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Moreau's decomposition is a powerful nonlinear hilbertian analysis tool that has been used in various areas of optimization and applied mathematics. In this paper, it is extended to reflexive Banach spaces and in the context of generalized proximity measures. This extension unifies and significantly improves upon existing results.

Introduction

Throughout this paper, (X , • ) is a reflexive real Banach space with topological dual (X * , • * ), and the canonical bilinear form on X × X * is denoted by •, • . The distance function to a set C ⊂ X is d C : x → inf y∈C x -y , the metric projector onto C is P C : x → y ∈ C x -y = d C (x) , and the polar cone of C is C ⊖ = x * ∈ X * (∀x ∈ C) x, x * ≤ 0 . Γ 0 (X ) is the class of lower semicontinuous convex functions ϕ : X → ]-∞, +∞] such that dom ϕ = x ∈ X ϕ(x) < +∞ = ∅.

A classical tool in linear hilbertian analysis is the following orthogonal decomposition principle.

Proposition 1.1 Suppose that X is a Hilbert space, let V be a closed vector subspace of X with orthogonal complement V ⊥ , and let x ∈ X . Then the following hold.

(i) x 2 = d 2 V (x) + d 2 V ⊥ (x). (ii) x = P V x + P V ⊥ x. (iii) P V x, P V ⊥ x = 0.
In 1962, Moreau proposed a nonlinear extension of this decomposition. Proposition 1.2 [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF] Suppose that X is a Hilbert space, let K be a nonempty closed convex cone in X , and let x ∈ X . Then the following hold.

(i) x 2 = d 2 K (x) + d 2 K ⊖ (x). (ii) x = P K x + P K ⊖ x.
(iii) P K x, P K ⊖ x = 0. Motivated by problems in unilateral mechanics, Moreau further extended this result in [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF] (see also [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]). To state Moreau's decomposition principle, we require some basic notions from convex analysis [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF]. Let ϕ and f be two functions in Γ 0 (X ). The conjugate of ϕ is the function ϕ * in Γ 0 (X * ) defined by

ϕ * : X * → ]-∞, +∞] : x * → sup x∈X x, x * -ϕ(x) . (1.1)
Moreover, the infimal convolution of ϕ and f is the function

ϕ f : X → [-∞, +∞] : x → inf y∈X ϕ(y) + f (x -y) . (1.2)
Now suppose that X is a Hilbert space and set q = (1/2) • 2 . Then, for every x ∈ X , there exists a unique point p ∈ X such that (ϕ q)(x) = ϕ(p) + q(x -p); this point is denoted by p = prox ϕ x. The operator prox ϕ : X → X thus defined is called the proximity operator of ϕ.

Proposition 1.3 [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] Suppose that X is a Hilbert space, let ϕ ∈ Γ 0 (X ), set q = • 2 /2, and let x ∈ X . Then the following hold.

(i) q(x) = (ϕ q)(x) + (ϕ * q)(x).

(ii) x = prox ϕ x + prox ϕ * x. (iii) prox ϕ x, prox ϕ * x = ϕ prox ϕ x + ϕ * prox ϕ * x .
Note that, if in Proposition 1.3 ϕ is the indicator function of a nonempty closed convex cone K ⊂ X , i.e., ϕ = ι K where

(∀x ∈ X ) ι K (x) = 0, if x ∈ K; +∞, if x / ∈ K, (1.3) 
we recover Proposition 1.2.

The above hilbertian nonlinear decomposition principles have found many applications in optimization and in various other areas of applied mathematics (see for instance [START_REF] Brogliato | On the equivalence between complementarity systems, projected systems and differential inclusions[END_REF][START_REF] Collins | Dual extremum principles and Hilbert space decompositions[END_REF][START_REF] Combettes | Dualization of signal recovery problems[END_REF][START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Han | Conjugate cone characterization of positive definite and semidefinite matrices[END_REF][START_REF] Hiriart-Urruty | Plazanet, Moreau's decomposition theorem revisited[END_REF][START_REF] Hiriart-Urruty | A variational approach to copositive matrices[END_REF][START_REF] Lucet | What shape is your conjugate? A survey of computational convex analysis and its applications[END_REF][START_REF] Rockafellar | Moreau's proximal mappings and convexity in Hamilton-Jacobi theory[END_REF] and the references therein) and attempts have been made to extend them to more general Banach spaces. The main result in this direction is the following generalization of Proposition 1.2(ii)&(iii) in uniformly convex and uniformly smooth Banach spaces (see also [START_REF] Ya | James orthogonality and orthogonal decompositions of Banach spaces[END_REF][START_REF] Hu | Weak sharp solutions for variational inequalities in Banach spaces[END_REF][START_REF] Schöpfer | Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods[END_REF][START_REF] Song | The generalized decomposition theorem in Banach spaces and its applications[END_REF] for alternate proofs and applications), where Π C denotes the generalized projector onto a nonempty closed convex subset C of X [START_REF] Ya | Metric and generalized projection operators in Banach spaces: properties and applications[END_REF], i.e., if J denotes the duality mapping of X ,

