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Abstract. In this paper we consider the problem of adaptive density or survival function estimation
in an additive model defined by Z = X + Y with X independent of Y , when both random variables are
nonnegative. We want to recover the distribution of X (density or survival function) through n observations
of Z, assuming that the distribution of Y is known. This issue can be seen as the classical statistical problem

of deconvolution which has been tackled in many cases using Fourier-type approaches. Nonetheless, in the
present case the random variables have the particularity to be R

+ supported. Knowing that, we propose

a new angle of attack by building a projection estimator with an appropriate Laguerre basis. We present
upper bounds on the mean squared integrated risk of our density and survival function estimators. We then

describe a nonparametric adaptive strategy for selecting a relevant projection space. The procedures are
illustrated with simulated data and compared to the performances of more classical deconvolution setting
using a Fourier approach.

Keywords. Inverse problem. Adaptive estimation. Nonparametric density estimation. Survival function
estimation. Laguerre basis. Deconvolution. Mean squared risk.
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1. Introduction

In this paper we consider the following model

Zi = Xi + Yi, i = 1, . . . , n, (1)

where the Xi’s are independent identically distributed (i.i.d.) nonnegative variables with unknown density
f and unknown survival function SX . The Yi’s are also i.i.d. nonnegative variables with known density g
and survival function SY . We denote by h the density of the Zi’s and SZ its survival function. Moreover the
Xi’s and the Yi’s are assumed to be independent. Our target is the estimation of the density f along with
the survival function SX of the Xi’s when the Zi’s are observed. We are going to show that the assumption
of nonnegativity of the random variables is of huge importance for the estimation strategy.

The assumptions imply that, in Model (1), h(x) = (f ∗ g)(x) where (ϕ ∗ ψ)(x) =
∫
ϕ(x − u)ψ(u) du

denotes the convolution product. This setting matches the setting of convolution model which is classical
in nonparametric statistics. Indeed the problem of recovering the signal distribution f when it is observed
with an additive noise with known error distribution, has been extensively studied. We can cite Carroll and
Hall (1988), Stefanski (1990), Stefanski and Carroll (1990), Fan (1991), Efromovich (1997) and Delaigle and
Gijbels (2004) who study rates of convergence and their optimality for kernel estimators or Butucea (2004),
Butucea and Tsybakov (2008a,b) for studies of rate optimality in the minimax sense. For the most part, the
adaptive bandwidth selection in deconvolution models has been addressed with a known error distribution,
see for example Pensky and Vidakovic (1999) for wavelet strategy, Comte et al. (2006), for projection
strategies with penalization, or Meister (2009) and references therein. More recently deconvolution problems
in additive models in the case of unknown error distribution have been addressed. For that some information
on the error distribution is required. For instance, in a physical context, a preliminary sample of the noise
can be derived. This led to the works of Neumann (1997) who proposed an estimation strategy still based
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on Fourier inversion, or Johannes (2009), Comte and Lacour (2011) and Kappus and Mabon (2013) who
extended it to the adaptive strategy. Concerning the estimation of the cumulative distribution function
(c.d.f.) in the convolution model, very few papers can be found as Zhang (1990), Fan (1991), Hall and
Lahiri (2008), Dattner et al. (2011), Dattner and Reiser (2013). They all present pointwise estimation
procedures since the distribution function is not squared integrable on R while the assumption is not so
strong for the survival function on R

+. The last two papers consider the pointwise estimation of the c.d.f.
when the error distribution is unknown under the assumption that the tail of the characteristic function of
the measurement error distribution has a certain decay: polynomially or exponentially. These estimators
reach the optimal rates under the conditions that the target function belongs to a Sobolev space.

All these works suppose that the variables Xi’s and Yi’s are R-supported. Therefore they are still valid
when the variables are R

+-supported. Nonetheless in the present paper, our goal is to propose a specific
solution for nonnegative variables. We shall illustrate that in practice our procedure works significantly
better than Fourier methods for estimating R

+-supported functions.
The problem of nonnegative variables appears in actuarial or insurance models. Recently, in a financial

context, some papers as Jirak et al. (2014) or Reiß and Selk (2013) have addressed the problem of one-sided
errors. The first authors are interested in the optimal adaptive estimation in nonparametric regression
when the errors are not assumed to be centered anymore, and typically with Exponential density. It is
motivated from fields where the information provided about the error distribution is its support rather
than its mean properties. Such matters arise in economics: for example in auction fields the underlying
distribution of bidders’ private values is identified from observed bids, see Guerre et al. (2000). This led
Jirak et al. (2014) to a different approach based on local extreme values. We can also cite Bibinger et al.
(2014) who are motivated by modelizing the dynamics of intra-day financial data from limit order books. In
all these works one-sided errors models require new and different tools. More generally, the field of survival
data analysis and reliability is widespread in many domains such as econometrics or biology, and they also
involve nonnegative variables. Duration models are used as soon as the phenomenon of interest is modelized
by nonnegative variables which generally corresponds to a waiting time until the occurrence of a certain
event such as a failure time. Model (1) can thus be seen as a superposition of two such processes.

Let us describe now our specific method for the estimation of the density and survival functions when the
random variables X and Y in Model (1) are R

+-supported. We assume all along the paper that g belongs
to L

2(R+) and either

(A1) f ∈ L
2(R+)

when the estimation of f is under study, or

(B1) SX ∈ L
2(R+),

when we want to recover the survival function. In both cases, we use a penalized projection method (see
Birgé and Massart (1997)). The idea is to decompose the density function f on an appropriate orthonormal
basis on R

+, (ϕk)k≥0,

f(x) =
∑

k≥0

bk(f)ϕk(x)

where bk(f) represents the k-th component of f in the orthonormal basis and to estimate the m first ones
b0(f), . . . , bm−1(f). To deal with the particularity of nonnegative variables we introduce the Laguerre basis
defined by

k ∈ N, x ≥ 0, ϕk(x) =
√
2Lk(2x)e

−x with Lk(x) =
k∑

j=0

(−1)j
(
k

j

)
xj

j!
. (2)

This basis has already been used to estimate a nonnegative function f in Comte et al. (2013). These authors
consider a regression model defined by Yi = f ∗ g(ti) + εi where Yi is observed, ti are deterministic times
of observation, εi is Gaussian and g is known. We can also cite Vareschi (2014) in a similar context with
unknown g. For R+-supported functions, the convolution product writes

h(x) =

∫ x

0

f(u)g(x− u) du (3)

and what makes the Laguerre basis relevant, in the previous works and in ours, is the relation
∫ x

0

ϕk(u)ϕj(x− u) du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x)) . (4)

(see formula 22.13.14 in Abramowitz and Stegun (1964)). From this property, by decomposing f , g and h
on the Laguerre basis, we are able to define a linear transformation of the coefficients of the density function
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f to obtain those of h. More precisely, if we denote by ~hm and ~fm m-dimensional vectors with coordinates
bk(f) and bk(h), k = 0, 1, . . . ,m− 1 respectively, we prove

~hm = Gm
~fm (5)

where Gm is a lower triangular invertible matrix depending on the coefficients of g. As g is known, so is
Gm. Thus we can recover the m first coefficients of f , from those of g which are known and those of h which
can be estimated form the Zi’s as bk(h) = E[ϕk(Z1)]. We then derive the same reasoning for the survival
function estimation. Let us point out that we do not integrate the estimator by projection of f to obtain
an estimator of SX . Our idea is to directly project SX on the Laguerre basis. To our knowledge this a
new strategy for the survival function estimation in a deconvolution setting. These estimators are precisely
defined and illustrated in Section 2.

Afterwards we develop in Section 3 a study of the integrated risk of the estimator of the density and
of the survival function. We discuss the resulting rates of convergence of these two estimators. For that
we introduce subspaces of L2(R+), called Laguerre-Sobolev spaces with index s > 0 which are defined in
Bongioanni and Torrea (2009). This enables us to determine the order of the squared bias terms. This,
together with variance order, provides rates of convergence of the estimators of f belonging to a Laguerre-
Sobolev space. We also obtain rates of convergence for estimators of survival function.

In Section 4, we establish a data driven choice by penalization of the dimension m in our two models and
oracle inequalities. For the estimation of the density and survival functions, the methods rely mostly on

the fact that we are able to build nested models since the first m− 1 coordinates ~hm and ~fm are the same

as those of ~hm−1 and ~fm−1. Finally we illustrate these procedures with some simulations and compare our
results to those of Comte et al. (2006) in the case of the density estimation.

To sum up this paper is organized as follows. In Section 2, we give the notations, specify the statistical
model and estimation procedures for f and SX . In Section 3, we present upper bounds of the L2 integrated
risk and derive the corresponding rates of convergence. In Section 4, we propose a new adaptive procedure
by penalization for the density and survival functions. Besides the theoretical properties of the adaptive esti-
mators are studied. In Section 5, we lead a study of the adaptive estimators through simulation experiments.
Numerical results are then presented and compared to the performances in a more classical deconvolution
setting using a Fourier approach. In the concluding Section 6 we give further possible developments or
extensions of the method. All the proofs are postponed to Section 7.

2. Statistical model and estimation procedure

2.1. Notations. For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b). For
two functions ϕ, ψ : R → R belonging to L

1(R) ∩ L
2(R), we denote ‖ϕ‖ the L

2 norm of ϕ defined by

‖ϕ‖2 =
∫
R
|ϕ(x)|2dx, 〈ϕ, ψ〉 the scalar product between ϕ and ψ defined by 〈ϕ, ψ〉 =

∫
R
ϕ(x)ψ(x)dx.

Let d be an integer, for two vectors ~u and ~v belonging to R
d, we denote ‖~u‖2,d the Euclidean norm defined

by ‖~u‖22,d = t~u~u where t~u is the transpose of ~u. The scalar product between ~u and ~v is 〈~u,~v〉2,d =
√

t~u~v =√
t~v~u. We introduce the spectral norm of a matrix A: ̺2 (A) = λmax (

tAA) where λmax (A) is the largest
eigenvalue of A in absolute value.

2.2. Laguerre basis. The Laguerre polynomials Lk defined by (2) are orthonormal with respect to the
weight function x 7→ e−x on R

+. In other words,
∫
R+ Lk(x)Lk′(x)e−x dx = δk,k′ where δk,k′ is the Kronecker

symbol. We remind that the Laguerre basis verifies the following inequality for all integer k

sup
x∈R+

|ϕk(x)| = ‖ϕk‖∞ ≤
√
2. (6)

We also introduce the space Sm = Span{ϕ0, . . . , ϕm−1}.

