N
N

N

HAL

open science

Adaptive deconvolution on the nonnegative real line

Gwennaélle Mabon

» To cite this version:

‘ Gwennagélle Mabon. Adaptive deconvolution on the nonnegative real line. 2015. hal-01076927v2

HAL Id: hal-01076927
https://hal.science /hal-01076927v2

Preprint submitted on 7 Apr 2015 (v2), last revised 16 Nov 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01076927v2
https://hal.archives-ouvertes.fr

ADAPTIVE DECONVOLUTION ON THE NONNEGATIVE REAL LINE
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ABSTRACT. In this paper we consider the problem of adaptive density or survival function esti-
mation in an additive model defined by Z = X +Y with X independent of Y, when both random
variables are nonnegative. This model is relevant, for instance, in reliability domains where we
are interested in the failure time of a certain material which cannot be isolated from the system
it belongs. Our goal is to recover the distribution of X (density or survival function) through n
observations of Z, assuming that the distribution of Y is known. This issue can be seen as the
classical statistical problem of deconvolution which has been tackled in many cases using Fourier-
type approaches. Nonetheless, in the present case the random variables have the particularity
to be RT-supported. Knowing that, we propose a new angle of attack by building a projection
estimator with an appropriate Laguerre basis. We present upper bounds on the mean squared
integrated risk of our density and survival function estimators. We then describe a nonparametric
data driven strategy for selecting a relevant projection space. The procedures are illustrated with
simulated data and compared to the performances of more classical deconvolution setting using a
Fourier approach. Our procedure works significantly better than Fourier methods for estimating
RT-supported functions.

Keywords. Inverse problem. Adaptive estimation. Nonparametric density estimation. Survival
function estimation. Laguerre basis. Deconvolution. Mean squared risk.

AMS Subject Classification 2010: 62G05, 62G07, 62G99, 62N99.

1. INTRODUCTION

In this paper we consider the following model
Z;=X;+Y;, i1=1,...,n, (1)

where the X;’s are independent identically distributed (i.i.d.) nonnegative variables with unknown
density f and unknown survival function Sy where Sx(x) = P[X > z]|. The Y;’s are also i.i.d.
nonnegative variables with known density g and survival function Sy. We denote by h the density
of the Z;’s and Sz its survival function. Moreover the X;’s and the Y;’s are assumed to be
independent. Our target is the estimation of the density f along with the survival function Sx of
the X;’s when the Z;’s are observed. We are going to show that the assumption of nonnegativity
of the random variables is of huge importance for the estimation strategy.

The assumptions imply that, in Model (1), h(z) = (f*g)(z) where (p*x)(x) = [ o(z—u)(u) du
denotes the convolution product. This setting matches the setting of convolution models which
is classical in nonparametric statistics. Indeed the problem of recovering the signal distribution
f when it is observed with an additive noise with known error distribution, has been extensively
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studied. Rates of convergence and their optimality for kernel estimators have been studied in Car-
roll and Hall (1988), Stefanski (1990), Stefanski and Carroll (1990), Fan (1991) and Efromovich
(1997). For the study of sharp asymptotic optimality, we can cite Butucea (2004), Butucea and
Tsybakov (2008a,b). For the most part, the adaptive bandwidth selection in deconvolution models
has been addressed with a known error distribution, see for example Pensky and Vidakovic (1999)
for wavelet strategy, Delaigle and Gijbels (2004) for bandwith selection, Comte et al. (2006) for
projection strategies with penalization, or Meister (2009) and references therein. More recently
deconvolution problems in additive models in the case of unknown error distribution have been
addressed. For that some information on the error distribution is required. For instance, in a
physical context, a preliminary sample of the noise can be derived. This led to the works of Neu-
mann (1997) who proposed an estimation strategy still based on Fourier inversion, or Johannes
(2009), Comte and Lacour (2011) and Kappus and Mabon (2014) who extended it to the adaptive
strategy. Concerning the estimation of the cumulative distribution function (c.d.f.) in the con-
volution model, some papers can be found as Zhang (1990), Fan (1991), Hall and Lahiri (2008),
Dattner et al. (2011), Dattner and Reiser (2013), Dattner et al. (2014). They all present pointwise
estimation procedures since the distribution function is not square integrable on R. Note that the
assumption is not so strong for the survival function on R™. The last two papers consider the
pointwise estimation of the c.d.f. when the error distribution is unknown under the assumption
that the tail of the characteristic function of the measurement error distribution has a certain
decay: polynomial or exponential. These estimators reach the optimal rates under the condition
that the target function belongs to a Sobolev space.

All these works suppose that the variables X;’s and Y;’s are R-supported. Therefore they are
still valid when the variables are RT-supported. Nonetheless in the present paper, our goal is to
propose a specific solution for nonnegative variables. We can already note that with this model we
can allow Y to be an uniform distribution which is not the case in the Fourier approach. Moreover
we shall illustrate that in practice our procedure works significantly better than Fourier methods
for estimating R -supported functions.

Model (1) is also related to the field of mixture models. We can cite the works of Roueff and
Rydén (2005) and Rebafka and Roueff (2010) who study in particular mixtures of Exponential and
Gamma. These models are justified by some applications in natural sciences such as radioactive
decays for instance. In Rebafka and Roueff (2010) the authors use Legendre polynomials to derive
their estimators but with this strategy they have to consider compact interval for the estimation.
We do not have this constraint in our method thanks to the Laguerre basis.

More broadly the problem of nonnegative variables appears in actuarial or insurance models.
Recently, in a financial context, some papers as Jirak et al. (2014) or Reifl and Selk (2013) have
addressed the problem of one-sided errors. The first authors are interested in the optimal adaptive
estimation in nonparametric regression when the errors are not assumed to be centered anymore,
and typically with Exponential density. It is motivated from fields where the information provided
about the error distribution is its support rather than its mean properties. Such matters arise in
economics: for example in auction fields the underlying distribution of bidders’ private values is
identified from observed bids, see Guerre et al. (2000). This led Jirak et al. (2014) to a different
approach based on local extreme values. We can also cite Bibinger et al. (2014) who are motivated
by modelizing the dynamics of intra-day financial data from limit order books. In all these works
one-sided errors models require new and different tools. More generally, the field of survival
data analysis and reliability is widespread in many domains such as econometrics or biology, and
they also involve nonnegative variables. Duration models are used as soon as the phenomenon
of interest is modelized by nonnegative variables which generally corresponds to a waiting time
until the occurrence of a certain event such as a failure time. Model (1) can thus be seen as a
superposition of two such processes.

Let us describe now our specific method for the estimation of the density and survival functions
when the random variables X and Y in Model (1) are RT-supported. We assume all along the
paper that g belongs to L?(R*) and either

(A1) feL*R")



ADAPTIVE DECONVOLUTION ON THE NONNEGATIVE REAL LINE 3

when the estimation of f is under study, or
(B1) Sx € L?(R™1),
when we want to recover the survival function. In both cases, we use a penalized projection method

(see Birgé and Massart (1997)). The idea is to decompose the density function f on an appropriate
orthonormal basis on R™, (¢k)k>0,

Fla) = be(Hen(x)

k>0

where bi(f) represents the k-th component of f in the orthonormal basis and to estimate the m
first ones by(f),...,bm—1(f). To deal with the particularity of nonnegative variables we introduce
the Laguerre basis defined by

k j
keN,z >0, ¢p(e)=V2L(2x)e™™ with Li(x) =) (-1) (’;) % (2)
=0 '

This basis has already been used to estimate a nonnegative function f in Comte et al. (2013).
These authors consider a regression model defined by Y; = f * g(t;) + €; where Y; is observed, ¢;
are deterministic times of observation, ¢; is subgaussian and g is known. We can also cite Vareschi
(2015) in a similar context with unknown g. For R*-supported functions, the convolution product
writes

hz) = / " f(wg(x — u)du (3)

and what makes the Laguerre basis relevant, in the previous works and in ours, is the relation

/OQC er(w)p;(z —u)du=2""2 (pp(2) — @riji(z)). (4)

(see formula 22.13.14 in Abramowitz and Stegun (1964)). From this property, by decomposing f, g
and h on the Laguerre basis, we are able to define a linear transformation of the coefficients of the
density function f to obtain those of h. More precisely, if we denote by i_im and fm m-~dimensional
vectors with coordinates bi(f) and bg(h), k =0,1,...,m — 1 respectively, we prove

ﬁm - Gmfm (5)

where G, is a lower triangular invertible matrix depending on the coefficients of g. As ¢ is known,
so is Gy,. Thus we can recover the m first coefficients of f, from those of g which are known
and those of h which can be estimated from the Z;’s as bi(h) = E[pr(Z1)]. We then derive the
same reasoning for the survival function estimation. Let us point out that we do not integrate the
estimators f to obtain an estimator of Sx. Our idea is to directly project Sx on the Laguerre
basis. This enables us to obtain directly the decomposition of Sx on the Laguerre basis and thus
its estimator. To our knowledge this a new strategy for the survival function estimation in a
deconvolution setting. These estimators are precisely defined and illustrated in Section 2.

