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On the motion of a small light body immersed in a two dimensional

incompressible perfect fluid with vorticity

Olivier Glass∗, Christophe Lacave†, Franck Sueur‡

October 23, 2014

Abstract

In this paper we consider the motion of a rigid body immersed in a two dimensional unbounded incom-
pressible perfect fluid with vorticity. We prove that when the body shrinks to a massless pointwise particle
with fixed circulation, the “fluid+rigid body” system converges to the vortex-wave system introduced by
Marchioro and Pulvirenti in [11]. This extends both the paper [2] where the case of a solid tending to a
massive pointwise particle was tackled and the paper [3] where the massless case was considered but in a
bounded cavity filled with an irrotational fluid.
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1 Introduction

In this paper we consider the motion of a rigid body immersed in a two dimensional incompressible perfect
fluid, when the size of the body converges to 0. Initially the rigid body is assumed to occupy

Sε
0 := εS0,

where S0 is a simply connected smooth compact subset of R2 and ε ∈ (0, 1).
The body moves rigidly so that at times t it occupies a domain Sε(t) which is isometric to Sε

0 . We denote

Fε(t) := R2 \ Sε(t)

the domain occupied by the fluid at time t starting from the initial domain

Fε
0 := R2 \ Sε

0 .

The equations modelling the dynamics of the system then read :

Fluid equations:

∂uε

∂t
+ (uε · ∇)uε +∇πε = 0 for t ∈ (0,∞), x ∈ Fε(t), (1.1)

div uε = 0 for t ∈ [0,∞), x ∈ Fε(t), (1.2)

Solid equations:

mε(hε)′′(t) =

∫

∂Sε(t)

πεn ds for t ∈ (0,∞), (1.3)

J ε(rε)′(t) =

∫

∂Sε(t)

(x− hε(t))⊥ · πεn ds for t ∈ (0,∞), (1.4)

Boundary conditions:

uε · n =
(
(hε)′(t) + rε(t)(x − hε(t))⊥

)
· n for t ∈ [0,∞), x ∈ ∂Sε(t), (1.5)

lim
|x|→∞

|uε(t, x)| = 0 for t ∈ [0,∞), (1.6)

Initial data:

uε|t=0 = uε0 for x ∈ Fε
0 , (1.7)

hε(0) = 0, (hε)′(0) = ℓε0, θε(0) = 0, rε(0) = rε0. (1.8)

2



Here uε = (uε1, u
ε
2) and πε denote the velocity and pressure fields in the fluid, mε > 0 and J ε > 0 denote

respectively the mass and the momentum of inertia of the body. The fluid is supposed to be homogeneous, of
density 1 to simplify the notations.

When x = (x1, x2) the notation x⊥ stands for x⊥ = (−x2, x1), n denotes the unit normal vector pointing
outside the fluid, (hε)′(t) is the velocity of the center of mass hε(t) of the body and rε(t) is the angular velocity.
Indeed, since Sε(t) is isometric to Sε

0 there exists an angle θε(t) such that, with the notation of the rotation
matrix

Rθε(t) :=

(
cos θε(t) − sin θε(t)
sin θε(t) cos θε(t)

)
, (1.9)

one has
Sε(t) := {hε(t) +Rθε(t)x, x ∈ Sε

0}.
Furthermore, this angle satisfies

(θε)′(t) = rε(t).

In this paper, we will systematically take the convention that the initial position of the center of mass is 0, that
is,

hε(0) = 0. (1.10)

Equations (1.1) and (1.2) are the incompressible Euler equations, the condition (1.5) means that the bound-
ary is impermeable and Equations (1.3)-(1.4) are the Newton’s balance law for linear and angular momenta.

The Cauchy problem for System (1.1)-(1.8) is now well understood. In particular we have the following
result proven in [2], which is the equivalent for the fluid-body system of the celebrated result of Yudovich for
the fluid alone [13]. We recall that the space of log-Lipschitz functions on some domain X ⊂ R2 is the set of
functions f ∈ L∞(X) such that

‖f‖LL(X) := ‖f‖L∞(X) + sup
x 6=y

|f(x)− f(y)|
|(x− y)(1 + ln− |x− y|)| < +∞.

Theorem 1.1. For any
uε0 ∈ C0(Fε

0 ;R
2), (ℓε0, r

ε
0) ∈ R2 × R,

such that:

div uε0 = 0 in Fε
0

wε
0 := curluε0 ∈ L∞

c (Fε

0),

uε0 · n = (ℓε0 + rε0x
⊥) · n on ∂Sε

0 ,

lim
|x|→+∞

uε0(x) = 0,

there exists a unique solution (hε, θε, uε) of (1.1)–(1.8) with

(hε, θε) ∈ C2(R+;R2 × R), uε ∈ L∞
loc(R

+;LL(Fε(t))) and

∂tu
ε,∇pε ∈ L∞

loc(R
+;Lq(Fε(t))) for any q ∈ (1,+∞).

Moreover such a solution satisfies some conservation laws which will be recalled in Subsections 3.1 and 4.1.

There is a slight abuse of notations in L∞
loc(R

+;LL(Fε(t))) and L∞
loc(R

+;Lq(Fε(t))) since the domain Fε(t)
of the x-variable actually depends on t. By this we refer to functions defined for almost each t as a function
in the space LL(Fε(t)) (resp. Lq(Fε(t))), and which can be extended to a function in L∞

loc(R
+;LL(R2)) (resp.

L∞
loc(R

+;Lq(R2))).
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A central fact to obtain Theorem 1.1 is that in these solutions the fluid vorticity

wε := curluε = ∂1u
ε
2 − ∂2u

ε
1,

satisfies
∂wε

∂t
+ div(uεwε) = 0 for t ∈ (0,∞), x ∈ Fε(t). (1.11)

Actually, the uniqueness part of Theorem 1.1 can be established starting either from the velocity equation (1.1)
or from the vorticity equation (1.11).

In this paper we are interested in the asymptotic behavior of (hε, θε, uε, wε) when ε → 0+. This issue
depends on the behavior of the data with respect to ε which we now describe.

Mass and momentum of inertia. In the paper [2] we studied the case where the solid occupying the domain
Sε(t) is assumed to have a mass and a moment of inertia of the form mε = m1 and J ε = ε2J 1, where m1 > 0
and J 1 > 0 are fixed, so that the solid tends to a massive pointwise particle. The goal of this paper is to study
the case where

mε = εαm1 and J ε = εα+2 J 1, (1.12)

where α > 0 and m1 > 0 and J 1 > 0 are fixed, so that the solid tends to a massless pointwise particle. The
particular case where α = 2 corresponds to the case of a fixed solid density whereas the case tackled in [2]
corresponded to the case where α = 0. The regime (1.12) was considered in [3] in the irrotational case (and
when the fluid occupies a bounded domain). The purpose of this paper is to extend it to the case where the
vorticity wε in the fluid does not vanish.

Vorticity and circulation around the solid. We will consider an initial fluid vorticity w0 ∈ L∞
c (R2 \ {0})

independent of ε and an initial circulation

γ :=

∫

∂Sε
0

uε0 · τ ds

independent of ε as well. The fact that we consider 0 /∈ suppw0 is connected to (1.10): for ε > 0 small enough,
one has suppw0 ∩ Sε

0 = ∅.

Initial solid velocity. We will consider an initial solid velocity (ℓε0, r
ε
0) independent of ε:

(ℓε0, r
ε
0) = (ℓ0, r0) ∈ R2 × R.

Initial fluid velocity. The initial fluid velocity uε0 is then defined as the unique log-Lipschitz solution of the
div-curl type system: 




div uε0 = 0, curluε0 = wε
0 in Fε

0 ,
uε0 · n = (ℓ0 + r0x

⊥) · n on ∂Sε
0 ,

lim|x|→∞ |uε0(x)| = 0,
∫
∂Sε

0

uε0 · τ ds = γ,
(1.13)

where wε
0 := w0|Fε

0
, hence, for ε small enough (depending on dist(suppw0; 0) and the size of S0), we have

wε
0 := w0. (1.14)

To state the main result, we will use the following notation for the Biot-Savart operator in R2:

KR2 [w](t, x) = KR2 [w(t, ·)](x) := 1

2π

∫

R2

(x− y)⊥

|x− y|2 w(t, y) dy.

Now our goal in this paper is to prove the following theorem.
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Theorem 1.2. Let us be given γ ∈ R \ {0}, (ℓ0, r0) ∈ R3, w0 in L∞
c (R2 \ {0}). For any ε ∈ (0, 1], we associate

uε0 by (1.13)-(1.14) and consider (hε, θε, uε) the unique solution of the system (1.1)–(1.8). Then for any T > 0,
as ε→ 0+,

• hε converges to h weakly-⋆ in W 1,∞(0, T ;R2),

• wε converges to w in C0([0, T ];L∞(R2)− w⋆),

• uε converges to ũ+
γ

2π

(x− h(t))⊥

|x− h(t)|2 in C0([0, T ];Lq
loc(R

2)) for q < 2, where ũ(t, x) is defined on [0, T ]×R2

by
ũ(t, x) := KR2 [w(t, ·)](x).

Moreover, (ũ, w, h) satisfies:

Fluid equation:

∂w

∂t
+ div

([
ũ+

γ

2π

(x − h(t))⊥

|x− h(t)|2
]
w

)
= 0 in [0, T ]× R2, (1.15)

Particle equation:

h′(t) = ũ(t, h(t)) in [0, T ], (1.16)

Initial conditions:

w|t=0 = w0, h(0) = 0. (1.17)

The above convergences of wε and uε hold when we have extended these functions by 0 inside the solid.

Remark 1.3. Equation (1.15) and the w-part of the initial data given in (1.17) hold in the sense that for any
test function ψ ∈ C∞

c ([0, T )× R2) we have

∫ ∞

0

∫

R2

ψtw dxdt+

∫ ∞

0

∫

R2

∇xψ ·
(
ũ+

γ

2π

(x− h(t))⊥

|x− h(t)|2
)
w dxdt+

∫

R2

ψ(0, x)w0(x) dx = 0. (1.18)

The equations (1.15)–(1.16) describe the vortex-wave system introduced by Marchioro and Pulvirenti in [11].
Equation (1.15) describes the evolution of the vorticity of the fluid: w is transported by a velocity obtained
by the usual Biot-Savart law in the plane, but from a vorticity which is the sum of the fluid vorticity and of a
point vortex placed at the (time-dependent) position h(t) where the solid shrinks, with a strength equal to the
circulation γ around the body. The point vortex is transported only under the influence of the fluid vorticity
(1.16).

We recall fromMarchioro-Pulvirenti [11] (Lagrangian formulation) and by Lacave-Miot [8] (Eulerian formula-
tion, i.e. in our case (1.18)) that in the case of one point vortex h(t) and of an initial vorticity w0 ∈ L∞

c (R2\{0}),
the vortex-wave system (1.15)-(1.16) admits a unique solution such that w ∈ L∞(R+, L1 ∩ L∞(R2)) and
h ∈ C(R+,R2). Moreover, such a solution has the following property: for any T > 0, there exists ρT > 0
such that

suppw(t) ⊂ B(h(t), ρT ) \B(h(t), 1/ρT ) ∀t ∈ [0, T ]. (1.19)

Remark 1.4. Note that the convergence of hε cannot be strong in W 1,∞(0, T ;R2), in general, as this would
entail that

ℓ0 = K[w0](0) = − 1

2π

∫

R2

y⊥

|y|2w0(y) dy.
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Let us mention the paper [1] which provides another derivation of the vortex-wave system (1.15)–(1.16) from
smooth solutions of the Euler equations alone, without any rigid body but with some concentrated vorticity,
following the approach of [10] for the derivation of the vortex points system from smooth solutions of the Euler
equations.

In the case of a massive pointwise particle, we have obtained in [2] the same theorem except that the particle
equation was:

m1h′′(t) = γ
(
h′(t)− ũ(t, h(t))

)⊥
in [0, T ], (1.20)

and that, due to the lack of uniqueness in the limit system, the convergence held only along a subsequence. One
can see that in the massive situation, the point vortex is accelerated by a force similar to the Kutta-Joukowski
lift force of the irrotational theory. Formally, the massless situation corresponds to the case where m1 = 0 in
(1.20), from which one recovers the point vortex equation (1.16). Nevertheless, the rigorous analysis is more
complicated than in [2] because the second-order equation (1.3) degenerates to a first order equation (1.16).
For example, we will note in Remark 4.3 that a standard energy estimate does not give anymore that (hε)′ is
bounded uniformly in ε.

Let us also mention the paper of Silvestre and Takahashi [12] (and the references therein) of a related problem
with a small ball immersed in a 3D viscous fluid.

2 Structure of the proof

In this section, we describe the general structure of the proof of Theorem 1.2.
The basic estimates (energy estimates, estimates coming from the vorticity) for system (1.1)-(1.8) will prove

insufficient to pass to the limit. We will strengthen these estimates by establishing a so-called modulated energy
estimate. To prove it, we will need to reformulate the equation in a suitable normal form. This is explained in
greater detail below.

First step. A normal form. First we introduce the solid velocity in the rotated frame:

ℓε(t) = RT
θε(t) (h

ε)′(t),

where Rθε is the rotation of angle θε, see (1.9). Then we introduce the following “modulated velocity”:

ℓ̃ε(t) := ℓε(t)−KR2 [ωε](t, 0)− εDKR2 [ωε](t, 0) · ξ, (2.1)

where ξ is the conformal center of S0 defined below in (3.13) and ωε is the vorticity in the rotated frame, that
is

ωε(t, x) := wε(t, Rθε(t)x+ hε(t)). (2.2)

Next we introduce the notation for the modulated unknown:

p̃ε :=

(
ℓ̃ε

εrε

)
. (2.3)

To introduce the normal form, we need a few more notations. We introduce the inertia matrix:

Mg :=



m1 0 0
0 m1 0
0 0 J 1


 , (2.4)

and

B :=

(
ξ⊥

−1

)
. (2.5)

We also introduce a bilinear symmetric mapping Λg : R3 × R3 → R3 as follows:

∀p ∈ R3, 〈Λg, p, p〉 = m1r

(
ℓ⊥

0

)
for p =

(
ℓ
r

)
. (2.6)

6



Note that
∀p ∈ R3, 〈Λg, p, p〉 · p = 0. (2.7)

We are now in position to describe our normal form.

Proposition 2.1. There exist a symmetric positive matrix Ma ∈ S+
3 (R), depending only on S0, and a bilinear

symmetric mapping Λa : R3 × R3 → R3, depending only on S0, satisfying

∀p ∈ R3, 〈Λa, p, p〉 · p = 0, (2.8)

such that the following holds.
Let us fix ρ > 1. There exist C > 0 and ε0 ∈ (0, 1] such that: if for a given T > 0 and an ε ∈ (0, ε0] one has

for all t ∈ [0, T ]:
suppωε(t) ⊂ B(0, ρ) \B(0, 1/ρ), (2.9)

then there exist a function G = G(ε, t) : (0, 1)× [0, T ] → R3 satisfying
∣∣∣∣
∫ t

0

p̃ε(s) ·G(ε, s) ds
∣∣∣∣ 6 εC

(
1 + t+

∫ t

0

|p̃ε(s)|2 ds
)
, (2.10)

and a function F = F (ε, t) : (0, 1)× [0, T ] → R3 satisfying

|F (ε, t)| 6 C
(
1 + |p̃ε(t)|+ ε|p̃ε(t)|2

)
, (2.11)

such that one has on [0, T ]:
[
εαMg + ε2Ma

]
(p̃ε)′ + 〈εα−1Λg + εΛa, p̃

ε, p̃ε〉 = γ p̃ε ×B+ εγG(ε, t) + εmin(α,2)F (ε, t). (2.12)

We will make Ma, Λa and G explicit in the course of the proof, see (3.24), (5.20) and (5.19).
We will refer to the quadratic mappings Λg and Λa satisfying (2.7) and (2.8) as gyroscopic terms, to a

function G satisfying (2.10) as a weakly gyroscopic term and to a function F satisfying (2.11) as a weakly
nonlinear term.

Second step. Modulated energy estimates. From this normal form, we will be able to deduce the following
modulated energy estimate.

Proposition 2.2. Let us fix ρ > 1 and T > 0. There exist C > 0 and ε0 ∈ (0, 1] such that the following holds.
If for a given T ∈ (0, T ] and an ε ∈ (0, ε0] one has that (2.9) is valid on [0, T ], then one has

|ℓε(t)|+ ε|rε(t)| 6 C, ∀t ∈ [0, T ]. (2.13)

This proposition improves the estimate coming from a basic energy argument (see Lemma 4.4).