(∀x ∈ X ) Π C x = argmin y∈C x 2 -2 y, Jx + y 2 .
(1.4) Proposition 1.4 [START_REF] Ya | Decomposition theorems in Banach spaces[END_REF] Suppose that X is uniformly convex and uniformly smooth, let J : X → X * denote its duality mapping, which is characterized by

(∀x ∈ X ) x 2 = x, Jx = Jx 2 * , (1.5) 
let K be a nonempty closed convex cone in X , and let x ∈ X . Then the following hold.

(i) x = P K x + J -1 Π K ⊖ (Jx) . (ii) P K x, Π K ⊖ (Jx) = 0.
The objective of the present paper is to unify and extend the above results. To this end, we first discuss in Section 2 suitable notions of proximity in Banach spaces. Based on these, we propose our extension of Moreau's decomposition in Section 3. A feature of our analysis is to rely heavily on convex analytical tools, which allows us to derive our main result with simpler proofs than those utilized in the above special case.

Proximity in Banach spaces

Let ϕ ∈ Γ 0 (X ). As seen in the Introduction, if X is a Hilbert space, Moreau's proximity operator is defined by

(∀x ∈ X ) prox ϕ x = argmin y∈X ϕ(y) + 1 2
x -y 2 .

(2.1)

In this section we discuss two extensions of this operator in Banach spaces. We recall that ϕ is coercive if lim y →+∞ ϕ(y) = +∞ and supercoercive if lim y →+∞ ϕ(y)/ y = +∞. As usual, the subdifferential operator of ϕ is denoted by ∂ϕ. Finally, the strong relative interior of a convex set

C ⊂ X is sri C = x ∈ C λ>0 λ(C -x) = span (C -x) . (2.2) 
We shall also require the following facts.

Lemma 2.1 ([24, 26]) Let f ∈ Γ 0 (X ) and let x * ∈ X * . Then f -x * is coercive if and only if x * ∈ int dom f * . Lemma 2.2 ([5, Theorem 3.4]) Let f ∈ Γ 0 (X ) be supercoercive. Then dom f * = X * . Lemma 2.3 ([4]) Let f and ϕ be functions in Γ 0 (X ) such that 0 ∈ sri (dom f -dom ϕ).
Then the following hold.

(i) (ϕ+ f ) * = ϕ * f * and the infimal convolution is exact everywhere:

(∀x * ∈ X * )(∃ y * ∈ X * ) (ϕ + f ) * (x * ) = ϕ * (y * ) + f * (x * -y * ). (ii) ∂(ϕ + f ) = ∂ϕ + ∂f .

Legendre functions

We review the notion of a Legendre function, which was introduced in Euclidean spaces in [START_REF] Rockafellar | Convex Analysis[END_REF] and extended to Banach spaces in [START_REF] Bauschke | Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces[END_REF] (see also [START_REF] Borwein | Convex functions of Legendre type in general Banach spaces[END_REF] for further developments in the nonreflexive case).

Definition 2.4 [5, Definition 5.2] Let f ∈ Γ 0 (X )
. Then f is:

(i) essentially smooth, if ∂f is both locally bounded and single-valued on its domain;

(ii) essentially strictly convex, if (∂f ) -1 is locally bounded on its domain and f is strictly convex on every convex subset of dom ∂f ;

(iii) a Legendre function, if it is both essentially smooth and essentially strictly convex.

Some key properties of Legendre functions are listed below. 

D-proximity operators

In this subsection we discuss a notion of proximity based on Bregman distances investigated in [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] and which goes back to [START_REF] Censor | Proximal minimization algorithm with D-functions[END_REF][START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF].