We develop in Section 3 a study of the integrated risk of the estimators of the density and
survival function. We discuss the resulting rates of convergence of these two estimators. For that
we introduce subspaces of IL?(R™), called Laguerre-Sobolev spaces with index s > 0 which are
defined in Bongioanni and Torrea (2009). This enables us to determine the order of the squared
bias terms. This, together with variance order, provides rates of convergence of the estimators of
f belonging to a Laguerre-Sobolev space. We also obtain rates of convergence for estimators of
survival function.

In Section 4, we establish a data driven choice by penalization of the dimension m in our
two models and oracle inequalities. For the estimation of the density and survival functions, the
methods rely mostly on the fact that we are able to build nested models since the first m — 1
coordinates Em and fm are the same as those of ﬁm_l and fm_l. Finally we illustrate these
procedures with some simulations and compare our results to those of Comte et al. (2006) in the
case of the density estimation.
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To sum up this paper is organized as follows. In Section 2, we give the notations, specify the
statistical model and estimation procedures for f and Sx. In Section 3, we present upper bounds
of the L2 integrated risk and derive the corresponding rates of convergence. In Section 4, we
propose a new adaptive procedure by penalization for the density and survival functions. Besides
the theoretical properties of the adaptive estimators are studied. In Section 5, we lead a study of
the adaptive estimators through simulation experiments. Numerical results are then presented and
compared to the performances in a more classical deconvolution setting using a Fourier approach.
The results show that our procedure works significantly better than Fourier methods for estimating
R*-supported functions. In the concluding Section 6 we give further possible developments or
extensions of the method. All the proofs are postponed to Section 7.

2. STATISTICAL MODEL AND ESTIMATION PROCEDURE

2.1. Notations. For two real numbers a and b, we denote a Vb = max(a,b) and a Ab = min(a, b).
For two functions ¢, ¢ : R — R belonging to L!(R) N L2(R), we denote ||¢|| the L? norm of ¢
deﬁned by |l¢l? = [z le(2)?dz, (¢, ) the scalar product between ¢ and v defined by (¢, ) =
Jg ¢(x)¢(x)dz. Let d be an integer, for two vectors @ and ¥ belonging to RY, we denote ||i]|s,q
the Euclidean norm defined by [|@||3 , = @@ where ' is the transpose of @. The scalar product
between @ and ¥ is (@, U)y 4 = W0 = Wd. We introduce the spectral norm of a matrix A: o? (A) =
Amax (tAA) where Apax (A) is the largest eigenvalue of A in absolute value.

2.2. Laguerre basis. The Laguerre polynomials Ly defined by (2) are orthonormal with respect
to the weight function = — e~ on R*. In other words, fR+ Ly(z) Ly (z)e™" dae = §p 1 where dj, p
is the Kronecker symbol. Hence (¢ )x>0 is an orthonormal basis of L?(R*). We remind that the
Laguerre basis verifies the following inequality for all integer k

sup [@r(7)] = [[orlloo < V2. (6)
R+

We also introduce the space S,, = Span{yy, ..., ©m—1}-

2.3. Projection estimator of the density function. For a function p in L?(R"), we denote

= Z br(p)pr(xz) where bi(p) = /R+ p(u)pr(u) du.

k>0

Thus under Assumption (A1), f and g admit a development on the Laguerre basis. Since X and
Y are independent and nonnegative variables, we have a convolution relation between h, f and
g. Starting from Equation (3) and using the decomposition on the Laguerre basis, the following
equality holds

=3 ntsle) | enluderte —u)du ™
k=0 j=0 0

So we decompose h on the Laguerre basis as >~ br(h)¢r(z) and apply Equation (4) to (7). We
get

oo 00 k—1
Y be(h)er() =D i) (2_1/Qbk(f)bo(9) +) 272 (bei(g) — be—i-1(9)) bl(f)) -
k=0 k=0 1=0

We finally obtain an infinite triangular system of linear equations. We can write for any m that
hm =G, fm where Gy, is the lower triangular Toeplitz matrix with elements

2712by(g) if i =,
[Gilij =272 (bijlg) —bij1(9)) ifj <4, (8)
0 otherwise,
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(see Comte et al. (2013)). And as
bo() = | glwnfu)du=v2 [ gluje " du= VB[] > 0.
R+ R+

G,, is invertible. The principle of a projection method for estimation is to reduce the question of
estimating f to the one of estimating f,, the projection of f on S,,. Clearly

m—1
= be(er(x
k=0

and bg(f) for k = 0,...,m — 1 can be estimated by Equation (5) since anlf_im = f. So, as
br(h) = E[px(Z1)], the projection of f on S, can be estimated by

—_

m—

be(Flon(x) with fo = Gl and b(h) = %Z on(Z). 9)
k=0 i=

Let us notice that if Y = 0 a.s. then g = 0y, and we have for any integer k by(g) = ¢r(0) = V2.
This implies G, = L,,,, with I,,, the identity matrix. Therefore if there is no additional noise, we
are able to estimate f, directly from the observations. It means that in Equation (9) we have
Zi = Xz and

G,,=1,, and j%m = i:im (10)

2.4. Projection estimator of the survival function. We have to point out that in the case of
the projection estimation of the survival function, the estimation of the coefficients in the Laguerre
basis is slightly different from the previous section. Let us consider for example by (Sz) the k-th

coefficient of Sy
(sz) = [ sewatan= [ o ([ aa) a

— /R+ </OU o () du) h(v) dv = E [®x(Z1)]

with @ a primitive of ¢y, defined as @y (x fo ¢k (u) du. We can notice that

/ < >e_”du— fz (§>V(j+1,$). (11)

where « is the lower incomplete gamma function defined by formula 6.5.2. in Abramowitz and
Stegun (1964). In order to apply the same method as for the density estimation, let us see how
convolution is modified for survival functions. Let z > 0, by definition Sz(z) = P(Z > z), and

Sz(z)=P(X+Y >2) = // Lotyse f(2) >0 9(y)1y>0 dz dy

-/ ( ) ae) attsateodi+ [ ([ 50)de) attateendy
/SXZ— Wav+ [ oy

/ Sx (2 — )g(y) dy + Sy (2) = Sx % g(2) + Sy (2).

We can notice that we have one more term: the survival function of Y. Nevertheless similarly to
the density estimation the coefficients of Sx, bi(Sx) can also be represented as a solution of an
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infinite triangular system of linear equations as follows

Sz(2) = Sy (2) = > (0x(Sz) — br(Sy))er(2)

k>0

k
1/22901@ (bk (Sx)bo(g +Z (-1 (9) = bg—1-1)(9)) bz(SX)>-

=

Now let us define, Sx ,, the projection of Sx on the space S,

Sxm(®) =Y br(Sx)en(z). (12)

Thus, with G, defined by Equation (8) and @, defined by (11), the projection estimator of Sx ,
on the Laguerre basis is given by

m—1
Sx.m(z Z br(Sx)or(x
k=0
with §X7m = G:nl <§Z,m — S‘y’m> and bk (Sz) = Z Di(Z, (13)

where gy’m is known since bg(Sy) = E[®4(Y7)] and g is known.