2.3. Projection estimator of the density function. For a function p in L
2(R+), we note

p(x) =
∑

k≥0

bk(p)ϕk(x) where bk(p) =

∫

R+

p(u)ϕk(u) du.

Thus under Assumption (A1), f and g admit a development on the Laguerre basis. Since X and Y are
independent and nonnegative variables, we have a convolution relation between h, f and g. Starting from
Equation (3) and using the decomposition on the Laguerre basis, the following equality holds

h(x) =

∞∑

k=0

∞∑

j=0

bk(f)bj(g)

∫ x

0

ϕk(u)ϕj(x− u) du. (7)
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So we decompose h on the Laguerre basis as
∑∞

k=0 bk(h)ϕk(x) and apply Equation (4) to (7). We get

∞∑

k=0

bk(h)ϕk(x) =

∞∑

k=0

ϕk(x)

(
2−1/2bk(f)b0(g) +

k−1∑

l=0

2−1/2 (bk−l(g)− bk−l−1(g)) bl(f)

)
.

We finally obtain an infinite triangular system of linear equations. We can write for anym that ~hm = Gm
~fm

where Gm is the lower triangular Toeplitz matrix with elements

Gm =





2−1/2b0(g) if i = j,

2−1/2 (bi−j(g)− bi−j−1(g)) if j < i,

0 otherwise,

(8)

(see Comte et al. (2013)). Let us give some examples of matrix Gm.

Example 1. If g is an Exponential distribution of parameter θ > 0, then for all integer k we have

bk(g) =

∫

R+

g(u)ϕk(u) du =

∫

R+

θe−θu
√
2e−uLk(2u) du =

√
2θ

k∑

j=0

(
k

j

)
(−1)j

j!

∫

R+

(2u)je−(1+θ)u du

=

√
2θ

θ + 1

k∑

j=0

(
k

j

)
(−2)j

(1 + θ)j
=

√
2θ

θ + 1

(θ − 1)k

(θ + 1)k
.

Then we have that

b0(g) =

√
2θ

1 + θ
and bi−j(g)− bi−j−1(g) = −2

√
2θ

(θ − 1)i−j−1

(θ + 1)i−j+1
.

Thus in a case of an Exponential error distribution, the coefficients of Gm can easily be computed. Nonethe-
less in the next example, we show that for a Gamma distribution the coefficients can also be recovered.

Example 2. If g is a Gamma distribution of parameters p ∈ N
∗ and θ > 0, then for all integer k we have

bk(g) =

∫

R+

g(u)ϕk(u) du =

∫

R+

θpup−1e−θu
√
2e−uLk(2u) du =

√
2θp

k∑

j=0

(
k

j

)
(−1)j

j!
2j
∫

R+

up+j−1e−(1+θ)u du

=
√
2

θp

(1 + θ)p

k∑

j=0

(
k

j

)
(−1)j

2j

(1 + θ)j
(p+ j − 1)!

j!
=

√
2θp

(1 + θ)p
dp−1

dxp−1

[
xp−1(1− x)k

] ∣∣∣
x=2/(1+θ)

The principle of a projection method for estimation is to reduce the question of estimating f to the one
of estimating fm the projection of f on Sm. Clearly

fm(x) =

m−1∑

k=0

bk(f)ϕk(x)

and bk(f) for k = 0, . . . ,m − 1 can be estimated by Equation (5) if we can invert the matrix Gm. Since
Gm is a lower triangular matrix, it is invertible only if the coefficients of the diagonal are different from 0
which means b0(g) is non equal to 0. Well by definition we have

b0(g) =

∫

R+

g(u)ϕ0(u) du =
√
2

∫

R+

g(u)e−u du =
√
2E[e−Y ] > 0.

Consequently Gm is invertible. Then we can write that G−1
m
~hm = ~fm. So, as bk(h) = E[ϕk(Z1)], the

projection of f on Sm can be estimated by

f̂m(x) =
m−1∑

k=0

b̂k(f)ϕk(x) with ~̂fm = G−1
m
~̂hm and b̂k(h) =

1

n

n∑

i=1

ϕk(Zi). (9)

Let us notice that if Y = 0 a.s. then g = δ0 for all integer k, and we have bk(g) = ϕk(0) =
√
2 because

Lk(0) = 1. This implies Gm = Idm, with Idm the identity matrix. Therefore if there is no additional noise,
we are able to estimate fm directly from the observations. It means that in Equation (9) we have

Gm = Idm and ~̂fm = ~̂hm. (10)
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2.4. Projection estimator of the survival function. We have to point out that in the case of the
projection estimation of the survival function, the estimation of the coefficients in the Laguerre basis is
slightly different from the previous section. Indeed we note that the scalar product cannot be interpreted
directly as an expectation under h. Let us consider for example bk(SZ) the k-th coefficient of SZ

bk(SZ) =

∫

R+

SZ(u)ϕk(u) du =

∫

R+

ϕk(u)

(∫ +∞

u

h(v) dv

)
du =

∫

R+

(∫ v

0

ϕk(u) du

)
h(v) dv = E [Φk(Z1)]

with Φk a primitive of ϕk defined as Φk(x) =
∫ x

0
ϕk(u) du. We can notice that

Φk(x) =
√
2

∫ x

0

k∑

j=0

(−2)j
(
k

j

)
uj

j!
e−u du =

√
2

k∑

j=0

(−2)j
(
k

j

)
γ(j + 1, x). (11)

where γ is the lower incomplete gamma function defined by formula 6.5.2. in Abramowitz and Stegun
(1964). In order to apply the same method as for the density estimation, let us see how convolution is
modified for survival functions. Let z ≥ 0, by definition SZ(z) = P(Z > z), and

SZ(z) = P(X + Y > z) =

∫∫
1x+y>z f(x)1x≥0 g(y)1y≥0 dx dy

=

∫ (∫ +∞

z−y

f(x) dx

)
g(y)1y≥01z−y≥0 dy +

∫ (∫ +∞

0

f(x) dx

)
g(y)1y≥01z−y≤0 dy

=

∫ z

0

SX(z − y)g(y) dy +

∫ +∞

z

g(y) dy

=

∫ z

0

SX(z − y)g(y) dy + SY (z).

We can notice that we have one more term: the survival function of Y . Nevertheless similarly to the density
estimation the coefficients of SX , bk(SX) can also be represented as a solution of an infinite triangular
system of linear equations as follows

SZ(z)− SY (z) =
∑

k≥0

(bk(SZ)− bk(SY ))ϕk(z)

= 2−1/2
∞∑

k=0

ϕk(x)

(
bk(SX)b0(g) +

k∑

l=0

(
b(k−l)(g)− b(k−l−1)(g)

)
bl(SX)

)
.

Now let us define, SX,m the projection of SX on the space Sm

SX,m(x) =

m−1∑

k=0

bk(SX)ϕk(x). (12)

Thus, with Gm defined by Equation (8) and Φk defined by (11), the projection estimator of SX,m on the
Laguerre basis is given by

ŜX,m(x) =

m−1∑

k=0

(b̂k(SZ)− bk(SY ))ϕk(x)

with ~̂SX,m = G−1
m

(
~̂SZ,m − ~SY,m

)
and b̂k(SZ) =

1

n

n∑

i=1

Φk(Zi), (13)

where ~SY,m is known since bk(SY ) = E [Φk(Y1)] and g is known.

It is worth mentioning that here we do not integrate the estimator of the density f̂m to estimate the
survival function. Otherwise the estimator of the survival function at a point x would be expressed in

function of the coefficients ~̂fm and first antiderivative of the ϕk noted Φ̃k as follows

S̃X,m(x) =

m−1∑

k=0

b̂k(f)Φ̃k(x)

with Φ̃k(x) =
∫ +∞
x

ϕk(u) du. Yet in order to evaluate the bias and the variance, we would rather have a

decomposition directly on the Laguerre basis as S̃X,m(x) =
∑m−1

k=0 b̃k(f)ϕk(x). This part becomes tedious,
see Appendix B for more details.
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Moreover we want to highlight that this method would require f ∈ L
2(R+). Yet it possible that SX ∈

L
2(R+) and f 6∈ L

2(R+). For instance let us define f(x) = 1/(2
√
x)1[0,1](x), f 6∈ L

2(R+) and SX ∈ L
2(R+).

Now if we take f(x) = 2x−3/2
1[1,+∞)(x) then S(x) = 4x−1/2

1[1,+∞)(x) which implies f ∈ L
2(R+) and

SX 6∈ L
2(R+).

3. Bounds on the L
2 risk

In this section, we study the integrated risk of our three estimators. We remind that

E‖f − f̂m‖2 = ‖f − fm‖2︸ ︷︷ ︸
squared bias

+E‖fm − f̂m‖2︸ ︷︷ ︸
variance

.

First we give upper bounds of the L
2 risk by bounding the variance term then we compute optimal rates

by introducing the Laguerre-Sobolev space and estimating the order of the bound on the variance for each
estimators.

3.1. Upper bounds.

Proposition 3.1. Under (A1), for Gm defined by (8) and f̂m defined by (9), the following result holds

E‖f − f̂m‖2 ≤ ‖f − fm‖2 + 2m

n
̺2(G−1

m ). (14)

This result can easily be applied to the direct estimation of the density as stated

Corollary 3.2. Under (A1), in the forward problem defined by (10) we get

E‖f − f̂m‖2 ≤ ‖f − fm‖2 + 2m

n
. (15)

Finally, we derive the following upper bound for the projection estimator of the survival function.

Proposition 3.3. Under (B1) and if E[Z1] < ∞, for Gm defined by (8) and ŜX,m defined by (13), the
following result holds

E‖SX − ŜX,m‖2 ≤ ‖SX − SX,m‖2 + E[Z1]

n
̺2(G−1

m ). (16)

Lemma 3.4. m 7→ ̺2(G−1
m ) is nondecreasing.

Remark 1. The terms of the right-hand side of Equations (14), (15) and (16) correspond to a squared bias
and variance term. Indeed the first one gets smaller when m gets larger and vice versa for the other one
thanks to Lemma 3.4.

