA) -1 p ⇔ γ -1 p ∈ A(x -U p) ⇔ x -U p ∈ A -1 (γ -1 p) ⇔ γ -1 U -1 x ∈ Id +γ -1 U -1 A -1 (γ -1 p) ⇔ γ -1 p = J γ -1 U -1 A -1 (γ -1 U -1 x). (3.14) Hence, (U + (γA) -1 ) -1 = γJ γ -1 U -1 A -1 (γ -1 U -1
) and, using (3.13), we obtain the rightmost identity in (i).

(ii): Apply (i) to A = ∂f , and use (3.10) and the fact that

∂(f • √ U -1 ) = ( √ U -1 ) * •(∂f )• √ U -1 = √ U -1 • (∂f ) • √ U -1 [4, Corollary 16.42(i)].
(iii): Apply (ii) to f = σ C , and use (3.10).

Example 3.10 Define G as in Notation 2.1, let α ∈ R, and, for every i ∈ {1, . . . , m}, let

A i : G i → 2 G i be maximally monotone and let U i ∈ P α (G i ). Set A : G → 2 G : (x i ) 1 i m → × m i=1 A i x i and U : G → G : (x i ) 1 i m → (U i x i ) 1 i m . Then U A is maximally monotone and (∀(x i ) 1 i m ∈ G) J U A (x i ) 1 i m = (J U i A i x i ) 1 i m . (3.15)
Proof. This follows from Lemma 3.7(i) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 23.16].

Example 3.11 Let α ∈ ]0, +∞[, let ξ ∈ R, let U ∈ P α (H), let φ ∈ Γ 0 (R), suppose that 0 = u ∈ H, and set H = x ∈ H | x | u ξ and g = φ( • | u ). Then g ∈ Γ 0 (H) and (∀x ∈ H) prox U g x = x + prox √ U -1 u 2 φ x | u -x | u √ U -1 u 2 U -1 u (3.16) 
and

P U H x =    x, if x | u ξ; x + ξ -x | u u | U -1 u U -1 u, if x | u > ξ.
(3.17)

Proof. It follows from Example 3.9(ii) that

(∀x ∈ H) prox U g x = √ U -1 prox g• √ U -1 √ U x. (3.18) Moreover, g • √ U -1 = φ( • | √ U -1 u
). Hence, using (3.18) and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 23.33], we obtain

(∀x ∈ H) prox U g x = √ U -1 prox φ( •| √ U -1 u ) √ U x = x + prox √ U -1 u 2 φ x | u -x | u √ U -1 u 2 U -1 u. (3.19)
Finally, upon setting φ = ι ]-∞,ξ] , we obtain (3.17) from (3.16).

Example 3.12 Let α ∈ ]0, +∞[, let γ ∈ R, let A ∈ P 0 (H), let u ∈ H, let U ∈ P α (H), and set ϕ : H → R : x → Ax | x /2 + x | u + γ. Then ϕ ∈ Γ 0 (H) and (∀x ∈ H) prox U ϕ x = (Id +U -1 A) -1 (x -U -1 u). (3.20) Proof. Let x ∈ H. Then p = prox U ϕ x ⇔ x -p = U -1 ∇ϕ(p) ⇔ x -p = U -1 (Ap + u) ⇔ x -U -1 u = (Id +U -1 A)p ⇔ p = (Id +U -1 A) -1 (x -U -1 u). Example 3.13 Let α ∈ ]0, +∞[ and let U ∈ P α (H). For every i ∈ {1, . . . , m}, let r i ∈ G i , let ω i ∈ ]0, +∞[, and let L i ∈ B (H, G i ). Set ϕ : x → (1/2) m i=1 ω i L i x -r i 2 . Then ϕ ∈ Γ 0 (H) and (∀x ∈ H) prox U ϕ x = Id +U -1 m i=1 ω i L * i L i -1 x + U -1 m i=1 ω i L * i r i . (3.21)
Proof. We have ϕ : (i) A is uniformly monotone at x, i.e., there exists an increasing function φ

x → Ax | x /2 + x | u + γ, where A = m i=1 ω i L * i L i , u = -m i=1 ω i L * i r i , and γ = m i=1 ω i r i 2 /2.
: [0, +∞[ → [0, +∞] that vanishes only at 0 such that (∀u ∈ Ax)(∀(y, v) ∈ gra A) x -y | u -v φ( x -y ).
(ii) A is strongly monotone, i.e., there exists α ∈ ]0, +∞[ such that A -α Id is monotone.

(iii) J A is compact, i.e., for every bounded set C ⊂ H, the closure of J A (C) is compact. In particular, dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed ball is compact.

(iv) A : H → H is single-valued with a single-valued continuous inverse.

(v) A is single-valued on dom A and Id -A is demicompact, i.e., for every bounded sequence (x n ) n∈N in dom A such that (Ax n ) n∈N converges strongly, (x n ) n∈N admits a strong cluster point.

(vi) A = ∂f , where f ∈ Γ 0 (H) is uniformly convex at x, i.e., there exists an increasing function

φ : [0, +∞[ → [0, +∞] that vanishes only at 0 such that (∀α ∈ ]0, 1[)(∀y ∈ dom f ) f αx + (1 - α)y + α(1 -α)φ( x -y ) αf (x) + (1 -α)f (y). (vii) A = ∂f , where f ∈ Γ 0 (H) and, for every ξ ∈ R, x ∈ H | f (x) ξ is boundedly compact.

Algorithm and convergence

Our main result is stated in the following theorem. 

Theorem 4.1 Let A : H → 2 H be maximally monotone, let α ∈ ]0, +∞[, let β ∈ ]0, +∞[, let B : H → H be β-cocoercive, let (η n ) n∈N ∈ ℓ 1 + (N), and let (U n ) n∈N be a sequence in P α (H) such that µ = sup n∈N U n < +∞ and (∀n ∈ N) (1 + η n )U n+1 U n . (4.1) Let ε ∈ ]0, min{1, 2β/(µ + 1)}[, let (λ n ) n∈N be a sequence in [ε, 1], let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ], let x 0 ∈ H,
Z = zer(A + B) = ∅, (4.2) 
and set

(∀n ∈ N) y n = x n -γ n U n (Bx n + b n ) x n+1 = x n + λ n J γnUnA (y n ) + a n -x n . (4.3)
Then the following hold for some x ∈ Z.

(i) x n ⇀ x as n → +∞.

(ii) n∈N Bx n -Bx 2 < +∞. (iii) Suppose that one of the following holds. (c) int Z = ∅ and there exists

(ν n ) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) (1 + ν n )U n U n+1 . Then x n → x as n → +∞. Proof. Set (∀n ∈ N) A n = γ n U n A B n = γ n U n B and      p n = J An y n q n = J An (x n -B n x n ) s n = x n + λ n (q n -x n ). (4.4)
Then (4.3) can be written as

(∀n ∈ N) x n+1 = x n + λ n (p n + a n -x n ). (4.5)
On the other hand, (4.1) and Lemma 3.