Remark 2.3. We can track in the proofs of Propositions 2.1 and 2.2 that the only constraint on ε0 is to verify:

∂Sε0
0 ⊂ B(0, 1/(2ρ)).

Third step. Local and global passage to the limit. In a first time, we obtain the convergence stated
in Theorem 1.2 on a small time interval, and only in a second time we obtain this convergence on any time
interval. The proof follows the following steps.

Since the modulated estimate above require assumptions on the support of the vorticity, taking (1.19) into
account, we set the following definition, given a fixed T > 0:

Tε := sup
{
τ ∈ [0, T ], ∀t ∈ [0, τ ], suppwε(t) ⊂ B(hε(t), 2ρT ) \B(hε(t), 1/(2ρT ))

}
, (2.14)

where ρT is defined from (1.19) with T = T .
As suppw0 ⊂ B(0, ρT ) \ B(0, 1/ρT ), we have of course Tε > 0. Using Proposition 2.2 with ρ = 2ρT and

T = Tε, we deduce the following.
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Proposition 2.4. Let us fix T > 0. There exists ε0 > 0 and T > 0 such that

inf
ε∈(0,ε0)

Tε > T .

In turn this allows to prove the following local version of Theorem 1.2.

Proposition 2.5. We consider T > 0 such that infε∈(0,ε0) Tε > T for some ε0 > 0. Then hε converges to h
weakly-⋆ in W 1,∞(0, T ;R2) and wε converges to w in C0([0, T ];L∞(R2) − w⋆), where (w, h) is the solution of
the vortex-wave system (1.15)–(1.16).

The proof uses a compactness argument (using the estimates above), the uniqueness of the solutions in the
limit and Proposition 2.1.

Finally we obtain Theorem 1.2 by a sort of continuous induction argument.

3 Basic material

In this section, we introduce basic material which we will use in subsequent sections. In the whole paper, we
will need some arguments of complex analysis (see e.g. Appendix A): for the rest of the paper, we identify C

and R2 through
(x1, x2) = x1 + ix2 = z.

The complex conjugate of a complex number z will be classically denoted by z, but we may also use the notation
z∗ for large expressions.

We also use the notation f̂ = f1 − if2 for any f = (f1, f2). The reason of this notation is the following
consequence of the Cauchy-Riemann equations:

f is divergence and curl free if and only if f̂ is holomorphic.

3.1 Equations in the body frame

First we transfer the equations for the velocity and the vorticity in the body frame (all the details can be found
in [2]). For that we apply the following isometric change of variable:





vε(t, x) = RT
θε(t) u

ε(t, Rθε(t)x+ hε(t)),

ωε(t, x) = wε(t, Rθε(t)x+ hε(t)) = curl vε(t, x)
π̃ε(t, x) = πε(t, Rθε(t)x+ hε(t)),
ℓε(t) = RT

θε(t) (h
ε)′(t),

where we recall that the usual two dimensional rotation Rθε was introduced in (1.9). The equations (1.1)-(1.8)
become

∂vε

∂t
+
[
(vε − ℓε − rεx⊥) · ∇

]
vε + rε(vε)⊥ +∇π̃ε = 0 x ∈ Fε

0 , (3.1)

div vε = 0 x ∈ Fε
0 , (3.2)

vε · n =
(
ℓε + rεx⊥

)
· n x ∈ ∂Sε

0 , (3.3)

mε(ℓε)′(t) =

∫

∂Sε
0

π̃εn ds−mεrε(ℓε)⊥ (3.4)

J ε(rε)′(t) =

∫

∂Sε
0

x⊥ · π̃εn ds (3.5)

vε(0, x) = vε0(x) x ∈ Fε
0 , (3.6)

ℓε(0) = ℓ0, r
ε(0) = r0. (3.7)

Moreover (3.1) gives
∂tω

ε +
[
(vε − ℓε − rεx⊥) · ∇

]
ωε = 0 for x ∈ Fε

0 . (3.8)
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The advantage of this formulation is that the space domain is now fixed. A large part of the analysis will be
performed with these equations.

As mentioned in Theorem 1.1, some quantities are conserved along the time, whose the circulation and the
mass of the vorticity:

γ =

∫

∂Sε
0

vε · τ ds =
∫

∂Sε(t)

uε · τ ds =
∫

∂Sε
0

uε0 · τ ds,

βε =

∫

Fε
0

ωε(t, x) dx =

∫

Fε(t)

wε(t, x) dx =

∫

Fε
0

wε
0(x) dx.

As w0 is assumed to be compactly supported in R2 \ {0}, we note that βε is independent of ε when ε is small
enough.

In the next subsection, we introduce several velocity fields in the frame attached to the body. These will
allow in particular to decompose the velocity field vε in a way that clarifies how it is generated from the vorticity,
the velocity of the rigid body and the circulation of the flow around the solid (see formulas (3.28) or (3.29)
below).

3.2 Some useful velocity fields

We regroup the particular velocity fields mentioned above in three paragraphs. We refer to [2] for more details.

3.2.1 Harmonic field

To take the velocity circulation around the body into account, we introduce the following harmonic field: let
Hε the unique solution vanishing at infinity of

divHε = 0 in Fε
0 , curlHε = 0 in Fε

0 , Hε · n = 0 on ∂Sε
0 ,

∫

∂Sε
0

Hε · τ ds = 1. (3.9)

We list here a list of properties concerning Hε which are established in [2]:

• The vector field Hε admits a harmonic stream function ΨHε(x):

Hε = ∇⊥ΨHε , (3.10)

which vanishes on the boundary ∂Sε
0 , and is equivalent to 1

2π ln |x| as x goes to infinity.

• We have the following scaling law

Hε(x) =
1

ε
H1
(x
ε

)
. (3.11)

• The function Ĥ1 is holomorphic (as a function of z = x1 + ix2), and can be decomposed in Laurent Series
(see Remark A.9) with:

Ĥ1(z) =
1

2iπz
+O(1/z2) as z → ∞. (3.12)

Coming back to the variable x ∈ R2, the previous decomposition implies

H1(x) = O
(

1

|x|

)
and ∇H1 = O

(
1

|x|2
)
.

From the scaling law and the asymptotic behavior, we deduce the following estimate on the support of ωε.
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Lemma 3.1. Let us fix ρ > 1. There exists C > 0 such that the following holds. If for a given T > 0 and
ε ∈ (0, 1], (2.9) is valid on [0, T ], then one has

‖Hε‖L∞(suppωε(t)) + ‖∇Hε‖L∞(suppωε(t)) 6 C ∀t ∈ [0, T ].

The harmonic field H1 allows to define the following geometric constant, appearing in (2.5) and known as
the conformal center of S0:

ξ1 + iξ2 :=

∫

∂S0

zĤ1 dz = ε−1

∫

∂Sε
0

zĤε dz. (3.13)

In the same way, we introduce η is defined in R2 ≃ C by

η = η1 + iη2 :=

∫

∂S0

z2Ĥ1 dz = ε−2

∫

∂Sε
0

z2Ĥε dz. (3.14)

3.2.2 Kirchhoff and other related potentials

We will make use of the Kirchhoff potentials which allow to lift the boundary conditions in a harmonic manner:
let Φε := (Φε

i )i=1,2,3 be the solutions of the following Neumann problems:

−∆Φε
i = 0 in Fε

0 , Φε
i −→ 0 when x→ ∞,

∂Φε
i

∂n
= Ki on ∂Fε

0 , (3.15)

where we set on ∂Fε
0 :

(K1, K2, K3) := (n1, n2, x
⊥ · n). (3.16)

Note that K1, K2 and K3 actually depend on ε. Changing variables according to y = x/ε, we see that

Φε
i (x) = εΦ1

i (x/ε) for i = 1, 2, Φε
3(x) = ε2Φ1

3(x/ε). (3.17)

Next to design approximations of the velocity field, we will use the following related potentials. Let Φε
4 and

Φε
5 be the unique solution of (3.15) where K4 and K5 are defined on ∂Fε

0 by:

(K4, K5) :=

((
−x1
x2

)
· n,
(
x2
x1

)
· n
)
. (3.18)

The scaling law for Φi with i = 4, 5 is the same as for i = 3:

Φε
i (x) = ε2Φ1

i (x/ε) for i = 4, 5. (3.19)

We have from Lemma A.8 that for all i = 1, 2, 3, 4, 5:

Φ1
i (x) = O

(
1

|x|

)
and ∇Φ1

i (x) = O
(

1

|x|2
)

as |x| → +∞, (3.20)

and consequently that for all i = 1, 2, 3, 4, 5, ∇Φε
i belongs to L2(Fε

0 ).
From the scaling law and the asymptotic behavior, we deduce the following estimate on the support of ωε.

Lemma 3.2. Let us fix ρ > 1. There exists C > 0 such that the following holds. If for a given T > 0 and
ε ∈ (0, 1], (2.9) is valid on [0, T ], then one has

ε−2‖∇Φε
1‖L∞(suppωε(t)) + ε−2‖∇Φε

2‖L∞(suppωε(t)) + ε−3‖∇Φε
3‖L∞(suppωε(t)) 6 C ∀t ∈ [0, T ].
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We introduce the following quantities for i, j ∈ {1, 2, 3, 4, 5}:

mε
i,j :=

∫

Fε
0

∇Φε
i · ∇Φε

j = ε2+δ{i>3}+δ{j>3}

∫

F0

∇Φ1
i · ∇Φ1

j . (3.21)

Of particular importance is the following matrix

Mε
a :=

[
mε

i,j

]
i,j∈{1,2,3}

=
[
ε2+δi,3+δj,3m1

i,j

]
i,j∈{1,2,3}

= ε2IεMaIε, (3.22)

with

Iε :=



1 0 0
0 1 0
0 0 ε


 , (3.23)

and
Ma =

[
m1

i,j

]
i,j∈{1,2,3}

. (3.24)

The matrix Mε
a actually encodes the phenomenon of added mass, which, loosely speaking, measures how much

the surrounding fluid resists the acceleration as the body moves through it. The index a refers to “added”; at
the opposite the index g in Mg and Λg (see (2.4) and (2.6)) stands for “genuine”.

We will also use the 2× 2 restriction of Mε
a:

Mε
♭ =

(
mε

1,1 mε
1,2

mε
1,2 mε

2,2

)
. (3.25)

3.2.3 Biot-Savart kernel

In this paragraph, we recall briefly the elliptic div/curl system which allows to pass from the vorticity to the
velocity field. We denote by Gε(x, y) the Green’s function for the Laplacian in Fε

0 with Dirichlet boundary
conditions, and we introduce the kernel

Kε(x, y) = ∇⊥
xG

ε(x, y)

of the Biot-Savart operator Kε[ω] which therefore acts on ωε ∈ L∞
c (Fε

0 ) through the formula

Kε[ωε](x) =

∫

Fε
0

Kε(x, y)ωε(y) dy.

For ωε ∈ L∞
c (Fε

0 ), we recall thatK
ε[ωε] is in LL(Fε

0 ), divergence-free, tangent to the boundary, square integrable
(namely Kε[ωε](x) = O( 1

|x|2 ) as x→ ∞) and such that curlKε[ωε] = ωε. Moreover its circulation around ∂Sε
0

is given by ∫

∂Sε
0

Kε[ωε] · τ ds = −
∫

Fε
0

ωε dx,

where τ = −n⊥ is the tangent unit vector field on ∂Sε
0 .

As in the introduction, we denote by KR2 the Biot-Savart operator associated to the full plane, that is the
operator which maps a vorticity ω to the velocity

KR2 [ω](x) :=
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y) dy.

For ω ∈ L∞
c (R2), KR2 [ω] is bounded, continuous, divergence-free and such that curlKR2 [ω] = ω. Moreover,

there exists C > 0 such that

‖KR2 [ω]‖LL(R2) 6 C(‖ω‖L∞(R2) + ‖ω‖L1(R2)), (3.26)
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and

KR2 [ω](x) = O
(

1

|x|

)
as x→ ∞.

We will also use several times the fact that KR2 commutes with translations and obeys to the following rule
with rotations in the plane:

KR2 [ω ◦Rθ](x) = RT
θ KR2 [ω](Rθx).

Now, for ωε in L∞
c (Fε

0 ), ℓ
ε in R2, rε and γ in R, there exists a unique vector field vε verifying:

div vε = 0 in Fε
0 , curl vε = ωε in Fε

0 , vε · n =
(
ℓε + rεx⊥

)
· n on ∂Sε

0 ,∫

∂Sε
0

vε · τ ds = γ, lim
x→∞

vε(x) = 0,
(3.27)

and it is given by the following Biot-Savart law:

vε = Kε[ωε] + (γ + βε)Hε + ℓε1∇Φε
1 + ℓε2∇Φε

2 + rε∇Φε
3, (3.28)

with

βε :=

∫

Fε
0

ωε dx.

We also introduce the so-called hydrodynamic Biot-Savart kernel Kε
H :

Kε
H [ωε](x) := Kε[ωε](x) + βεHε(x).

and consequently

divKε
H [ωε] = 0 in Fε

0 , curlKε
H [ωε] = ωε in Fε

0 , Kε
H [ωε] · n = 0 on ∂Sε

0 ,

∫

∂Sε
0

Kε
H [ωε] · τ ds = 0.

Hence another possibility for the decomposition of vε is

vε = Kε
H [ωε] + γHε + ℓε1∇Φε

1 + ℓε2∇Φε
2 + rε∇Φε

3. (3.29)

We also mention the fact (see [2]) that

Kε
H [ω](x) =

∫

Fε
0

∇⊥
xG

ε
H(x, y)ω(y) dy,

where the hydrodynamic Green function Gε
H is given as follows:

Gε
H(x, y) := Gε(x, y) + ΨHε(x) + ΨHε(y), (3.30)

with ΨHε defined in (3.10). Finally we also introduce the part of vε without circulation:

ṽε := vε − γHε = Kε
H [ωε] + ℓε1∇Φε

1 + ℓε2∇Φε
2 + rε∇Φε

3. (3.31)

4 First a priori estimates

Let ℓ0 ∈ R2, r0 ∈ R2, γ ∈ R and w0 ∈ L∞
c (R2 \ {0}) be given. We associate the initial velocity field uε0 in Fε

0 by
(3.27) (restricting in particular w0 to Fε

0 ) and consider the resulting solution (hε, θε, uε) given by Theorem 1.1.
By the change of variable above we obtain the corresponding solution (ℓε, rε, vε) of (3.1)-(3.7). The goal of this
section is to derive basic a priori bounds on the solutions (ℓε, rε, vε) and on the vorticity ωε.
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4.1 Vorticity

Due to [4], the generalized enstrophies are conserved when time proceeds, in particular, we have for any t > 0
and any p ∈ [1,∞],

‖ωε(t, ·)‖Lp(Fε
0
) = ‖wε

0‖Lp(Fε
0
) 6 ‖w0‖Lp(R2). (4.1)

Extending ωε by 0 inside Sε
0 , we deduce from (3.26) and (4.1) that

‖KR2 [ωε(t, ·)]‖LL(R2) is bounded independently of t and of ε. (4.2)

4.2 Energy

Let us introduce the total mass matrix

Mε := Mε
g +Mε

a where Mε
g :=

[
mε Id2 0

0 J ε

]
. (4.3)

Observe that
Mε

g = εαIεMgIε, (4.4)

where Iε is defined in (3.23) and Mg in (2.4). We recall that the added mass matrix Mε
a was defined in (3.22).

The matrix Mε is symmetric and positive definite.
Using this matrix, one can deduce the following conserved quantity, where we recall that the functions ΨHε

and Gε
H were respectively defined in (3.10) and (3.30).

Proposition 4.1. The following quantity is conserved along the motion:

2Hε = (pε)TMεpε −
∫

Fε
0
×Fε

0

Gε
H(x, y)ωε(x)ωε(y) dx dy − 2γ

∫

Fε
0

ωε(x)ΨHε(x) dx,

where

pε :=

(
ℓε

rε

)
.

The proof of Proposition 4.1 is given in [2]. Therein, we can also find the following consequence:

Proposition 4.2. Let ρw0
> 0 such that suppw0 ⊂ B(0, ρw0

). One has the following estimate for some constant
C = C(m1,J 1, ‖w0‖L1∩L∞ , |ℓ0|, |r0|, |γ|, ρw0

), depending only on these values and the geometry for ε = 1:

(pε)TMεpε 6 C[1 + ln(ρε(t))], (4.5)

where
ρε(t) := ρωε(t,·) = inf{d > 1 / suppωε(t, ·) ⊂ B(0, d)}.