Remark 1. It is worth mentioning that here we do not integrate the estimator of the density fm
to estimate the survival function. Indeed decomposing primitives of (¢ ) in the Laguerre basis is
complicated.

3. BOUNDS ON THE LL? RISK

In this section, we study the integrated risk of our estimators.

1. Upper bounds.

Proposition 3.1. Under (A1), for G,, defined by (8) and fim defined by (9), the following result
holds

. 2m _
BIf — ol < IF = Sl + 220G, (14
This result can easily be applied to the estimation of the density when Y = O:
Corollary 3.2. Under (A1), in the model without noise defined by (10) we get

A 2m
E||f_fm||2§ ||f_fm||2+7 (15)
Finally, we derive the following upper bound for the projection estimator of the survival function.

Proposition 3.3. Under (B1) and if E[Z1] < oo, for G, defined by (8) and §X,m defined by
(13), the following result holds

El4] »

E|[Sx — Sxml? < ISx — Sxml? + 0*(G;)1). (16)

Lemma 3.4. m — 0(G,,!) is nondecreasing.

Remark 2. The terms of the right-hand side of Equations (14), (15) and (16) correspond to a
squared bias and variance term. Indeed the first one gets smaller when m gets larger and vice
versa for the other one thanks to Lemma 3.4.
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3.2. Rates of convergence. In order to derive the corresponding rates of convergence of the
estimators f,, and S x,m respectively defined by (9) and (13), we need to evaluate the smoothness
of the signal along with the order of p? (G:nl). In the first place, we assume that f belongs to a
Laguerre-Sobolev space defined as

WHRY,L)={ f:RT >R, f e LARY), > kbp(f) <L <+oop with 5>0 (17)
k>0
where b (f) = (f, ¢x). Bongioanni and Torrea (2009) have introduced Laguerre-Sobolev space but

the link with the coefficients of a function on a Laguerre basis was done by Comte and Genon-
Catalot (2013). Indeed, let s be an integer, for f : RT — R and f € L?(R*), we have that

D Eb(f) < +o0

k>0
is equivalent to the fact that f admits derivatives up to order s—1 with f(¢~1) absolutely continuous
and for 0 < k < s — 1, z(k+1)/2 Zfié (k;.rl)f(j)(x) € L2(R™"). For more details we refer to section
7 of Comte and Genon-Catalot (2013). Now for f € W*(R™, L) defined by (17),

If = fnll? = D0 0R(F) = D BR(NKK™ < L™,
k=m k=m

Before deriving the order of the spectral norm of G, we can already give the rate of convergence
in the forward problem.

Proposition 3.5. In the model without noise defined by (10), suppose that f belongs to W*(R™, L)
defined by (17) and let mgp; nY/ D then the following holds

sup  E[lf — fin,,|* < Cu(s, L)~/ C+D
fews(R*,L)
where C1(s, L) is a positive constant.
Secondly in the deconvolution problem, we must evaluate the variance term of Equations (14)
and (16) which means assess the order of ¢? (G;,'). Comte et al. (2013) show that under the

following conditions on the density g, we can recover the order of the spectral norm of G, !.
First we define an integer r > 1 such that

dJ (@) 0 if j=0,1,...,r =2
— X =0—
At =T\ 40 = — 1
And we make the two following assumptions:
(C1) g € LY(R") is r times differentiable and ¢(") € L}(R*).
(C2) The Laplace transform defined by G(z) = E[e~*Y] of g has no zero with non negative real

parts except for the zeros of the form oo + ib.

Lemma 3.6 (Comte et al. (2013)). If Assumptions (C1)-(C2) are true, then there exists a positive
constants C, and C}, such that
CémQT < Q2 (Gy_nl) < CQmQT'

Remark 3. A Gamma distribution of parameter p and 6 verifies these (C1)-(C2) forr =p (r =1
for an Exponential). On the contrary an Inverse Gamma distribution does not satify (C1) because
there exists no r such that the derivative is different from 0 in 0.

Proposition 3.7. Assume that f belongs to W*(R™, L) defined by (17), that Assumptions (C1)-
(C2) are fulfilled and let mp; pt/(s+2r+1) then

sup  E|f — fnll? < Cals, L, Cp)n=*/ 241,
fews(R+,L)

where Cy(s, L,C,) is a positive constant.
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Proposition 3.8. Assume that Sx belongs to WStY(R*, L) defined by (17), that Assumptions
(C1)-(C2) are fulfilled and let m oy o< n*/ 2+ then

sup EHSX - §X,m”2 S 03(3, L’ Cg)nf(s+1)/(s+27.+1)'
SxeWs+1(R+,L)

with C3(s, L, C,) is a positive constant.

Remark 4. We clearly see that in Propositions 3.5, 3.7 and 3.8 the value of m that permits to
compute the rate of convergence of the estimator depends on the regularity of the function under
estimation. So the solution of the best compromise between the squared bias and the variance
depends on unknown quantities L and s. That is why we consider the problem of data driven
selection of m. Our goal is then to find a procedure that does not require prior information on f
nor Sx and whose risk automatically reaches the optimal rate.

3.3. In what context does the Laguerre procedure improve the Fourier approach 7
In this section we want to emphasize that for at least certain classes of functions the Laguerre
method achieves better rates of convergence than Fourier method which are optimal if f belongs
to a Sobolev class. Thus we consider Gamma distributions and mixed Gamma distributions which
belong to a Sobolev class and are said to be ordinary smooth. We choose two differents distri-
butions for Y: I'(g, ) and 5(a, b) for a,b € N* such that b > a. The results are reported in Table 1.

/ g ['(q, 1) B(a,b) b>a>1
1 2q+1 1 2a+1
Laguerre (ogn)™™ (logm)=™
I'(p,0) n n
Fourier n—(2p—1)/(2q9+2p) n—(2p—1)/(2a+1)
1 2g+1 1 2a+1
Laguerre (logn)=t" (log )+t
MT n n
Fourier n—(2p"—1)/(2¢+2p*) n—(2p"—1)/(2a+1)
p* = min; p; p* = min; p;

TABLE 1. Rates of convergence for the MISE

To derive the rates of convergence of Table 1 we have to do the bias variance tradeoff in the
Laguerre and Fourier settings. First let us compute the squared bias where the signal X is a
Gamma distribution I'(p,#) with p € N* and 6 > 0 in the Laguerre procedure and in the Fourier
setting. In the Laguerre procedure we first need to compute the coefficients in the Laguerre basis
of the signal

k DY '
bu(f) = /R ) 9Pup—le—9uﬂe—m<zu>du:ﬁepz(;?)( 2) /R e g

=0 7t
V20P IR\ (=2 (pi-1)! Ve et
:<1+9>p2<')<§+f)9>ﬂ‘( L = g 0=, 09
i=o M J! (1+0)p d v=2/(149)
It leads to

I = fl? =3 (m L —

S \0+0p dar !
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with 0 < C(p,0) < oo. For X ~ T'(p,6) with § > 0, we can note that the squared bias decays
exponentially. It can also be noted that if # = 1 then the bias is null. The rate of convergence, in
this case, reaches the parametric rate in the Laguerre setting. Moreover if f € MTI' defined by

p p
MF:{f:Zai'yi, aiZOZaizl and ’yiNI’(pi,Gi)}, (19)

i=1 i=1
the squared bias decays exponentially

2
= p p - 0 —1 " (pi—1)
If = fmll* = E (§ Oéz'bk(%')> < E g ;i (b (7:))? < ;21 a;C(pi, 6;) <9i - 1) m2Pi—1)

k>m \i=1 k>m i=1

In the Fourier procedure, according to Comte et al. (2006), the squared bias is computed as follows

1 1 1
1f = fmll® = o= f* = Frll? = / !f*(t)lzdt—/ (1+6%*)7Pdt < Cm~2*.
2 27 Jit|zmm 27 Jit|znm
It yields that if f € MI" the order of the squared bias is maxi<;<p m~2Pit1 We notice in this
setting, contrary to the Laguerre setting, that the bias is polynomial.