The first extension of (2.1) was investigated in [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]. Let f ∈ Γ 0 (X ) be a Legendre function. The Bregman distance associated with f is

D f : X × X → [0, +∞] (y, x) → f (y) -f (x) -y -x, ∇f (x) , if x ∈ int dom f ; +∞, otherwise.
(2.3)

For every ϕ ∈ Γ 0 (X ), we define the function ϕ ⋄ f : X → [-∞, +∞] by (∀x ∈ X ) (ϕ ⋄ f )(x) = inf y∈X ϕ(y) + D f (y, x) . (2.4) 
The following proposition refines and complements some results of [6, Section 3.4].

Proposition 2.6 Let f ∈ Γ 0 (X ) be a Legendre function, let ϕ ∈ Γ 0 (X ) be such that

0 ∈ sri (dom f -dom ϕ), (2.5) 
and let x ∈ int dom f . Suppose that one of the following holds.

(i) ∇f (x) ∈ int(dom f * + dom ϕ * ). (ii) int dom f * ⊂ int(dom f * + dom ϕ * ).
(iii) f is supercoercive.

(iv) inf ϕ(X ) > -∞.
Then there exists a unique point p ∈ X such that (ϕ ⋄ f )(x) = ϕ(p) + D f (p, x); moreover, p lies in dom ∂ϕ ∩ int dom f and it is characterized by the inclusion

∇f (x) -∇f (p) ∈ ∂ϕ(p). (2.6) Proof. Set f x : X → ]-∞, +∞] : y → f (y) -y, ∇f (x) .
Then the minimizers of ϕ + D f (•, x) coincide with those of ϕ + f x and our assumptions imply that

ϕ + f x ∈ Γ 0 (X ). (2.7)
Now let p ∈ X . It follows from (2.5), Lemma 2.3(ii), and Lemma 2.5(ii) that

(ϕ ⋄ f )(x) = ϕ(p) + D f (p, x) ⇔ p minimizes ϕ + f x ⇔ 0 ∈ ∂ ϕ + f x (p) ⇔ 0 ∈ ∂ϕ(p) + ∂f (p) -∇f (x) ⇔ 0 ∈ ∂ϕ(p) + ∇f (p) -∇f (x) ⇔ ∇f (x) -∇f (p) ∈ ∂ϕ(p) (2.8) ⇒ p ∈ dom ∂ϕ ∩ int dom f. (2.9)
Hence, the minimizers of ϕ + f x are in int dom f . However, since f is essentially strictly convex, it is strictly convex on int dom f and so is therefore ϕ + f x . This shows that ϕ + f x admits at most one minimizer. It remains to establish existence.

(i): It follows from (2.7) that, to show existence, it is enough to show that ϕ + f x is coercive [33, Theorem 2.5.1(ii)]. In view of Lemma 2.1, this is equivalent to showing that ∇f (x) ∈ int dom (f + ϕ) * . However, it follows from (2.5) and Lemma 2.

3(i) that int dom (f + ϕ) * = int dom (f * ϕ * ) = int(dom f * + dom ϕ * ).
(2.10) (ii)⇒(i): Lemma 2.5(iii).

(iii)⇒(ii): By Lemma 2.2, dom f * = X * and, since dom

ϕ * = ∅, int dom f * ⊂ int(dom f * + dom ϕ * ). (iv)⇒(ii): We have inf ϕ(X ) > -∞ ⇒ ϕ * (0) = -inf ϕ(X ) < +∞ ⇒ 0 ∈ dom ϕ * . Hence, int dom f * ⊂ int(dom f * + dom ϕ * ).
In view of Proposition 2.6 and Lemma 2.5(iii), the following is well defined. Definition 2.7 Let f ∈ Γ 0 (X ) be a Legendre function and let ϕ ∈ Γ 0 (X ) be such that 0 ∈ sri (dom f -dom ϕ). Set

E = (int dom f ) ∩ ∇f * int(dom f * + dom ϕ * ) .
(2.11)

The D-proximity (or Bregman proximity) operator of ϕ relative to 

f is bprox f ϕ : E → int dom f : x → argmin y∈X ϕ(y) + D f (y, x) . ( 2 
+ dom f * ) (in particular if f is supercoercive or if inf ϕ(X ) > -∞), then bprox f ϕ : int dom f → int dom f .
(ii) Suppose that X is hilbertian and that f = • 2 /2, and let ϕ ∈ Γ 0 (X ). Then ϕ ⋄ f = ϕ f and bprox f ϕ = prox ϕ .