1(i)&(iii) yield (∀n ∈ N) U -1 n 1 α , U -1 n ∈ P 1/µ (H), and (1 + η n )U -1 n U -1 n+1 (4.6)
and, therefore,

(∀n ∈ N)(∀x ∈ H) (1 + η n ) x 2 U -1 n x 2 U -1 n+1 . (4.7)
Hence, we derive from (4.5), (4.4), Lemma 3.7(ii), (4.6) and (4.1) that

(∀n ∈ N) x n+1 -s n U -1 n λ n a n U -1 n + p n -q n U -1 n a n U -1 n + y n -x n + B n x n U -1 n a n U -1 n + γ n U n b n U -1 n U -1 n a n + γ n U n b n 1 √ α a n + 2β -ε √ µ b n . (4.8) Now let z ∈ Z. Since B is β-cocoercive, (∀n ∈ N) x n -z | Bx n -Bz β Bx n -Bz 2 . (4.9)
On the other hand, it follows from (4.1) that

∀n ∈ N B n x n -B n z 2 U -1 n γ 2 n U n Bx n -Bz 2 γ 2 n µ Bx n -Bz 2 . (4.10)
We also note that, since -Bz ∈ Az, (4.4) yields

∀n ∈ N z = J An (z -B n z). (4.11)
Altogether, it follows from (4.4), (4.11), Lemma 3.7(ii), (4.9), and (4.10) that

(∀n ∈ N) q n -z 2 U -1 n (x n -z) -(B n x n -B n z) 2 U -1 n -(x n -q n ) -(B n x n -B n z) 2 U -1 n = x n -z 2 U -1 n -2 x n -z | B n x n -B n z U -1 n + B n x n -B n z 2 U -1 n -(x n -q n ) -(B n x n -B n z) 2 U -1 n = x n -z 2 U -1 n -2γ n x n -z | Bx n -Bz + B n x n -B n z 2 U -1 n -(x n -q n ) -(B n x n -B n z) 2 U -1 n x n -z 2 U -1 n -γ n (2β -µγ n ) Bx n -Bz 2 -(x n -q n ) -(B n x n -B n z) 2 U -1 n x n -z 2 U -1 n -ε 2 Bx n -Bz 2 -(x n -q n ) -(B n x n -B n z) 2 U -1 n . (4.12)
In turn, we derive from (4.7) and (4.4) that

(∀n ∈ N) (1 + η n ) -1 s n -z 2 U -1 n+1 s n -z 2 U -1 n (1 -λ n ) x n -z 2 U -1 n + λ n q n -z 2 U -1 n x n -z 2 U -1 n -ε 3 Bx n -Bz 2 -ε (x n -q n ) -(B n x n -B n z) 2 U -1 n , (4.13) 
which implies that

(∀n ∈ N) s n -z 2 U -1 n+1 (1 + η n ) x n -z 2 U -1 n -ε 3 Bx n -Bz 2 -ε (x n -q n ) -(B n x n -B n z) 2 U -1 n (4.14) δ 2 x n -z 2 U -1 n , (4.15) 
where

δ = sup n∈N 1 + η n . (4.16)
Next, we set 

(∀n ∈ N) ε n = δ 1 √ α a n + 2β -ε √ µ b n . ( 4 
(∀n ∈ N) x n+1 -z U -1 n+1 x n+1 -s n U -1 n+1 + s n -z U -1 n+1 1 + η n x n+1 -s n U -1 n + 1 + η n x n -z U -1 n δ x n+1 -s n U -1 n + 1 + η n x n -z U -1 n 1 + η n x n -z U -1 n + ε n (1 + η n ) x n -z U -1 n + ε n . (4.19)
In view of (4.6), (4.18), and (4. [START_REF] Davidon | Variable metric method for minimization[END_REF], we can apply Proposition 3.3 to assert that ( x n -z U -1 n ) n∈N converges and, therefore, that

ζ = sup n∈N x n -z U -1 n < +∞. (4.20)
On the other hand, (4.7), (4.8), and (4.17) yield

(∀n ∈ N) x n+1 -s n 2 U -1 n+1 (1 + η n ) x n+1 -s n 2 U -1 n ε 2 n . (4.21) 
Hence, using (4.14), (4.15), (4.16), and (4.20), we get

(∀n ∈ N) x n+1 -z 2 U -1 n+1 s n -z 2 U -1 n+1 + 2 s n -z U -1 n+1 x n+1 -s n U -1 n+1 + x n+1 -s n 2 U -1 n+1 (1 + η n ) x n -z 2 U -1 n -ε 3 Bx n -Bz 2 -ε x n -q n -B n x n + B n z 2 U -1 n + 2δζε n + ε 2 n x n -z 2 U -1 n -ε 3 Bx n -Bz 2 -ε x n -q n -B n x n + B n z 2 U -1 n + ζ 2 η n + 2δζε n + ε 2 n . (4.22) 
Consequently, for every N ∈ N,

ε 3 N n=0 Bx n -Bz 2 x 0 -z 2 U -1 0 -x N +1 -z 2 U -1 N+1 + N n=0 ζ 2 η n + 2δζε n + ε 2 n ζ 2 + N n=0 ζ 2 η n + 2δζε n + ε 2 n . (4.23) 
Appealing to (4.18) and the summability of (η n ) n∈N , taking the limit as N → +∞, yields

n∈N Bx n -Bz 2 1 ε 3 ζ 2 + n∈N ζ 2 η n + 2δζε n + ε 2 n < +∞. (4.24)
We likewise derive from (4.22) that 

n∈N x n -q n -B n x n + B n z 2 U -1 n < +∞. ( 4 
(∀n ∈ N) u n = 1 γ n U -1 n (x n -q n ) -Bx n . (4.27) 
Then it follows from (4.4) that

(∀n ∈ N) u n ∈ Aq n . (4.28) 
In addition, (4.4), (4.6), and (4.25) yield

u n + Bx = 1 γ n U -1 n (x n -q n -B n x n + B n x) 1 εα x n -q n -B n x n + B n x √ µ εα x n -q n -B n x n + B n x U -1 n → 0 as n → +∞. (4.29)
Moreover, it follows from (4.4), (4.1), and (4.26) that

x n -q n x n -q n -B n x n + B n x + B n x n -B n x x n -q n -B n x n + B n x + γ n U n Bx n -Bx x n -q n -B n x n + B n x + (2β -ε) Bx n -Bx → 0 as n → +∞. (4.30)
and, therefore, since x kn ⇀ x as n → +∞, that q kn ⇀ x as n → +∞. To sum up, q kn ⇀ x u kn → -Bx as n → +∞, and (∀n ∈ N) (q kn , u kn ) ∈ gra A. (iii)(b): It follows from (i) and (4.30) that q n ⇀ x ∈ Z as n → +∞ and from (4.29) that u n → -Bx ∈ Ax as n → +∞. Hence, if A is demiregular at x, (4.28) yields q n → x as n → +∞. In view of (4.30), we conclude that x n → x as n → +∞. Now suppose that B is demiregular at x. Then since x n ⇀ x ∈ Z as n → +∞ by (i) and Bx n → Bx as n → +∞ by (ii), we conclude that

x n → x as n → +∞. (iii)(c): Suppose that z ∈ int C and fix ρ ∈ ]0, +∞[ such that B(z; ρ) ⊂ C. It follows from (4.20) that θ = sup x∈B(z;ρ) sup n∈N x n -x U -1 n (1/ √ α)(sup n∈N x n -z + sup x∈B(z;ρ) x -z ) < +∞ and from (4.22) that (∀n ∈ N)(∀x ∈ B(z; ρ)) x n+1 -x 2 U -1 n+1 x n -x 2 U -1 n + θ 2 η n + 2δθε n + ε 2 n . (4.32)
Hence, the claim follows from (i), Lemma 3.1, and Proposition 3.6.