Now using (3.22) and (4.4), the estimate (4.5) can be rewritten as

εα(pε)T IεMgIεp
ε + ε2(pε)T IεMaIεp

ε
6 C[1 + ln(ρε(t))].

Now there are two possibilities. The first possibility is that S0 is not a ball, and in that case, Ma is positive
definite as a Gram matrix associated to a free family of vectors (the third one degenerates when S0 is a ball!).
Hence we deduce that

|εmin(1,α/2)ℓε(t)|+ |ε1+min(1,α/2)rε(t)| 6 C[1 + ln(ρε(t))]. (4.6)

The second possibility is that S0 is a ball. But in this situation we infer from (1.4) that rε(t) is constant over
time (and in particular is trivially bounded). Moreover, using that in this case the restriction of Ma to the first
two coordinates is m11 Id, we see that (4.6) is also valid in this case.

Remark 4.3. In [2], we could deduce by a Gronwall argument that ρε was bounded on [0, T ] uniformly in ε.
This estimate cannot be straightforwardly deduced here, because of the powers of ε on the left hand side. For
α = 2, for instance, we have |εℓε(t)|+ |ε2rε(t)| in (4.6), instead of |ℓε(t)|+ |εrε(t)| in [2].
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As a byproduct of (4.6), we will use throughout the next section the following estimate on (ℓε, rε):

Lemma 4.4. Let us fix ρ > 1. There exists C > 0 such that the following holds. If for a given T > 0 and
ε ∈ (0, 1], (2.9) is valid on [0, T ], then one has

|εℓε(t)|+ |ε2rε(t)| 6 C ∀t ∈ [0, T ].

4.3 Basic velocity estimates

We can deduce from Lemma 4.4 and from the results of Subsection 3.2 new estimates on the fluid velocity, as
long as the solid stays away from the vorticity and that the support of the vorticity remains bounded.

First, let us recall the following lemma (see [5, Theorem 4.1]):

Lemma 4.5. There exists a constant C > 0 which depends only on the shape of the solid for ε = 1 such that
for any ω smooth enough,

‖Kε
H [ω]‖L∞(Fε

0
) 6 C‖ω‖1/2L1(Fε

0
)‖ω‖

1/2
L∞(Fε

0
).

Combining with the conservation laws (4.1) we obtain that for any t > 0,

‖Kε
H [ω](t, ·)‖L∞(Fε

0
) 6 C‖w0‖1/2L1(R2)‖w0‖1/2L∞(R2).

Together with Lemmas 3.1, 3.2 and 4.4, we deduce from the decompositions (3.29) and (3.31) the next velocity
estimates.

Lemma 4.6. Let us fix ρ > 1. There exists C > 0 such that the following holds. If for a given T > 0 and
ε ∈ (0, 1], (2.9) is valid on [0, T ], then one has

‖vε(t, ·)‖L∞(suppωε(t)) + ‖ṽε(t, ·)‖L∞(suppωε(t)) 6 C ∀t ∈ [0, T ].

4.4 Estimates related to the modulation terms

Due to the definition of the modulated velocity ℓ̃ε (2.1), we are interested in estimating the terms KR2 [ωε](t, 0),
DKR2 [ωε](t, 0) · ξ and their time derivatives.

Regarding the modulation terms themselves, we have the following.

Lemma 4.7. Let us fix ρ > 1. There exists C > 0 such that the following holds. If for a given T > 0 and
ε ∈ (0, 1], (2.9) is valid on [0, T ], then one has

‖KR2[ωε](t, 0)‖L∞(0,T ) + ‖DKR2[ωε](t, 0)‖L∞(0,T ) 6 C.

Proof. The statement concerning the first term is actually included in (4.2). Concerning the second one, we use
that KR2 [ωε] is harmonic on B(0, 1/ρ), so its C1 norm at 0 can be estimated by the L∞ norm on B(0, 1/ρ).

We now turn an estimate relative to the time derivatives of the modulation terms. We will use the elementary
formula (that we already used to obtain (3.4)):

(RT
θε(t))

′ = −rε(t)RT
θε(t)J2 and (Rθε(t))

′ = rε(t)J2Rθε(t) with J2 :=

(
0 −1
1 0

)
, (4.7)

and we deduce from ℓε(t) = RT
θε(t) (h

ε)′(t) that

(ℓε)′(t) = −rεRT
θε(t) ((h

ε)′)⊥(t) +RT
θε(t) (h

ε)′′(t) = −rε(ℓε)⊥(t) +RT
θε(t) (h

ε)′′(t).

We have the following statement concerning the time derivatives of the modulation terms.
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Proposition 4.8. Let us fix ρ > 1. There exist C > 0 and ε0 ∈ (0, 1] such that the following holds. If for a
given T > 0 and ε ∈ (0, ε0], (2.9) is valid on [0, T ], then one has

(KR2 [ωε](t, 0) + εDKR2 [ωε](t, 0) · ξ)′ = −rε(t)(KR2 [ωε](t, 0))⊥ + Fd(ε, t) (4.8)

where Fd is weakly nonlinear in the sense of (2.11).

Proof. An important fact in the proof is that ∂tω
ε becomes singular as ε → 0+ (see the factor rεx⊥ in (3.8));

as a consequence, we will rather consider ∂tw
ε which behaves less singularly.

From (2.2), we easily see that

KR2 [ωε](t, x) = RT
θε(t)KR2 [wε](t, Rθε(t)x+ hε(t)) (4.9)

and
DKR2 [ωε](t, x) · (·) = RT

θε(t)DKR2 [wε](t, Rθε(t)x+ hε(t)) · Rθε(t)(·). (4.10)

Now, using (4.7), we compute the time derivative of KR2 [ωε](t, 0):

KR2 [ωε](t, 0)′ =− rε(t)RT
θε(t)(KR2 [wε](t, hε(t)))⊥ +RT

θε(t)KR2 [∂tw
ε](t, hε(t))

+RT
θε(t)DKR2 [wε](t, hε(t)) · (hε)′(t)

=− rε(t)(KR2 [ωε](t, 0))⊥ +RT
θε(t)KR2 [∂tw

ε](t, hε(t)) +DKR2 [ωε](t, 0) · ℓε(t),

thanks to (4.9)-(4.10).
For the time derivative of DKR2 [ωε](t, 0) · ξ, we get from (4.7) that

(DKR2 [ωε](t, 0) · ξ)′ =− rε(t)(DKR2 [ωε](t, 0) · ξ)⊥ +RT
θε(t)DKR2 [∂tw

ε](t, hε(t)) · Rθε(t)ξ

+RT
θε(t)D

2KR2 [wε](t, hε(t)) :
(
(hε)′(t)⊗Rθε(t)ξ

)
+ rε(t)DKR2 [ωε](t, 0) · ξ⊥.

Putting these two computations together, we obtain (4.8) with

Fd(ε, t) :=R
T
θε(t)KR2 [∂tw

ε](t, hε(t)) +DKR2 [ωε](t, 0) · ℓε(t)
− εrε(t)(DKR2 [ωε](t, 0) · ξ)⊥ + εRT

θε(t)DKR2 [∂tw
ε](t, hε(t))Rθε(t) · ξ

+ εRT
θε(t)D

2KR2 [wε](t, hε(t)) :
(
(hε)′(t)⊗Rθε(t)ξ

)
+ εrε(t)DKR2 [ωε](t, 0) · ξ⊥,

which we now prove to be weakly nonlinear.
As in Lemma 4.7, we see that, by harmonicity of KR2 [ωε] on B(0, 1/ρ) and its L∞ estimate (4.2), there

exists C such that
∣∣DKR2 [ωε](t, 0) · ℓε(t)− εrε(t)(DKR2 [ωε](t, 0) · ξ)⊥

∣∣ 6 C(|ℓε(t)|+ ε|rε(t)|)∣∣∣εRT
θε(t)D

2KR2 [wε](t, hε(t)) :
(
(hε)′(t)⊗Rθε(t)ξ

)
+ εrε(t)DKR2 [ωε](t, 0) · ξ⊥

∣∣∣ 6 C(ε|ℓε(t)|+ ε|rε(t)|).

Since we assume (2.9) to be valid on [0, T ], we deduce that uεwε is compactly supported in B(hε(t), ρ) \
B(hε(t), 1/ρ). Hence we can infer from (4.1) and Lemma 4.6 that uεwε is bounded in L1∩L∞(R2) uniformly in
ε. Therefore, using the vorticity equation ∂tw

ε = − div(uεwε), we deduce that KR2 [∂tw
ε] is uniformly bounded

and harmonic around hε(t). This gives that
∣∣∣RT

θε(t)KR2 [∂tw
ε](t, hε(t))

∣∣∣ 6 C and
∣∣∣εRT

θε(t)DKR2 [∂tw
ε](t, hε(t)) ·Rθε(t)ξ

∣∣∣ 6 Cε.

Hence one obtains an estimate for Fd of the form:

|Fd(ε, t)| 6 C (1 + |ℓε(t)|+ |εrε(t)|) .

Putting the “modulated velocity” ℓ̃ε (see (2.1)) in the right hand side instead of ℓε(t), taking Lemma 4.7 into
account, this gives that Fd is weakly nonlinear.

15



4.5 Approximation of the velocity

For the computation of the pressure force, it will useful to approximate the velocity vector field ṽε (introduced
in (3.31)) along the solid boundary. As KR2 [ωε] = ∇⊥ψ[ωε] with ∆ψ = 0 in the neighborhood of the solid
(namely on B(0, 1/ρ), see (2.9)), then DKR2 [ωε](t, 0) is of the form

DKR2 [ωε](t, 0) =

(
−aε bε

bε aε

)
for some aε, bε ∈ R, (4.11)

where we have by Lemma 4.7:
‖aε‖L∞(0,T ) + ‖bε‖L∞(0,T ) 6 C.

Note that in particular we have

DKR2 [ωε](t, 0) · x = aε
(
−x1
x2

)
+ bε

(
x2
x1

)
.

Therefore, reminding (3.31), we introduce

vε#(x) := KR2 [ωε](t, 0) +DKR2 [ωε](t, 0) · x+

2∑

i=1

(ℓε −KR2 [ωε](t, 0))i∇Φε
i (x)− aε∇Φε

4(x)− bε∇Φε
5(x). (4.12)

The following proposition allows to obtain a good approximation of the fluid velocity on ∂Sε
0 .

Proposition 4.9. The vector field vε# − ℓε is tangent to the boundary. Moreover, for fixed ρ > 1, there exist
C > 0 and ε0 ∈ (0, 1] such that the following holds. If for a given T > 0 and ε ∈ (0, ε0], the inclusion (2.9) is
valid on [0, T ], then one has

‖vε# + rε∇Φε
3 − ṽε‖L∞(0,T ;L2(∂Sε

0
)) 6 Cε5/2.

Proof. The proof mimics the proof of Proposition 7 in [2] with the more accurate approximation vε# of ṽε−rε∇Φε
3.

Let us shortly sketch the proof for sake of completeness. We first introduce

v̌ε := KR2 [ωε] +
2∑

i=1

(ℓε −KR2 [ωε](t, 0))i∇Φε
i + rε∇Φε

3 − aε∇Φε
4 − bε∇Φε

5, (4.13)

where aε and bε come from (4.11). We observe that





curl(v̌ε − ṽε) = 0, for x ∈ Fε
0 ,

div(v̌ε − ṽε) = 0, for x ∈ Fε
0 ,∫

∂Sε
0

(v̌ε − ṽε) · τ ds = 0,

(v̌ε − ṽε) · n = gε, for x ∈ ∂Sε
0 ,

v̌ε − ṽε → 0 as x→ ∞,

(4.14)

with
gε := (v̌ε − ṽε) · n =

(
KR2 [ωε]−KR2 [ωε](t, 0)−DKR2 [ωε](t, 0) · x

)
· n.

As in Lemma 4.7, we note that KR2 [ωε] is harmonic on B(0, 1/ρ), so its C2 norm on some smaller ball can be
estimated by the L∞ norm on B(0, 1/ρ). Since (4.2) provides in particular a uniform L∞ bound, this yields
that for all ε ∈ (0, ε0]:

‖KR2[ωε](t, ·)−KR2 [ωε](t, 0)−DKR2 [ωε](t, 0) · (·)‖L∞(0,T ;L∞(∂Sε
0
)) 6 Cε2, (4.15)

where ε0 > 0 is chosen such that ∂Sε0
0 ⊂ B(0, 1/(2ρ)).

Now we will use the following classical lemma (see for instance [6]).
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Lemma 4.10. There exists C > 0 such that for any g in L2(∂S0) satisfying

∫

∂S0

g(s)ds = 0,

there is a unique solution Ψ in H
3
2 (F0) of





∆Ψ = 0, for x ∈ F0,
∂nΨ = g, for x ∈ ∂S0,
Ψ → 0 as x→ ∞.

and
‖Ψ‖H3/2(F0) 6 C‖g‖L2(∂S0).

The first and third equations of (4.14) imply that v̌ε − ṽε is a gradient, say v̌ε − ṽε = ∇χ. Hence with
a dilatation argument we can apply Lemma 4.10 to χ. Using also the estimate (4.15) on gε, we deduce the
following lemma:

Lemma 4.11. For fixed ρ > 1, there exist C > 0 and ε0 ∈ (0, 1] such that the following holds. If for a given
T > 0 and ε ∈ (0, ε0], the inclusion (2.9) is valid on [0, T ], then one has

‖v̌ε − ṽε‖L∞(0,T ;L2(∂Sε
0
)) + ε−1/2‖v̌ε − ṽε‖L∞(0,T ;L2(Fε

0
)) = O(ε5/2),

where ṽε and v̌ε are defined in (3.31) and (4.13).

To finish the proof of Proposition 4.9, it remains to estimate

vε# + rε∇Φε
3 − v̌ε = KR2 [ωε](t, 0) +DKR2 [ωε](t, 0) · x−KR2 [ωε](t, x)

on ∂Sε
0 . Using again the harmonicity of KR2 [ωε] in B(0, 1/ρ), we infer easily that

‖vε# + rε∇Φε
3 − v̌ε‖L∞(0,T ;L∞(∂Sε

0
)) 6 Cε2‖∇2KR2 [ωε]‖L∞(Sε

0
)

6 Cε2‖KR2 [ωε]‖L∞(B(0,1/ρ)),

for ε 6 ε0. With (4.2), integrating over ∂Sε
0 , we reach the conclusion.

5 Normal form. Proof of Proposition 2.1

The goal of this section is to establish Proposition 2.1.
The following notations will be used in this section: |Sε

0 | is the Lebesgue measure of Sε
0 , x

ε
G is the position

of the geometrical center of Sε
0 (which can be different of the center of mass 0 if the solid is not homogenous):

xεG :=
1

|Sε
0 |

∫

Sε
0

x dx = εxG. (5.1)

The following formula for the vector product will be useful later on in some computations:

∀pa := (ℓa, ωa), ∀pb := (ℓb, ωb) in R2 × R, pa × pb = (ωa ℓ
⊥
b − ωb ℓ

⊥
a , ℓ

⊥
a · ℓb). (5.2)

We will frequently use the complex variable and the correspondence between R2 and C as described at the
beginning of Section 3. The proofs of many technical lemmas of complex analysis used in this section are given
in Appendix A.
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5.1 Decomposition of the pressure

We first reformulate the main solid equations (3.4)-(3.5). Recall that ṽε and Mε were introduced in (3.31) and
(4.3) respectively.

Lemma 5.1. Equations (3.4)-(3.5) can be rewritten in the form

Mε

(
ℓε

rε

)′

= −(Bε
i )i=1,2,3 − (Cε

i )i=1,2,3 −
(
mεrε(ℓε)⊥

0

)
, (5.3)

where for i = 1, 2, 3,

Bε
i :=

∫

Fε
0

ωε[vε − ℓε − rεx⊥]⊥ · ∇Φε
i (x) dx, (5.4)

and
Cε

i := Cε
i,a + Cε

i,b + Cε
i,c,

with

Cε
i,a :=

1

2

∫

∂Sε
0

|ṽε|2Ki ds−
∫

∂Sε
0

(ℓε + rεx⊥) · ṽεKi ds, (5.5)

Cε
i,b := γ

∫

∂Sε
0

(ṽε − (ℓε + rεx⊥)) ·HεKi ds, (5.6)

Cε
i,c :=

γ2

2

∫

∂Sε
0

|Hε|2Ki ds. (5.7)

Proof. The proof, which we reproduce for the sake of self-containedness, is mainly the same as in [2] (though
the decomposition is a bit different here). Using the following equality for two vector fields a and b in a domain
of the plane:

∇(a · b) = a · ∇b+ b · ∇a− (a⊥ curl b+ b⊥ curla), (5.8)

the equation (3.1) can be written as

∂vε

∂t
+ [vε − ℓε − rεx⊥]⊥ωε +∇1

2
(vε)2 −∇((ℓε + rεx⊥) · vε) +∇π̃ε = 0.