3.2. Rates of convergence. In order to derive the corresponding rates of convergence of the estimators

f̂m and ŜX,m respectively defined by (9) and (13), we need to evaluate the smoothness of the signal along

with the order of ̺2
(
G−1

m

)
. In the first place, we assume that f belongs to a Laguerre-Sobolev space defined

as

W s(R+, L) =



f : R+ → R, f ∈ L

2(R+),
∑

k≥0

ksb2k(f) ≤ L < +∞



 with s ≥ 0 (17)

where bk(f) = 〈f, ϕk〉. Bongioanni and Torrea (2009) have introduced Laguerre-Sobolev space but the link
with the coefficients of a function on a Laguerre basis was done by Comte and Genon-Catalot (2013). Indeed,
let s be an integer, for f : R+ → R and f ∈ L

2(R+), we have that
∑

k≥0

ksb2k(f) < +∞

is equivalent to the fact that f admits derivatives up to order s− 1 with f (s−1) absolutely continuous and
for 0 ≤ k ≤ s, xk/2f (k)(x)e−x ∈ L

2(R+). For more details we refer to section 7 of Comte and Genon-Catalot
(2013). Now for f ∈W s(R+, L) defined by (17),

‖f − fm‖2 =
∞∑

k=m

b2k(f) =
∞∑

k=m

b2k(f)k
sk−s ≤ Lm−s.

Before deriving the order of the spectral norm of G−1
m , we can already give the rate of convergence in the

forward problem.
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Proposition 3.5. In the forward problem defined by (10), suppose that f belongs to W s(R+, L) defined by
(17) and let mopt = (2/sL)−1/(s+1)n1/(s+1), then the following holds

sup
f∈W s(R+,L)

E‖f − f̂mopt
‖2 ≤ C1(s, L)n

−s/(s+1)

where C1(s, L) = L(2/sL)−s/(s+1) + 2(2/sL)−1/(s+1).

Secondly in the deconvolution problem, we must evaluate the variance term of Equations (14) and (16)
which means assess the order of ̺2

(
G−1

m

)
. Comte et al. (2013) show that under the following conditions on

the density g, we can recover the order of the spectral norm of G−1
m :

(C1) g ∈ L
1(R+) is r times differentiable and g(r) ∈ L

1(R+).
(C2) There exists an integer r ≥ 1 such that

dj

dxj
g(x) |x=0=

{
0 if j = 0, 1, . . . , r − 2

Br 6= 0 if j = r − 1.

(C3) The Laplace transform of g has no zero with non negative real parts except for the zeros of the form
∞+ ib.

Lemma 3.6 (Comte et al. (2013)). If Assumptions (C1)-(C3) are true, then there exists a positive constant
C̺ such that

̺2
(
G−1

m

)
≤ C̺m

2r−1.

Remark 2. For instance a Gamma distribution of parameter p and θ verifies these three conditions for
r = p. Especially an Exponential distribution satisfies those assumptions for r = 1.

Under (C1)-(C3), we consider distributions such that they admit a finite number of derivatives null in
0.

Proposition 3.7. Assume that f belongs to W s(R+, L) defined by (17), that Assumptions (C1)-(C3) are
fulfilled and let mopt = (4rC̺/sL)

−1/(s+2r)n1/(s+2r), then

sup
f∈W s(R+,L)

E‖f − f̂mopt
‖2 ≤ C2(s, L,C̺)n

−s/(s+2r).

where C2(s, L,C̺) = L(4rC̺/sL)
−s/(s+2r) + 2(4rC̺/sL)

−1/(s+2r).

Example 3. Let us compute the rate of convergence where both the signal and error distributions are
Exponential in the Laguerre procedure and compare it to the rate in the Fourier setting. For an Exponential
distribution of parameter θ, we can note that the squared bias decays exponentially. Indeed Example 1 gives
the coefficients of an Exponential distribution, thus the squared bias is

‖f − fm‖2 =
∑

k≥m

(√
2θ

(θ − 1)k

(θ + 1)k+1

)2

=
θ

2

(
θ − 1

θ + 1

)2m

.

From Remark 2, the variance is bounded by C̺m/n. It implies that if θ 6= 1, the rate of convergence is of
order (log n)/n with mopt = 2 log n/|2 log((θ − 1)/(θ + 1))|. It can also be noted that if θ = 1 then the bias
is null. The rate of convergence, in this case, reaches the parametric rate. In the Fourier deconvolution, in
the same Exponential situation for signal and error, the order of the squared bias is 1/m while the order
of the variance is m3/n. It yields that the rate is n−1/4. Thus in the context of nonnegative variables of
Exponential type, we expect to recover faster rates of convergence with our Laguerre method than with a
Fourier procedure.

Proposition 3.8. Assume that SX belongs to W s+1(R+, L) defined by (17), that Assumptions (C1)-(C3)
are fulfilled and let mopt = (C̺E[Z1](2r − 1)/(s+ 1)L)−1/(s+2r)n1/(s+2r), then

sup
SX∈W s(R+,L)

E‖SX − ŜX,m‖2 ≤ C3(s, L)n
−(s+1)/(s+2r).

with C3(s, L) = L
(

C̺E[Z1](2r−1)
(s+1)L

)−(s+1)/(s+2r)

+ 2
(

C̺E[Z1](2r−1)
(s+1)L

)−1/(s+2r)

Remark 3. We clearly see that in Propositions 3.5, 3.7 and 3.8 the optimal m that permits to compute
the rate of convergence of the estimator depends on the regularity of the function under estimation. So the
solution of the best compromise between the squared bias and the variance depends on unknown quantities
L and s. That is why we consider the problem of data driven selection of m. Our goal is then to find a
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procedure that does not require prior information on f nor SX and whose the risk automatically reaches
the optimal rate.

Remark 4. Lower bounds in deconvolution problems on the real line have been studied in Fan (1991)
and Butucea and Tsybakov (2008a,b), yet those results cannot be extended to the setting of this paper.
Therefore the Laguerre deconvolution requires a specific construction. The difficulty lies in the construction
of densities on R

+. Otherwise we can cite Vareschi (2014) who proves lower bounds in the context of a
Laplace regression model.

4. Model selection and adaptive estimation

The aim of this section is to provide an integer m that enables us to compute an estimator of the

unknown density or survival function with the L2 risk as close as possible to the oracle risk infm E‖f − f̂m‖2
or infm E‖SX − ŜX,m‖2. We follow the model selection paradigm (see Birgé and Massart (1997), Birgé
(1999), Massart (2003)) and choose the dimension of projection spaces m as the minimizer of a penalized
criterion.

4.1. Adaptive density estimation. First let us consider the forward problem. We define the following
contrast

θn(t) = ‖t‖2 − 2

n

n∑

i=1

t(Xi) t ∈ Sm

associated with the penalty

qen(m) =
2κm

n
. (18)

where κ is a numerical constant. The penalty has the classic form of a penalty in model selection as presented
in Massart (2003) see formula 7.17 page 212. The following result ensures that the tradeoff between the
bias and the variance is automatically reached.

Theorem 4.1. In the forward problem defined by (10), suppose that Assumption (A1) is true. Let f̂m̂ be
defined by (9) and

m̂ = argmin
m∈{1,...,n}

{
θn(f̂m) + qen(m)

}

with qen defined by (18), then there exists a positive numerical constant κ such that

E‖f − f̂m̂‖2 ≤ 4 inf
m∈{1,...,n}

{
‖f − fm‖2 + qen(m)

}
+
C

n
. (19)

where C depends on ‖f‖.
The estimation problem of a density f based on independent observations X1, . . . , Xn has been widely

studied in the nonparametric estimation literature, see Silverman (1986) and Devroye (1987). More recently
Juditsky and Lambert-Lacroix (2004) have proposed a minimax estimator of the density, based on wavelets
decomposition, on the whole real line for the L

p-risk (1 ≤ p ≤ ∞).

Now consider the inverse problem, we add the two following assumptions:

(A2) M(1)
n =

{
1 ≤ m ≤ d1,

m̺2
(
G−1

m

)

n
≤ 1

}
, where d1 < n may depend on n.

(A3) ∀b > 0,
∑

m∈M(1)
n

̺2
(
G−1

m

)
e−bm < C(b) <∞.

Moreover for m ∈ M(1)
n , let us define the associated subspaces Sm

d1
⊆ R

d1

Sm
d1

=
{
~tm ∈ R

d1 /~tm = t(b0(t), b1(t), . . . , bm−1(t), 0, . . . , 0)
}
.

This space is defined to give nested models. Thus when we increase the dimension from m to m + 1 we
only compute one more coefficient. Then for any ~t ∈ R

d1 , we define the following contrast for the density
estimation

γn(~t) = ‖~t‖22,d1
− 2〈~t,G−1

d1

~̂hd1
〉2,d1

.

Let us notice that for ~tm ∈ Sm
d1
, thanks to the null coordinates of ~tm and the lower triangular form of Gd1

and Gm, we have

〈~tm,G−1
d1

~̂hd1
〉2,d1

= 〈~tm,G−1
m
~̂hm〉2,m = 〈~tm, ~̂fm〉2,m.
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So we clearly have that

~̂fm = argmin
~tm∈Sm

d1

γn(~tm).

We define the penalty as

pen1(m) =
2κ1m

n
̺2
(
G−1

m

)
(20)

where κ1 is a numerical constant see our comment below.

Theorem 4.2. Let us suppose that (A1)-(A3) are true. Let f̂m̂1
be defined by (9) and

m̂1 = argmin
m∈M(1)

n

{
γn( ~̂fm) + pen1(m)

}

with pen1 defined by (20), then there exists a positive numerical constant κ1 such that

E‖f − f̂m̂1
‖2 ≤ 4 inf

m∈M(1)
n

{
‖f − fm‖2 + pen1(m)

}
+
C

n
, (21)

where C depends on ‖f‖ and ‖g‖.
It follows from the proof that κ1 = 32 would suit. But in practice, values obtained from the theory are
generally too large and the constant is calibrated by simulations. Once chosen, it remains fixed for all
simulation experiments.

The oracle inequality (21) establishes a non asymptotic oracle bound. It shows that the squared bias
variance tradeoff is automatically made up to a multiplicative constant. We have shown in Section 3 that
the rates of convergence in deconvolution problems are intricate and depend on the regularity types of the
function f under estimation and the noise density g. Bias and variance order in Equation (14) as shown in
Section 3 yield an optimal value of m in function of n which m depends on unknown quantities, and thus
cannot be implemented. That is why Equation (21) is of high interest: rates of convergence are reached
without requiring to be specified in the framework.