Remark 4.2 Here are some observations on Theorem 4.1.

(i) Suppose that (∀n ∈ N) U n = Id. Then (4.3) relapses to the forward-backward algorithm studied in [START_REF] Attouch | A parallel splitting method for coupled monotone inclusions[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF], which itself captures those of [START_REF] Lemaréchal | Variable metric bundle methods: from conceptual to implementable forms[END_REF][START_REF] Mercier | Topics in Finite Element Solution of Elliptic Problems[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF]. Theorem 4.1 extends the convergence results of these papers.

(ii) As shown in [18, Remark 5.12], the convergence of the forward-backward iterates to a solution may be only weak and not strong, hence the necessity of the additional conditions in Theorem 4.1(iii).

(iii) In Euclidean spaces, condition (4.1) was used in [START_REF] Parente | A class of inexact variable metric proximal point algorithms[END_REF] in a variable metric proximal point algorithm and then in [START_REF] Lotito | A class of variable metric decomposition methods for monotone variational inclusions[END_REF] in a more general splitting algorithm.

Next, we describe direct applications of Theorem 4.1, which yield new variable metric splitting schemes. We start with minimization problems, an area in which the forward-backward algorithm has found numerous applications, e.g., [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF].

Example 4.3 Let f ∈ Γ 0 (H), let α ∈ ]0, +∞[, let β ∈ ]0, +∞[, let g : H → R be convex and differentiable with a 1/β-Lipschitzian gradient, let (η n ) n∈N ∈ ℓ 1 + (N)
, and let (U n ) n∈N be a sequence in P α (H) such that (4.1) holds. Furthermore, let ε ∈ ]0, min{1, 2β/(µ + 1)}[ where µ is given by (4.1), let (λ n ) n∈N be a sequence in [ε, 1], let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ], let x 0 ∈ H, and let (a n ) n∈N and (b n ) n∈N be absolutely summable sequences in H. Suppose that Argmin (f + g) = ∅ and set (∀n ∈ N)

y n = x n -γ n U n (∇g(x n ) + b n ) x n+1 = x n + λ n prox U -1 n γnf y n + a n -x n . (4.33)
Then the following hold for some x ∈ Argmin (f + g).

(i) x n ⇀ x as n → +∞.

(ii) n∈N ∇g(x n ) -∇g(x) 2 < +∞.

(iii) Suppose that one of the following holds.

(a) lim d Argmin (f +g) (x n ) = 0.

(b) At every point in Argmin (f + g), f or g is uniformly convex (see Lemma 3.15(vi)).

(c) int Argmin (f + g) = ∅ and there exists (ν n

) n∈N ∈ ℓ 1 + (N) such that (∀n ∈ N) (1 + ν n )U n U n+1 . Then x n → x as n → +∞.
Proof. An application of Theorem 4.1 with A = ∂f and B = ∇g, since the Baillon-Haddad theorem [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 18.16] ensures that ∇g is β-cocoercive and since, by [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 26.3], Argmin(f +g) = zer(A + B).

The next example addresses variational inequalities, another area of application of forwardbackward splitting [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF][START_REF] Tseng | Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming[END_REF][START_REF] Tseng | Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[END_REF].

Example 4.4 Let f ∈ Γ 0 (H), let α ∈ ]0, +∞[, let β ∈ ]0, +∞[, let B : H → H be β-cocoercive, let (η n ) n∈N ∈ ℓ 1 + (N)
, and let (U n ) n∈N be a sequence in P α (H) that satisfies (4.1). Furthermore, let ε ∈ ]0, min{1, 2β/(µ + 1)}[ where µ is given by (4.1), let (λ n ) n∈N be a sequence in [ε, 1], let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ], let x 0 ∈ H, and let (a n ) n∈N and (b n ) n∈N be absolutely summable sequences in H. Suppose that the variational inequality

find x ∈ H such that (∀y ∈ H) x -y | Bx + f (x) f (y) (4.34)
admits at least one solution and set

(∀n ∈ N) y n = x n -γ n U n (Bx n + b n ) x n+1 = x n + λ n prox U -1 n γnf y n + a n -x n . (4.35) 
Then (x n ) n∈N converges weakly to a solution x to (4.34).

Proof. Set A = ∂f in Theorem 4.1(i).

Strongly monotone inclusions in duality

In [START_REF] Combettes | Dualization of signal recovery problems[END_REF], strongly convex composite minimization problems of the form minimize

x∈H f (x) + g(Lx -r) + 1 2 x -z 2 , (5.1) 
where z ∈ H, r ∈ G, f ∈ Γ 0 (H), g ∈ Γ 0 (G), and L ∈ B (H, G), were solved by applying the forward-backward algorithm to the Fenchel-Rockafellar dual problem

minimize v∈G f * (z -L * v) + g * (v) + v | r , (5.2) 
where f * = f * ( • 2 /2) denotes the Moreau envelope of f * . This framework was shown to capture and extend various formulations in areas such as sparse signal recovery, best approximation theory, and inverse problems. In this section, we use the results of Section 4 to generalize this framework in several directions simultaneously. First, we consider general monotone inclusions, not just minimization problems. Second, we incorporate parallel sum components (see (2.7)) in the model. Third, our algorithm allows for a variable metric. The following problem is formulated using the duality framework of [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], which itself extends those of [START_REF] Attouch | A general duality principle for the sum of two operators[END_REF][START_REF] Eckstein | Smooth methods of multipliers for complementarity problems[END_REF][START_REF] Mosco | Dual variational inequalities[END_REF][START_REF] Pennanen | Dualization of generalized equations of maximal monotone type[END_REF][START_REF] Robinson | Composition duality and maximal monotonicity[END_REF][START_REF] Rockafellar | Duality and stability in extremum problems involving convex functions[END_REF].