Plugging the decomposition (3.31) into the previous equation, we find

∂vε

∂t
+ [vε − ℓε − rεx⊥]⊥ωε +∇(Qε + π̃ε) = 0,

Qε :=
1

2
|ṽε|2 + γ(ṽε − (ℓε + rεx⊥)) ·Hε +

1

2
γ2|Hε|2 − (ℓε + rεx⊥) · ṽε.

We use this equation do deduce the force/torque acting on the body:
(∫

∂Sε
0

π̃εn ds,

∫

∂Sε
0

π̃εx⊥ · n ds
)

=

(∫

Fε
0

∇π̃ε · ∇Φε
i dx

)

i=1,2,3

.

One can check that the above integration by parts is licit by using the compact support of ω and the decay
properties of ṽε, Hε and ∇Φε

i (see [2] for more details). Using Green’s formula and the boundary condition,
the contribution of ∂vε

∂t is
( ∫

Fε
0

∂tv
ε · ∇Φε

i (x) dx
)
i=1,2,3

= Mε
a

(
ℓε

rε

)′

,

and one obtains the result.

In the next subsections, we expand the various terms Bε
i and Cε

i up to order 2 (respectively 3) in ε for
i = 1, 2 (resp. 3). Then in Subsection 5.4, we regroup these terms and get to the normal form. We will take
advantages of cancellations when performing this merging.
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5.2 Expansion of Bε

i

We begin by developing Bε
i under the assumptions of Proposition 2.1.

Proposition 5.2. Let ρ > 1 be fixed. There exists C > 0 such that if for a given T > 0 and an ε ∈ (0, 1], (2.9)
is satisfied for all t ∈ [0, T ], then one has:

∥∥∥∥
(
Bε

1

Bε
2

)
− rε(Mε

♭ + |Sε
0 |I2)(KR2 [ωε](t, 0))⊥

+ ℓε1

(
−(mε

1,1 + |Sε
0 |)aε +mε

1,2b
ε

−mε
2,1a

ε + (mε
2,2 + |Sε

0 |)bε
)
+ ℓε2

(
mε

1,2a
ε + (mε

1,1 + |Sε
0 |)bε

(mε
2,2 + |Sε

0 |)aε +mε
2,1b

ε

)

+2rεaε
(
mε

1,5 + |Sε
0 |xεG,2

mε
2,5 + |Sε

0 |xεG,1

)
+ 2rεbε

(−mε
1,4 + |Sε

0 |xεG,1

−mε
2,4 − |Sε

0 |xεG,2

)∥∥∥∥
L∞(0,T )

6 Cε2

and
∥∥∥∥∥B

ε
3 − rε

(( mε
3,2

−mε
3,1

)
+|Sε

0 |xεG
)
·KR2 [ωε](t, 0)

+ ℓε1

(
(−mε

3,1 + |Sε
0 |xεG,2)a

ε + (mε
3,2 + |Sε

0 |xεG,1)b
ε
)

+ ℓε2

(
(mε

3,2 + |Sε
0 |xεG,1)a

ε + (mε
3,1 − |Sε

0 |xεG,2)b
ε
)

+ 2rεaε(mε
3,5 +mε

6)− 2rεbε(mε
3,4 +mε

7)

∥∥∥∥∥
L∞(0,T )

6 Cε3,

where

• mε
i,j is defined in (3.21),

• Mε
♭ is defined in (3.25) as the 2× 2 restriction of Mε

a,

• aε and bε are defined in (4.11) as coefficients in DKR2 [ωε](t, 0),

• mε
6 =

∫
Sε
0

(x21 − x22) dx = ε4m1
6 and mε

7 = 2
∫
Sε
0

x1x2 dx = ε4m1
7.

Proof. We decompose Bε
i as follows:

Bε
i =

∫

Fε
0

ωε(vε)⊥ · ∇Φε
i (x) dx −

∫

Fε
0

ωε(ℓε)⊥ · ∇Φε
i (x) dx +

∫

Fε
0

ωεrεx · ∇Φε
i (x) dx

=: Bε
a,i +Bε

b,i +Bε
c,i.

• According to (4.1), Lemmas 3.2 and 4.6, we estimate the first term for any t ∈ [0, T ]:

|Bε
a,i(t)| 6 ‖ωε‖L1(Fε

0
)‖vε‖L∞(suppωε(t))‖∇Φε

i‖L∞(suppωε(t))

6 Cε2+δ3,i‖w0‖L1(R2).

• Concerning the computation of Bε
b,i, we use that the property (2.9) is valid during [0, T ], that is, the support

of ωε is included in B(0, ρ) \ B(0, 1/ρ) for any t ∈ [0, T ]. Taking the scaling law (3.17) into account, we are
naturally led to study the asymptotic behavior of Φ1

i (z) as z → ∞. Thanks to Lemmas A.8, A.10 and A.14, we
can write the first terms in the Laurent series:

∇̂Φ1
1(z) =

−m1
1,2 + i(m1

1,1 + |S0|)
2iπz2

+
−2(m1,5 + |S0|xG,2) + 2i(−m1

1,4 + |S0|xG,1)

2iπz3
+O

( 1

z4

)
,
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∇̂Φ1
2(z) =

−(m1
2,2 + |S0|) + im1

2,1

2iπz2
+

−2(m1
2,5 + |S0|xG,1)− 2i(m1

2,4 + |S0|xG,2)

2iπz3
+O

( 1

z4

)
,

∇̂Φ1
3(z) =

−(m1
3,2 + |S0|xG,1) + i(m1

3,1 − |S0|xG,2)

2iπz2
+

−2(m1
3,5 +m1

6)− 2i(m1
3,4 +m1

7)

2iπz3
+O

( 1

z4

)
.

Using the notation for polar coordinates

y =

(
y1
y2

)
= |y|

(
cos θ
sin θ

)
and z = y1 + iy2 = |y|(cos θ + i sin θ), (5.9)

we note that
1

zk
=

1

|y|k
̂(cos kθ
sin kθ

)
and

i

zk
=

1

|y|k
̂(
sin kθ

− coskθ

)
.

Hence, we use this expansion with y = x/ε together with the scaling laws of Φε
i (see (3.17)) and of mε

i,j to
obtain:

∇Φε
1(x) =

mε
1,2

2π|x|2
(

sin 2θ
− cos 2θ

)
+
mε

1,1 + |Sε
0 |

2π|x|2
(
cos 2θ
sin 2θ

)

+
2(mε

1,5 + |Sε
0 |xεG,2)

2π|x|3
(

sin 3θ
− cos 3θ

)
+

2(−mε
1,4 + |Sε

0 |xεG,1)

2π|x|3
(
cos 3θ
sin 3θ

)
+O

( ε4

|x|4
)
,

∇Φε
2(x) =

mε
2,2 + |Sε

0 |
2π|x|2

(
sin 2θ

− cos 2θ

)
+

mε
2,1

2π|x|2
(
cos 2θ
sin 2θ

)

+
2(mε

2,5 + |Sε
0 |xεG,1)

2π|x|3
(

sin 3θ
− cos 3θ

)
−

2(mε
2,4 + |Sε

0 |xεG,2)

2π|x|3
(
cos 3θ
sin 3θ

)
+O

( ε4

|x|4
)
,

and

∇Φε
3(x) =

mε
3,2 + |Sε

0 |xεG,1

2π|x|2
(

sin 2θ
− cos 2θ

)
+
mε

3,1 − |Sε
0 |xεG,2

2π|x|2
(
cos 2θ
sin 2θ

)

+
2(mε

3,5 +mε
6)

2π|x|3
(

sin 3θ
− cos 3θ

)
−

2(mε
3,4 +mε

7)

2π|x|3
(
cos 3θ
sin 3θ

)
+O

( ε5

|x|4
)
.

For the sake of simplicity of notations, we will denote during this proof

(Ki)i=1,2 = KR2 [ωε](t, 0) =
1

2π

∫

R2

−y⊥
|y|2 ω

ε(t, y) dy. (5.10)

Hence we identify the components of KR2 [ωε](t, 0) as follows:

K1 =
1

2π

∫

R2

sin θ

|y| ω
ε(t, y) dy, K2 =

1

2π

∫

R2

− cos θ

|y| ωε(t, y) dy,

where we used again the notation (5.9) for y. With aε and bε defined in (4.11), we have

aε = ∂2KR2 [ωε]2(t, 0) = − 1

2π

∫

R2

2y1y2
|y|4 ωε(t, y) dy = − 1

2π

∫

R2

sin 2θ

|y|2 ωε(t, y) dy

and

bε = ∂1KR2 [ωε]2(t, 0) =
1

2π

∫

R2

|y|2 − 2y21
|y|4 ωε(t, y) dy = − 1

2π

∫

R2

cos 2θ

|y|2 ωε(t, y) dy.
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Now we use the expansion of ∇Φε
1(x) at order one to compute Bε

b,1:

Bε
b,1(t) = −

∫

Fε
0

ωε(ℓε)⊥ · ∇Φε
i (x) dx =

∫

Fε
0

ωε

(
ℓε2
−ℓε1

)
·
[ mε

1,2

2π|x|2
(

sin 2θ
− cos 2θ

)
+
mε

1,1 + |Sε
0 |

2π|x|2
(
cos 2θ
sin 2θ

)
+O

( ε3

|x|3
)]
dx

= ℓε2

(
−mε

1,2a
ε − (mε

1,1 + |Sε
0 |)bε

)
+ ℓε1

(
−mε

1,2b
ε + (mε

1,1 + |Sε
0 |)aε

)
+ R̃b,1(t)

where
|R̃ε

b,1(t)| 6 ε3‖ωε‖L1|ℓε|Cρ3 6 Cε2,

for all t ∈ [0, T ].
In the same way, we obtain

Bε
b,2(t) =ℓ

ε
2

(
− (mε

2,2 + |Sε
0 |)aε −mε

2,1b
ε
)
+ ℓε1

(
− (mε

2,2 + |Sε
0 |)bε +mε

2,1a
ε
)
+ R̃b,2(t)

and

Bε
b,3(t) = ℓε2

(
− (mε

3,2 + |Sε
0 |xεG,1)a

ε − (mε
3,1 − |Sε

0 |xεG,2)b
ε
)

+ ℓε1

(
− (mε

3,2 + |Sε
0 |xεG,1)b

ε + (mε
3,1 − |Sε

0 |xεG,2)a
ε
)
+ R̃b,3(t)

where
|R̃ε

b,2(t)| 6 Cε2 and |R̃ε
b,3(t)| 6 Cε3 for all t ∈ [0, T ].

• Concerning Bε
c,i, we use the second-order expansion of ∇Φε

i to get:

Bε
c,1(t) =

∫

Fε
0

ωεrεx · ∇Φε
1(x) dx

=

∫

Fε
0

ωεrε|x|
(
cos θ
sin θ

)
·
[ mε

1,2

2π|x|2
(

sin 2θ
− cos 2θ

)
+
mε

1,1 + |Sε
0 |

2π|x|2
(
cos 2θ
sin 2θ

)]
dx

+

∫

Fε
0

ωεrε|x|
(
cos θ
sin θ

)
·
[2(mε

1,5 + |Sε
0 |xεG,2)

2π|x|3
(

sin 3θ
− cos 3θ

)
+

2(−mε
1,4 + |Sε

0 |xεG,1)

2π|x|3
(
cos 3θ
sin 3θ

)
+O

( ε4

|x|4
)]
dx,

which is simplified as follows:

Bε
c,1(t) =

∫

Fε
0

ωεrε
[mε

1,2

2π|x| sin θ +
mε

1,1 + |Sε
0 |

2π|x| cos θ
]
dx

+

∫

Fε
0

ωεrε
[2(mε

1,5 + |Sε
0 |xεG,2)

2π|x|2 sin 2θ +
2(−mε

1,4 + |Sε
0 |xεG,1)

2π|x|2 cos 2θ +O
( ε4

|x|4
)]
dx

=rε
[
mε

1,2K1 − (mε
1,1 + |Sε

0 |)K2

]

+ 2rε
[
− (mε

1,5 + |Sε
0 |xεG,2)a

ε − (−mε
1,4 + |Sε

0 |xεG,1)b
ε
]
+ R̃c,1(t)

where
|R̃ε

c,1(t)| 6 ε4‖ωε‖L1 |rε|Cρ4 6 Cε2,

for all t ∈ [0, T ].
In the same way, we obtain

Bε
c,2(t) = rε

[
(mε

2,2 + |Sε
0 |)K1 −mε

2,1K2

]
+ 2rε

[
− (mε

2,5 + |Sε
0 |xεG,1)a

ε + (mε
2,4 + |Sε

0 |xεG,2)b
ε
]
+ R̃c,2(t)
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and

Bε
c,3(t) = rε

[
(mε

3,2 + |Sε
0 |xεG,1)K1 − (mε

3,1 − |Sε
0 |xεG,2)K2

]
+ 2rε

[
− (mε

3,5 +mε
6)a

ε + (mε
3,4 +mε

7)b
ε
]
+ R̃c,3(t)

where
|R̃ε

c,2(t)| 6 Cε2 and |R̃ε
c,3(t)| 6 Cε3 for all t ∈ [0, T ].

Now we end the proof summing and noticing that

(
mε

1,2K1 − (mε
1,1 + |Sε

0 |)K2

(mε
2,2 + |Sε

0 |)K1 −mε
2,1K2

)
= (Mε

♭ + |Sε
0 |I2)(KR2 [ωε](t, 0))⊥

and

(mε
3,2 + |Sε

0 |xεG,1)K1 − (mε
3,1 − |Sε

0 |xεG,2)K2 =
(( mε

3,2

−mε
3,1

)
+ |Sε

0 |xεG
)
·KR2 [ωε](t, 0).

5.3 Expansion of Cε

i

Concerning the term Cε
i , we use again complex analysis.

1. The Cε
i,a term. We first tackle the terms Cε

i,a (still under the assumptions of Proposition 2.1).

Proposition 5.3. Let ρ > 1 be fixed. There exist C > 0 and ε0 ∈ (0, 1] such that if for a given T > 0 and an
ε ∈ (0, ε0], (2.9) is satisfied for all t ∈ [0, T ], then one has:

∥∥∥∥∥

(
Cε

1,a

Cε
2,a

)
− (rε)2

(−mε
3,2

mε
3,1

)
+ rε

(
Mε

♭(KR2 [ωε](t, 0)− ℓε) + |Sε
0 |KR2 [ωε](t, 0)

)⊥

+ ℓε1

(
(mε

1,1 + |Sε
0 |)aε −mε

1,2b
ε

−mε
1,2a

ε − (mε
1,1 + |Sε

0 |)bε
)
+ ℓε2

(
mε

2,1a
ε − (mε

2,2 + |Sε
0 |)bε

−(mε
2,2 + |Sε

0 |)aε −mε
2,1b

ε

)

− aεrε
(−mε

3,1 +mε
4,2 + 2|Sε

0 |xεG,2

mε
3,2 −mε

4,1 + 2|Sε
0 |xεG,1

)
− bεrε

(
mε

3,2 +mε
5,2 + 2|Sε

0 |xεG,1

mε
3,1 −mε

5,1 − 2|Sε
0 |xεG,2

)∥∥∥∥∥
L∞(0,T )

6 Cε2

and
∥∥∥Cε

3,a − (KR2 [ωε](t, 0)− ℓε)⊥Mε
♭(KR2 [ωε](t, 0)− ℓε)

− rε(KR2 [ωε](t, 0)− ℓε) ·
(
−mε

3,2

mε
3,1

)
+ rε|Sε

0 |KR2 [ωε](t, 0) · xεG

− ℓε1

(
aε(−mε

4,2 + |Sε
0 |xεG,2 + 2mε

1,5) + bε(−mε
5,2 + |Sε

0 |xεG,1 − 2mε
1,4)
)

− ℓε2

(
aε(mε

4,1 + |Sε
0 |xεG,1 + 2mε

2,5) + bε(mε
5,1 − |Sε

0 |xεG,2 − 2mε
2,4)
)

− 2rεaε(mε
3,5 +mε

6) + 2rεbε(mε
3,4 +mε

7)
∥∥∥
L∞(0,T )

6 Cε3.

Proof. In this proof, we use the second-order approximation (4.12) of ṽε and write:

ṽε = vε# + rε∇Φε
3 +Rε with Rε := ṽε − vε# − rε∇Φε

3. (5.11)

We note that by Proposition 4.9 one has

‖Rε‖L∞(0,T ;L2(∂Sε
0
)) = O(ε5/2). (5.12)

22



We start with the following observation:

Cε
i,a =

1

2

∫

∂Sε
0

|ṽε|2Ki ds−
∫

∂Sε
0

(ℓε + rεx⊥) · ṽεKi ds

=
1

2

∫

∂Sε
0

|ṽε − (ℓε + rεx⊥)|2Ki ds−
1

2

∫

∂Sε
0

|ℓε + rεx⊥|2Ki ds.