Remark 5. Note it is common in the literature to assume that the distributions belong to a certain semi-
parametric model which is not the case in this paper. In the deconvolution setting with a Fourier approach,
papers as Comte et al. (2006) for instance, assume that the Fourier transform of the target and error densities
have a particular decay behavior. Here we only put some conditions on the form of the spectral norm of
the matrix G−1

m . Indeed if Assumption (A3) is released then an adaptive procedure can still be obtained
with the associated penalty pen(m) = 2κm̺2

(
G−1

m

)
log(n)/n. We can notice that if ̺2

(
G−1

m

)
= O(mα)

then for any α, Assumption (A3) is true. It is satisfied for instance for Gamma distributions. Similarly if

̺2
(
G−1

m

)
= O(mαeλm

β

) then it is enough that β < 1 to ensure (A3).
To our knowledge this is a new result in the literature.

4.2. Adaptive survival function estimation. In this particular framework, we make the two following
assumptions:

(B2) M(2)
n =

{
1 ≤ m ≤ d2,

̺2
(
G−1

m

)
log n

n
≤ C

}
, where d2 < n may depend on n and C > 0.

(B3) 0 < E[Z3
1 ] <∞.

For any ~t ∈ R
d2 , we define the following contrast for the survival function estimation

δn(~t) = ‖~t‖22,d2
− 2〈~t,G−1

d2

(
~̂SZ,d2

− ~SY,d2

)
〉2,d2

and we also have

〈~tm,G−1
d2

(
~̂SZ,d2

− ~SY,d2

)
〉2,d2

= 〈~tm,G−1
m

(
~̂SZ,m − ~SY,m

)
〉2,m = 〈~tm, ~̂SX,m〉2,m

which yields that

~̂SX,m = argmin
~tm∈Sm

d2

δn(~tm).

We define the penalty as

pen2(m) =
κ2E[Z1]

n
̺2
(
G−1

m

)
log n (22)
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Theorem 4.3. Let us suppose that (B1)-(B3) are true. Let ŜX,m̂2
be defined by (13) and

m̂2 = argmin
m∈M(2)

n

{
δn( ~̂SX,m) + pen2(m)

}

with pen2 defined by (22), then there exists a positive numerical constant κ2 such that

E‖SX − ŜX,m̂2
‖2 ≤ 4 inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
,

where C is a constant depending on E[Z3
1 ].

We can also notice that in the penalty associated with this procedure a logarithmic term appears while it
was not in the upper bound of Equation (16). Such logarithms often appears in adaptive procedures.

Comments after Theorem 4.2 still hold. This oracle inequality shows that the squared bias variance
tradeoff is automatically made. Asymptotically, this ensures that the rates of convergence are reached up to
a log n factor. To our knowledge this the first time that a global adaptive procedure of the survival function
is considered. This result rests upon the particularity of the Laguerre basis which enables to extend the
adaptive estimation of the density function to the survival function.

Nevertheless this estimation cannot be computed directly since the penalty depends on the expectation
of Z. A solution is to prove an oracle inequality for a random penalty associated to (22) which is made in
the next corollary.

Corollary 4.4. Let us suppose that (B1)-(B3) are true. Let ŜX,m̃2
be defined by (13) and

m̃2 = argmin
m∈M(2)

n

{
δn( ~̂SX,m) + p̂en2(m)

}
(23)

p̂en2(m) =
2κ2Z̄n

n
̺2
(
G−1

m

)
log n where Z̄n =

1

n

n∑

i=1

Zi, (24)

then there exists a positive numerical constant κ2 such that

E‖SX − ŜX,m̃2
‖2 ≤ 4 inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n

where C is a constant depending on E[Z1], E[Z
3
1 ] and Var[Z1].

5. Illustrations

The whole implementation is conducted using R software. The integrated squared errors ‖f − f̂m̂‖2 and

‖SX − ŜX,m̃2
‖2 are computed via a standard approximation and discretization (over 300 points) of the

integral on an interval of R respectively denoted by Id and IS . Then the mean integrated squared errors

(MISE) E‖f − f̂m̂1
‖2 and E‖SX − ŜX,m̃2

‖2 are computed as the empirical mean of the approximated ISE
over 100 simulation samples.

The performance of the procedure is studied for the six following distributions for Y . Moreover all the
densities are normalized with unit variance.

⊲ Exponential E(1), Id = [0, 5], IS = [0, 10].
⊲ Gamma distribution : 2 · Γ(4, 14 ), Id = [0, 10], IS = [0, 5].

⊲ Rayleigh distribution with σ2 = 2/(4− π), f(x) =
x

σ2
e−

x2

2σ2 , Id = [0, 5], IS = [0, 25].

⊲ Weibull, X/
√

Γ(4)− Γ(1 + 2/3)2, f(x) = k
λ

(
x
λ

)k−1
e−(x/λ)k

1x≥0, with k = 3
2 and λ = 1, Id = [0, 5],

IS = [0, 5].

⊲ Mixed Gamma distribution : X = W/
√
5.48, with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), Id = [0, 26],

IS = [0, 15].

⊲ Chi-squared distribution with 10 degrees of freedom, χ2(10)/
√
20, Id = [0, 10], IS = [0, 10].

Exponential and Weibull distributions are often used in survival and failure analysis. The Gamma distribu-
tion is also often used in insurance modelization. The Rayleigh distribution arises in wind velocity analysis
for instance.

In the simulation the variance σ2 of the error distribution g takes the values 0, 1/10 and 1/4. The case
where the variance equals zero corresponds to the forward problem. In that case for the survival function,
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we simply compute the empirical estimator Sn(x) = n−1
∑n

i=1 1{Xi > x} which reaches the parametric rate
of convergence. We also use it as a benchmark for the quality of the estimation in the inverse problem. We
are not aware of any other specific global method of deconvolution on the nonnegative real line. Dattner
et al. (2011) propose a pointwise method and it would be difficult to compare the risk with our results. We
then choose a Gamma distribution for the error distribution which verifies (C1)-(C3) for r = 2.

⊲ Gamma noise: Γ(2, 1√
20
) and Γ(2, 1√

8
).

Thus the first Gamma distribution has a variance 1/10 and the second 1/4. We refer to Examples 1 and 2
for the computation of the matrix Gm.

The adaptive procedure is then implemented as follows:

⊲ For m ∈ Mn = {m1, . . . ,mn}, compute −‖f̂m‖2 + p̂en(m).

⊲ Choose m̂ such that m̂ = argmin
m∈Mn

{
−‖f̂m‖2 + p̂en(m)

}
.

⊲ And compute f̂m̂(x) =
∑m̂−1

k=0 b̂k(f)ϕk(x).

The procedure is given for the density estimation. For the survival case the three steps are the same with
the right quantities associated to the problem and described in Section 4.2. Besides, the penalties are cho-
sen according to Theorem 4.1, Theorem 4.2, and Corollary 4.4. The constant calibrations were done with
intensive preliminary simulations. We take κ = 0.1, κ1 = 0.03 and κ3 = 0.065. We consider the following

model collection M(2)
n = {m, 0 ≤ m ≤ 30} for the density and survival function estimation.

In order to measure the performances of our procedure (density estimation) to pre-existent literature,
we also computed the MISE obtained with a classic deconvolution approach. More precisely, we apply the
procedure of Comte et al. (2006). It corresponds to a projection method with a R-supported sinus cardinal
basis. Besides this procedure is minimax optimal in the case of a known ordinary smooth error distribution.
We therefore compute the following estimator and penalty. Let g∗ refer to the Fourier transform of g
defined as g∗(x) =

∫
eiuxg(u) du. For a Gamma distribution of parameter α and β, its Fourier transform is

g∗(u) = (1− iu/β)α. We compute

f̂F,m(x) =
1

2π

∫ πm

−πm

e−ixu
n−1

∑n
j=1 e

iuZj

g∗(u)
du,

and select m by minimizing −‖f̂F,m‖2 + pen
(i)
F (m), i = 1, 2 where

pen
(1)
F (m) =

κ
(1)
F

2πn

∫ πm

−πm

du

|g∗(u)|2 and pen
(2)
F (m) =

κ
(2)
F m

n
.

The model collection is {m/10 : m ∈ N, 1 ≤ m ≤ 20} .With pen
(1)
F we consider the inverse problem and

with pen
(2)
F the forward problem. After calibration we find κ

(1)
F = 41 and κ

(2)
F = 5. Besides this procedure

has the advantage of being a fast practical algorithm.

Results. The results are given in Tables 1 and 2. For both tables, the values of the MISE are multiplied
by 100 for each case and computed from 100 simulated data. In Table 1 the abbreviations Lag and Fou
correspond respectively to the Laguerre method and Fourier method of Comte et al. (2006). First we see
that the risk decreases when the sample size increases. Likewise the risk increases when the variance of the
noise increases. In the forward problem, we see that the Laguerre deconvolution has better performances
than the Fourier deconvolution. For instance, when n = 2000 the MISE in the Fourier setting is almost
systematically twice larger than the Laguerre for the Gamma, Rayleigh, mixed Gamma and Chi-squared
distributions between the Laguerre and Fourier methods. For the Exponential density estimation, the ratio
of the MISE of Fourier divided by Laguerre is of 1 to 3 and for the Weibull distribution 1 to 33. In the
inverse problem, we can make the same kind of remarks noticing that the ratio is worse for the Fourier
deconvolution: 1 to 18.

Thus the results point out the relevance of a specific method for nonnegative variables in a deconvolution
problem.

In Table 2, the first two columns correspond to the estimation with the empirical estimator of the survival
function if we observe directly the data. The estimation is very good which was expected since the estimator
converges to the true function with rate

√
n. Yet for the estimation of the Exponential distribution we note

that the penalization procedure always beats the empirical estimator of the forward problem. It is also the
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σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

Exponential Lag 0.874 0.118 0.833 0.090 0.699 0.109
Fou 3.950 3.234 6.002 3.359 11.228 3.889

Gamma Lag 0.243 0.048 1.181 0.076 1.872 0.384
Fou 0.585 0.076 2.027 0.250 8.497 0.860

Rayleigh Lag 0.287 0.044 0.844 0.068 1.008 0.083
Fou 0.498 0.073 1.546 0.248 7.523 0.797

Weibull Lag 1.714 0.275 8.518 1.529 13.768 3.543
Fou 7.004 6.611 8.751 6.839 14.237 7.421

Mixed Gamma Lag 0.333 0.032 1.568 0.359 2.806 0.365
Fou 0.488 0.062 1.038 0.204 8.317 0.829

Chi-squared Lag 0.357 0.037 0.443 0.260 2.861 0.315
Fou 0.542 0.069 1.887 0.250 8.135 0.844

Table 1. Results of simulation: MISE E

(
‖f − f̂m̂‖2

)
× 100 averaged over 100 samples.