Anisotropic proximity operators

An alternative extension of the notion of proximity can be obtained by replacing the function • 2 /2 in (2.1) by a Legendre function f . This type of construction goes back to [START_REF] Lescarret | Applications "prox" dans un espace de Banach[END_REF].

Proposition 2.9 Let f ∈ Γ 0 (X ) be a Legendre function, let ϕ ∈ Γ 0 (X ) be such that

0 ∈ sri (dom f * -dom ϕ * ), (2.13) 
and let x ∈ sri (dom f + dom ϕ). Then there exists a unique point p ∈ X such that (ϕ f )(x) = ϕ(p) + f (x -p); moreover, p is characterized by the inclusion ∇f (x -p) ∈ ∂ϕ(p).

(2.14)

Proof. Using (2.13) and Lemma 2.3(i), we obtain

(ϕ * + f * ) * = ϕ * * f * * = ϕ f (2.15)
and the fact that the infimum in the infimal convolution is attained everywhere. On the other hand, since x ∈ sri (dom f + dom ϕ), we have

0 ∈ sri dom ϕ -(x -dom f ) = sri dom ϕ -dom f (x -•) . (2.16) 
Consequently, by Lemma 2.3(ii),

∂ ϕ + f (x -•) = ∂ϕ + ∂f (x -•).
(2.17)

Now let p ∈ X . It follows from (2.17) and Lemma 2.5(ii) that

p minimizes ϕ + f (x -•) ⇔ 0 ∈ ∂ ϕ + f (x -•) (p) ⇔ 0 ∈ ∂ϕ(p) -∂f (x -p) ⇔ 0 ∈ ∂ϕ(p) -∇f (x -p) ⇔ ∇f (x -p) ∈ ∂ϕ(p) (2.18) ⇒ x -p ∈ int dom f. (2.19) 
To show uniqueness, suppose that p and q are two distinct minimizers of ϕ

+ f (x -•). Then (ϕ f )(x) = ϕ(p) + f (x -p) = ϕ(q) + f (x -q)
and, by (2.19), x -p and x -q lie in int dom f . Now let r = (1/2)(p + q) and suppose that p = q. Lemma 2.5(ii) asserts that f is strictly convex on the convex set int dom f = dom ∂f . Therefore, invoking the convexity of ϕ,

(ϕ f )(x) ≤ ϕ(r) + f (x -r) < 1 2 ϕ(p) + ϕ(q) + 1 2 f (x -p) + f (x -q) = (ϕ f )(x), (2.20)
which is impossible.

Using Proposition 2.9, we can now introduce the anisotropic proximity operator of ϕ.

Definition 2.10 Let f ∈ Γ 0 (X ) be a Legendre function and let ϕ ∈ Γ 0 (X ) be such that 0 ∈ sri (dom f * -dom ϕ * ). Set E = sri (dom f + dom ϕ).

(2.21)

The anisotropic proximity operator of ϕ relative to f is

aprox f ϕ : E → X : x → argmin y∈X ϕ(y) + f (x -y) . (2.22)
Remark 2.11 Suppose that X is hilbertian and that f = • 2 /2, and let ϕ ∈ Γ 0 (X ). Then aprox f ϕ = prox ϕ .

Main result

In the previous section we have described two extensions of the classical proximity operator. Our main result is a generalization of Moreau's decomposition (Proposition 1.3) in Banach spaces which involves a mix of these two extensions.

Theorem 3.1 Let f ∈ Γ 0 (X ) be a Legendre function, let ϕ ∈ Γ 0 (X ) be such that 0 ∈ sri (dom f * -dom ϕ * ), (3.1) 
and let x ∈ (int dom f ) ∩ int(dom f + dom ϕ). Then the following hold.