Replacing ṽε in this expression with the decomposition (5.11), we compute

Cε
i,a =

1

2

∫

∂Sε
0

|Rε + (vε# − ℓε) + rε(∇Φε
3 − x⊥)|2Ki ds−

1

2

∫

∂Sε
0

|ℓε + rεx⊥|2Ki ds

=
1

2

∫

∂Sε
0

|Rε|2Ki ds+

∫

∂Sε
0

Rε ·
(
(vε# − ℓε) + rε(∇Φε

3 − x⊥)
)
Ki ds+

1

2

∫

∂Sε
0

|vε# − ℓε|2Ki ds

+
1

2

∫

∂Sε
0

|rε(∇Φε
3 − x⊥)|2Ki ds+

∫

∂Sε
0

rε(vε# − ℓε) · (∇Φε
3 − x⊥)Ki ds−

1

2

∫

∂Sε
0

|ℓε + rεx⊥|2Ki ds

=: Di,a +Di,b +Di,c +Di,d +Di,e +Di,f . (5.13)

We now analyze the various terms. We recall that aε and bε are defined in (4.11) and notice that

̂(DKR2 [ωε](t, 0) · x) =
̂

(
aε
(
−x1
x2

)
+ bε

(
x2
x1

))
= −(aε + ibε)z.

Now with the notation (5.10) for KR2 [ωε](t, 0), we can write ̂vε# − ℓε using (4.12) as follows:

̂vε# − ℓε(z) = (K1 − ℓε1)− i(K2 − ℓε2)− (aε + ibε)z + (ℓε1 − K1)∇̂Φε
1 + (ℓε2 − K2)∇̂Φε

2 − aε∇̂Φε
4 − bε∇̂Φε

5. (5.14)

• The first term in (5.13) satisfies obviously ‖Di,a‖L∞(0,T ) = O(ε5+δ3,i) = o(ε2+δ3,i). The second one is of order

O(ε2+δ3,i), because using (3.17), Lemma 4.4 and the definition (4.12) of vε# we see that

|Di,b(t)| 6
∫

∂Sε
0

|Rε|
(
|vε#|+ |ℓε|+ |rε|(|∇Φε

3|+ |x|)
)
|Ki| ds 6 Cε5/2(1 + |ℓε|+ ε|rε|)εδ3,i√ε 6 Cε2+δ3,i .

• We now turn to the third term. As vε# − ℓε is tangent to the boundary, we can apply the Blasius lemma (see
Lemma A.1) and then (5.14), Cauchy’s residue theorem, Lemma A.8 and Lemma A.10 to obtain:

(
Di,c

)
i=1,2

=
1

2

∫

∂Sε
0

|vε# − ℓε|2n ds = i

2

(∫

∂Sε
0

( ̂vε# − ℓε)2 dz

)∗

=− i

(
(aε + ibε)

∫

∂Sε
0

z
(
(ℓε1 − K1)∇̂Φε

1 + (ℓε2 − K2)∇̂Φε
2 − aε∇̂Φε

4 − bε∇̂Φε
5

)
dz

)∗

=− i

(
(aε + ibε)

(
(ℓε1 − K1)(−mε

1,2 + i(mε
1,1 + |Sε

0 |)) + (ℓε2 − K2)(−(mε
2,2 + |Sε

0 |) + imε
2,1)

− aε(−(mε
4,2 + |Sε

0 |xεG,2) + i(mε
4,1 − |Sε

0 |xεG,1))− bε(−(mε
5,2 + |Sε

0 |xεG,1) + i(mε
5,1 + |Sε

0 |xεG,2))
))∗

23



Going back to a vector notation, we get that

(
Di,c

)
i=1,2

=aε
(−(ℓε1 − K1)(m

ε
1,1 + |Sε

0 |)− (ℓε2 − K2)m
ε
2,1 + aε(mε

4,1 − |Sε
0 |xεG,1) + bε(mε

5,1 + |Sε
0 |xεG,2)

(ℓε1 − K1)m
ε
1,2 + (ℓε2 − K2)(m

ε
2,2 + |Sε

0 |)− aε(mε
4,2 + |Sε

0 |xεG,2)− bε(mε
5,2 + |Sε

0 |xεG,1)

)

+ bε
(
(ℓε1 − K1)m

ε
1,2 + (ℓε2 − K2)(m

ε
2,2 + |Sε

0 |)− aε(mε
4,2 + |Sε

0 |xεG,2)− bε(mε
5,2 + |Sε

0 |xεG,1)

(ℓε1 − K1)(m
ε
1,1 + |Sε

0 |) + (ℓε2 − K2)m
ε
2,1 − aε(mε

4,1 − |Sε
0 |xεG,1)− bε(mε

5,1 + |Sε
0 |xεG,2)

)

=aε
(−ℓε1(mε

1,1 + |Sε
0 |)− ℓε2m

ε
2,1

ℓε1m
ε
1,2 + ℓε2(m

ε
2,2 + |Sε

0 |)

)
+ bε

(
ℓε1m

ε
1,2 + ℓε2(m

ε
2,2 + |Sε

0 |)
ℓε1(m

ε
1,1 + |Sε

0 |) + ℓε2m
ε
2,1

)
+O(ε2).

Now using Lemma A.14, we proceed in the same way for i = 3:

D3,c =
1

2

∫

∂Sε
0

|vε#,I − ℓε|2K3 ds =
1

2
Re

(∫

∂Sε
0

z( ̂vε#,I − ℓε)2 dz

)

=Re

([
(K1 − ℓε1)− i(K2 − ℓε2)

] ∫

∂Sε
0

z
(
(ℓε1 − K1)∇̂Φε

1 + (ℓε2 − K2)∇̂Φε
2 − aε∇̂Φε

4 − bε∇̂Φε
5

)
dz

− (aε + ibε)

∫

∂Sε
0

z2
(
(ℓε1 − K1)∇̂Φε

1 + (ℓε2 − K2)∇̂Φε
2 − aε∇̂Φε

4 − bε∇̂Φε
5

)
dz

)

so that

D3,c =(K1 − ℓε1)
[
− (ℓε1 − K1)m

ε
1,2 − (ℓε2 − K2)(m

ε
2,2 + |Sε

0 |) + aε(mε
4,2 + |Sε

0 |xεG,2) + bε(mε
5,2 + |Sε

0 |xεG,1)
]

+ (K2 − ℓε2)
[
(ℓε1 − K1)(m

ε
1,1 + |Sε

0 |) + (ℓε2 − K2)m
ε
2,1 − aε(mε

4,1 − |Sε
0 |xεG,1)− bε(mε

5,1 + |Sε
0 |xεG,2)

]

+ 2aε
[
(ℓε1 − K1)(m

ε
1,5 + |Sε

0 |xεG,2) + (ℓε2 − K2)(m
ε
2,5 + |Sε

0 |xεG,1)− aεmε
4,5 − bε(mε

5,5 +mε
8)
]

+ 2bε
[
(ℓε1 − K1)(−mε

1,4 + |Sε
0 |xεG,1)− (ℓε2 − K2)(m

ε
2,4 + |Sε

0 |xεG,2) + aε(mε
4,4 +mε

8) + bεmε
5,4

]
.

This can finally be simplified as follows:

D3,c =(KR2 [ωε](t, 0)− ℓε)⊥Mε
♭(KR2 [ωε](t, 0)− ℓε)

+ ℓε1

(
aε(−mε

4,2 + |Sε
0 |xεG,2 + 2mε

1,5) + bε(−mε
5,2 + |Sε

0 |xεG,1 − 2mε
1,4)
)

+ ℓε2

(
aε(mε

4,1 + |Sε
0 |xεG,1 + 2mε

2,5) + bε(mε
5,1 − |Sε

0 |xεG,2 − 2mε
2,4)
)
+O(ε3).

• We now turn to the fourth term in (5.13). As ∇Φε
3 − x⊥ is tangent to the boundary, we can write for i = 1, 2

by Lemma A.1 and by Cauchy’s residue theorem:

(
Di,d

)
i=1,2

=
(rε)2

2

∫

∂Sε
0

|∇Φε
3 − x⊥|2n ds = i(rε)2

2

(∫

∂Sε
0

( ̂∇Φε
3 − x⊥)2 dz

)∗

=
i(rε)2

2

(∫

∂Sε
0

2iz̄∇̂Φε
3 dz −

∫

∂Sε
0

z̄2 dz

)∗

,

where we have noted that −x̂⊥ = iz̄. Thanks to Remark A.11 and (A.2), we deduce that:
(
Di,d

)
i=1,2

= i(rε)2
(
i(−mε

3,2 + |Sε
0 |xεG,1) + (mε

3,1 + |Sε
0 |xεG,2)− 2(|Sε

0 |xεG,2 + i|Sε
0 |xεG,1)

)∗

= (rε)2
(
(−mε

3,2 − |Sε
0 |xεG,1) + i(mε

3,1 − |Sε
0 |xεG,2)

)

= (rε)2
((−mε

3,2

mε
3,1

)
− |Sε

0 |xεG
)
.
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For i = 3, we have that:

D3,d =

∫

∂Sε
0

|∇Φε
3 − x⊥|2(x⊥ · n) ds =

∫

∂Sε
0

|∇Φε
3|2x⊥ · n ds− 2

∫

∂Sε
0

(∇Φε
3 · x⊥)(x⊥ · n) ds+

∫

∂Sε
0

|x|2x⊥ · n ds

=

∫

Fε
0

div(|∇Φε
3|2x⊥) dx− 2

∫

Fε
0

∇(∇Φε
3 · x⊥) · ∇Φε

3 dx−
∫

Sε
0

div(|x|2x⊥) dx,

where there is no boundary term at infinity because ∇Φ3(x) = O(1/|x|2) as |x| → +∞. Next we use the general
relation (5.8) to obtain that

∇(∇Φε
3 ·x⊥)·∇Φε

3 =
[
(∇Φε

3 ·∇)x⊥+(x⊥ ·∇)∇Φε
3

]
·∇Φε

3 = −(∇Φε
3)

⊥ ·∇Φε
3+

1

2
(x⊥ ·∇)|∇Φε

3|2 =
1

2
div(x⊥|∇Φε

3|2).

Hence

D3,d = −
∫

Sε
0

div(|x|2x⊥) dx = −
∫

Sε
0

(−2x1x2 + 2x1x2) dx = 0.

• Concerning the fifth term, we use again the Blasius lemma together with (5.14) and Cauchy’s residue theorem:

(
Di,e

)
i=1,2

=

∫

∂Sε
0

rε(vε# − ℓε) · (∇Φε
3 − x⊥)n ds = irε

(∫

∂Sε
0

( ̂vε# − ℓε)(∇̂Φε
3 + iz̄) dz

)∗

= irε

(
−
∫

∂Sε
0

(aε + ibε)z∇̂Φε
3 dz + i

(
(K1 − ℓε1)− i(K2 − ℓε2)

) ∫

∂Sε
0

z̄ dz − i(aε + ibε)

∫

∂Sε
0

|z|2 dz

+ i(ℓε1 − K1)

∫

∂Sε
0

∇̂Φε
1z̄ dz + i(ℓε2 − K2)

∫

∂Sε
0

∇̂Φε
2z̄ dz − iaε

∫

∂Sε
0

∇̂Φε
4z̄ dz − ibε

∫

∂Sε
0

∇̂Φε
5z̄ dz

)∗

.

Therefore, it suffices to write the values obtained in Lemma A.10, Remark A.11 and (A.3)-(A.4) to get:
(
Di,e

)
i=1,2

=rε
[
− aε(mε

3,1 − |Sε
0 |xεG,2) + bε(mε

3,2 + |Sε
0 |xεG,1) + (K2 − ℓε2)2|Sε

0 |+ aε2|Sε
0 |xεG,2 + bε2|Sε

0 |xεG,1

− (ℓε1 − K1)m
ε
1,2 + (ℓε2 − K2)(−mε

2,2 + |Sε
0 |)− aε(−mε

4,2 + |Sε
0 |xεG,2)− bε(−mε

5,2 + |Sε
0 |xεG,1)

]

+ irε
[
aε(mε

3,2 + |Sε
0 |xεG,1) + bε(mε

3,1 − |Sε
0 |xεG,2)− (K1 − ℓε1)2|Sε

0 |+ aε2|Sε
0 |xεG,1 − bε2|Sε

0 |xεG,2

− (ℓε1 − K1)(−mε
1,1 + |Sε

0 |) + (ℓε2 − K2)m
ε
2,1 − aε(mε

4,1 + |Sε
0 |xεG,1) + bε(−mε

5,1 + |Sε
0 |xεG,2)

]
,

which can be simplified as

(
Di,e

)
i=1,2

= rε

[
− (Mε

♭ + |Sε
0 |I2)(KR2 [ωε](t, 0)− ℓε)

)⊥

+ aε
(−mε

3,1 +mε
4,2 + 2|Sε

0 |xεG,2

mε
3,2 −mε

4,1 + 2|Sε
0 |xεG,1

)
+ bε

(
mε

3,2 +mε
5,2 + 2|Sε

0 |xεG,1

mε
3,1 −mε

5,1 − 2|Sε
0 |xεG,2

)]
.

For i = 3, Lemma A.1, (5.14) and Cauchy’s residue theorem imply that

D3,e =

∫

∂Sε
0

rε(vε# − ℓε) · (∇Φε
3 − x⊥)K3 ds = rεRe

(∫

∂Sε
0

z( ̂vε# − ℓε)(∇̂Φε
3 + iz̄) dz

)

= rεRe

[(
(K1 − ℓε1)− i(K2 − ℓε2)

) ∫

∂Sε
0

(z∇̂Φε
3 + i|z|2) dz − (aε + ibε)

∫

∂Sε
0

(z2∇̂Φε
3 + iz|z|2) dz

+ (ℓε1 − K1)i

∫

∂Sε
0

∇̂Φε
1|z|2 dz + (ℓε2 − K2)i

∫

∂Sε
0

∇̂Φε
2|z|2 dz − aεi

∫

∂Sε
0

∇̂Φε
4|z|2 dz − bεi

∫

∂Sε
0

∇̂Φε
5|z|2 dz

]
.
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Hence, we obtain from (A.4)-(A.5) and Lemmas A.10, A.12 and A.14:

D3,e = rε

[
− (K1 − ℓε1)(m

ε
3,2 + |Sε

0 |xεG,1 + 2|Sε
0 |xεG,1) + (K2 − ℓε2)(m

ε
3,1 − |Sε

0 |xεG,2 − 2|Sε
0 |xεG,2)

+ aε2(mε
3,5 +mε

6 +mε
6)− bε2(mε

3,4 +mε
7 +mε

7)− (ℓε1 − K1)2|Sε
0 |xεG,1

− (ℓε2 − K2)2|Sε
0 |xεG,2 − aε2mε

6 + bε2mε
7

]

= rε(KR2 [ωε](t, 0)− ℓε) ·
((−mε

3,2

mε
3,1

)
− |Sε

0 |xεG
)
+ 2rεaε(mε

3,5 +mε
6)− 2rεbε(mε

3,4 +mε
7).

• Finally, for the last term we write
∫

∂Sε
0

|ℓε + rεx⊥|2Ki ds = |ℓε|2
∫

∂Sε
0

Ki ds− 2ℓε1r
ε

∫

∂Sε
0

x2Ki ds+ 2ℓε2r
ε

∫

∂Sε
0

x1Ki ds+ (rε)2
∫

∂Sε
0

|x|2Ki ds,

where the above integrals are computed in Lemma A.6. Then we check easily that

(
Di,f

)
i=1,2

=
(
− 1

2

∫

∂Sε
0

|ℓε + rεx⊥|2Ki ds
)
i=1,2

= −rε(ℓε)⊥|Sε
0 |+ (rε)2xεG|Sε

0 |

and

D3,f = −1

2

∫

∂Sε
0

|ℓε + rεx⊥|2K3 ds = −rε(ℓε · xεG)|Sε
0 |.