The noise is Γ(2, 1√
20
) for σ2 = 1

10 and Γ(2, 1√
8
) for σ2 = 1

4 .

σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

Exponential 0.262 0.022 0.122 0.014 0.134 0.012
Gamma 0.263 0.024 0.688 0.203 1.363 0.233
Rayleigh 0.813 0.115 0.878 0.199 1.336 0.297
Chi-squared 0.310 0.027 1.313 0.117 1.445 0.679

Table 2. Results of simulation: MISE E

(
‖SX − ŜX,m̃2

‖2
)
× 100 averaged over 100 sam-

ples. The noise is Γ(2, 1√
20
) for σ2 = 1

10 and Γ(2, 1√
8
) for σ2 = 1

4 .

case for the density estimation. It is explained by the fact that the Exponential density with parameter
1 corresponds to the first function of the basis. We notice that the risk decreases when the sample size
increases. For the Exponential distribution, it is split by 10, by 3.5 for the Gamma distribution, by 4.5 for
the Rayleigh distribution, by 13 for the Chi-squared distribution. And risk increases when the variance of
the noise increases.

We also illustrate the results with some figures. Figures 1(a) and 1(b) show the estimated density and
survival functions of the mixed Gamma in model selection along with beams of estimator.

6. Concluding remarks

This paper deals with the estimation of nonnegative variables in a deconvolution setting with a known
error distribution. First we have considered the adaptive estimation of the density f of the Xi’s in a
deconvolution setting and deduced a procedure when there is no additional noise. Secondly we have tackled
the problem of the adaptive estimation of the survival function which is new to our knowledge, in a global
estimation setting on R

+. Moreover we have illustrated the performances of our new procedure and compared
it, when it is possible to the performances of the Fourier procedure described in Comte et al. (2006). Our
procedure outperforms the previous one. These results show that the Laguerre procedure is worthy of
interest when the variables are nonnegative.

The assumption of the knowledge of the error distribution is often not realistic in applications. Never-
theless this would require additional information on the error distribution. In the deconvolution literature
with unknown error distribution it is assumed that we have access to a preliminary sample of the noise, see
for instance Neumann (1997). Thanks to this preliminary observation we could estimate the coefficients of
the matrix Gm. Vareschi (2014), in a Laplace regression model, considers this problem and assumes that a
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pertubation of the coefficients of the matrix Gm are observed. In our model we would need to control the

deviation of the spectral norm of Ĝ−1
m around the true spectral norm of G−1

m .
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(a) Density estimation
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(b) Survival function estimation

Figure 1. Estimations for n = 500 of a mixed Gamma (bold black line), the adaptive
estimator (bold red line), beams of 5 estimators (blue dashed line).

7. Proofs

7.1. Proof of Section 3.

Proof of Proposition 3.1. Using Pythagora’s Theorem, we have

‖f − f̂m‖2 = ‖f − fm + fm − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.
The first term corresponds to the bias term of Equation (14). Let us study the second term: using the
decomposition on the orthonormal Laguerre basis, we have

‖fm − f̂m‖2 =

m−1∑

k=0

(
bk(f)− b̂k(f)

)2
.

Finally we apply (6) and get

E‖fm − f̂m‖2 = E‖G−1
m (~̂hm − ~hm)‖22,m ≤ ̺2(G−1

m )E‖~̂hm − ~hm‖22,m

≤ ̺2(G−1
m )E




m∑

j=1

(
1

n

n∑

i=1

ϕj(Zi)− E[ϕj(Z1)]

)2



≤ ̺2(G−1
m )

n

m∑

j=1

E[ϕ2
j (Z1)] ≤ ̺2(G−1

m )
2m

n

In the end we get: E‖f − f̂m‖2 ≤ ‖f − fm‖2 + 2m

n
̺2(G−1

m ). �

Proof of Proposition 3.3. As in the previous proof, we can write that

‖SX − ŜX,m‖2 = ‖SX − SX,m‖2 + ‖SX,m − ŜX,m‖2.
We can notice that

‖SX,m − ŜX,m‖2 =

∥∥∥∥ ~̂SX,m − ~SX,m

∥∥∥∥
2

2,m

=

∥∥∥∥G−1
m

(
~̂SZ,m − ~SZ,m

)∥∥∥∥
2

2,m
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Then we repeat the same scheme as in the proof of Proposition 3.1 and we get

E‖SX,m − ŜX,m‖2 ≤ 1

n
̺2(G−1

m )

m−1∑

j=0

E[Φ2
j (Z1)].

Yet
m−1∑

j=0

Φ2
j (Z1) =

m−1∑

j=0

(∫
ϕj(u)10≤u≤Z1

du

)2

=

m−1∑

j=0

〈ϕj ,1.≤Z1
〉2 ≤ ‖1.≤Z1

‖2
R+ =

∫

R+

1u≤Z1
du = Z1 (25)

which implies

E



m−1∑

j=0

Φ2
j (Z1)


 ≤ E[Z1].

In the end: E‖SX − ŜX,m‖2 ≤ ‖SX − SX,m‖2 + E[Z1]

n
̺2(G−1

m ). �

Proof of Lemma 3.4. To see that the spectral norm grows with the dimension m, recall that for a matrix
A of dimension m the spectral norm can be written as ̺2(A) = max‖~u‖2,m=1 ‖A~u‖22,m. Now consider
~um = argmax‖~u‖2

2,m=1 ‖Tm~u‖2,m with Tm a lower triangular matrix and Tm a submatrix of Tm+1. We

put ~vm+1 with m first coordinates equal to ~um. It yields that if we note (ai)1≤i≤m+1 the coefficients of the
vector Tm+1vm+1 we get

‖Tm+1~vm+1‖22,m+1 =

m+1∑

i=1

a2i =

m∑

i=1

a2i + a2m+1 = ‖Tm~um‖2 + a2m+1 ≥ ̺2(Tm).

�

7.2. Proof of Theorem 4.1.

Proof of Theorem 4.1. Let t, s ∈ L
2(R+), we have

θn(t)− θn(s) = ‖t− f‖2 − ‖s− f‖2 − 2ξn(t− s)

with ξn(t) =
1
n

∑n
i=1(t(Xi)− 〈t, f〉).

According to the definition of m̂, for any m in the model collection {1, . . . , n}, we have the following
inequality

θn(f̂m̂) + pen(m̂) ≤ θn(fm) + pen(m).

It yields that

‖f̂m̂ − f‖2 − ‖fm − f‖2 − 2ξn(f̂m̂ − fm) ≤ pen(m)− pen(m̂)

which implies

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 2ξn(f̂m̂ − fm) + pen(m)− pen(m̂).

Since t 7→ ξn(t) is linear, we have that ξn(f̂m̂ − fm) = ‖f̂m̂ − fm‖ξn
(

f̂m̂ − fm

‖f̂m̂ − fm‖

)
and due to the relation

2xy ≤ x2/4 + 4y2 we have the following inequalities

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 2‖f̂m̂ − fm‖ sup
t∈B(m,m̂)

ξn(t) + pen(m)− pen(m̂)

≤ ‖fm − f‖2 + 1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈B(m,m̂)

ξ2n(t) + pen(m)− pen(m̂) (26)

where B(m, m̂) = {t ∈ Sm∨m̂, ‖t‖ = 1}. Now let us notice that

‖f̂m̂ − fm‖2 ≤ 2‖f̂m̂ − f‖2 + 2‖fm − f‖2.
Combining this latest inequality with Equation (26), we get

‖f̂m̂ − f‖2 ≤ ‖fm − f‖2 + 1

2
‖f̂m̂ − f‖2 + 1

2
‖f − fm‖2 + 4 sup

~t∈B(m,m̂)

ξ2n(~t) + pen(m)− pen(m̂)

≤ 3‖f − fm‖2 + 2pen(m) + 8 sup
t∈B(m,m̂)

ξ2n(~t)− 2pen(m̂)
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Now let p be a function such that for any m, m′, we have : 4p(m,m′) ≤ pen(m) + pen(m′).

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 4pen(m) + 8

[
sup

t∈B(m,m̂)

ξ2n(t)− p(m, m̂)

]

+

≤ 3‖f − fm‖2 + 4pen(m) + 8
∑

m′∈{1,...,n}

{
sup

~t∈B(m,m′)

ξ2n(t)− p(m,m′)

}

+

which implies that

E‖f̂m̂ − f‖2 ≤ 4 inf
m∈{1,...,n}

{
‖f − fm‖2 + pen(m)

}
+ 8

∑

m′∈{1,...,n}
E

[{
sup

t∈B(m,m′)
ξ2n(t)− p(m,m′)

}

+

]
.

We now use the following result which ensures the validity of Theorem 4.1.

Proposition 7.1. Under the assumptions of Theorem 4.1, there exists a constant C > 0 depending on ‖f‖
such that for p(m,m′) =

2(m ∨m′)

n

∑

m′∈{1,...,n}
E

[{
sup

t∈B(m,m′)
ξ2n(t)− p(m,m′)

}

+

]
≤ C

n

Finally, E‖f̂m̂ − f‖2 ≤ 4 infm∈{1,...,n}
{
‖f − fm‖2 + pen(m)

}
+
C

n
. �

Proof of Proposition 7.1. Let setm∗ = m∨m′. Since t ∈ Sm∗ , t(x) =
∑m∗−1

k=0 bk(t)ϕk(x) and since t 7→ ξn(t)
is linear we have

ξn(t) =
m∗−1∑

k=0

bk(t)ξn(ϕk).