Secondly let us compute the order of the variance. If g ~ I'(q, u), for the Laguerre procedure
the variance term is 2me?(G,,!)/n and is upper bounded 2C,m**!/n and if g ~ B(a,b) it is
upper bounded by 2C'Qm2a+1 /n for b > a, from Remark 3. We find the same orders of variance
for the Fourier setting after computing 1/(27n) [ |g*(¢)|~? dt. Thus we can derive the rates of
convergence summarized in Table 1.

For the Laguerre procedure we see that the rates of convergence in both cases have order
(logn)®/n with a depending on the model. While for the Fourier procedure we find classical rates
of convergence of the deconvolution setting which are slower. For instance in the double Gamma
case we have a rate of convergence n~?/(2¢+P+1)  Thus in the context of nonnegative variables of
Gamma type, we recover faster rates of convergence with our Laguerre method than with a Fourier
procedure. We can extend those results to the case of Exponential and Gamma mixtures. This
context fits fields of survival analysis and duration models.

Remark 5. Lower bounds in deconvolution problems on the real line have been studied in Fan
(1991) and Butucea and Tsybakov (2008a,b), yet those results cannot be extended to the setting of
this paper since we do not consider the same spaces of regularity. Otherwise we can cite Vareschi
(2015) who proves lower bounds in the context of a Laplace regression model. But this methodology
cannot be applied in our context.

4. MODEL SELECTION

The aim of this section is to provide an integer m that enables us to compute an estimator of
the unknown density or survival function with the L? risk as close as possible to the oracle risk
inf,, B||f — finl? or inf,, E[Sx — §X,m||2~ We follow the model selection paradigm (see Birgé and
Massart (1997), Birgé (1999), Massart (2003)) and choose the dimension of projection spaces m
as the minimizer of a penalized criterion.

4.1. Adaptive density estimation. We add the two following assumptions:

1 mo’ (Gy,')
(A2) M;,’ =<1<m<d, <1, where di < n may depend on n.
n

(A3) V>0, > (G, e < C(b) < 0.
mE/\/tgb1>
We define the penalty as

2k1m 4 (

pen (m) = G.') (20)

where k7 is a numerical constant see our comment below.
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Theorem 4.1. Let us suppose that (A1)-(A3) are true. Let fz, be defined by (9) and

M1 = argmin {—Hme2 + penl(m)}
(1)

meMy,
with pen, defined by (20), then there exists a positive numerical constant k1 such that

R , C
Ellf = faul? <4 inf {If = fl® + peny(m)} + (21)
meM,, n

where C' depends on || f|| and ||g]|.

It follows from the proof that x; = 32 would suit. But in practice, values obtained from the theory
are generally too large and the constant is calibrated by simulations. Once chosen, it remains fixed
for all simulation experiments.

The oracle inequality (21) establishes a non asymptotic oracle bound. It shows that the squared
bias variance tradeoff is automatically made up to a multiplicative constant. We have shown in
Section 3 that the rates of convergence in deconvolution problems are intricate and depend on the
regularity types of the function f under estimation and the noise density g. Bias and variance
orders in Equation (14) as shown in Section 3 yield an optimal value of m in function of n which m
depends on unknown quantities, and thus cannot be implemented. That is why Equation (21) is of
high interest: rates of convergence are reached without requiring to be specified in the framework.

Remark 6. Note it is common in the literature to assume that the distributions belong to a
certain semi-parametric model which is not the case in this paper. In the deconvolution setting
with a Fourier approach, papers as Comte et al. (2006) for instance, assume that the Fourier
transform of the target and error densities have a particular decay behavior. Here this is replaced
the spectral norm of the matrix G,,'!. We can notice that if ¢* (G,;') = O(m®) then for any
a, Assumption (A3) is true. It is satisfied for instance for Gamma distributions. Similarly if

(G, = O(mae)‘mﬁ) then it is enough that 5 < 1 to ensure (A3). If Assumption (A3) is
released then an adaptive procedure can still be obtained with the associated penalty pen(m) =

2kmo? (G log(n)/n.

4.2. Adaptive survival function estimation. In this particular framework, we make the two
following assumptions:

2 (anl) logn

(B2) ./\/l,(f) = {1 <m <ds, ¢ < C}, where do < n may depend on n and C' > 0.

(B3) 0 < E[Z}] < .

We define the penalty as

peng(m) = "L 2 (G 1) 10gn (22)

Theorem 4.2. Let us suppose that (B1)-(B3) are true. Let §X’m2 be defined by (13) and

Mo = argmin {—H§Xm||2 + penQ(m)}
mGMg)

with peny defined by (22), then there exists a positive numerical constant ko such that

_ ' C
E|Sx = Sxml? <4 inf {I1Sx = Sxmll? + peny(m) } + —,
mef\/lg) n

where C'is a constant depending on E[Z3].

We can also notice that in the penalty associated with this procedure a logarithmic term appears
while it was not in the upper bound of Equation (16). Such logarithms often appear in adaptive
procedures.

Comments after Theorem 4.1 still hold. This oracle inequality shows that the squared bias
variance tradeoff is automatically made. Asymptotically, this ensures that the rates of convergence
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are reached up to a logn factor. To our knowledge this the first time that a global adaptive
procedure of the survival function is considered. This result rests upon the particularity of the
Laguerre basis which enables to extend the adaptive estimation of the density function to the
survival function.

Nevertheless this estimation cannot be computed directly since the penalty depends on the
expectation of Z. A solution is to prove an oracle inequality for a random penalty associated to
(22) which is made in the next corollary.

Corollary 4.3. Let us suppose that (B1)-(B3) are true. Let §X7ﬁ-b2 be defined by (13) and

Mo = argmin {—ng,m”2 + 17e?12(m)} (23)
mGMg)
- o o _1¢
i=1

then there exists a positive numerical constant ko such that

_ . C
E[|Sx — Sxm,|* <4 inf {1185 = Sxml® + peny(m) } + -

meMy,

where C is a constant depending on E[Z1], E[Z}] and Var|Z;].

5. ILLUSTRATIONS

The whole implementation is conducted using R software. The integrated squared errors ||f —
meZ and ||Sx — S X, ||? are computed via a standard approximation and discretization (over 300
points) of the integral on an interval of R respectively denoted by Iy and Ig. Then the mean
integrated squared errors (MISE) E|| f — f5,||? and E||Sx — 3 X, ||? are computed as the empirical
mean of the approximated ISE over 200 simulation samples.

5.1. Simulation setting. The performance of the procedure is studied for the seven following dis-
tributions for X. All the densities are normalized with unit variance except the Pareto distribution
which has infinite variance.

> Exponential £(1), Iy = [0,5], Ig = [0, 10]
> Gamma distribution : 2-I'(4, 1), I; = [0,10], Is = [0, 5]
> Gamma distribution : \/% -T(20, 3), Iy =[0,13], Is = [0, 5]

2

0
> Rayleigh distribution with 0% = 2/(4 — 7), f(z) = %672272, I; =10,5], Is = [0,25].
o

> Weibull, X//T(4) — T(1+2/3)%, f(z) = & (£)" " e=@/N 1,50, with k = 3 and A = 1,
Iy =10,5], Is = [0, 5].
> Mixed Gamma distribution : X = W/v/5.48, with W ~ 0.4I'(5,1)4+-0.6I'(13, 1), Iy = [0, 26],
Is =10,15].
> Chi-squared distribution with 10 degrees of freedom, x*(10)/+/20, I; = [0,10], Is = [0, 10].
> Pareto distribution with shape parameter o = 2 and scale parameter x,, = 1, Iy = [0, 5],
Is =10,10].
Exponential and Weibull distributions are often used in survival and failure analysis. The Gamma
distribution is also often used in insurance modelization. The Rayleigh distribution arises in wind
velocity analysis for instance.