This ends the proof of Proposition 5.3.

2. The Cε
i,c term. We turn to Cε

i,c introduced in (5.7). Here, we deduce from Lemma A.1, (3.12) and Cauchy’s

Residue Theorem that Cε
1,c = Cε

2,c = Cε
3,c = 0. Note in particular that

∫
∂Sε

0

z(Ĥε)2 dz = −i/(2π) is purely

imaginary.

3. The Cε
i,b term. We finally turn to the term Cε

i,b in (5.6). Let us prove the following.

Proposition 5.4. Let ρ > 1 be fixed. There exist C > 0 and ε0 ∈ (0, 1] such that if for a given T > 0 and an
ε ∈ (0, ε0], (2.9) is satisfied for all t ∈ [0, T ], then one has:

∥∥∥
(
Cε

1,b

Cε
2,b

)
− γ(KR2 [ωε](t, 0)− ℓε)⊥ − γεrεξ − γε

(
DKR2 [ωε](t, 0) · ξ

)⊥∥∥∥
L∞(0,T )

6 Cε2,

and ∥∥∥Cε
3,b − γε ξ · (KR2 [ωε](t, 0)− ℓε)− γε2(−aεη1 + bεη2)

∥∥∥
L∞(0,T )

6 Cε3,

where ξ was defined in (3.13) and η was defined in (3.14).

Proof. As for Cε
i,a, we consider the approximation (4.12) of ṽε and use again the decomposition (5.11) where

Rε satisfies (5.12). Putting this decomposition in the definition of Cε
i,b, we obtain:

Cε
i,b = γ

∫

∂Sε
0

Rε ·HεKi ds+ γ

∫

∂Sε
0

(vε# − ℓε) ·HεKi ds+ γ

∫

∂Sε
0

rε(∇Φε
3 − x⊥) ·HεKi ds. (5.15)

Thanks to the scaling law (3.11) for Hε, the first term is of order O(ε2+δ3,i):

|γ|
∫

∂Sε
0

|Rε||Hε||Ki| ds 6 Cε5/2ε−1εδ3,i
√
ε 6 Cε2+δ3,i .
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Concerning the second term in (5.15), as vε#− ℓε and Hε are tangent to the boundary, we can apply the Blasius
lemma (see Lemma A.1). Then we compute by (5.14), Cauchy’s residue theorem and (3.12):

(
γ

∫

∂Sε
0

(vε# − ℓε) ·HεKi ds

)

i=1,2

= γ

∫

∂Sε
0

(vε# − ℓε) ·Hεn ds = iγ

(∫

∂Sε
0

̂(vε# − ℓε)Ĥε dz

)∗

= iγ

((
(K1 − ℓε1)− i(K2 − ℓε2)

) ∫

∂Sε
0

Ĥε dz − (aε + ibε)

∫

∂Sε
0

zĤε dz

)∗

= iγ

((
(K1 − ℓε1)− i(K2 − ℓε2)

)
− (aε + ibε)ε(ξ1 + iξ2)

)∗

= γ(KR2 [ωε](t, 0)− ℓε)⊥ + γε
((−aε bε

bε aε

)
ξ
)⊥
,

where we have used the notation (5.10) and the relation (3.13).
For i = 3, we compute by Lemma A.1 and Cauchy’s residue theorem that

γ

∫

∂Sε
0

(vε# − ℓε) ·HεK3 ds = γRe

(∫

∂Sε
0

z( ̂vε# − ℓε)Ĥε dz

)

= γRe

((
(K1 − ℓε1)− i(K2 − ℓε2)

) ∫

∂Sε
0

zĤε dz − (aε + ibε)

∫

∂Sε
0

z2Ĥε dz

)

= γRe
((

(K1 − ℓε1)− i(K2 − ℓε2)
)
ε(ξ1 + iξ2)− (aε + ibε)ε2(η1 + iη2)

)

= γ ε(KR2 [ωε](t, 0)− ℓε) · ξ + γε2(−aεη1 + bεη2).

For the last term, we use that ∇Φε
3 − x⊥ and Hε are tangent to the boundary, and obtain with Lemma A.1

and Cauchy’s residue theorem:

(
γrε

∫

∂Sε
0

(∇Φε
3 − x⊥) ·HεKi ds

)

i=1,2

= iγrε

(∫

∂Sε
0

( ̂∇Φε
3 − x⊥)Ĥε dz

)∗

= iγrε

(
i

∫

∂Sε
0

z̄Ĥε dz

)∗

= γrε

(∫

∂Sε
0

z̄Ĥε dz

)∗

= γrεε

(∫

∂S0

z̄Ĥ1 dz

)∗

= γεrεξ,

where we have used that −x̂⊥ = iz̄ and Lemma A.5.
For i = 3, we have that:

γrε
∫

∂Sε
0

(∇Φε
3 − x⊥) ·HεK3 ds = γrεRe

(∫

∂Sε
0

z( ̂∇Φε
3 − x⊥)Ĥε dz

)
= γrεRe

(
i

∫

∂Sε
0

zz̄Ĥε dz

)
= 0,

because of Lemma A.5. This ends the proof of Proposition 5.4.

5.4 Conclusion

In this subsection, we gather all the previous results established in this section into a single proposition. We
begin by recalling and introducing several notations.

Let Λ : R3 × R3 → R3 be the symmetric bilinear mapping that satisfies

〈Λ, p, p〉 =
(
r(M1

♭ ℓ)
⊥

ℓ⊥ · M1
♭ℓ

)
for all p =

(
ℓ
r

)
∈ R3, (5.16)
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where we recall that Mε
♭ , the 2× 2 restriction of Mε

a, was defined in (3.25). We also let

p̂ε :=

(
ℓε

εrε

)
, p̌ε :=

(
ℓε −KR2 [ωε](t, 0)

εrε

)
.

We introduce the following vectors relying on the quantities m1
i,j defined in (3.21):

µ1 :=



m1

1,3

m1
2,3

0


 , µ̂1 :=




2m1
2,5 −m1

3,2 +m1
1,4

−2m1
1,5 −m1

3,1 +m1
4,2

0


 and µ̌1 :=



−2m1

2,4 −m1
3,1 +m1

5,1

2m1
1,4 +m1

3,2 +m1
5,2

0


 . (5.17)

Recalling that aε and bε were defined in (4.11), ξ = (ξ1, ξ2) in (3.13) and η = (η1, η2) in (3.14), we let

F (ε, t) = p̂ε × (aεµ̂1 + bεµ̌1)−
((

(m1
1,1 −m1

2,2)b
ε + 2m1

1,2a
ε
)
(ℓε)⊥

0

)
(5.18)

and

G(ε, t) =




0
0

ξ · (DKR2 [ωε](t, 0) · ξ) + aεη1 − bεη2


 . (5.19)

Finally, we recall that Iε is defined in (3.23) and that B is defined in (2.5).
The previous subsections result into the following proposition.

Proposition 5.5. Under the same assumptions as Proposition 2.1, the pressure force/torque can be written as
follows:

− I−1
ε (Bε

i + Cε
i )i=1,2,3 = γp̃ε ×B

+ ε
[
− (εrε)

(
M1

♭ (KR2 [ωε](t, 0))⊥

0

)
− (εrε)p̂ε × µ1 + γG(ε, t)− 〈Λ, p̌ε, p̌ε〉

]
+ ε2

[
F (ε, t) +Rε

]
,

with
‖Rε‖L∞(0,T ) 6 C.

We are now in position to prove the main statement of a normal form, that is Proposition 2.1, where Λa is
defined as the bilinear symmetric mapping such that

〈Λa, p, p〉 := 〈Λ, p, p〉+ rp× µ1 for all p =

(
ℓ
r

)
∈ R3, (5.20)

where we recall that Λ and µ1 were defined in (5.16) and (5.17). We check easily that Λa satisfies (2.8). We
recall also that Λg was defined in (2.6).

Proof of Proposition 2.1. We start from (5.3) that we reformulate as

[
εαMg + ε2Ma

]
(p̂ε)′ = −I−1

ε (Bε
i + Cε

i )i=1,2,3 − εα
(
m1rε(ℓε)⊥

0

)
.

Then we use that according to (2.1) and Proposition 4.8 we have

(ℓ̃ε)′(t) = (ℓε)′(t) + rε(t)(KR2 [ωε](t, 0))⊥ − Fd(ε, t),

28



with Fd weakly nonlinear in the sense of (2.11). Thus with Proposition 5.5 we deduce

[
εαMg + ε2Ma

]
(p̃ε)′

= γp̃ε ×B+ ε
[
− (εrε)p̂ε × µ1 + γG(ε, t)− 〈Λ, p̌ε, p̌ε〉

]
− εα

(
m1rε(ℓε)⊥

0

)

+ εαm1

(
rε(KR2 [ωε](t, 0))⊥

0

)
+ ε2rε

(
0

−m1
3,1(KR2 [ωε](t, 0))2 +m1

3,2(KR2 [ωε](t, 0))1

)

+ εmin(α,2)F (ε, t) + ε2Rε

= γp̃ε ×B+ ε
[
− (εrε)p̌ε × µ1 + γG(ε, t)− 〈Λ, p̌ε, p̌ε〉

]
− εα−1〈Λg, p̌

ε, p̌ε〉+ εmin(α,2)F (ε, t),

where
F (ε, t) = F (ε, t)−

(
εα−min(α,2)Mg + ε2−min(α,2)Ma

)
Fd(ε, t) + ε2−min(α,2)Rε,

and where Λg is defined in (2.6). Note that (5.16) and (5.20) allow to simplify a bit the right hand side as
follows:

[
εαMg + ε2Ma

]
(p̃ε)′ = γp̃ε ×B+ ε

[
γG(ε, t)− 〈Λa, p̌

ε, p̌ε〉
]
− εα−1〈Λg, p̌

ε, p̌ε〉+ εmin(α,2)F (ε, t).

Now we modify the right hand side in order to make the modulated unknown p̃ε appear, instead of p̌ε. This
yields

[
εαMg + ε2Ma

]
(p̃ε)′ + εα−1〈Λg, p̃

ε, p̃ε〉+ ε〈Λa, p̃
ε, p̃ε〉 = γp̃ε ×B+ εγG(ε, t) + εmin(α,2)F (ε, t), (5.21)

where
F (ε, t) = F (ε, t) + F̂ (ε, t),

with

F̂ = εα−min(α,2)
(
− 2〈Λg, DKR2 [ωε](t, 0) · ξ, p̃ε〉+ ε〈Λg, DKR2 [ωε](t, 0) · ξ,DKR2 [ωε](t, 0) · ξ〉

)

+ ε2−min(α,2)
(
− 2〈Λa, DKR2 [ωε](t, 0) · ξ, p̃ε〉+ ε〈Λa, DKR2 [ωε](t, 0) · ξ,DKR2 [ωε](t, 0) · ξ〉

)
.

It remains to check that F is weakly nonlinear in the sense of (2.11) and that G is weakly gyroscopic in the
sense of (2.10).

Lemma 5.6. The term F is weakly nonlinear and the term G is weakly gyroscopic.

Proof. We begin by proving that the term G that we made explicit in (5.19) is weakly gyroscopic, that is,
satisfies (2.10). We can rewrite G as follows:

G(ε, t) =




0
0

ξ · (DKR2 [ωε](t, 0) · ξ)− e1 · (DKR2 [ωε](t, 0) · η)


 , (5.22)

where we denote by (e1, e2) the canonical basis of R2. That e1 appears in the formula (5.22) does not mean
that it is a privileged direction, recall (4.11). Using (4.10) and (4.11) we have

∫ t

0

p̃ε(s) ·G(ε, s) ds = ε

∫ t

0

rε(s)
(
Rθε(s)ξ

)
·
(
DKR2 [wε](s, hε(s)) ·Rθε(s)ξ

)
ds

− ε

∫ t

0

rε(s)
(
Rθε(s)e1

)
·
(
DKR2 [wε](s, hε(s)) · Rθε(s)η

)
ds.

Let us focus on the first term on the right hand side, that we denote I1, the second one being treated likewise.
Since the function KR2 [wε](s, ·) is the orthogonal gradient of a harmonic function in the neighborhood of hε(s),
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the matrix DKR2 [wε](s, hε(s)), as for (4.11), is a 2× 2 traceless symmetric matrix. It is hence the composition
of a linear homothety and an axial orthogonal symmetry. It follows that

DKR2 [wε](s, hε(s))Rθε(s) = R−θε(s)DKR2 [wε](s, hε(s)) = RT
θε(s)DKR2 [wε](s, hε(s)).

With rε = (θε)′, we deduce that

I1 = ε

∫ t

0

rε(s)
(
R2θε(s)ξ

)
·
(
DKR2 [wε](s, hε(s)) · ξ

)
ds

=
ε

2

[(
R2θε(s)−π

2
ξ
)
·
(
DKR2 [wε](s, hε(s)) · ξ

)]t
0
− ε

2

∫ t

0

(
R2θε(s)−π

2
ξ
)
·
(
∂s[DKR2 [wε](s, hε(s)) · ξ]

)
ds

= O(ε)− ε

2

∫ t

0

(
R2θε(s)−π

2
ξ
)
·
(
DKR2 [∂sw

ε](s, hε(s)) · ξ
)
ds

−ε
2

∫ t

0

(
R2θε(s)−π

2
ξ
)
·
(
D2KR2 [wε](s, hε(s)) : (hε)′ ⊗ ξ

)
ds.

Using that ∂sw
ε = − div(uεwε), the a priori estimates given by Lemma 4.6 on uε and by (4.1) on wε, and the

harmonicity of KR2 [uεwε] in B(hε(s), 1/ρ), we see that the first integral is bounded by Ct, the second one by

C
∫ t

0 (1 + |p̃ε|), which gives the result with Young’s inequality.

The fact that F is weakly nonlinear can be seen when following the lines leading to (5.21): it is enough to see
that F and F̂ are weakly nonlinear. Concerning F̂ , the result follows easily from the fact that DKR2 [ωε](t, 0)
is bounded uniformly in ε (see Lemma 4.7). Concerning F this comes from Proposition 5.5 and the fact that F
and Fd are themselves weakly nonlinear. For F this is visible from the expression (5.18), the coefficients aε and
bε being related to DKR2 [ωε](t, 0) by (4.11) and Lemma 4.7 again; for Fd this follows from Proposition 4.8.

This ends the proof of Proposition 2.1.

6 Modulated energy and passage to the limit

6.1 Modulated energy. Proof of Proposition 2.2.

Let us fix ρ > 1 and T > 0. Let C > 0 and ε0 > 0 be the constants obtained by Proposition 2.1. Let T ∈ (0, T ]
and ε ∈ (0, ε0] such that (2.9) is valid on [0, T ]. Then according to Proposition 2.1, (2.12) is valid on [0, T ]. Now
to get the modulated energy estimate, we multiply (2.12) by p̃ε; several simplifications occur in the process.
On the one hand, we use the symmetry of the matrices Mg (defined in (2.4)) and Ma (defined in (3.24)) to
observe the following:

p̃ε ·
[
εαMg + ε2Ma

]
(p̃ε)′ =

[
εαEg(p̃ε) + ε2Ea(p̃ε)

]′
,

where we define, for any p ∈ R3,

Eg(p) :=
1

2
p ·Mgp and Ea(p) :=

1

2
p ·Map.

On the other hand, we have
p̃ε · 〈εα−1Λg + εΛa, p̃

ε, p̃ε〉 = 0,

since the quadratic mappings Λg and Λa satisfy (2.7) and (2.8) respectively; moreover, of course,

p̃ε ·
(
p̃ε ×B

)
= 0.

Thus we obtain on [0, T ],

[
εαEg(p̃ε) + ε2Ea(p̃ε)

]′
(t) = εγp̃ε ·G(ε, t) + εmin(α,2) p̃ε · F (ε, t).
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Next, integrating in time, we obtain for t ∈ [0, T ],

[
εαEg(p̃ε) + ε2Ea(p̃ε)

]
(t) 6

[
εαEg + ε2Ea

]
(p̃ε)(0) + ε|γ|

∣∣∣∣
∫ t

0

p̃ε(s) ·G(ε, s) ds
∣∣∣∣+ εmin(α,2)

∫ t

0

|p̃ε(s)| · |F (ε, s)| ds.