Problem 5.1 Let z ∈ H, let ρ ∈ ]0, +∞[, let A : H → 2 H be maximally monotone, and let m be a strictly positive integer. For every i ∈ {1, . . . , m}, let r i ∈ G i , let B i : G i → 2 G i be maximally monotone, let ν i ∈ ]0, +∞[, let D i : G i → 2 G i be maximally monotone and ν i -strongly monotone, and suppose that 0 = L i ∈ B (H, G i ). Furthermore, suppose that

z ∈ ran A + m i=1 L * i (B i D i )(L i • -r i ) + ρ Id . (5.
3

)
The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax + m i=1 L * i (B i D i )(L i x -r i ) + ρx, (5.4) 
together with the dual inclusion

find v 1 ∈ G 1 , . . . , v m ∈ G m such that (∀i ∈ {1, . . . , m}) r i ∈ L i J ρ -1 A ρ -1 z - m j=1 L * j v j -B -1 i v i -D -1 i v i . (5.5)
Let us start with some properties of Problem 5.1.

Proposition 5.2 In Problem 5.1, set

x = J ρ -1 M ρ -1 z , where M = A + m i=1 L * i • (B i D i ) • (L i • -r i ).
(5.6)

Then the following hold.

(i) x is the unique solution to the primal problem (5.4).

(ii) The dual problem (5.5) admits at least one solution.

(iii) Let (v 1 , . . . , v m ) be a solution to (5.5).

Then x = J ρ -1 A ρ -1 z -m i=1 L * i v i .
(iv) Condition (5.3) is satisfied for every z in H if and only if M is maximally monotone. This is true when one of the following holds.

(a) The conical hull of

E = L i x -r i -v i 1 i m x ∈ dom A and (v i ) 1 i m ∈ m × i=1 ran B -1 i + D -1 i (5.7)
is a closed vector subspace.

(b) A = ∂f for some f ∈ Γ 0 (H), for every i ∈ {1, . . . , m}, B i = ∂g i for some g i ∈ Γ 0 (G i ) and D i = ∂ℓ i for some strongly convex function ℓ i ∈ Γ 0 (G i ), and one of the following holds.

1/ (r 1 , . . . , r m ) ∈ sri (L i x -y i ) 1 i m | x ∈ dom f and (∀i ∈ {1, . . . , m}) y i ∈ dom g i + dom ℓ i . 2/ For every i ∈ {1, . . . , m}, g i or ℓ i is real-valued.

3/ H and (G i ) 1 i m are finite-dimensional, and there exists x ∈ ri dom f such that (∀i ∈ {1, . . . , m}) L i x -r i ∈ ri dom g i + ri dom ℓ i .

(5.8)

Proof. (i): It follows from our assumptions and [4, Proposition 20.10] that ρ -1 M is a monotone operator. Hence, J ρ -1 M is a single-valued operator with domain ran(Id +ρ -1 M ) [4, Proposition 23.9(ii)]. Moreover, (5.3) ⇔ ρ -1 z ∈ ran(Id +ρ -1 M ) = dom J ρ -1 M , and, in view of (2.5), the inclusion in (5.4) is equivalent to x = J ρ -1 M (ρ -1 z).

(ii)&(iii): It follows from (2.5) and (2.7) that

(i) ⇔ (∃ v 1 ∈ G 1 ) • • • (∃ v m ∈ G m ) (∀i ∈ {1, . . . , m}) v i ∈ (B i D i )(L i x -r i ) z -m i=1 L * i v i ∈ Ax + ρx ⇔ (∃ v 1 ∈ G 1 ) • • • (∃ v m ∈ G m ) (∀i ∈ {1, . . . , m}) r i ∈ L i x -B -1 i v i -D -1 i v i x = J ρ -1 A ρ -1 z -m j=1 L * j v j ⇔ (v 1 , . . . , v m ) solves (5.5) x = J ρ -1 A ρ -1 z -m j=1 L * j v j .
(5.9) 

(
L : H → G : x → L i x 1 i m and B : G → 2 G : y → (B i D i )(y i -r i ) 1 i m .
( Remark 5.3 In connection with Proposition 5.2(iv), let us note that even in the simple setting of normal cone operators in finite dimension, some constraint qualification is required to ensure the existence of a primal solution for every z ∈ H. To see this, suppose that, in Problem 5.1,

H is the Euclidean plane, m = 1, ρ = 1, G 1 = H, L 1 = Id, z = (ζ 1 , ζ 2 ), r 1 = 0, D 1 = {0} -1 , A = N C , and B 1 = N K , where C = (ξ 1 , ξ 2 ) ∈ R 2 | (ξ 1 -1) 2 + ξ 2 2 1 and K = (ξ 1 , ξ 2 ) ∈ R 2 | ξ 1 0 . Then dom(A + B 1 + Id) = dom A ∩ dom B 1 = C ∩ K = {0} and the primal inclusion z ∈ Ax + B 1 x + x reduces to (ζ 1 , ζ 2 ) ∈ N C 0 + N K 0 = ]-∞, 0] × {0} + [0, +∞[ × {0} = R × {0}, which has no solution if ζ 2 = 0. Here cone(dom A -dom B 1 ) = cone(C -K) = -K is not a vector subspace.
In the following result we derive from Theorem 4.1 a parallel primal-dual algorithm for solving Problem 5.1.

Corollary 5.4 In Problem 5.1, set

β = 1 max 1 i m 1 ν i + 1 ρ 1 i m L i 2 .
(5.11)

Let (a n ) n∈N be an absolutely summable sequence in H, let α ∈ ]0, +∞[, and let (η n ) n∈N ∈ ℓ 1 + (N). For every i ∈ {1, . . . , m}, let v i,0 ∈ G i , let (b i,n ) n∈N and (d i,n ) n∈N be absolutely summable sequences in G i , and let (U i,n ) n∈N be a sequence in P α (G i ). Suppose that µ = max

1 i m sup n∈N U i,n < +∞ and (∀i ∈ {1, . . . , m})(∀n ∈ N) (1 + η n )U i,n+1 U i,n . (5.12) Let ε ∈ ]0, min{1, 2β/(µ + 1)}[, let (λ n ) n∈N be a sequence in [ε, 1], and let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ]. Set (∀n ∈ N)           s n = z -m i=1 L * i v i,n x n = J ρ -1 A (ρ -1 s n ) + a n For i = 1, . . . , m     w i,n = v i,n + γ n U i,n L i x n -r i -D -1 i v i,n -d i,n v i,n+1 = v i,n + λ n J γnU i,n B -1 i (w i,n ) + b i,n -v i,n .
(5.13)

Then the following hold for the solution x to (5.4) and for some solution (v 1 , . . . , v m ) to (5.5).

(i) (∀i ∈ {1, . . . , m}) v i,n ⇀ v i as n → +∞. In addition, x = J ρ -1 A ρ -1 z -m i=1 L * i v i .
(ii) x n → x as n → +∞.