In the simulation, the variance o2 of the error distribution g takes the values 0, 1/10 and 1/4.
The case where the variance o2 is null, which corresponds to the case Y = 0, is used as a benchmark
for the quality of the estimation in the model with noise. We are not aware of any other specific
global method of deconvolution on the nonnegative real line. In that case for the density function,
we use our procedure with G, = I,,. Concerning the survival function, we simply compute the
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empirical estimator Sy, (z) =n~! > | 1{X; > z} (since Y = 0) which reaches the parametric rate
of convergence.

We then choose a Gamma distribution for the error distribution which verifies (C1)-(C3) for
r=2:

> Gamma noise: I'(2 ’W) and I'(2 ’f)
Thus the first Gamma distribution has a variance 1/10 and the second 1/4. We refer to Equation
(18) for the computation of the matrix G,

5.2. Practical estimation procedure. The adaptive procedure is then implemented as follows:
> For m € M,, = {m1,...,my}, compute —|| f,n||> + pen(m).

> Choose m such that m = argmin {—HmeQ + pen(m)
meMy,

> And compute f;(x) = ZZ:OI b (f)er(x).
The procedure is given for the density estimation. For the survival case the three steps are the
same with the right quantities associated to the problem and described in Section 4.2. Besides,
the penalties are chosen according to Theorem 4.1 and Corollary 4.3. The constant calibrations

were done with intensive preliminary simulations We take k1 = 0.03 and k2 = 0.065. We
con81der the two followmg model collections M ={me{l,....n—1}, 1<m< [n'/?|} and
MP ={me{1,. —1}, 1<m<|[(nlogn)t/*|} for the den81ty and survival functlon esti-
mation.

In order to measure the performances of our procedure (density estimation) to the literature,
we also compute the MISE obtained when using Fourier deconvolution approach. More precisely,
we apply the procedure of Comte et al. (2006). It corresponds to a projection method with
a R-supported sinus cardinal basis or kernel. Besides this procedure is minimax optimal if f
belongs to a Sobolev class in the case of a known ordinary smooth error distribution. We therefore
compute the following estimator and penalty. Let ¢* be the Fourier transform of ¢ defined as

=/ e"®g(u) du. For a Gamma distribution of parameter p and 6, its Fourier transform is
g*( ) (l—zue) p We compute

X 1 m - opL 2?21 etuZ; 1) K(l) T™m du
. _ = —wrw )= d = L
frm(z) 9r /_me 9* () u  penp(m) 2mn /_Wm g% (u)[?

We select m by minimizing —||fF,mH2—|—peng)(m). IfY =0, weset g* = 1 and peng) (m) = mg)m/n

The model collection is {m/10: m €N, 1<m <50}. After calibration we find mg) =41 and
(2)
3

= 5. We consider two different penalties since in the case of the model without noise, the

estimator of f, fij can be computed directly without approximating the integral.
Both procedures (Laguerre and Fourier) are fast.

5.3. Simulation results. The results are given in Tables 2 and 3. For both tables, the values of
the MISE are multiplied by 100 for each case and computed from 200 simulated data. In Table
2 the abbreviations Lag and Fou correspond respectively to the Laguerre method and Fourier
method of Comte et al. (2006). First we see that the risk decreases when the sample size increases.
Likewise, the risk increases when the variance of the noise increases. If Y = 0 i.e. 02 = 0, we
see that the Laguerre deconvolution has better performances than the Fourier deconvolution. For
instance, when n = 2000 the MISE in the Fourier setting is almost systematically twice larger than
the Laguerre for the Gamma, Rayleigh, mixed Gamma and Chi-squared distributions between the
Laguerre and Fourier methods. For the Exponential density estimation, the ratio of the MISE of
Fourier divided by Laguerre is of 1 to 3 and for the Weibull distribution 1 to 33. If o2 equals
1/10 or 1/4, we can make the same kind of remarks noticing that the ratio is worse for the Fourier
deconvolution: 1 to 18.
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2 _ 2 _ 1 2 _ 1
o =0 0% =15 0% =7

200 2000 200 2000 200 2000

Exponential Lag 0.874 0.118 0.833 0.090 0.699 0.109
Fou 3.950 3.234 6.002 3.359 11.228 3.889

Gamma Lag 0243 00438 1.181 0076 1.872 0.384
T'(4,1/4) Fou 0.585 0.076 2.027 0.250 8.497 0.860
Gamma Lag 0.332 0.035 1.348 0540 4.180 0.916
I'(20,1/2) Fou 0.521 0.059 1.917 0.245 2.728 1.092
Rayleigh Lag 0.287 0.044 0844 0.068 1.008 0.083

Fou 0.498 0.073 1.546 0.248 7.523 0.797
Weibull Lag 1.714 0275 8518 1529 13.768 3.543

Fou 7.004 6.611 8.751 6.839 14.237 7.421
Mixed Gamma Lag 0.333 0.032 1.568 0.359 2.806 0.365
Fou 0.488 0.062 1.038 0.204 8.317 0.829
Chi-squared Lag 0.357 0.037 0.443 0.260 2.861 0.315
Fou 0.542 0.069 1.887 0.250 8.135 0.844
Pareto Lag 10.72 10.78 12,53 10.50 13.89 10.83
Fou 12.42 6.54 18.70 9.38 30.06 26.28

TABLE 2. Results of simulation: MISE E (Hf - fﬁle) x 100 averaged over 200
samples. o2 denotes the level of variance of the noise. o2 = 0 corresponds to the

model without noise (Y = 0). The noise is I'(2, \/%—0) for 02 = & and I'(2, %) for

2_1
0" = 7.

2 _ 2 _ 1 2 _ 1
c“ =0 0% =15 0% =7

200 2000 200 2000 200 2000

Exponential 0.262 0.022 0.122 0.014 0.134 0.012
Gamma 0.263 0.024 0.688 0.203 1.363 0.233
Rayleigh 0.813 0.115 0.878 0.199 1.336 0.297
Chi-squared 0.310 0.027 1.313 0.117 1.445 0.679

TABLE 3. Results of simulation: MISE E (HSX — §Xm~@2||2> x 100 averaged over

200 samples. o2 denotes the level of variance of the noise. 02 = 0 corresponds to

the model without noise (Y = 0). The noise is I'(2, J%> for 0 = & and T'(2, %)
for 02 = i.

Let us concentrate on the Pareto distribution. This distribution contrarily to the others does
not have a density close to the Laguerre basis. In the model without noise, we see that the Fourier
procedure is better. For small sample size the risks are very close. When the sample size increases,
the risk of the Laguerre estimator decreases very slowly while the risk of the Fourier estimator is
divided by two. On the other hand, in the deconvolution setting the Laguerre procedure performs
better than the Fourier method especially for o = 1/4.

Thus the results point out the relevance of a specific method for nonnegative variables in a
deconvolution problem.

In Table 3, the first two columns correspond to the estimation with the empirical estimator
of the survival function if we observe directly the data. The estimation is very good: this was
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expected since the estimator converges to the true function with rate v/n. Yet for the estimation
of the Exponential distribution we note that the penalization procedure always beats the empirical
estimator S,,. It is also the case for the density estimation. It is explained by the fact that the
Exponential density with parameter 1 corresponds to the first function of the basis. We notice
that the risk decreases when the sample size increases. For the Exponential distribution, it is
divided by 10, by 3.5 for the Gamma distribution, by 4.5 for the Rayleigh distribution, by 13 for
the Chi-squared distribution. And risk increases when the variance of the noise increases.