Moreover, from the asymptotic behaviour of the initial data we infer that
[
εαEg + ε2Ea

]
(p̃ε)(0) 6 Cεmin(α,2).

Now let us assume in a first time that S0 is not a ball. Then there exists c > 0 depending only on m1, J 1 and
S0 such that for any p ∈ R3,

c−1 |p|2 6 Eg(p) 6 c |p|2 and c−1 |p|2 6 Ea(p) 6 c |p|2.

This is due to the fact, as we mentioned in Subsection 4.2 that in this case Ma is a Gram matrix associated to
a free family of vectors. Therefore for t ∈ [0, T ],

|p̃ε(t)|2 6 C
(
1 + t+

∫ t

0

(|p̃ε(s)|2 + ε |p̃ε(s)|3) ds
)
.

Then it suffices to use Lemma 4.4 and Gronwall’s lemma on

f(t) := |p̃ε(t)|2 6 C(1 + T ) + 2C

∫ t

0

f(s) ds

to establish that on [0, T ],

|p̃ε(t)| 6
√
C(1 + T )eCT .

Finally it remains to use the a priori bounds on the modulation terms given in Lemma 4.7 to deduce that (2.13)
is valid.

In the degenerate case where S0 is a ball, then we recall that rε(t) is constant over time (as seen from (1.4))
and in particular bounded; moreover Ma is of the form

Ma =



m1,1 0 0
0 m1,1 0
0 0 0


 .

Hence we can reason analogously as before using

c−1 |ℓ̃ε|2 6 Ea(p̃ε) 6 c |ℓ̃ε|2,
to deduce the boundedness of ℓ̃ε. Again we use the a priori bounds on the modulation terms of Lemma 4.7 to
conclude. This ends the proof of Proposition 2.2.

6.2 Local passage to the limit. Proof of Propositions 2.4 and 2.5.

In this section, we pass to the limit in the equation. To that purpose, we will come back at several stages to
the original frame. In particular we now define the inertia matrices in the original frame:

Mε
a,θε(t) := Qθε(t)Mε

aQ
T
θε(t) and Mε

θε(t) := Qθε(t)MεQT
θε(t) = Mε

g +Mε
a,θε(t) (6.1)

where we recall that the added mass matrix Mε
a and the total mass matrix Mε in the solid frame are defined

in (3.22) and (4.3) respectively and have constant coefficients with respect to time. In the above definition, Qθε

is defined as the rotation matrix of angle θε acting on the first two coordinates:

Qθε :=



cos θε − sin θε 0
sin θε cos θε 0
0 0 1


 .

We begin by establishing Proposition 2.4.
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Proof of Proposition 2.4. We fix T > 0, which allows to define Tε according to (2.14). Hence, we can apply
Proposition 2.2 with ρ = 2ρT and T : there exist C > 0 and ε0 ∈ (0, 1] such that for each ε ∈ (0, ε0], (2.13)
applies on the interval [0, Tε], and in particular |(hε)′| 6 C. On the other side, wε is transported by the fluid
velocity which is bounded uniformly on the vorticity support (see Lemma 4.6) ; let us say, it is bounded by C
during [0, Tε]. Then Proposition 2.4 follows immediately with for instance

T = min
( 1

4CρT
,
ρT
2C

).

Now we can turn to the proof of Proposition 2.5.

Proof of Proposition 2.5. We proceed in several successive steps.

1. Compactness for the solid velocity. It is clear that on [0, T ], the family (hε) is weakly-⋆ relatively compact
in W 1,∞([0, T ]); hence we can pick a converging subsequence along indices (εn)n∈N, say

hεn −⇀ h in W 1,∞([0, T ])− w ⋆ as n→ +∞. (6.2)

2. Compactness for the fluid velocity. Let us now obtain some compactness for the fluid vorticity in the original
frame, and for the velocity that it generates via the Biot-Savart law. We will obtain a convergence along a
subsequence of (εn); to simplify the notations we will still call it (εn).

We extend wε(t, ·) by 0 inside Sε(t). Using the a priori estimate (4.1), we deduce that, up to a subsequence
of (εn), one has, for some w ∈ L∞((0, T )× R2):

wεn −⇀ w in L∞((0, T )× R2)− w ⋆ as n→ +∞. (6.3)

It follows moreover from (4.2) that KR2 [wε] is bounded in L∞(0, T ;LL(R2)). Since

∂tw
ε + div(uεwε) = 0 in D′((0, T )× R2), (6.4)

we deduce from (4.1) and Lemma 4.6 that ∂tw
ε is bounded in L∞(0, T ;W−1,p(R2)) for p < +∞. Hence we

deduce by [9, Appendix C] that the convergence (6.3) can be improved into

wεn −→ w in C0([0, T ];L∞(R2)− w⋆) as n→ +∞.

Actually, [9, Appendix C] considers only the compactness of a sequence in C0([0, T ];X − w) for X a reflexive
separable Banach space. However, the generalization to C0([0, T ];L∞(R2) − w⋆) is straightforward using the
separability of L1(R2). Now since KR2 is a compact operator form Lp(R2) to L∞

loc(R
2) for p > 2 we deduce that

KR2 [wεn ] −→ KR2 [w] in C0([0, T ];L∞
loc(R

2)) as n→ +∞.

3. Convergence of uε. We use Lemma 4.11, ‖∇Φε
i‖L2(Fε

0
) = O(ε1+δi>3 ) (see (3.17)–(3.19)) and the uniform

estimates on ℓε, εrε, KR2 [ωε](t, 0) and DKR2 [ωε](t, 0) (see Proposition 2.2 and Lemma 4.7) to deduce that

KR2 [ωε]− ṽε −→ 0 in L∞(0, T ;L2(R2)) as ε→ 0+.

Here we have extended (for instance) ṽε inside Sε
0 by ℓε+rεx⊥. Coming back to original variables, and recalling

the notation (1.9), we define ũε by the relation

ũε(t, x) := Rθε ṽε(t, RT
θε(x− hε(t))),

that is, ũε is the “circulation-free” part of uε:

ũε = uε − γRθε Hε(RT
θε(x− hε(t))).
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We infer that
KR2 [wε]− ũε −→ 0 in L∞(0, T ;L2(R2)) as ε→ 0+,

where we have extended ũε in Sε(t) by (hε)′ + rε(x− hε(t))⊥.
Now we use the fact that for p < 2, one has

Hεn(·) −→ H(·) in Lp
loc(R

2) as n→ +∞, (6.5)

(see [7, Lemma 3.11] and [5, Lemma 4.2]), where H is defined as

H(x) :=
x⊥

2π|x|2 .

This involves that, as seen in [2], one has due to (6.2):

RθεnHεn((Rθεn )T (· − hεn(t))) −→ H(· − h(t)) in L∞(0, T ;Lp
loc(R

2)) as n→ +∞, (6.6)

where we extend Hε by 0 inside Fε
0 . This convergence follows from (6.5) and a change of variable, noting that

H is invariant by rotation.
Gathering the above convergences, we obtain for p < 2

uεn(x) −→ KR2 [w] + γH(· − h(t)) in L∞(0, T ;Lp
loc(R

2)) as n→ +∞.

4. Fluid equation in the limit. Let us show that u and w satisfy (1.18). Since uε and wε satisfy (6.4), it can
be easily seen that for any test function ψ ∈ C∞

c ([0, T )× R2),

∫ ∞

0

∫

R2

ψtw
εn dx dt+

∫ ∞

0

∫

R2

∇ψ · uεnwεn dx dt+

∫

R2

ψ(0, x)w0(x) dx = 0. (6.7)

Here we extend uεn and wεn inside Sε
0 as before; in particular wεn is extended by 0. Then one can check the

convergence as n→ +∞ of each term in (6.7): the convergence of the first one is a direct consequence of (6.3)
and the second one is a matter of weak/strong convergence. This allows to get (1.15) on (0, T ).

5. Solid equation in the limit. We will rely on the normal form (2.12). More precisely we first infer from (2.12),
using the form (5.19) of G(ε, t), that

γP♭Qθε(p̃ε ×B) = P♭Qθε

{[
εαMg + ε2Ma

]
(p̃ε)′ + 〈εα−1Λg + εΛa, p̃

ε, p̃ε〉
}
− εmin(α,2)P♭QθεF (ε, t), (6.8)

where we define P♭ as the projection from R3 to R2 on the two first coordinates.
Now we claim to have the following identity

P♭Qθε

{ (
εαMg + ε2Ma

)
(p̃ε)′ + εα−1〈Λg, p̃

ε, p̃ε〉+ ε〈Λa, p̃
ε, p̃ε〉

}
= P♭

[(
εαMgQθε + ε2QθεMa

)
p̃ε
]′
, (6.9)

whose proof we temporarily postpone. This allows to simplify (6.8) in the form

γP♭Qθε(p̃ε ×B) = P♭

[(
εαMgQθε + ε2QθεMa

)
p̃ε
]′ − εmin(α,2)P♭QθεF (ε, t).

Now we see that terms in the right hand side converge to 0 inW−1,∞([0, T ]). For the last term, the convergence
is clear (and even strong in L∞), due to (2.11). The first term in the right hand side is composed of time-
derivatives of bounded terms in L∞ (according to Proposition 2.2 and Lemma 4.7) multiplied by positive powers
of ε. Hence this term converges also to 0 in W−1,∞.

Hence at this stage we know that P♭Qθε
n
(p̃εn ×B) converges to 0 inW−1,∞. Now we have from the definition

of B (2.5) and relations (4.9)–(4.10) and (5.2) that

P♭Qθε(p̃ε ×B) = −εrεRθεξ +
(
(hε)′ −KR2 [wε](t, hε)− εDKR2 [wε](t, hε) · Rθε(t)ξ

)⊥
.

33



Using (4.7) and Lemma 4.7, we observe that as ε→ 0+,

εrεRθεξ = −ε(Rθεξ⊥)′ −→ 0 in W−1,∞([0, T ]) and εDKR2 [wε](·, hε) · Rθεξ −→ 0 in L∞(0, T ).

Hence we reach the convergence

(hεn)′ −KR2 [wεn ](·, hεn) −→ 0 in W−1,∞([0, T ]).

Now we use the uniform estimates on KR2 [wε] in L∞(0, T ;LL(R2)) and (6.2) to get that

KR2 [wε
n](·, hεn) −→ KR2 [w](·, h) in L∞(0, T ) as n→ +∞.

So we finally obtain
(hεn)′ −→ KR2 [w](·, h),

in W−1,∞([0, T ]) and then in L∞([0, T ]) weak-⋆ due to the boundedness of (hε)′ in L∞(0, T ).
It follows that the solutions of our system converge, up to a subsequence, to those of the wave/vortex system.

Due to the uniqueness of the latter, the convergence takes place along the whole family (ε ∈ (0, ε0]). Now it
remains only to prove (6.9).

6. Proof of the claim (6.9). We introduce

J3 :=



0 −1 0
1 0 0
0 0 0


 ,

so that (4.7) is recast as
Q′

θε = rεQθεJ3. (6.10)

According to (6.1) and (6.10), we have
[
Mε

θεQθε

(
ℓ̃ε

rε

)]′
=

[
QθεMε

(
ℓ̃ε

rε

)]′
= rεQθεJ3Mε

(
ℓ̃ε

rε

)
+QθεMε

(
ℓ̃ε

rε

)′

=rεQθε



(
(mεId +Mε

♭)ℓ̃
ε
)⊥

+ rε
(−mε

2,3

mε
1,3

)

0


+QθεMε

(
ℓ̃ε

rε

)′

,

where we recall that Mε
♭ is the 2× 2 restriction of Mε

a. Now we extract the powers of ε of the mass coefficients.
Thanks to (3.22) and (4.4) we have that

Mε
θε = Iε

(
εαMg + ε2Ma,θε

)
Iε, m

ε = εαm1, Mε
♭ = ε2M1

♭ ,(
−mε

2,3

mε
1,3

)
= ε3

(
−m1

2,3

m1
1,3

)
, Mε = Iε(ε

αMg + ε2Ma)Iε,

where we recall that Iε is defined in (3.23). It follows that

[
Iε
(
εαMg + ε2Ma,θε

)
IεQθε

(
ℓ̃ε

rε

)]′
=rεQθε



(
(εαm1Id + ε2M1

♭ )ℓ̃
ε
)⊥

+ rεε3
(−m1

2,3

m1
1,3

)

0




+QθεIε
(
εαMg + ε2Ma

)
Iε

(
ℓ̃ε

rε

)′

.

We recognize that (−m1
2,3

m1
1,3

)
= (P♭µ

1)⊥ and Iε

(
ℓ̃ε

rε

)
= p̃ε.

Projecting on the first two coordinates (recall that we denote P♭ this projection), and using IεQθε = QθεIε, and
P♭Iε = P♭ we deduce

P♭

[(
εαMg + ε2Ma,θε

)
Qθε p̃ε

]′
= P♭Qθε

[
εα−1〈Λg, p̃

ε, p̃ε〉+ ε〈Λa, p̃
ε, p̃ε〉+

(
εαMg + ε2Ma

)
(p̃ε)′

]
,

with Λg and Λa defined in (2.6) and (5.20). This ends the proof of (6.9) and hence of Proposition 2.5.
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6.3 Conclusion

It remains to prove that the convergence obtained above does not take place only during the interval [0, T ], but
during any interval [0, T ], T > 0. We know that the solution (h,w) of the vortex/wave system is global in time,
and that h remains for all t at positive distance from suppw and that this support remains bounded. Let us
be given T > 0. We let T := T + 1 and we know from (1.19) that there exists ρT > 1 such that

∀t ∈ [0, T + 1], suppw(t, ·) ⊂ B(h(t), ρT ) \B(h(t), 1/ρT ). (6.11)

Let us recall here the definition (2.14) of Tε:

Tε := sup
{
τ ∈ [0, T ], ∀t ∈ [0, τ ], suppwε(t) ⊂ B(hε(t), 2ρT ) \B(hε(t), 1/(2ρT ))

}
.

Using Proposition 2.4, it is clear that for suitably small ε0, one has infε∈(0,ε0] Tε > 0. Therefore, we denote

T̃ := lim inf
ε→0+

Tε > 0.

Due to Proposition 2.2 (with ρ = 2ρT ), there exists C > 0 such that for all ε ∈ (0, ε0), one has the following
estimate

|ℓε|+ |εrε| 6 C for t ∈ [0, Tε]. (6.12)

Now we claim that

T̃ > T +
1

2
, (6.13)

and reason by contradiction. If it were not the case and T̃ < T + 1
2 , then the following would occur. First we

extract a subsequence (εn) such that Tεn → T̃ . On any compact interval [0, T̃ −η] of [0, T̃ ) with η > 0, one finds
N such that infn>N Tεn > T̃ − η. Therefore we can apply Proposition 2.5 with T = T̃ − η and the convergences
of the previous subsection hold true.

Now we prove that

‖dH(suppwεn(t, ·), suppw(t, ·))‖L∞(0,T̃−η) −→ 0 as n→ +∞, (6.14)

where dH is the Hausdorff distance. To see that, one modifies (6.6) into

RθεnHεnR−θεn (· − hεn)) −→ H(· − h) in L∞(B(0, 2ρT ) \B(0, 1/(2ρT ))) as n→ +∞.

This follows from the invariance of H with respect to rotations, and the fact that we have uniform estimates
on ∇Hεn outside B(0, 1/2ρT ) for n large enough (see Lemma 3.1).

Thanks to the uniform log-Lipschitz estimates and Gronwall’s lemma, we see that the flows Φε
n = Φε

n(t, x)
and Φ = Φ(t, x) associated respectively to uεn and KR2 [w](t, ·) + γH(· − h(t)) satisfy

Φεn −→ Φ uniformly in [0, T̃ − η]× suppw0 as n→ +∞.

This involves (6.14). Now due to the definition of Tε and the fact that Tεn 6 T̃ + 1/2 < T for n large enough,
we have that

suppwεn(Tεn , ·) ∩
[
B(hεn(Tεn), 2ρT ) \B(hεn(Tεn), 1/(2ρT ))

]c
6= ∅.

Hence using that (hεn)′ is uniformly bounded (6.12) and that wεn is transported by a velocity uniformly bounded
as well (see Lemma 4.6), we can find η > 0 small enough so that, for n large enough

suppwεn(T̃ − η, ·) ∩
[
B(hεn(T̃ − η), 3ρT /2) \B(hεn(T̃ − η), 2/(3ρT ))

]c
6= ∅.

Now we pass to the limit as n → +∞ with (6.14), and get a contraction with the definition (6.11) of ρT . This
proves (6.13).