Proof. For every i ∈ {1, . . . , m}, since D i is maximally monotone and ν i -strongly monotone, D -1 Proposition 22.8(ii)]. Let us define G as in Notation 2.1, and let us introduce the operators

i is ν i -cocoercive with dom D -1 i = ran D i = G i [4,
             T : H → H : x → J ρ -1 A ρ -1 (z -x) A : G → 2 G : v → B -1 i v i 1 i m D : G → G : v → r i + D -1 i v i 1 i m L : H → G : x → L i x 1 i m (5.14) and (∀n ∈ N) U n : G → G : v → U i,n v i 1 i m .
(5.15) (i): In view of (2.4) and (5.14),

A is maximally monotone, (5.16)

D is (min 1 i m ν i )-cocoercive, Lemma 3.7(ii) implies that -T is ρ-cocoercive, (5.17) 
while L 2 m i=1 L i 2 . Hence, we derive from (5.11) and Proposition 3.2 that

B = D -LT L * is β-cocoercive. (5.18) 
Moreover, it follows from (5.12), (5.15), and (2.4) that

sup n∈N U n = µ and (∀n ∈ N) (1 + η n )U n+1 U n ∈ P α (G). (5.19) 
Now set

(∀n ∈ N)            a n = b i,n 1 i m b n = d i,n -L i a n 1 i m v n = v i,n 1 i m w n = w i,n 1 i m .
(5.20)

Then n∈N |||a n ||| < +∞, n∈N |||b n ||| < +∞, and (5.13) can be rewritten as

(∀n ∈ N) w n = v n -γ n U n (Bv n + b n ) v n+1 = v n + λ n J γnU nA (w n ) + a n -v n . (5.21) 
Furthermore, the dual problem (5.5) is equivalent to

find v ∈ G such that 0 ∈ Av + Bv (5.22) 
which, in view of (5.16), (5.18), and Proposition 5.2(ii), can be solved using (5.21). Altogether, the claims follow from Theorem 4.1(i) and Proposition 5.2(iii).

(ii): Set (∀n ∈ N) z n = x n -a n . It follows from (i), (5.13) and (5.14) that

x = T (L * v) and (∀n ∈ N) z n = T (L * v n ). (5.23) 
In turn, we deduce from (5.17), (i), (5.18), and the monotonicity of D that

ρ z n -x 2 = ρ T (L * v n ) -T (L * v) 2 L * (v n -v) | T (L * v) -T (L * v n ) v n -v | LT (L * v) -LT (L * v n ) v n -v | Dv n -Dv -v n -v | LT (L * v n ) -LT (L * v) = v n -v | Bv n -Bv δ|||Bv n -Bv|||, (5.24) 
where δ = sup n∈N |||v n -v||| < +∞ by (i). Therefore, it follows from (5.21) and Theorem 4.1(ii) that z n -x → 0. Since a n → 0 as n → +∞, we conclude that x n → x as n → +∞.

Remark 5.5 Here are some observations on Corollary 5.4.

(i) At iteration n, the vectors a n , b i,n , and d i,n model errors in the implementation of the nonlinear operators. Note also that, thanks to Example 3.9(i), the computation of v i,n+1 in (5.13) can be implemented using

J γ -1 n U -1 i,n B i rather than J γnU i,n B -1 i .
(ii) Corollary 5.4 provides a general algorithm for solving strongly monotone composite inclusions which is new even in the fixed standard metric case, i.e., (∀i ∈ {1, . . . , m})(∀n ∈ N) U i,n = Id.

The following example describes an application of Corollary 5.4 to strongly convex minimization problems which extends the primal-dual formulation (5.1)-(5.2) of [START_REF] Combettes | Dualization of signal recovery problems[END_REF] and solves it with a variable metric scheme. It also extends the framework of [START_REF] Combettes | Proximity for sums of composite functions[END_REF], where f = 0 and (∀i ∈ {1, . . . , m}) ℓ i = ι {0} and (∀n ∈ N) U i,n = Id.

Example 5.6 Let z ∈ H, let f ∈ Γ 0 (H), let α ∈ ]0, +∞[, let (η n ) n∈N ∈ ℓ 1 + (N)
, let (a n ) n∈N be an absolutely summable sequence in H, and let m be a strictly positive integer. For every i ∈ {1, . . . , m}, and(d i,n ) n∈N be absolutely summable sequences in G i , let (U i,n ) n∈N be a sequence in P α (G i ), and suppose that 0 = L i ∈ B (H, G i ). Furthermore, suppose that (see Proposition 5.2(iv)(b) for special cases)

let r i ∈ G i , let g i ∈ Γ 0 (G i ), let ν i ∈ ]0, +∞[, let ℓ i ∈ Γ 0 (G i ) be ν i -strongly convex, let v i,0 ∈ G i , let (b i,n ) n∈N
z ∈ ran ∂f + m i=1 L * i (∂g i ∂ℓ i )(L i • -r i ) + Id . (5.25) 
The primal problem is

minimize x∈H f (x) + m i=1 (g i ℓ i )(L i x -r i ) + 1 2 x -z 2 , (5.26) 
and the dual problem is minimize

v 1 ∈G 1 ,...,vm∈Gm f * z - m i=1 L * i v i + m i=1 g * i (v i ) + ℓ * i (v i ) + v i | r i . (5.27) 
Suppose that (5.12) holds, let ε ∈ ]0, min{1, 2β/(µ + 1)}[, let (λ n ) n∈N be a sequence in [ε, 1], and let (γ n ) n∈N be a sequence in [ε, (2β -ε)/µ], where β is defined in (5.11) and µ in (5.12). Set

(∀n ∈ N)           s n = z -m i=1 L * i v i,n x n = prox f s n + a n For i = 1, . . . , m     w i,n = v i,n + γ n U i,n L i x n -r i -∇ℓ * i (v i,n ) -d i,n v i,n+1 = v i,n + λ n prox U -1 i,n γng * i w i,n + b i,n -v i,n . (5.28) 
Then (5.26) admits a unique solution x and the following hold for some solution (v 1 , . . . , v m ) to (5.27). 

(i) (∀i ∈ {1, . . . , m}) v i,n ⇀ v i as n → +∞. In addition, x = prox f (z -m i=1 L * i v i ). (ii) x n → x as n → +∞. Proof. Set ρ = 1, A = ∂f,
∂ f + q(• -z) = ∂f + Id -z.
(5.32)

On the other hand, it follows from (5.25) and [4, Proposition 16.5(ii)] that

∂ f + q(• -z) + m i=1 L * i ∂(g i ℓ i ) (L i • -r i ) ⊂ ∂ f + q(• -z) + m i=1 (g i ℓ i ) • (L i • -r i ) (5.33)
and that x → f (x) + m i=1 (g i ℓ i )(L i x -r i ) + x -z 2 /2 is a strongly convex function in Γ 0 (H). Therefore [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 11.16] asserts that (5.26) possesses a unique solution x. Next, we deduce from (5.32), (5.29), (5.30), and Fermat's rule [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 16.2] that, for every x ∈ H,

x solves (5.4) ⇔ z ∈ ∂f (x) + m i=1 L * i (∂g i ∂ℓ i )(L i x -r i ) + x ⇔ 0 ∈ ∂ f + q(• -z) (x) + m i=1 L * i • ∂(g i ℓ i ) • (L i • -r i ) (x) ⇒ 0 ∈ ∂ f + q(• -z) + m i=1 (g i ℓ i ) • (L i • -r i ) (x)
⇔ x solves (5.26).