We also illustrate the results with some figures. Figure 1 and 2 display the results of the data
driven estimation respectively for the mixed Gamma and the Gamma \/% -I'(20, %) for the Laguerre
and Fourier methods. We can observe some oscillations near the origin for the Laguerre procedure,
while for the Fourier method we can see that the estimators are a little bit shifted from the true
density. For both methods the sample size n needs to be large enough to estimate the two modes

of the mixed Gamma.
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FIGURE 1. Estimation of the mixed Gamma density with Laguerre method (top
left for n = 200 and top right n = 2000) and with Fourier method (top left for
n = 200 and top right n = 2000), with ¢% = 1/10.

6. CONCLUDING REMARKS

This paper deals with the estimation of nonnegative variables in a deconvolution setting with
a known error distribution. First we have considered the adaptive estimation of the density f of
the X;’s in a deconvolution setting and deduced a procedure when there is no additional noise.
Secondly we have tackled the problem of the adaptive estimation of the survival function which
is new to our knowledge, in a global estimation setting on R™. Moreover we have illustrated the
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FI1GURE 2. Estimation of the Gamma density \/%—0 -T'(20, %) with Laguerre method

(top left for n = 200 and top right n = 2000) and with Fourier method (top left for
n = 200 and top right n = 2000), with o2 = 1/10.

performances of our new procedure and compared it, when it is possible to the performances of
the Fourier procedure described in Comte et al. (2006). Our procedure outperforms the previous
one in the simulations. These results show that the Laguerre procedure is worthy of interest when
the variables are nonnegative.

The assumption of the knowledge of the error distribution is often not realistic in applications.
Nevertheless this would require additional information on the error distribution. In the deconvolu-
tion literature with unknown error distribution it is assumed that we have access to a preliminary
sample of the noise, see for instance Neumann (1997). Thanks to this preliminary observation
we could estimate the coefficients of the matrix G, since we could provide unbiased estimators
of the coefficients of the matrix which are the coefficients of the distribution g on the Laguerre
basis. Vareschi (2015), in a Laplace regression model, considers this problem ; he assumes that a
pertubation of the coefficients of the matrix G,,, are observed instead of preliminary sample drawn
from g. At last, in our model we would need to control the deviation of the spectral norm of é,;l
around the true spectral norm of G;,!.

7. PROOFS
7.1. Proof of Section 3.
Proof of Proposition 3.1. According to the Pythagorean theorem, we have

If = fnll> = 1 = fon + Fn = Sl = 1 f = Fal® + 1 i — Fmll
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The first term corresponds to the bias term of Equation (14). Let us study the second term: using
the decomposition on the orthonormal Laguerre basis, we have

m—1

I = Fnll? = Y ()~ Ba)

k=0

Finally we apply (6) and get
N 5 = o PP TN -
Ellfmn = fnll® = EIG! (B = hn) 13, < 064G VE | hum — T |13 1

m n 2
< 0*(G,,")E ! (1 > 0i(Zi) - E[@j@l)])
; :

=1 =1
2(-1y ™
0°(G,)) _1,2m
< G S gz < (G 22
j=1
o2 2, 2m , 1
In the end we get: E|f — fill* < ||f — funll +- -0 (G O

Proof of Proposition 3.3. As in the previous proof, we can write that
1Sx = Sxmll® = 1Sx = Sxmll* + 1Sx,m — Sxmll*.

We can notice that

2 —~
2m

Then we repeat the same scheme as in the proof of Proposition 3.1 and we get

2

1Sx.m = Sx.mll* = |[Sxm — Sxm

2,m

3

5 1
El|Sxm = Sxml® < ~0*(Gr) D E[®F(Z1))-

=0
Yet
m—1 m—1 m—1
YNz = (/ pj(u)lo<ucz, dU> D e lez) <l<zlfr =2 (25)
=0 =0 =0
which implies E [Z;n:_ol @?(Zl)} < E[Z].
~ E|Z
In the end: E||Sx — Sxml|? < ||Sx — Sx.ml* + [711]92((};1). O

Proof of Lemma 3.4. To see that the spectral norm grows with the dimension m, recall that for a
matrix A of dimension m the spectral norm can be written as 0*(A) = maxz,,.1 [|Ad]3,,. Now
consider Uy, = argmax g2 _ || Tmil2m with Tp, a lower triangular matrix and Tp, a submatrix
of Typ11. We put v, 41 with m first coordinates equal to iy,. It yields that if we note (a;)1<i<m+1
the coefficients of the vector T, +10m+1 We get o

m+1
||Tm+1vm+1”2 mtl = Z a; = Za + am+1 = ”TmumH +am+1 >0 (T )-
=1 i=1
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7.2. Proof of Theorem 4.1. First for m € M; ), let us define the associated subspaces Sj' C R%

8 = {fm € RY /T = (bo(t), b1 (1), b1 (9, 0,...,0) .

This space is defined to give nested models. When we increase the dimension from m to m + 1 we
only compute one more coefficient. Then for any ¢ € R%, we define the following contrast for the
density estimation

W(®) = 18134, — 208 G hay )20,

Let us notice that for ¢, € S“Z, thanks to the null coordinates of #,, and the lower triangular form
of G4, and G, we have

A~
=

(Frns G B Y2y = (Brns G )2 = (s fon) 2

So we clearly have that

—

Jm = argmin 'Yn(f‘m)
Fmesgi
Now let m, m’ € Mg), tm € Syl and Sy € Sl’[l‘/. Denote m* = m V m’. Notice that

—

- - - 2 - 712 > o —1/7 >
Yn(tm) = Y (8m) = ltm — fllz,a, — 18w — fll2,a, — 2{tm — Suv, Gy, (hay — hay))2,a,
and due to orthonormality of Laguerre basis, for any m we have the following relations between
the L2 norm and the Euclidean norms,

Vo = FI2 = i = Fl3as + S 555> and [[fn — fI2 = 1 fon = Fl3ay + 3 (55(£))° (26)

J=d1 J=di
We set v, (t) = (£, G;ll(ﬁdl - Ed1)>2,d1 for € R,

According to the definition of m, for any m in the model collection ./\/17(11)7 we have the following
inequality
Yn(fi) + peny (M) < Yo (fm) + peny (m).
It yields that

1f5 = Fl.a, = 1 = Fl3.a, = 2va(fi = fin) < pemy (m) — peny ()

which implies
1 f7 = 3.y < 1o = Fl3 0, + 2vn(fi — fin) + peny (m) — peny ().

.}%fﬁ_fm

2.d1Vn | —=———— | and due to the relation

Let us notice that v, (fz — fm) = |/ — fiml = -
Hfffl, - fm 2,dy

2ab < a?/4 + 4b?, we have the following inequalities

1fm = FIBay < W= Fl3a, + 2105 = Fnll2gn  sup  wa(f) + peny(m) — peny (i)
teB(m,m)

o N 1 5 o
< fm = Fl2a + 7155 = fm

20 +4 sup V2() + pen; (m) — peny ()
teB(m,m)

where B(m,m) = {Fmvﬁl € Sg}vm, ltmvaillz.a, = 1}. Now notice that

1 f7 = fml3.a, < 2005 — 3.4, + 21 Fm = fli3a,

we then have

15— Fl3a, < [ fm— ]

1, 2 - 1, - = N
vt s P13 ST~ Folla +4 sup v2(0)+ pemy (m) — pen, ()
teB(m,m)
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which implies

17 = Fl3a, < 3IIF = fmll3q, +2peny(m) +8 sup ;i (%) — 2peny ().

teB(m,m)
Using Equation (26), we have
fa=fIP = () <3 If = fnll? = D (05(F)* | +2pen; (m)+8  sup v (F)—2pen, (i)
Jj=d1 j=d1 teB(m,m)
which implies
I fs = FIP < 3)1f = fmll* + 2peny (m) + 8565(11PA) vs(t) — 2pen, () (27)

Now let p; be a function such that for any m, m’, we have : 4p;(m,m’) < pen;(m) + pen, (m’).