Finally, one can apply the convergence result of Proposition 2.5 on [0, T ]. This ends the proof of Theorem 1.2.
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A Lemmas from complex analysis

In this section, we gather several computations relying on complex analysis, which were used earlier in the proof.
We recall the notation f̂ = f1 − if2 for any f = (f1, f2), whereas z = x1 + ix2. We will in particular compute

the first coefficients in the Laurent series of ∇̂Φε
i (defined in Paragraph 3.2.2).

A.1 Basic computations

We first recall the Blasius lemma about tangent vector fields (for a proof, see for instance [11] or [2]):

Lemma A.1. Let C be a smooth Jordan curve in the plane, f := (f1, f2) and g := (g1, g2) two smooth tangent
vector fields on C. Then

∫

C

(f · g)n ds = i

(∫

C

f̂ ĝ dz

)∗

,

∫

C

(f · g)(x⊥ · n) ds = Re

(∫

C

zf̂ ĝ dz

)
.

Now we relate (classically)
∫
C
f̂ with the flux and the circulation of f :

Lemma A.2. Let C be a smooth Jordan curve in the plane and f := (f1, f2) a smooth vector field on C, then:
∫

C

f̂ dz =

∫

C

f · τ ds− i

∫

C

f · n ds.

Proof. Denoting by γ = (γ1, γ2) a parametrization of C then τ = (γ′1, γ
′
2)/|γ′|, then we can write n =

(−γ′2, γ′1)/|γ′|, ds = |γ′(t)|dt and dz = (γ′1(t) + iγ′2(t))dt. Now the conclusion simply follows from

∫

C

(f1 − if2) dz =

∫
(f1γ

′
1 + f2γ

′
2) dt− i

∫
(−f1γ′2 + f2γ

′
1) dt.

Corollary A.3. Let C be a smooth Jordan curve in the plane and f := (f1, f2) a smooth vector field on C, then:
∫

C

zf̂ dz =

∫

C

(
x · f
x⊥ · f

)
· τ ds− i

∫

C

(
x · f
x⊥ · f

)
· n ds

=

∫

C

(x1 + ix2)(f · τ) ds− i

∫

C

(x1 + ix2)(f · n) ds.

Proof. We apply Lemma A.2 to g given by g1 − ig2 = z(f1 − if2) and one checks that

(x1 + ix2)(f1 − if2) = (x1f1 + x2f2)− i(−x2f1 + x1f2) = (x · f)− i(x⊥ · f).

To obtain the second equality, we simply use (n1, n2) = (−τ2, τ1):
(
x · f
x⊥ · f

)
· τ − i

(
x · f
x⊥ · f

)
· n = (x1f1 + x2f2)τ1 + (−x2f1 + x1f2)τ2 − i(x1f1 + x2f2)n1 − i(−x2f1 + x1f2)n2

= (x1 + ix2)(f1τ1 + f2τ2)− i(x1 + ix2)(f1n1 + f2n2),

which ends the proof.

Remark A.4. Replacing x2 by −x2 in the previous computation, we obtain
∫

C

z̄f̂ dz =

∫

C

(x1 − ix2)(f · τ) ds− i

∫

C

(x1 − ix2)(f · n) ds.
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A straightforward application of Lemma A.2, Corollary A.3 and Remark A.4 is the following (using H1 ·n = 0
on ∂S0).

Lemma A.5. Let H1 be defined in (3.9), then

(∫

∂S0

z̄Ĥ1 dz

)∗

=

∫

∂S0

zĤ1 dz and Re

(
i

∫

∂S1
0

|z|2Ĥ1 dz

)
= 0.

Next in the following lemma, we regroup elementary computations which will intervene in the next subsec-
tions. These are of the form:

∫

∂Sε
0

P (x1, x2)Kj ds = εd+δj>3+1

∫

∂S0

P (x1, x2)Kj ds, (A.1)

where P is a homogeneous polynomial of degree d in variables x1 and x2 and where j ∈ {1, . . . , 5}. We recall
that |Sε

0 | is the Lebesgue measure of Sε
0 and that xεG is the position of the geometrical center of Sε

0 (see (5.1)).
Additionally, we introduce the following coefficients

mε
6 :=

∫

Sε
0

(x21 − x22) dx, mε
7 := 2

∫

Sε
0

x1x2 dx, mε
8 :=

∫

Sε
0

|x|2 dx,

and notice that mε
i = ε4m1

i for i = 6, 7, 8.

Lemma A.6. One has the following relations for (A.1):

• d(P ) = 0, j ∈ {1, . . . , 5} :

∫

∂Sε
0

n1 ds =

∫

∂Sε
0

n2 ds =

∫

∂Sε
0

x⊥ · n ds =
∫

∂Sε
0

(
x2
x1

)
· n ds =

∫

∂Sε
0

(
−x1
x2

)
· n ds = 0.

• d(P ) = 1, j ∈ {1, 2, 3} :
∫

∂Sε
0

xjni ds = −δi,j|Sε
0 | for i, j = 1, 2,

∫

∂Sε
0

x1(x
⊥ · n) ds = |Sε

0 |xεG,2,

∫

∂Sε
0

x2(x
⊥ · n) ds = −|Sε

0 |xεG,1.

• d(P ) = 1, j ∈ {4, 5} :

∫

∂Sε
0

x1

(
−x1
x2

)
· n ds = |Sε

0 |xεG,1,

∫

∂Sε
0

x2

(
−x1
x2

)
· n ds = −|Sε

0 |xεG,2,

∫

∂Sε
0

x1

(
x2
x1

)
· n ds = −|Sε

0 |xεG,2,

∫

∂Sε
0

x2

(
x2
x1

)
· n ds = −|Sε

0 |xεG,1.

• d(P ) = 2, j ∈ {1, 2, 3} :
∫

∂Sε
0

|x|2ni ds = −2xεG,i|Sε
0 | for i = 1, 2,

∫

∂Sε
0

|x|2x⊥ · n ds = 0,

∫

∂Sε
0

x1x2n1 ds = −|Sε
0 |xεG,2,

∫

∂Sε
0

x1x2n2 ds = −|Sε
0 |xεG,1,

∫

∂Sε
0

x1x2x
⊥ · n ds = −mε

6,

∫

∂Sε
0

(x21 − x22)n1 ds = −2|Sε
0 |xεG,1,

∫

∂Sε
0

(x21 − x22)n2 ds = 2|Sε
0 |xεG,2,

∫

∂Sε
0

(x21 − x22)x
⊥ · n ds = 2mε

7.
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• d(P ) = 2, j ∈ {4, 5} :
∫

∂Sε
0

|x|2
(
−x1
x2

)
· n ds = 2mε

6,

∫

∂Sε
0

|x|2
(
x2
x1

)
· n ds = −2mε

7,

∫

∂Sε
0

x1x2

(
−x1
x2

)
· n ds = 0,

∫

∂Sε
0

x1x2

(
x2
x1

)
· n ds = −mε

8,

∫

∂Sε
0

(x21 − x22)

(
−x1
x2

)
· n ds = 2mε

8,

∫

∂Sε
0

(x21 − x22)

(
x2
x1

)
· n ds = 0.

Proof. These relations are straightforward consequences of the divergence theorem inside ∂Sε
0 (recalling that n

points outside the fluid), for instance
∫

∂Sε
0

x1

(
−x1
x2

)
· n ds = −

∫

Sε
0

div

(
−x21
x1x2

)
dx =

∫

Sε
0

x1 dx = |Sε
0 |xεG,1.

We finish this section with some other basic computations in the complex variable.

Lemma A.7. We have the following relations:
∫

∂Sε
0

z̄2 dz = 4|Sε
0 |xεG,2 + 4i|Sε

0 |xεG,1, (A.2)

∫

∂Sε
0

z̄ dz = 2i|Sε
0 |, (A.3)

∫

∂Sε
0

|z|2 dz = −2|Sε
0 |xεG,2 + 2i|Sε

0 |xεG,1, (A.4)

∫

∂Sε
0

z|z|2 dz = −2mε
7 + 2imε

6. (A.5)

Proof. These as elementary consequences of Stokes’ formula for the operator ∂
∂z = 1

2 (
∂
∂x − 1

i
∂
∂y ):

∫

∂Sε
0

u dz = 2i

∫

Sε
0

∂u

∂z
dx dy.

A.2 First coefficients of the Laurent series

In this subsection, we use these lemmas to compute the first coefficients of the Laurent series associated to ∇̂Φε
i

for i = 1, 2, 3, 4, 5.
We begin with an elementary lemma.

Lemma A.8. The functions ∇̂Φ1
i admit Laurent series at infinity and moreover satisfy for i = 1, 2, 3, 4, 5:

∇̂Φ1
i = O(1/z2) as |z| → +∞.

Proof. That ∇̂Φ1
i admits Laurent series at infinity is elementary. First, it is divergence free and curl free (see

(3.15)). Moreover, the regularity inequality for harmonic functions h:

‖h‖C1(B(x,r)) 6 C‖h‖C0(B(x,2r)),

proves that ∇̂Φ1
i (z) → 0 as |z| → +∞. The first term of this Laurent series, that is, the term of order 1/z, is

(
∫
∂S0

∇̂Φ1
i dz)/(2iπz), so we can compute it with Lemma A.2. As ∇Φ1

i is a gradient, the circulation is zero,

and Lemma A.6 (case d(P ) = 0) proves that the flux is zero as well.
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Remark A.9. One can prove in the same way, relying on (3.9), that the function Ĥ1 admits Laurent series at
infinity and moreover satisfies:

Ĥ1(z) =
1

2iπz
+O(1/z2) as z → ∞.

The next coefficients in the Laurent series of ∇̂Φ1
i are given in the following lemma.

Lemma A.10. One has:
∫

∂Sε
0

z∇̂Φε
i dz = −(mε

i,2 + |Sε
0 |δi,2) + i(mε

i,1 + |Sε
0 |δi,1), for i = 1, 2,

∫

∂Sε
0

z∇̂Φε
3 dz = −(mε

3,2 + |Sε
0 |xεG,1) + i(mε

3,1 − |Sε
0 |xεG,2),

∫

∂Sε
0

z∇̂Φε
4 dz = −(mε

4,2 + |Sε
0 |xεG,2) + i(mε

4,1 − |Sε
0 |xεG,1),

∫

∂Sε
0

z∇̂Φε
5 dz = −(mε

5,2 + |Sε
0 |xεG,1) + i(mε

5,1 + |Sε
0 |xεG,2),

where mε
i,j =

∫
Fε

0

∇Φε
i · ∇Φε

j dx are the coefficients defined in (3.21).

Proof. We use Corollary A.3 with f = ∇Φε
i :

∫

∂Sε
0

z∇̂Φε
i dz =

∫

∂Sε
0

(x1 + ix2)∂τΦ
ε
i ds− i

∫

∂Sε
0

(x1 + ix2)∂nΦ
ε
i ds.

We integrate the first integral by parts:

∫

∂Sε
0

(x1 + ix2)∂τΦ
ε
i ds = −

∫

∂Sε
0

∂τ (x1 + ix2)Φ
ε
i ds = −

∫

∂Sε
0

(τ1 + iτ2)Φ
ε
i ds = −

∫

∂Sε
0

(n2 − in1)Φ
ε
i ds

= −
∫

Fε
0

∇Φε
2 · ∇Φε

i + i

∫

Fε
0

∇Φε
1 · ∇Φε

i = −mε
i,2 + imε

i,1

The second integral can be computed thanks to the boundary condition in (3.15) (with (3.16) and (3.18)) and
to Lemma A.6. Gathering the expressions, we reach the result.

Remark A.11. Using Remark A.4, we can reproduce the same proof as previously to establish that:

∫

∂Sε
0

z̄∇̂Φε
i dz = (−mε

i,2 + |Sε
0 |δi,2) + i(−mε

i,1 + |Sε
0 |δi,1), for i = 1, 2,

∫

∂Sε
0

z̄∇̂Φε
3 dz = (−mε

3,2 + |Sε
0 |xεG,1)− i(mε

3,1 + |Sε
0 |xεG,2),

∫

∂Sε
0

z̄∇̂Φε
4 dz = (−mε

4,2 + |Sε
0 |xεG,2)− i(mε

4,1 + |Sε
0 |xεG,1),

∫

∂Sε
0

z̄∇̂Φε
5 dz = (−mε

5,2 + |Sε
0 |xεG,1) + i(−mε

5,1 + |Sε
0 |xεG,2).

A.3 Second order moments

In this subsection, we compute second order complex moments of ∇̂Φε
i . In particular we obtain the next terms

in their Laurent series.
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Lemma A.12. One has:
∫

∂Sε
0

|z|2∇̂Φε
i dz = −2mε

i,3 + 2i|Sε
0 |xεG,i for i = 1, 2,

∫

∂Sε
0

|z|2∇̂Φε
3 dz = −2mε

3,3,

∫

∂Sε
0

|z|2∇̂Φε
4 dz = −2mε

4,3 − 2mε
6i,

∫

∂Sε
0

|z|2∇̂Φε
5 dz = −2mε

5,3 + 2mε
7i.

Proof. Applying Lemma A.2 to (|z|2∂1Φε
i , |z|2∂2Φε

i ) we have
∫

∂Sε
0

|z|2(∂1Φε
i − i∂2Φ

ε
i ) dz =

∫

∂Sε
0

|x|2∂τΦε
i ds− i

∫

∂Sε
0

|x|2∂nΦε
i ds.

We easily verify that
∫

∂Sε
0

|x|2∂τΦε
i ds = −

∫

∂Sε
0

Φε
i2x · τ ds = −

∫

∂Sε
0

Φε
i 2(x

⊥ · n) ds = −2mε
i,3.

The value of
∫
∂Sε

0

|x|2∂nΦε
i ds is computed in Lemma A.6.

As for Corollary A.3, we deduce from Lemma A.2 the following result.

Lemma A.13. Let C be a smooth Jordan curve, f := (f1, f2) a smooth vector fields on C:
∫

C

z2f̂ dz =

∫

C

(x1 + ix2)
2(f · τ) ds − i

∫

C

(x1 − ix2)
2(f · n) ds.

Proof. We apply Lemma A.2 to the function

g = g1 − ig2 = z2(f1 − if2) = [(x21 − x22)f1 + 2x1x2f2]− i[(x21 − x22)f2 − 2x1x2f1],

hence g = (x21 − x22)f − 2x1x2f
⊥. We get

∫

C

z2f̂ dz =

∫

C

(x21 − x22)(f · τ) ds −
∫

C

2x1x2(f
⊥ · τ) ds− i

∫

C

(x21 − x22)(f · n) ds+ i

∫

C

2x1x2(f
⊥ · n) ds

=

∫

C

(x21 − x22)(f · τ) ds +
∫

C

2x1x2(f · n) ds− i

∫

C

(x21 − x22)(f · n) ds+ i

∫

C

2x1x2(f · τ) ds.

Finally, we apply this lemma to compute
∫
∂Sε

0

z2∇̂Φε
i dz:

Lemma A.14. One has:
∫

∂Sε
0

z2∇̂Φε
1 dz = −2(mε

1,5 + |Sε
0 |xεG,2) + 2i(−mε

1,4 + |Sε
0 |xεG,1),

∫

∂Sε
0

z2∇̂Φε
4 dz = −2mε

4,5 − 2i(mε
4,4 +mε

8),

∫

∂Sε
0

z2∇̂Φε
2 dz = −2(mε

2,5 + |Sε
0 |xεG,1)− 2i(mε

2,4 + |Sε
0 |xεG,2),

∫

∂Sε
0

z2∇̂Φε
5 dz = −2(mε

5,5 +mε
8)− 2imε

5,4,

∫

∂Sε
0

z2∇̂Φε
3 dz = −2(mε

3,5 +mε
6)− 2i(mε

3,4 +mε
7).

Proof. We use Lemma A.13. For the tangential part, we compute:
∫

∂Sε
0

(x21 − x22)∂τΦ
ε
i ds = −2

∫

∂Sε
0

Φε
i

(
x1
−x2

)
· τ ds = −2

∫

∂Sε
0

Φε
i

(
x2
x1

)
· n ds = −2mε

i,5,

2

∫

∂Sε
0

x1x2∂τΦ
ε
i ds = −2

∫

∂Sε
0

Φε
i

(
x2
x1

)
· τ ds = −2

∫

∂Sε
0

Φε
i

(
−x1
x2

)
· n ds = −2mε

i,4.

For the normal part, we use the boundary condition on ∂nΦ
ε
i and Lemma A.6. Putting these computations in

the relation of Lemma A.13 gives the result.
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