(5.34) Remark 14.4]. Hence, it follows from (5.29), (5.31) 

Finally, set L : H → G : x → L i x 1 i m and h : G → ]-∞, +∞] : v → m i=1 (g * i (v i ) + ℓ * i (v i ) + v i | r i ). We recall that f * = f * q is Fréchet differentiable on H with ∇ f * = prox f [4,
v = (v i ) 1 i m ∈ G, v solves (5.5) ⇔ (∀i ∈ {1, . . . , m}) r i ∈ L i J A z - m j=1 L * j v j -B -1 i v i -D -1 i v i ⇔ (∀i ∈ {1, . . . , m}) r i ∈ L i prox f z - m j=1 L * j v j -∂(g * i + ℓ * i )(v i ) ⇔ (0, . . . , 0) ∈ -L ∇ f * z -L * v + m × i=1 ∂ g * i + ℓ * i + • | r i (v i ) = -L * * ∇ f * z -L * v + ∂h(v) = ∂ f * z -L * • + h (v)
⇔ v solves (5.27), (5.35) which completes the proof.

We conclude this section with an application to a composite best approximation problem.

Example 5.7 Let z ∈ H, let C be a closed convex subset of H, let α ∈ ]0, +∞[, let (η n ) n∈N ∈ ℓ 1 + (N), let (a n ) n∈N be an absolutely summable sequence in H, and let m be a strictly positive integer. For every i ∈ {1, . . . , m}, let r i ∈ G i , let D i be a closed convex subset of G i , let v i,0 ∈ G i , let (b i,n ) n∈N be an absolutely summable sequence in G i , let (U i,n ) n∈N be a sequence in P α (G i ), and suppose that 0

= L i ∈ B (H, G i ). The problem is minimize x∈C L 1 x∈r 1 +D 1 . . . Lmx∈rm+Dm x -z .
(5.36)

Suppose that (5.12) holds, that (max 

1 i m sup n∈N U i,n ) m i=1 L i 2 < 2,
          s n = z -m i=1 L * i v i,n x n = P C s n + a n For i = 1, . . . , m     w i,n = v i,n + U i,n L i x n -r i v i,n+1 = w i,n -U i,n P U i,n D i U -1 i,n w i,n + b i,n . (5.38) 
Then (x n ) n∈N converges strongly to the unique solution x to (5.36).

Proof. Set f = ι C and (∀i ∈ {1, . . . , m}) g i = ι D i , ℓ i = ι {0} , and (∀n ∈ N) γ n = λ n = 1 and d i,n = 0. Then (5.37) and Proposition 5.2(iv)((b))1/ imply that (5.25) is satisfied. Moreover, in view of Example 3.9(iii), (5.38) is a special case of (5.28). Hence, the claim follows from Example 5.6(ii).

Inclusions involving cocoercive operators

We revisit a primal-dual problem investigated first in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], and then in [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] with the scenario described below.

Problem 6.1 Let z ∈ H, let A : H → 2 H be maximally monotone, let µ ∈ ]0, +∞[, let C : H → H be µ-cocoercive, and let m be a strictly positive integer. For every i ∈ {1, . . . , m}, let r i ∈ G i , let B i : G i → 2 G i be maximally monotone, let ν i ∈ ]0, +∞[, let D i : G i → 2 G i be maximally monotone and ν i -strongly monotone, and suppose that 0 = L i ∈ B (H, G i ). The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax + m i=1 L * i (B i D i )(L i x -r i ) + Cx, (6.1) 
together with the dual inclusion 

find v 1 ∈ G 1 , . . . , v m ∈ G m such that (∃ x ∈ H) z -m i=1 L * i v i ∈ Ax + Cx (∀i ∈ {1, . . . , m}) v i ∈ (B i D i )(L i x -r i ). ( 6 
z ∈ ran A + m i=1 L * i (B i D i )(L i • -r i ) + C , (6.3 
(G i ) such that (∀n ∈ N) U i,n+1 U i,n . For every n ∈ N, set δ n = m i=1 U i,n L i U n 2 -1 -1, (6.5) 
and suppose that

ζ n = δ n (1 + δ n ) max{ U n , U 1,n , . . . , U m,n } 1 2β -ε . (6.6) Set (∀n ∈ N)             p n = J UnA x n -U n m i=1 L * i v i,n + Cx n + c n -z + a n y n = 2p n -x n x n+1 = x n + λ n (p n -x n ) For i = 1, . . . , m q i,n = J U i,n B -1 i v i,n + U i,n L i y n -D -1 i v i,n -d i,n -r i + b i,n v i,n+1 = v i,n + λ n (q i,n -v i,n ). (6.7)
Then the following hold for some solution x to (6.1) and some solution (v 1 , . . . , v m ) to (6.2).

(i) x n ⇀ x as n → +∞.

(ii) (∀i ∈ {1, . . . , m}) v i,n ⇀ v i as n → +∞.

(iii) Suppose that C is demiregular at x. Then x n → x as n → +∞.

(iv) Suppose that, for some j ∈ {1, . . . , m}, D -1 j is demiregular at v j . Then v j,n → v j as n → +∞.

Proof. Define G as in Notation 2.1 and set K = H ⊕ G. We denote the scalar product and the norm of K by • | • and |||| • ||||, respectively. As shown in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF], the operators 

               A : K → 2 K : (x, v 1 , . . . , v m ) → ( m i=1 L * i v i -z + Ax) × (r 1 -L 1 x + B -1 1 v 1 ) × . . . × (r m -L m x + B -1 m v m ) B : K → K : (x, v 1 , . . . , v m ) → Cx, D -1 1 v 1 , . . . , D -1 m v m S : K → K : (x, v 1 , . . . , v m ) → m i=1 L * i v i , -L 1 x, . . . , -L m x ( 
          U n : K → K : (x, v 1 , . . . , v m ) → U n x, U 1,n v 1 , . . . , U m,n v m V n : K → K : (x, v 1 , . . . , v m ) → U -1 n x -m i=1 L * i v i , -L i x + U -1 i,n v i 1 i m T n : H → G : x → U 1,n L 1 x, . . . , U m,n L m x . (6.10) 
It follows from our assumptions and Lemma 3.1(iii) that

(∀n ∈ N) U n+1 U n ∈ P α (K) and ||U -1 n || 1 α . (6.11) 
Moreover, for every n ∈ N, V n ∈ S (K) since U n ∈ S (K). In addition, (6.10) and (6.11) yield

∀n ∈ N V n U -1 n + S ρ, where ρ = 1 α + m i=1 L i 2 . (6.12)
On the other hand,

(∀n ∈ N)(∀x ∈ H) |||T n x||| 2 = m i=1 U i,n L i U n U n -1 x 2 x 2 U -1 n m i=1 U i,n L i U n 2 = β n x 2 U -1 n , (6.13) 
where (∀n ∈ N)