Now, applying Cauchy-Schwarz inequality we get, using ‖t‖ = 1

(ξn(t))
2 ≤

m∗−1∑

k=0

b2k(t)
m∗−1∑

k=0

ξ2n(ϕk) = ‖t‖2
m∗−1∑

k=0

ξ2n(ϕk) =
m∗−1∑

k=0

ξ2n(ϕk),

which implies

E

[
sup

t∈B(m,m′)
(ξn(t))

2

]
≤

m∗−1∑

k=0

E
[
ξ2n(ϕk)

]
.

To apply Talagrand inequality we compute H2, M1 and v as defined in Appendix A. The empirical process
can be bounded as follows

E

[
sup

t∈B(m,m′)
(ξn(t))

2

]
≤

m∗−1∑

k=0

E

[
1

n2

n∑

i=1

(ϕk(Xi)− 〈ϕk, f〉)2
]
≤ 1

n

m∗−1∑

k=0

E
[
ϕ2
k(X1)

]
≤ 2m∗

n
:= H2.

Moreover applying Cauchy-Schwarz inequality

Var [t(X1)] ≤ E
[
t(X1)

2
]
≤
∫

R+

t2(x)f(x) dx ≤ ‖t‖∞‖t‖‖f‖ ≤
√
2m∗‖f‖ := ν

and

‖t‖∞ ≤
√
2m∗‖t‖ =

√
2m∗ :=M1.

So applying Talagrand’s inequality we get

E

[{
sup

t∈Bm,m′
|ξn(t)|2 − 8

m∗

n

}

+

]
≤ 6

K1

(√
2m∗‖f‖
n

e−C1

√
m∗/‖f‖ +

16n

C2n2
e−C3

√
n

)

which implies

∑

m′∈{1,...,n}
E

[{
sup

t∈Bm,m′
|ξn(t)|2 − 8

m∗

n

}

+

]
≤

∑

m′∈{1,...,n}

6

K1

(√
2m∗‖f‖
n

e−C1m
∗/‖f‖ +

16

C2n
e−C3

√
n

)
≤ C

n
.

�
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7.3. Proof of Theorem 4.2.

Proof of Theorem 4.2. Let m, m′ ∈ M(1)
n , ~tm ∈ Sm

d1
and ~sm′ ∈ Sm′

d1
. Denote m∗ = m ∨m′. Notice that

γn(~tm)− γn(~sm′) = ‖~tm − ~f‖22,d1
− ‖~sm′ − ~f‖22,d1

− 2〈~tm − ~sm′ ,G−1
d1

(~̂hd1
− ~hd1

)〉2,d1

and due to orthonormality of Laguerre basis, for any m we have the following relations between the L2 norm
and the Euclidean norms,

‖f̂m − f‖2 = ‖ ~̂fm − ~f‖22,d1
+

∞∑

j=d1

(bj(f))
2

and ‖fm − f‖2 = ‖~fm − ~f‖22,d1
+

∞∑

j=d1

(bj(f))
2

(27)

We set νn(~t) = 〈~t,G−1
d1

(~̂hd1 − ~hd1)〉2,d1 for ~t ∈ R
d1 .

According to the definition of m̂, for any m in the model collection M(1)
n , we have the following inequality

γn( ~̂fm̂) + pen1(m̂) ≤ γn(~fm) + pen1(m).

It yields that

‖ ~̂fm̂ − ~f‖22,d1
− ‖~fm − ~f‖22,d1

− 2νn( ~̂fm̂ − ~fm) ≤ pen1(m)− pen1(m̂)

which implies

‖ ~̂fm̂ − ~f‖22,d1
≤ ‖~fm − ~f‖22,d1

+ 2νn( ~̂fm̂ − ~fm) + pen1(m)− pen1(m̂).

Let us notice that νn( ~̂fm̂ − ~fm) = ‖ ~̂fm̂ − ~fm‖2,d1
νn


 ~̂fm̂ − ~fm

‖ ~̂fm̂ − ~fm‖2,d1


 and due to the relation 2ab ≤

a2/4 + 4b2, we have the following inequalities

‖ ~̂fm̂ − ~f‖22,d1
≤ ‖~fm − ~f‖22,d1

+ 2‖ ~̂fm̂ − ~fm‖2,d1
sup

~t∈B(m,m̂)

νn(~t) + pen1(m)− pen1(m̂)

≤ ‖~fm − ~f‖22,d1
+

1

4
‖ ~̂fm̂ − ~fm‖22,d1

+ 4 sup
~t∈B(m,m̂)

ν2n(~t) + pen1(m)− pen1(m̂)

where B(m, m̂) =
{
~tm∨m̂ ∈ Sm∨m̂

d1
, ‖~tm∨m̂‖2,d1 = 1

}
. Now notice that

‖ ~̂fm̂ − ~fm‖22,d1
≤ 2‖ ~̂fm̂ − ~f‖22,d1

+ 2‖~fm − ~f‖22,d1

we then have

‖ ~̂fm̂ − ~f‖22,d1
≤ ‖~fm − ~f‖22,d1

+
1

2
‖ ~̂fm̂ − ~f‖22,d1

+
1

2
‖~f − ~fm‖22,d1

+ 4 sup
~t∈B(m,m̂)

ν2n(~t) + pen1(m)− pen1(m̂)

which implies

‖ ~̂fm̂ − ~f‖22,d1
≤ 3‖~f − ~fm‖22,d1

+ 2pen1(m) + 8 sup
~t∈B(m,m̂)

ν2n(~t)− 2pen1(m̂).

Using Equation (27), we have

‖f̂m̂ − f‖2 −
∞∑

j=d1

(bj(f))
2 ≤ 3


‖f − fm‖2 −

∞∑

j=d1

(bj(f))
2


+ 2pen1(m) + 8 sup

~t∈B(m,m̂)

ν2n(~t)− 2pen1(m̂)

which implies

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 2pen1(m) + 8 sup
~t∈B(m,m̂)

ν2n(~t)− 2pen1(m̂) (28)

Now let p1 be a function such that for any m, m′, we have : 4p1(m,m
′) ≤ pen1(m) + pen1(m

′).

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 4pen1(m) + 8

[
sup

~t∈B(m,m̂)

ν2n(~t)− p1(m, m̂)

]

+

≤ 3‖f − fm‖2 + 4pen1(m) + 8
∑

m′∈M(1)
n

{
sup

~t∈B(m,m′)

ν2n(~t)− p1(m,m
′)

}

+

We now use the following result which ensures the validity of Theorem 4.2.
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Proposition 7.2. Under the assumptions of Theorem 4.2, then there exists a constant C1 > 0 depending

on ‖h‖∞ such that for p1(m,m
′) =

8(m ∨m′)

n
̺2
(
G−1

m∨m′
)

E

[{
sup

~t∈B(m,m′)

ν2n(~t)− p(m,m′)

}

+

]
≤ C1

n
.

In the end: E‖f − f̂m̂‖2 ≤ 4 inf
m∈M(1)

n

{
‖f − fm‖2 + pen1(m)

}
+
C1

n
, as soon as κ1 ≥ 32. �

Proof of Proposition 7.2. To prove Proposition 7.2, we apply a Talagrand inequality. So we need to deter-
mine H, M1 and v defined as

sup
~tm∗∈B(m,m′)

‖〈~tm∗ ,G−1
d1
~ϕd1

(.)〉2,d1
‖∞ ≤M1, E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|
]
≤ H,

sup
~tm∗∈B(m,m′)

Var
[
〈~tm∗ ,G−1

d1
~ϕd1

(Z1)〉2,d1

]
≤ v.

where m∗ = m ∨m′.

• Let us start with the empirical process, first let us notice that

E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|2
]
= E


 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈
~tm∗ ,G−1

d1

(
1

n

n∑

i=1

(~ϕd1(Zi)− E [~ϕd1(Zi)])

)
〉2,d1

∣∣∣∣∣

2



= E


 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈
~tm∗ ,G−1

m∗

(
1

n

n∑

i=1

(~ϕm∗(Zi)− E [~ϕm∗(Zi)])

)
〉2,m∗

∣∣∣∣∣

2



We now apply Cauchy-Schwarz inequality and get

E

[
sup

~tm∗∈B(m,m′)

|νn(~tm∗)|2
]

≤ E


 sup
~tm∗∈B(m,m′)

∥∥~tm∗
∥∥2
2,m∗

∥∥∥∥∥G
−1
m∗

(
1

n

n∑

i=1

(~ϕm∗(Zi)− E [~ϕm∗(Zi)])

)∥∥∥∥∥

2

2,m∗




≤ ̺2
(
G−1

m∗
)
E



m∗−1∑

j=0

(
1

n

n∑

i=1

(ϕj(Zi)− E [ϕj(Zi)])

)2



≤ ̺2
(
G−1

m∗
)

n

m∗−1∑

j=0

Var (ϕj(Z1)) ≤
̺2
(
G−1

m∗
)

n

m∗−1∑

j=0

E
[
ϕ2
j (Z1)

]
≤ 2m∗

n
̺2
(
G−1

m∗
)
.

We then set H :=

√
2m∗

n
̺2
(
G−1

m∗
)
.

Before deriving a bound for the term of variance, let us remind that for any x ∈ R
+, we have

h(x) =

∫
f(u)g(x− u)1u≥01x−u≥0 du =

∫ x

0

f(u)g(x− u) du.

Then we apply Cauchy-Schwarz inequality and get ∀x ∈ R
+, h(x) ≤ ‖f‖‖g‖. If Assumption (A1) is ful-

filled, we clearly have ‖h‖∞ ≤ ‖f‖‖g‖ <∞.

• Now for the term of variance, let ~tm∗ ∈ B(m,m′). By definition we have the following equalities

E

[∣∣〈~tm∗ ,G−1
d1
~ϕd1

(Z1)〉2,d1

∣∣2
]
= E

[∣∣〈~tm∗ ,G−1
m∗ ~ϕm∗(Z1)〉2,m∗

∣∣2
]
= E




∣∣∣∣∣∣

m∗−1∑

j=0

bj(t)
m∗−1∑

k=0

gjkϕk(Z1)

∣∣∣∣∣∣

2



=

∫

R+

∣∣∣∣∣∣
∑

0≤k,j≤m∗−1

bj(t)gjkϕk(u)

∣∣∣∣∣∣

2

h(u) du.
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which implies

E

[∣∣〈~tm∗ ,G−1
d1
~ϕd1

(Z1)〉2,d1

∣∣2
]

≤ ‖h‖∞
∫

R+

∑

0≤j,j′,k,k′≤m∗−1

bj(t)bj′(t)gjkgj′k′ϕk(u)ϕk′(u) du

≤ ‖h‖∞
∑

0≤j,j′,k,k′≤m∗−1

bj(t)bj′(t)gjkgj′k′δk,k′ ≤ ‖h‖∞
∑

0≤j,j′,k≤m∗−1

bj(t)bj′(t)gjkgj′k

≤ ‖h‖∞ t~tm∗G−1
m∗

tG−1
m∗~tm∗ ≤ ‖h‖∞̺2

(
G−1

m∗
)
‖~tm∗‖22,m∗ ≤ ‖h‖∞̺2

(
G−1

m∗
)
.