(i) f (x) = (ϕ f )(x) + (ϕ * ⋄ f * ) ∇f (x) . (ii) x = aprox f ϕ x + ∇f * bprox f * ϕ * ∇f (x) . (iii) aprox f ϕ x, bprox f * ϕ * ∇f (x) = ϕ aprox f ϕ x + ϕ * bprox f * ϕ * ∇f (x) . (iv) aprox f ϕ x, ∇f x -aprox f ϕ x = ϕ aprox f ϕ x + ϕ * ∇f x -aprox f ϕ x . Proof. Since x ∈ int(dom f + dom ϕ), Lemma 2.5(iii) yields x ∈ sri (dom f + dom ϕ) and ∇f * ∇f (x) ∈ int dom f * * + dom ϕ * * . (3.2) 
Hence, it follows from Proposition 2.9 that aprox f ϕ x is well defined and, from Lemma 2.5(i) and Proposition 2.6(i) (applied to f * and ϕ * ), that ∇f * (bprox f * ϕ * (∇f (x))) is well defined. In addition,

(ϕ f )(x) ∈ R and (ϕ * ⋄ f * ) ∇f (x) ∈ R. (3.3) (i): It follows from (2.
3), Lemma 2.5(iii), and the Fenchel-Young identity [33, Theorem 2.4.2(iii)] that

(∀x * ∈ X * ) D f * x * , ∇f (x) = f * (x * ) -f * ∇f (x) -x * -∇f (x), x * = f * (x * ) + f (x) -x * , x * . (3.4) 
This, (2.4), (3.1), and Lemma 2.3(i) imply that

(ϕ * ⋄ f * ) ∇f (x) = inf x * ∈X * ϕ * (x * ) + f * (x * ) + f (x) -x * , x * = f (x) -sup x * ∈X * x * , x * -ϕ * (x * ) -f * (x * ) = f (x) -(ϕ * + f * ) * (x) = f (x) -(ϕ f )(x). (3.5) 
In view of (3.3), we obtain the announced identity.

(ii): Let p ∈ X . Using Proposition 2.9, Lemma 2.5(iii), and Proposition 2.6(i), we obtain

p = aprox f ϕ x ⇔ ∇f (x -p) ∈ ∂ϕ(p) (3.6) 
⇔ p ∈ ∂ϕ * ∇f (x -p) ⇔ ∇f * ∇f (x) -∇f * ∇f (x -p) ∈ ∂ϕ * ∇f (x -p) ⇔ ∇f (x -p) = bprox f * ϕ * ∇f (x) (3.7) ⇔ x -p = ∇f * bprox f * ϕ * ∇f (x) . (3.8) 
(iii): Set p = aprox f ϕ x. As seen in (

, bprox f * ϕ * ∇f (x) = ∇f (x -p) ∈ ∂ϕ(p). 3.7) and (3.6) 
Hence, the Fenchel-Young identity yields Theorem 3.1 provides a range of new decomposition schemes, even in the case when X is a Hilbert space. Thus, in the following result, we obtain a new hilbertian frame decomposition principle (for background on frames and their applications, see [START_REF] Christensen | Frames and Bases -An Introductory Course[END_REF]). Corollary 3.3 Suppose that X is a separable Hilbert space, let I be a countable set, and let (e i ) i∈I be a frame in X , i.e.,

p, bprox f * ϕ * ∇f (x) = p, ∇f (x -p) = ϕ(p) + ϕ * ∇f (x -p) = ϕ(p) + ϕ * bprox f * ϕ * ∇f (x) . ( 3 
(∃ α ∈ ]0, +∞[)(∃ β ∈ ]0, +∞[)(∀x ∈ X ) α x 2 ≤ i∈I | x, e i | 2 ≤ β x 2 .
(3.11)

Let S : X → X : x → i∈I x, e i e i be the associated frame operator and let (e * i ) i∈I = (S -1 e i ) i∈I be the associated canonical dual frame. Furthermore, let ϕ ∈ Γ 0 (X ), let x ∈ X , and set Proof. Set f :

X → R : x → (1/2) i∈I | x, e i | 2 .
It is easily seen that f is Fréchet differentiable on X with ∇f = S. It therefore follows from [START_REF] Bauschke | Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces[END_REF]Theorem 5.6] that f is essentially smooth. Now fix x * ∈ X . Since the frame operator of (e * i ) i∈I is S -1 [11, Lemma 5.1.6], we have

S -1 x * , x * = i∈I x * , e * i e * i , x * = i∈I | x * , e * i | 2 = 2f (S -1 x * ). (3.14) Now set g : X → R : x → f (x) -x, x * .
Then g is a differentiable convex function and ∇g : x → Sx -x * vanishes at x = S -1 x * . Hence, using (3.14), we obtain (3.17)

f * (x * ) = -min x∈X g(x) = S -1 x * , x * -f (S -1 x * ) = f (S -1 x * ) = 1 2 i∈I | x * , e * i | 2 . ( 3 
The result is therefore an application of Theorem 3.1(ii).