β n = m i=1 U i,n L i √ U n 2 .
Hence, (6.5) yields

(∀n ∈ N) (1 + δ n )β n = 1 1 + δ n . (6.14) 
Therefore, for every n ∈ N and every x = (x, v 1 , . . . , v m ) ∈ K, using (6.10), (6.13), (6.14), Lemma 3.1(ii), and (6.6), we obtain

x | V n x = x | U -1 n x + m i=1 v i | U -1 i,n v i -2 m i=1 L i x | v i = x 2 U -1 n + m i=1 v i 2 U -1 i,n -2 m i=1 U i,n L i x | U i,n -1 v i = x 2 U -1 n + m i=1 v i 2 U -1 i,n -2 (1 + δ n )β n -1 T n x | (1 + δ n )β n U 1,n -1 v 1 , . . . , U m,n -1 v m x 2 U -1 n + m i=1 v i 2 U -1 i,n - |||T n x||| 2 (1 + δ n )β n + (1 + δ n )β n m i=1 v i 2 U -1 i,n x 2 U -1 n + m i=1 v i 2 U -1 i,n - x 2 U -1 n (1 + δ n ) + (1 + δ n )β n m i=1 v i 2 U -1 i,n = δ n 1 + δ n x 2 U -1 n + m i=1 v i 2 U -1 i,n δ n 1 + δ n U n -1 x 2 + m i=1 U i,n -1 v i 2 ζ n ||||x|||| 2 . (6.15) 
In turn, it follows from Lemma 3.1(iii) and (6.6) that

(∀n ∈ N) V -1 n 1 ζ n 2β -ε. (6.16)
Moreover, by Lemma 3.1(i), (∀n

∈ N) (U n+1 U n ⇒ U -1 n U -1 n+1 ⇒ V n V n+1 ⇒ V -1 n+1
V -1 n ). Furthermore, we derive from Lemma 3.1(ii) and (6.12) that We observe that (6.20) has the structure of the variable metric forward-backward splitting algorithm (4.3), where (∀n ∈ N) γ n = 1. Finally, (6.16) and (6.18) imply that all the conditions in Theorem 4.1 are satisfied. such that x n ⇀ x as n → +∞. In view of (6.9), the assertions are proved. However, the algorithm obtained in Corollary 5.2 is quite different from that of Corollary 6.2. Indeed, the former was obtained by applying the forward-backward algorithm (4.3) to the dual inclusion, which was made possible by the strong monotonicity of the primal problem. By contrast, the latter relies on an application of (4.3) in a primal-dual product space.

(∀x ∈ K) V -1 n x | x V n -1 ||||x|||| 2 1 ρ ||||x|||| 2 . ( 6 
Example 6.4 Let z ∈ H, let f ∈ Γ 0 (H), let µ ∈ ]0, +∞[, let h : H → R be convex and differentiable with a µ -1 -Lipschitzian gradient, let (a n ) n∈N and (c n ) n∈N be absolutely summable sequences in H, let α ∈ ]0, +∞[, let m be a strictly positive integer, and let (U n ) n∈N be a sequence in P α (H) such that (∀n ∈ N) U n+1 U n . For every i ∈ {1, . . . , m}, let r i ∈ G i , let g i ∈ Γ 0 (G i ), let ν i ∈ ]0, +∞[, let ℓ i ∈ Γ 0 (G i ) be ν i -strongly convex, let v i,0 ∈ G i , let (b i,n ) n∈N and (d i,n ) n∈N be absolutely summable sequences in G i , suppose that 0 = L i ∈ B (H, G i ), and let (U i,n ) n∈N be a sequence in P α (G i ) such that (∀n ∈ N) U i,n+1 U i,n . Furthermore, suppose that 

z ∈ ran ∂f + m i=1 L * i (∂g i ∂ℓ i )(L i • -r i ) + ∇h . ( 6 
            p n = prox U -1 n f
x n -U n m i=1 L * i v i,n + ∇h(x n ) + c n -z + a n y n = 2p n -x n x n+1 = x n + λ n (p n -x n ) For i = 1, . . . , m q i,n = prox (6.26) Then (x n ) n∈N converges weakly to a solution to (6.24), for every i ∈ {1, . . . , m} (v i,n ) n∈N converges weakly to some v i ∈ G i , and (v 1 , . . . , v m ) is a solution to (6.25).

U -1 i,n g * i v i,n + U i,n L i y n -∇ℓ * i (v i,n ) -d i,n -r i + b i,n v i,n+1 = v i,n + λ n (q i,n -v i,n ).
Proof. Set A = ∂f , C = ∇h, and (∀i ∈ {1, . . . , m}) B i = ∂g i and D i = ∂ℓ i . In this setting, it follows from the analysis of [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]Section 4] that (6.24)-(6.25) is a special case of Problem 6.1 and, using (3.10), that (6.26) is a special case of (6.7). Thus, the claims follow from Corollary 6.2(i)&(ii). Remark 6.5 Suppose that, in Corollary 6.2 and Example 6.4, there exist τ and (σ i ) 1 i m in ]0, +∞[ such that (∀n ∈ N) U n = τ Id and (∀i ∈ {1, . . . , m}) U i,n = σ i Id. Then (6.7) and (6.26) reduce to the fixed metric methods appearing in [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]Eq. (3.3)] and [41, Eq. (4.5)], respectively (see [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] for further connections with existing work).

  (a) lim d Z (x n ) = 0. (b) At every point in Z, A or B is demiregular (see Lemma 3.15 for special cases).

(4. 31 )

 31 Hence, using the sequential closedness of gra A in H weak × H strong [4, Proposition 20.33(ii)], we conclude that -Bx ∈ Ax, i.e., x ∈ Z.(ii): Since x ∈ Z, the claim follows from (4.24).(iii): We now prove strong convergence.(iii)(a): Since A and B are maximally monotone and dom B = H, A + B is maximally monotone [4, Corollary 24.4(i)] and Z is therefore closed[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Proposition 23.39]. Hence, the claim follows from (i),(4.19), and Proposition 3.5.