So we set v := ‖h‖∞̺2
(
G−1

m∗
)
.

• Now applying Cauchy-Schwarz inequality

sup
~tm∗∈B(m,m′)

sup
x∈R+

∣∣〈~tm∗ ,G−1
d1
~ϕd1(x)〉2,d1

∣∣ = sup
~tm∗∈B(m,m′)

sup
x∈R+

∣∣〈~tm∗ ,G−1
m∗ ~ϕm∗(x)〉2,m∗

∣∣

≤ sup
~tm∗∈B(m,m′)

sup
x∈R+

∥∥~tm∗
∥∥
2,m∗

∥∥G−1
m∗ ~ϕm∗(x)

∥∥
2,m∗ ≤ sup

x∈R+

∥∥G−1
m∗ ~ϕm∗(x)

∥∥
2,m∗

≤ sup
x∈R+

√
t~ϕm∗(x) tG−1

m∗G−1
m∗ ~ϕm∗(x) ≤

√√√√̺2
(
G−1

m∗
)
sup
x∈R+

m∗−1∑

j=0

ϕ2
j (x) ≤

√
2m∗̺2

(
G−1

m∗
)
.

We take M1 =
√
2m∗̺2

(
G−1

m∗
)
.

• We can now apply Talagrand’s inequality for ξ2 = 1/2

E

[{
sup

~t∈B(m,m′)

|νn(~t)|2 − 8m∗̺2
(
G−1

m∗
)
}

+

]
≤ C1

‖h‖∞̺2
(
G−1

m∗
)

n
e−C2am

∗/‖h‖∞ + C3

m∗̺2
(
G−1

m∗
)

n2
e−C4

√
n

which implies that

∑

m′∈M(1)
n

E

[{
sup

~t∈B(m,m′)

|νn(~t)|2 − 8m∗̺2
(
G−1

m∗
)
}

+

]

≤ C
∑

m′∈M(1)
n

‖h‖∞̺2
(
G−1

m∗
)

n
e−C2

m∗
‖h‖∞ +

m∗̺2
(
G−1

m∗
)

n2
e−C4

√
n

Yet under Assumption (A3), we have

∑

m′∈M(1)
n

‖h‖∞̺2
(
G−1

m∗
)

n
e−C2

m∗
‖h‖∞ ≤ C

n
.

Moreover according to Assumption (A2), we also have

∑

m′∈M(1)
n

m∗̺2
(
G−1

m∗
)

n2
e−C4n ≤

∑

m′∈M(1)
n

e−C4
√
n

n
≤ C

n
.

In the end we have the desired result. �

Proof of Remark 5. We have to prove that Proposition 7.2 is still valid although Assumption (A3) is no

longer true. We set ξ2 =
2 log n

K1
, H2 =

2m∗̺2
(
G−1

m∗
)

n
, v = 2m∗̺2

(
G−1

m∗
)
, M1 =

√
2m∗̺2

(
G−1

m∗
)
. Under

(A2), we have

∑

m′∈M(1)
n

v

n
exp

(
−K1ξ

2n
H2

v

)
=

∑

m′∈M(1)
n

2m∗̺2
(
G−1

m∗
)

n

1

n2
≤

∑

m′∈M(1)
n

2

n2
≤ 2|M(1)

n |
n2

≤ 2

n
.
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For C(ξ) defined in Lemma A.1, we get

∑

m′∈M(1)
n

M2
1

K1C2(ξ2)n2
exp

(
−K1

C(ξ)ξnH√
2M1

)

=
∑

m′∈M(1)
n

m∗̺2
(
G−1

m∗
)

K1C2(ξ2)n2
exp

(
−K1C(ξ)ξ

√
n
)
≤

∑

m′∈M(1)
n

C2m
∗̺2

(
G−1

m∗
)

(log n)2n2
exp

(
−C1 log n

√
n
)

≤ C3|M(1)
n |

(log n)2n
exp

(
−C1 log n

√
n
)
≤ C3

n
.

�

7.4. Proof of Theorem 4.3 and Corollary 4.4.

Proof of Theorem 4.3. The beginning of the proof is the same as the proof of Theorem 4.2 with the quantities
associated to the survival function estimation. Then we start from Equation (28) with νn(~t) replacing the

following empirical process ζn(~t) := ζ
(1)
n (~t) + ζ

(2)
n (~t) where,

ζ(1)n (~t) := 〈~t,G−1
d2

(
1

n

n∑

i=1

(
~Φd2

(Zi)1Zi≤
√
n − E

[
~Φd2

(Zi)1Zi≤
√
n

]))
〉2,d2

ζ(2)n (~t) := 〈~t,G−1
d2

(
1

n

n∑

i=1

(
~Φd2

(Zi)1Zi>
√
n − E

[
~Φd2(Zi)1Zi>

√
n

]))
〉2,d2 .

So we have the following inequality

‖ŜX,m̂−SX‖2 ≤ 3‖SX−SX,m‖2+2pen2(m)+16

(
sup

~t∈B(m,m̂)

(ζ(1)n (~t))2 + sup
~t∈B(m,m̂)

(ζ(2)n (~t))2

)
−2pen2(m̂). (29)

Now let q be a function such that for any m, m′, we have : 4q(m,m′) ≤ pen2(m) + pen2(m
′).

‖ŜX,m̂ − SX‖2 ≤ 3‖SX − SX,m‖2 + 4pen2(m) + 16

[
sup

~t∈B(m,m̂)

(ζ(1)n (~t))2 − q(m, m̂)

]

+

+ 16 sup
~t∈B(m,m̂)

(ζ(2)n (~t))2

≤ 3‖SX − SX,m‖2 + 4pen2(m) + 16
∑

m′∈M(2)
n

{
sup

~t∈B(m,m′)

(ζ(1)n (~t))2 − q(m,m′)

}

+

+ 16 sup
~t∈B(m,m̂)

(ζ(2)n (~t))2.

We now use the following result which ensures the validity of Theorem 4.3.

Proposition 7.3. Under the assumptions of Theorem 4.3, then there exists a universal constant C > 0

such that for q(m,m′) = κ2̺
2
(
G−1

m∨m′
)
E[Z1]

log n

n

(i) E

[{
sup

~t∈B(m,m′)

(ζ(1)n (~t))2 − q(m,m′)

}

+

]
≤ C

n

(ii) E

[
sup

~t∈B(m,m̂)

(ζ(2)n (~t))2

]
≤ E[Z3

1 ]

n
.

Finally, E‖ŜX,m̂ − SX‖2 ≤ 4 inf
m∈M(2)

n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
. �

Proof of Proposition 7.3. To prove (i), we apply a Talagrand inequality. So we need to determine H, M1

and v.
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• Let us start with the empirical process, first let us notice that

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)n (~tm∗)|2
]

= E


 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈
~tm∗ ,G−1

d2

(
1

n

n∑

i=1

(
~Φd2

(Zi)1Zi≤
√
n − E

[
~Φd2(Zi)1Zi≤

√
n

]))
〉2,d2

∣∣∣∣∣

2



= E


 sup
~tm∗∈B(m,m′)

∣∣∣∣∣〈
~tm∗ ,G−1

m∗

(
1

n

n∑

i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))
〉2,m∗

∣∣∣∣∣

2

 .

We now apply Cauchy-Schwarz inequality and get

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)n (~tm∗)|2
]

≤ E


 sup
~tm∗∈B(m,m′)

∥∥~tm∗
∥∥2
2,m∗

∥∥∥∥∥G
−1
m∗

(
1

n

n∑

i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))∥∥∥∥∥

2

2,m∗




≤ E



∥∥∥∥∥G

−1
m∗

(
1

n

n∑

i=1

(
~Φm∗(Zi)1Zi≤

√
n − E

[
~Φm∗(Zi)1Zi≤

√
n

]))∥∥∥∥∥

2

2,m∗


 .

It follows that, with Inequality (25)

E

[
sup

~tm∗∈B(m,m′)

|ζ(1)n (~tm∗)|2
]

≤ ̺2
(
G−1

m∗
)
E



m∗−1∑

j=0

(
1

n

n∑

i=1

(
Φj(Zi)1Zi≤

√
n − E

[
Φj(Zi)1Zi≤

√
n

])
)2



≤ ̺2
(
G−1

m∗
)m∗−1∑

j=0

Var
(
Φj(Z1)1Z1≤

√
n

)
≤ ̺2

(
G−1

m∗
)

n

m∗−1∑

j=0

E
[
Φ2

j (Z1)1Z1≤
√
n

]
≤ ̺2

(
G−1

m∗
)

n
E
[
Z11Z1≤

√
n

]
.

We then set H :=

√
̺2
(
G−1

m∗
)

n
E [Z1].

• Now for the term of variance, let ~tm∗ ∈ B(m,m′)

E

[∣∣∣〈~tm∗ ,G−1
d2

~Φd2
(Z1)1Z1≤

√
n〉2,d2

∣∣∣
2
]

= E

[∣∣∣〈~tm∗ ,G−1
m∗~Φm∗(Z1)1Z1≤

√
n〉2,m∗

∣∣∣
2
]
≤ E

[
sup

~tm∗∈B(m,m′)

∥∥~tm∗
∥∥2
2,m∗

∥∥∥G−1
m∗~Φm∗(Z1)1Z1≤

√
n

∥∥∥
2

2,m∗

]

≤ E

[∥∥∥G−1
m∗~Φm∗(Z1)1Z1≤

√
n

∥∥∥
2

2,m∗

]
≤ ̺2

(
G−1

m∗
)
E
[
Z11Z1≤

√
n

]
.

So we set v := E [Z1] ̺
2
(
G−1

m∗
)
.