1 fa — FII> < 3I1f — fnll* + 4pen; (m) + 8

sup v, (8) — 1 (m’ﬁb)]
teB(m,m)

+

<3| f = fnll® + dpeny(m) +8 ) { sup uﬁ(ﬂ—pl(m,m’)}

mepmip) \FEBmm) +

We now use the following result which ensures the validity of Theorem 4.1.

Proposition 7.1. Under the assumptions of Theorem 4.1, there exists a constant Cy; > 0 depending
8(m Vv m/
on ||h|ls such that for p1(m,m’) = MQZ (G;&/m/)
n
C
el { s d0-mmm} | <
n

fGB(m,m’) n
In the end: E||f — fa]? < 4inf 2 1 ass >32. O
n the end: E||f — fa||* < 4in meMg){Hf—me +pen1(m)}+?, as soon as k1 > 32.

Proof of Proposition 7.1. To prove Proposition 7.1, we apply a Talagrand inequality. So we need
to determine H, My and v defined as

sup |Vn(gm*)|] < H,

sup ||<£m*’G5116d1(')>2,d1||00 < Mlv E
Tyx €B(m,m/)

Tyx €B(m,m’)

sup Var <£m*,G;11¢d1(Zl)>2,d1} < 0.
T eB(m,m’)

where m* = m VvV m'.

e Let us start with the empirical process, first let us notice that

E sup ‘ Un (fm* )
Fm* GB(m:ml)

2] =K sup (tme, G| (1 > ($a,(Z:) - E [ﬁdl(Zi)])) )2,d1

Fm* GB(mvm/) "

=1

. L1 .
“E| s |Gyl (Zwmwzz-) —E[wm*<zi>]>>>z,m*
fm*eB(m,m’) n
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We now apply Cauchy-Schwarz inequality and get

E sup [V (B ) |2
Em*EB(mvml)
2 I i
<E| s [l |Gk < (G (2) —E[szm*wz)]))
ty,x €B(m,m’) n =1 2,m*

<0 (G,})E i (1 > (¢i(Z) —E [%’%)]))

Jj=0

We then set H := TQ2 (G_l*).

Before deriving a bound for the term of variance, let us remind that for any z € R*, we have

/f g(x —u)Ly>ol,— u>0dU—/ fw)g(z —u)du.

Then we apply Cauchy-Schwarz inequality and get Vo € R*, h(z) < |/ f|l|lg]|. If Assumption (A1)
is fulfilled, we clearly have ||h|loo < ||f|lllg|l < oo

e Now for the term of variance, let t,,- € B(m,m’). By definition we have the following equalities

]

. 1. 2 . 1.
B | G (20} | | = B [ Gk (1))

2 2
m*—1 m*—1

=E || > b)Y (Gl en(Z)] | = / Yo b [GRHee(w)]| h(u)du.
=0 k=0 R* o<k j<m*—1

which implies

B || G (202

]
<7l / Z b ()b (t) [G;zl*]]k [G;m}*]j/k/ or(u)or (u) du

RY 0yt ook <m*—1

Sllle X0 O (Gt [Grt] e G
0<4,4' ke, k' <m*—1

< [[hlls Z b;(t)bj(t) [G;l}‘]jk [G;l}‘]j’k
0<j,j' k<m*—1
< [hlloe e G Gt < [[Blloc® (G ) [[Eme 13 e < [[Blloc0® (Gryt) -
So we set v := ||h||c00? (G_l).

m*
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e Now applying Cauchy-Schwarz inequality

(tme, Gg,' Gy (2))2a, | =

sup  sup [{fme, G @ (2)) 2o
T+ EB(m,m’) xERT

sup sup
Fm* GB(mvml) zeRT

< sup sup [t G G ()| e < sUD (|GG ()5,
[ eB(m,m’) z€RT ’ zeRT ’
< sup \/tcpm* VIG LG LG () < | 02 T_n* sup Z J2 2m*p? (an}k).
zeRt+ zeRt T

We take My = /2m* o> (G;ﬁ).

e We can now apply Talagrand’s inequality for £2 = 1/2

—

teB(m,m’) n n

hloo0? (Gt . “0? (G,x
E { sup  |vn(f)° — 8m*o? (Gmi)} <C —H loeg” ( ) ~Czam/|ihlleo 1 g Mo A\ Fm) (2 m )e_c‘“/E
+

which implies that

Z E {ﬂ sup \yn(f)|28m*g2(Gml*)}

m/EMSLI) teB(m,m’)

2 -1 * * 2 -1
<c Y 1Alloe® (Ge) -copmz . m"¢* (Gnr) —cuvm

+

n2
m’EMS)
Yet under Assumption (A3), we have
hlso0® (Gk) —cy m*
Z || ||<>OQ ( m )e Ca i < 9
m’GMgzD " "
Moreover according to Assumption (A2), we also have
m*o? (G;ll*) C e~Cavn ¢
— — M o=l L < —.
2. T < 2 <%
m'eMSY) m'eMD
In the end we have the desired result. U

Proof of Remark 6. We have to prove that Proposition 7.1 is still valid although Assumption (A3)
is no longer true. We set &2 = 2logn/Ki, H?> = 2m*? (G;ﬁ/n, v = 2m*p? (G;ll*), M; =

2m* 02 (G,,+). Under (A2), we have
v H? 2m*o? (G;}) 1 2AMP| 2
= —K&2n— ) = e Sl A < <=
> gew(caenft)= 3 FREE Ly oM
m'emy m'emy m'eM)
For C(&) defined in Lemma A.1, we get

M B C(£)£HH>

0 (Gn) e (-KiC(©OEVA) < Y
m’EMsP m’EMﬁLl)
<
n

Com*o? (G,
W exp (—C1 log ny/n)
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7.3. Proof of Theorem 4.2 and Corollary 4.3. For any ¢ € R%, we define the following
contrast for the survival function estimation

n(t) = 1215, — 25, G, (52,d2 - Sy,d2)>2,d2
and we also have
<£m> GJQ]- <§Z,d2 - 5Y7d2> >27d2 = <£M) G';ll <§Z7m - §Y7m> >2’m = <tm’ SX7m>27m

which yields that
§X7m = argmin 0, (£,).
FmeSg;

7.3.1. Proof of Theorem 4.2. The beginning of the proof is the same as the proof of Theorem 4.1
with the quantities associated to the survival function estimation. Then we start from Equa-

tion (27) with 1, (f) replacing the following empirical process ¢, (f) := 4,21)({) + Q(f)(f) where,

(@) = (.G (ii(%(zmzq E[$4(2 >nz<f})>>2,d2

=1

(i) = (7. Gy, (; S (B2t e - [idxz@-)nziw})) )2,z

i=1

So we have the following inequality

ng,m—sxlIZS3HSx—Sx,mH2+2penz(m)+16( sup  (CV@)?+ sup (@) > —2peny ().
)

teB(m,m) teB(m,m
(28)
Now let g be a function such that for any m, m’/, we have : 4q(m,m’) < peny(m) + peny(m’).
[Sx = Sx? <31ISx = Sxml* + dpeng(m) +16 | sup ((V(7)* — g(m, )
FEB(m,m) +

+16 sup (¢ ()
teB(m,m)

< 3[Sx — Sxml|* + 4peny(m) + 16 Z { sup  (¢V(E)* — q(m, m’ }
mem@ fEB(m,m/) +

+16 sup (¢ (#)?
feB(m,m)

We now use the following result which ensures the validity of Theorem 4.2.