. 10 )

 10 Then it follows from(5.6) that M = A + L * • B • L and from (5.7) that E = L(dom A) -dom B. Hence, since cone(E) = span (E), in view of[START_REF] Bot | Conjugate Duality in Convex Optimization[END_REF] Section 24], to conclude that M is maximally monotone, it is enough to show that B is. For every i ∈ {1, . . . , m}, since D i is maximally monotone and strongly monotone, domD -1 i = ran D i = G i [4,Proposition 22.8(ii)] and it follows from [4, Proposition 20.22 and Corollary 24.4(i)] that B i D i is maximally monotone. This shows that B is maximally monotone.(iv)(b): This follows from[START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] Proposition 4.3].

  x n = (x n , v 1,n , . . . , v m,n ) y n = (p n , q 1,n , . . . , q m,n )a n = (a n , b 1,n , . . . , b m,n ) c n = (c n , d 1,n , . . . , d m,n ) d n = (U -1 n a n , U -1 1,n b 1,n , . . . , U -1 m,n b m,n ) and b n = (S + V n )a n + c nd n . (6.19) Then n∈N ||||a n |||| < +∞, n∈N ||||c n |||| < +∞, and n∈N ||||d n |||| < +∞. Therefore (6.12) implies that n∈N ||||b n |||| < +∞. Furthermore, using the same arguments as in [41, Eqs. (3.22)-(3.35)], we derive from (6.7) and (6.8) that(∀n ∈ N) x n+1 = x n + λ n J V -1 n A x n -V -1 n (Bx n + b n ) + a nx n . (6.20) 

  (i)&(ii): Theorem 4.1(i) asserts that there existsx = (x, v 1 , . . . , v m ) ∈ zer(A + B) (6.21)

(Remark 6 . 3

 63 iii)&(iv): It follows from Theorem 4.1(ii) that Bx n → Bx as n → +∞. Hence, (6.8),(6.19), and (6.21) yieldCx n → Cx and ∀i ∈ {1, . . . , m} D -1 i v i,n → D -1 i v i as n → +∞. (6.22)Hence the results follow from (i)&(ii) and Definition 3.14. In the case when C = ρ Id for some ρ ∈ ]0, +∞[, Problem 6.1 reduces to Problem 5.1.

  3.3 Let α ∈ ]0, +∞[, let (W n ) n∈N be in P α (H), let C be a nonempty subset of H, and let (x n ) n∈N be a sequence in H such that

  Let α ∈ ]0, +∞[, let (W n ) n∈N be a sequence in P α (H) such that sup n∈N W n < +∞, let C be a nonempty closed subset of H, and let (x n ) n∈N be a sequence in H such that

	.3)
	Let C be a nonempty subset of H, and let (x n ) n∈N be a sequence in H such that (3.2) is satisfied. Then (x n ) n∈N converges weakly to a point in C if and only if every weak sequential cluster point of
	(x n ) n∈N is in C.
	Proposition 3.5

4 )

 4 Then (x n ) n∈N converges strongly to a point in C if and only if lim d C (x n ) = 0. Let α ∈ ]0, +∞[, let (ν n ) n∈N ∈ ℓ 1 + (N), and let (W n ) n∈N be a sequence in P α (H) such that sup n∈N W n < +∞ and (∀n ∈ N) (1 + ν n )W n+1W n . Furthermore, let C be a subset of H such that int C = ∅, let z ∈ C and ρ ∈ ]0, +∞[ be such that B(z; ρ) ⊂ C, and let (x n ) n∈N be a sequence in H such that

	Proposition 3.6

  Hence, (3.21) follows from (3.20).

	3.4 Demiregularity

Definition 3.14 [1, Definition 2.3] An operator A : H → 2 H is demiregular at x ∈ dom A if, for every sequence ((x n , u n )) n∈N in gra A and every u ∈ Ax such that x n ⇀ x and u n → u as n → +∞, we have x n → x as n → +∞. Lemma 3.15 [1, Proposition 2.4] Let A : H → 2 H be monotone and suppose that x ∈ dom A. Then A is demiregular at x in each of the following cases.

  and let (a n ) n∈N and (b n ) n∈N be absolutely summable sequences in H.

	Suppose that

  .25) (i): Let x be a weak sequential cluster point of (x n ) n∈N , say x kn ⇀ x as n → +∞. In view of (4.19), (4.6), and Proposition 3.4, it is enough to show that x ∈ Z. On the one hand, (4.24) yields Bx kn → Bz as n → +∞. On the other hand, since B is cocoercive, it is maximally monotone[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Example 20.28] and its graph is therefore sequentially closed in H weak × H strong[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]]. This implies that Bx = Bz and hence that Bx kn → Bx as n → +∞. Thus, in view of (4.24),

	n∈N	Bx n -Bx 2 < +∞.	(4.26)
	Now set		

  It follows from[START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] Theorem 20.40] that the operators A, (B i ) 1 i m , and (D i ) 1 i m are maximally monotone. We also observe that(5.25) implies that (5.3) is satisfied. Moreover, for every i ∈ {1, . . . , m}, D i is ν i -strongly monotone [4, Example 22.3(iv)], ℓ * i is Fréchet differentiable on G i [4, Corollary 13.33 and Theorem 18.15], and D -1 i = (∂ℓ i ) -1 = ∂ℓ * i = {∇ℓ * i } [4, Corollary 16.24 and Proposition 17.26(i)]. Since, for every i ∈ {1, . . . , m}, dom ℓ * i = G i , [4, Proposition 24.27] yields (∀i ∈ {1, . . . , m}) B i D i = ∂g i ∂ℓ i = ∂(g i ℓ i ),

	(5.30)
	while [4, Corollaries 16.24 and 16.38(iii)] yield
	(∀i ∈ {1, . . . , m}) B -1 i + D -1 i = ∂g * i + {∇ℓ * i } = ∂ g * i + ℓ * i . Moreover, (3.10) implies that (5.28) is a special case of (5.13). Hence, in view of Corollary 5.4, it (5.31)
	remains to show that (5.4) and (5.5) yield (5.26) and (5.27), respectively. Let us set q = • 2 /2. We derive from [4, Example 16.33] that

and (∀i ∈ {1, . . . , m}) B i = ∂g i and D i = ∂ℓ i .

(5.29) 

  , [4, Proposition 16.8 and Theorem 16.37(i)], and Fermat's rule [4, Theorem 16.2] that, for every

  and that (r 1 , . . . , r m ) ∈ sri (L i x -y i ) 1 i m | x ∈ C and (∀i ∈ {1, . . . , m}) y i ∈ D i .

	(5.37)
	Set
	(∀n ∈ N)

  Let ε ∈ ]0, min{1, β}[, let α ∈ ]0, +∞[, let (λ n ) n∈N be a sequence in [ε, 1], let x 0 ∈ H, let (a n ) n∈Nand (c n ) n∈N be absolutely summable sequences in H, and let (U n ) n∈N be a sequence in P α (H) such that (∀n ∈ N) U n+1 U n . For every i ∈ {1, . . . , m}, let v i,0 ∈ G i , and let (b i,n ) n∈N and (d i,n ) n∈N be absolutely summable sequences in G i , and let (U i,n ) n∈N be a sequence in P α

		)
	and set	
	β = min{µ, ν 1 , . . . , ν m }.	(6.4)

  Let β = min{µ, ν 1 , . . . , ν m }, let ε ∈ ]0, min{1, β}[, let (λ n ) n∈N be a sequence in [ε, 1], suppose that (6.6) holds, and set (∀n ∈ N)

					.23)
	The primal problem is			
			m		
	minimize x∈H	f (x) +	i=1	(g i ℓ i )(L i x -r i ) + h(x) -x | z ,	(6.24)
	and the dual problem is		
	minimize			

v 1 ∈G 1 ,...,vm∈Gm (f * h * ) z -m i=1 L * i v i + m i=1 g * i (v i ) + ℓ * i (v i ) + v i | r i . (

6

.25) 
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