Remark 3.4 Corollary 3.3 can be regarded as an extension of Moreau's decomposition principle in separable Hilbert spaces. Indeed, in the special case when (e i ) i∈I is an orthonormal basis in Corollary 3.3, we recover Proposition 1.3(ii).

The next application is set in uniformly convex and uniformly smooth Banach spaces.

Corollary 3.5 Suppose that X is uniformly convex and uniformly smooth, let J be its duality mapping, set q = • 2 /2, and let ϕ ∈ Γ 0 (X ). Then q * = • 2 * /2 and the following hold for every x ∈ X .

(i) q(x) = (ϕ q)(x) + (ϕ * ⋄ q * )(Jx).

(ii) x = aprox q ϕ x + J -1 bprox q * ϕ * (Jx) .

(iii) aprox q ϕ x, bprox q * ϕ * (Jx) = ϕ aprox q ϕ x + ϕ * bprox q * ϕ * (Jx) .

(iv) aprox q ϕ x, J x -aprox q ϕ x = ϕ aprox q ϕ x + ϕ * J x -aprox q ϕ x .

Proof. This is an application of Theorem 3.1 with f = q. Indeed, dom f = X , dom f * = X * , and ∇f = J.

In particular, if X is a Hilbert space in Corollary 3.5, if follows from Remark 2.8(ii) and Remark 2.11 that we recover Moreau's decomposition principle (Proposition 1.3) and a fortiori Propositions 1.1 and 1.2. Another noteworthy instance of Corollary 3.5 is when ϕ = ι K , where K is a nonempty closed convex cone in X . In this case, ϕ * = ι K ⊖ , aprox q ϕ = P K , and we derive from (1.4) and (1.5) that bprox q ϕ = Π K . Hence, Corollary 3.5(ii)&(iii) yields Proposition 1.4.

Remark 3.6 Consider the setting of Theorem 3.1 and set A = ∂ϕ. Then, by Rockafellar's theorem, A is a maximally monotone operator [START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF]Theorem 3.1.11]. Moreover, it follows from (2.14), Lemma 2.5(iii), and (2.6) that we can rewrite Theorem 3.1(ii) as

x = (Id +∇f * • A) -1 x + ∇f * • ∇f * + A -1 -1 x, (3.18) 
where Id is the identity operator on X . The results of [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]Section 3.3] suggest that this decomposition holds for more general maximally monotone operators A : X → 2 X * . If X is a Hilbert space and f = • 2 /2, (3.18) yields the well-known resolvent identity Id = (Id +A) -1 + (Id +A -1 ) -1 , which is true for any maximally monotone operator A [7, Proposition 23.18].

Lemma 2 . 5

 25 Let f ∈ Γ 0 (X ) be a Legendre function. Then the following hold. (i) f * is a Legendre function [5, Corollary 5.5]. (ii) dom ∂f = int dom f = ∅ and f is Gâteaux differentiable on int dom f [5, Theorem 5.6]. (iii) ∇f : int dom f → int dom f * is bijective with inverse ∇f * : int dom f * → int dom f [5, Theorem 5.10].

. 10 )Remark 3 . 2

 1032 (iv): This follows at once from (iii) and (3.9). An instance of Theorem 3.1(iv) in which f and f * are real-valued appears in [32,Proposition 1].

2 i∈I| x * , e * i | 2 . ( 3 . 13 )

 22313 ϕ * (x * ) -x * , x + 1 Then x = a(x) + i∈I b(x), e * i e * i .

. 15 )

 15 Hence, as above, f * is Fréchet differentiable on X with ∇f * = S -1 and, in turn, essentially smooth, which makes f essentially strictly convex[5, Theorem 5.4]. Altogether, f is a Legendre function with dom f = X , dom f * = X , ∇f = S, and ∇f * = S -1 . (3.16) Moreover, it follows from (2.12), (2.22), (3.16), Lemma 2.5(iii), (3.12), (3.13), and (3.15) that bprox f * ϕ * (∇f (x)) = b(x) and aprox f ϕ (x) = a(x).

  .12) 

	Remark 2.8 In connection with Definition 2.7, let us make a couple of observations.
	(i) It follows from Proposition 2.6 that, if int dom f

* ⊂ int(dom ϕ *
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