Proposition 7.2. Under the assumptions of Theorem 4.2, then there exists a universal constant

logn
C > 0 such that for q(m,m’) = koo (Gmlvm) [Zl] &

1) [E su (1) —q(m, m < g
(i) p q(
fEB(m,m’) ¥ n
3
@) E| sw (@3] <24
teB(m,m) n

. =~ ) C
Finally, E|[Sx s — Sx|]? < 41nfm€M512) {||SX — SX’mH2 + pen2(m)} + o O
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Proof of Proposition 7.2. To prove (i), we apply a Talagrand inequality. So we need to determine
H, M; and v.

e Let us start with the empirical process, first let us notice that

E|  sup |Gt (fm*)P]
Fm* eB(m,m’)

- . 9

=K sup <t_'m*, ngl < Z ((idz (Z'L)]]'Zzg\/ﬁ —E [5d2 (ZZ)]]-ZZS\/E:|>> >2,d2

£y €B(m,m/) n

=1
_ n 2
—E| sup |({fp, Gk (1 3 (q?m*(zi)]lzigﬁ —E [q?m*(zi)nzigﬁ}» Yo

Fm* EB(mvm/) n =1

We now apply Cauchy-Schwarz inequality and get

E

sup ¢V (fm*)\Qi

L+ €B(m,m’)

B 2
- 2 _ 1 L =g —_
<E sup Htm* 2,m* Gml* <n Z (q)m*(zi)]lziﬁx/ﬁ -k [(Dm* (Zi)]lZiS\/ﬁ}))

Trx €B(m,m") i=1 2,m*

—

- " 2
<E HG;; (711 > (qﬁm*(zi)nzigﬁ —E [<I>m*(Zz-)1lzi<ﬁ])>

=1 2,m*

It follows that, with Equation (25)

E| sup ¢V (fm*)!2]

T+ EB(m,m’)

m*—1 n 2
1
<& (G,})E { (n > (2201 5en —E [@(z»nzm}))
j=0 i=1
m*—1
< (GRh) Y Var (@5(2)14,< 5)
j=0
2 (—1) m' = 2 (—1
Q Gm* Q GT)’L*
= (n ) > E {@J(Zl)ﬂzlgx/ﬁ} < (n E [Zl]lzlgﬁ}‘
=0
2 (-1
We then set H := \/Q(fm*)E [Z1].

e Now for the term of variance, let £« € B(m,m/)

|

2 N -
] -k U<tm*v G @ (Z1)1 7, < )2

2
2,m*

zm] < (G E |21 a] -

E D@m*,G;jiﬁdz(zl)nzﬁﬁmz

<E Gt s (Z0)1 7, < s

2
2,m*

s e
L EB(m,m/)

<E [)‘G;&ém*(zl)nzlgﬁ

So we set v :=E [Z1] 0 (G,,}).

m*
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e First notice again
sup sup (s 7Gd2 (I>d2( Woc m)2d, = sup sup (fye, G L@y (@) L,< /m)2,m*
Fm* eB(mvm ) zeRF {m* EB(TI’L,TI’L’) z€RT
Now applying Cauchy-Schwarz inequality and using Equation (25) again
— -1 =g
Cosup (e, Gy Py (2) Ly /) 2.d2 oo
25 GB(m»m/)

< sup HG;ﬁ‘I_)’m*(JU)]lxgn
reRt

2,m* zER+

G,}) sup Z <I>2 Macym </ Ve (G.).
z€RT j=0

IN
R,

We take M = /v/no? (G,}).

We apply Talagrand’s inequality for £2 = Kll log(n). We get

_ logn
E { s (VB — mae? (Grt) L2122 }
+

fEB(m,m’)
-1 1
> Kl n K1n202(§2)

which implies that

teB(m,m’)
-1 -1
_ 4 E[21]0* (Gut) —ie2 | 98VN0* () —2900¢ Japz e
- K n K1n202(§2)
m'e MP)

Z E { sup ¢V = koo (G )E[Zl]loin}
m'emMP +

Thus we have under Assumption (B2)

2 (-1 2 ((—1 2
Z 0 (Gm*)e—K1§2 < Z 0 (Gm*) i < ‘Mgl) < l
n - n n?2~ n?2 “n
m'eM) m'eM)
And
2 (-1
Z Vno (Gm*)g%%%g)g EZin/* Z NG QK;%g>s\/E[7ln1/4 - g
K1n?2C?%(&?) (logn)zn n
m/GMg) m/EM,(IZ)

1
So for q(m,m') = ko0? (G;ll*) E[Zl]ﬂ we just showed that
n

310

|
g E { sup \Cfll)(ﬂﬁ — K90? (G;ﬁ) E[Z4] ogn} <
. , n
m’EMg) teB(m,m’) n
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Now we prove (ii). We have, using (A2),

E| sup [C82(En))?
teB(m,n)
1 & ?
=E| sup |(£G ( (dez(zi)]lZi>\/ﬁ —E <I>dz(Zz')]lzi>\/ﬁD> )2,ds
teB(da,dz2) N
2 -1
0 (Gdz ) E[Z3]
1
<) 0] < B2
In the end we have the desired result. O

7.4. Proof of Corollary 4.3]. The beginning of the proof is the same as the proof of Theo-
rem 4.2 except that we consider mg (defined by Equation (23)) instead of mg and pen, (defined
by Equation (24)) instead of pen,. Starting from Equation (28) we have

1S3 — Sx|I* < 31Sx — Sx.ml? + 25en,(m) + 16 ( sup  (((F)* +  sup (<£2><F>)2>
teB(m,m) teB(m,m)

— 2peny ()

< 3)|Sx — Sxml|* + 2Peny(m) + 16 ( sup ((V()* +  sup (4512)(55)2>

teB(m,m) teB(m,m)
— 2peny(m2) + 2peny (M) — 2peny(ma)

< 3||Sx — Sx.ml|? + 2peny(m) +164{  sup (M (#))>
teB(m, m)
+ 2peny(m) + 16 sup 2 (1))% + 2{pen2 ma) — peny(ma }
fEB(m,m) +

We now apply the following Proposition which ensures the validity of Corollary 4.3

Proposition 7.3. Under the Assumptions of Corollary 4.3, the following holds

E[ﬁeTlQ(m)} = 2peny(m) and E [{peDQ(ﬁbg) — 56\112(7%2)}+] < %
Finally, E[[Sx ~ Sx 2 < inf, o0 {[1Sx — Sxnl + peny(m)} + . =
Proof of Proposition 7.3. First let us notice the following
E [5eiiy(m)] = 20aE [2,] ELCm )18 _ o g 17 € (Cm)I0En o)

n

For the second inequality, let us introduce the following favorable set:
A ={|E[Z1] - Z,| < E[Z1]/2},

which yields
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Yet on the set A, E[Z1]/2 — Z,, < 0 which yields
~ . B E[Z1]] 5\ 2 (1 logn
E [{penz(mg) — pen2(m2)}+] =E {2@( 5 Zn)g (Gﬁ@z> T e -

<E [2@ E[Z1] — Z| 0 (G ) ]1Ac}

—1
ma

logn
Now we apply Cauchy-Schwarz

E [|E(Z1] - Zu| 1ac] < E[EIZ1] - Zo*/PIA] = \/‘\T[Zn}\/ﬂ“) [!E[Zﬂ —Zn| 2 EbZlq‘

We apply Markov inequality then Rosenthal inequality

Var [Z1] E[\E[Zl]—zn!2}< Var [Z1]
\/ﬁ E[Z1]2 o E[Zl]n ’

E [|E[Z1] — Zn| 1e] <
Moreover under Assumption (B2)

E [{peHQ(ﬁw) - 176712(7%2)}J < Cr [QQ (G%) logn} g i,

n

which ends the proof. O

APPENDIX A.

Lemma A.1. (Talagrand’s inequality) Let Y1, ...,Y, be i.i.d. variables and

ralf) = -3 (1) ~ELF(%)])

n
k=1

for f belonging to some countable set F of uniformly bounded measurable functions. Then for
& >0,

4 (v 2 nH2 98 M2 _2K 10O nH
E sup |ry, 2 _92(1+ 282 H? <<eK15v_|_1e N2 ]\/11>
ng<m oty s (] T

1
with constants C(§) = (/1 +& —1)A 1 and K1 = 6 My, H and v are such that

sup [| flloc < My, E
fer

sup |Tn(f)\] < H, sup Var(f(¥1)) <w.
fer feF
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