• First notice again

sup
~tm∗∈B(m,m′)

sup
x∈R+

〈~tm∗ ,G−1
d2

~Φd2
(x)1x≤√

n〉2,d2
= sup

~tm∗∈B(m,m′)

sup
x∈R+

〈~tm∗ ,G−1
m∗~Φm∗(x)1x≤√

n〉2,m∗
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Now applying Cauchy-Schwarz inequality and using Inequality 25 again

sup
~tm∗∈B(m,m′)

‖〈~tm∗ ,G−1
d2

~Φd2
(x)1x≤√

n〉2,d2
‖∞

≤ sup
x∈R+

∥∥∥G−1
m∗~Φm∗(x)1x≤n

∥∥∥
2,m∗

≤ sup
x∈R+

√
t~Φm∗(x) tG−1

m∗G−1
m∗~Φm∗(x)1x≤√

n

≤

√√√√̺2
(
G−1

m∗
)
sup
x∈R+

m∗−1∑

j=0

Φ2
j (x)1x≤√

n ≤
√√

n̺2
(
G−1

m∗
)
.

We take M1 =
√√

n̺2
(
G−1

m∗
)
.

We apply Talagrand’s inequality for ξ2 = 2
K1

log(n). We get

E

[{
sup

~t∈B(m,m′)

|ζ(1)n (~t)|2 − κ3̺
2
(
G−1

m∗
)
E[Z1]

log n

n

}

+

]

≤ 4

K1

E[Z1]̺
2
(
G−1

m∗
)

n
e−K1ξ

2

+
98n̺2

(
G−1

m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2

√
E[Z1]n

1/4

which implies that

∑

m′∈M(2)
n

E

[{
sup

~t∈B(m,m′)

|ζ(1)n (~t)|2 − κ3̺
2
(
G−1

m∗
)
E[Z1]

log n

n

}

+

]

≤
∑

m′∈M(2)
n

4

K1

E[Z1]̺
2
(
G−1

m∗
)

n
e−K1ξ

2

+
98

√
n̺2

(
G−1

m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2

√
E[Z1]n

1/4

.

Thus we have under Assumption (B2)

∑

m′∈M(2)
n

̺2
(
G−1

m∗
)

n
e−K1ξ

2 ≤
∑

m′∈M(2)
n

̺2
(
G−1

m∗
)

n

1

n2
≤ |M(2)

n |
n2

≤ 1

n
.

And

∑

m′∈M(2)
n

√
n̺2

(
G−1

m∗
)

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2

√
E[Z1]n

1/4

≤
∑

m′∈M(2)
n

C
√
n

(log n)2n
e
− 2K1C(ξ)ξ

7
√

2

√
E[Z1]n

1/4

≤ C

n
.

So for q(m,m′) = κ3̺
2
(
G−1

m∗
)
E[Z1]

log n

n
we just showed that

∑

m′∈M(2)
n

E

[{
sup

~t∈B(m,m′)

|ζ(1)n (~t)|2 − κ3̺
2
(
G−1

m∗
)
E[Z1]

log n

n

}

+

]
≤ C

n
.

Now we prove (ii). We have, using (A2),

E

[
sup

~t∈B(m,m̂)

|ζ(2)n (~tm∗)|2
]
= E


 sup
~t∈B(d2,d2)

∣∣∣∣∣〈
~t,G−1

d2

(
1

n

n∑

i=1

(
~Φd2

(Zi)1Zi>
√
n − E

[
~Φd2

(Zi)1Zi>
√
n

]))
〉2,d2

∣∣∣∣∣

2



≤
̺2
(
G−1

d2

)

n
E
[
Z11Z1>

√
n

]
≤ E[Z3

1 ]

n
.

In the end we have the desired result. �

Proof of Corollary 4.4. The beginning of the proof is the same as the proof of Theorem 4.3 except that we
consider m̃2 (defined by Equation (23)) instead of m̂2 and p̂en2 (defined by Equation (24)) instead of pen2.
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Starting from Equation (29) we have

‖ŜX,m̂ − SX‖2 ≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

(
sup

~t∈B(m,m̂)

(ζ(1)n (~t))2 + sup
~t∈B(m,m̂)

(ζ(2)n (~t))2

)
− 2p̂en2(m̃2)

≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

(
sup

~t∈B(m,m̂)

(ζ(1)n (~t))2 + sup
~t∈B(m,m̂)

(ζ(2)n (~t))2

)

− 2pen2(m̃2) + 2pen2(m̃2)− 2p̂en2(m̃2)

≤ 3‖SX − SX,m‖2 + 2p̂en2(m) + 16

{
sup

~t∈B(m,m̂)

(ζ(1)n (~t))2 − q(m, m̃2)

}

+

+ 2pen2(m)

+ 16 sup
~t∈B(m,m̂)

(ζ(2)n (~t))2 + 2
{
pen2(m̃2)− p̂en2(m̃2)

}
+
.

We now apply the following Proposition which ensures the validity of Corollary 4.4

Proposition 7.4. Under the Assumptions of Corollary 4.4, the following holds

E
[
p̂en2(m)

]
= 2pen2(m) and E

[{
pen2(m̃2)− p̂en2(m̃2)

}
+

]
≤ C

n
.

Finally, E‖SX − ŜX,m̃2
‖2 ≤ inf

m∈M(2)
n

{
‖SX − SX,m‖2 + pen2(m)

}
+
C

n
. �

Proof of Proposition 7.4. First let us notice the following

E [p̂en2(m)] = 2κ2E
[
Z̄n

] ̺2
(
G−1

m

)
log n

n
= 2κ2E [Z1]

̺2
(
G−1

m

)
log n

n
= 2pen2(m).

For the second inequality, let us introduce the following favorable set: Λ =
{∣∣E[Z1]− Z̄n

∣∣ ≤ E[Z1]/2
}
,

which yields

E

[{
pen2(m̃2)− p̂en2(m̃2)

}
+

]
= E

[{
2κ2

(
E[Z1]

2
− Z̄n

)
̺2
(
G−1

m̃2

) log n

n

}

+

1Λ

]

+ E

[{
2κ2

(
E[Z1]

2
− Z̄n

)
̺2
(
G−1

m̃2

) log n

n

}

+

1Λc

]
.

Yet on the set Λ, E[Z1]/2− Z̄n ≤ 0 which yields

E

[{
pen2(m̃2)− p̂en2(m̃2)

}
+

]
= E

[
2κ2

(
E[Z1]

2
− Z̄n

)
̺2
(
G−1

m̃2

)
1Λc

]
log n

n

≤ E

[
2κ2

∣∣E[Z1]− Z̄n

∣∣ ̺2
(
G−1

m̃2

)
1Λc

] log n
n

.

Now we apply Cauchy-Schwarz

E
[∣∣E[Z1]− Z̄n

∣∣1Λc

]
≤
√
E
∣∣E[Z1]− Z̄n

∣∣2√P [Λc] =
√

Var
[
Z̄n

]
√

P

[∣∣E[Z1]− Z̄n

∣∣ ≥ E[Z1]

2

]
.

We apply Markov inequality then Rosenthal inequality

E
[∣∣E[Z1]− Z̄n

∣∣1Λc

]
≤
√
Var [Z1]√

n

√√√√E

[∣∣E[Z1]− Z̄n

∣∣2
]

E[Z1]2
≤
√

Var [Z1]

E[Z1]n
.

Moreover under Assumption (B2)

E

[{
pen2(m̃2)− p̂en2(m̃2)

}
+

]
≤ C

n
E

[
̺2
(
G−1

m̃2

) log n

n

]
≤ C ′

n

which ends the proof. �
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Appendix A.

Lemma A.1. (Talagrand’s inequality) Let Y1, . . . , Yn be i.i.d. variables and

rn(f) =
1

n

n∑

k=1

(
f(Yk)− E [f(Yk)]

)

for f belonging to some countable set F of uniformly bounded measurable functions. Then for ξ2 > 0,

E

[{
sup
f∈F

|rn(f)|2 − 2(1 + 2ξ2)H2

}

+

]
≤ 4

K1

(
v

n
e−K1ξ

2 nH2

v +
98M2

1

K1n2C2(ξ2)
e
− 2K1C(ξ)ξ

7
√

2
nH
M1

)

with constants C(ξ) = (
√
1 + ξ2 − 1) ∧ 1 and K1 =

1

6
, M1, H and v are such that

sup
f∈F

‖f‖∞ ≤M1, E

[
sup
f∈F

|rn(f)|
]
≤ H, sup

f∈F
Var(f(Y1)) ≤ v.

Appendix B.

S̃X,m(x) =

m−1∑

k=0

b̂k(f)Φ̃k(x) =

m−1∑

k=0

∫ +∞

x

b̂k(f)ϕk(u) du

=
√
2

m−1∑

k=0

b̂k(f)

k∑

j=0

(
k

j

)
(−2)j

j!

∫ +∞

x

e−uuj du =
√
2

m−1∑

k=0

b̂k(f)

k∑

j=0

(
k

j

)
(−2)j

j!
Γ(j + 1, x).

where Γ(., .) is the upper incomplete gamma function defined in Abramowitz and Stegun (1964). Then the
incomplete gamma function can be decomposed again in the Laguerre basis. First recall

Γ(j + 1, x) = j!e−x

j∑

i=0

xi

i!
and

xi

i!
=

i∑

ℓ=0

(−1)ℓ
(

i

i− ℓ

)
Lℓ(x)

which yields

Γ(j + 1, x) = j!e−x

j∑

i=0

2−j
i∑

ℓ=0

(−1)ℓ
(

i

i− ℓ

)
Lℓ(2x) =

j!√
2

j∑

i=0

2−j
i∑

ℓ=0

(−1)ℓ
(

i

i− ℓ

)
ϕℓ(x).

Thus

S̃X,m(x) =
m−1∑

k=0

b̂k(f)
k∑

j=0

(
k

j

)
(−2)j

j!
j!

j∑

i=0

2−j
i∑

ℓ=0

(−1)ℓ
(

i

i− ℓ

)
ϕℓ(x)

=

m−1∑

k=0

k∑

j=0

j∑

i=0

i∑

ℓ=0

b̂k(f)

(
k

j

)
(−1)j+ℓ

(
i

i− ℓ

)
ϕℓ(x).

The difficulty is to write S̃X,m(x) =
∑m−1

k=0 b̃k(f)ϕk(x).
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