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An orientation of a graph G is a digraph D obtained from G by replacing each edge by exactly one of the two possible arcs with the same endvertices. For each v ∈ V (G), the indegree of v in D, denoted by

The proper orientation number of a graph G, denoted by -→ χ (G), is the minimum of the maximum indegree over all its proper orientations. It is well-known that -→ χ (G) ≤ ∆(G), for every graph G. In this paper, we

We then prove that deciding whether -→ χ (G) ≤ ∆(G) -1 is an NP-complete problem. We also show that it is NP-complete to decide whether -→ χ (G) ≤ 2, for planar subcubic graphs G. Moreover, we prove that it is NP-complete to decide whether -→ χ (G) ≤ 3, for planar bipartite graphs G with maximum degree 5.

Introduction

In this paper, all graphs are simple, that is without loops and multiple edges. We follow standard terminology as used in [START_REF] Bondy | Graph theory[END_REF].

An orientation D of a graph G is a digraph obtained from G by replacing each edge by just one of the two possible arcs with the same endvertices. For each v ∈ V (G), the indegree of v in D, denoted by d - D (v), is the number of arcs with head v in D. We use the notation d -(v) when the orientation D is clear from the context. The orientation

D of G is proper if d -(u) = d -(v)
, for all uv ∈ E(G). An orientation with maximum indegree at most k is called a k-orientation. The proper orientation number of a graph G, denoted by -→ χ (G), is the minimum integer k such that G admits a proper k-orientation. This graph parameter was introduced by Ahadi and Dehghan [START_REF] Ahadi | The complexity of the proper orientation number[END_REF]. It is well-defined for any graph G since one can always obtain a proper ∆(G)-orientation (see [START_REF] Ahadi | The complexity of the proper orientation number[END_REF]). In other words, -→ χ (G) ≤ ∆(G). Note that every proper orientation of a graph G induces a proper vertex colouring of G. Thus, -→ χ (G) ≥ χ(G) -1. Hence, we have the following sequence of inequalities:

ω(G) -1 ≤ χ(G) -1 ≤ - → χ (G) ≤ ∆(G).
These inequalities are best possible in the sense that, for a complete graph K, ω(K) -1 = χ(K) -1 = -→ χ (K) = ∆(K). However, one might expect better upper bounds on some parameters by taking a convex combination of two others. Reed [3] showed that there exists ǫ 0 > 0 such that χ(G) ≤ ǫ 0 •ω(G)+(1-ǫ 0 )∆(G) for every graph G and conjectured the following.

Conjecture 1 (Reed [3]). For every graph G, χ(G)

≤ ∆(G)+1+ω(G) 2 .
If true, this conjecture would be tight. Johannson [START_REF] Johansson | Asymptotic choice number for triangle free graphs[END_REF] settled Conjecture 1 for ω(G) = 2 and ∆(G) sufficiently large.

Likewise, one may wonder if similar upper bounds might be derived for the proper orientation number.

Problem 1. e (a) Does there exist a positive

ǫ 1 such that - → χ (G) ≤ ǫ 1 • ω(G) + (1 -ǫ 1 )∆(G)? (b) Does there exist a positive ǫ 2 such that - → χ (G) ≤ ǫ 2 • χ(G) + (1 -ǫ 2 )∆(G)?
Observe that both questions are intimately related. Indeed if the answer to (a) is positive for ǫ 1 , then the answer to (b) is also positive for ǫ 1 . On the other hand, if the answer to (b) is positive for ǫ 2 , then the answer to (a) is also positive for ǫ 1 = ǫ 0 • ǫ 2 by the above-mentioned result of Reed.

In Section 2, we answer Problem 1 positively in the case of bipartite graphs by showing that

: if G is bipartite, then - → χ (G) ≤ ∆(G)+ √ ∆(G) 2
+ 1. We also argue that this bound is tight for ∆(G) ∈ {2, 3}.

In Section 3, we prove that -→ χ (T ) ≤ 4, for every tree T . Moreover, we show that

- → χ (T ) ≤ 3 if ∆(T ) ≤ 6,
and

- → χ (T ) ≤ 2 if ∆(T ) ≤ 3.
We also argue that all these bounds are tight.

In Section 4, we study the computational complexity of computing the proper orientation number of a bipartite graph. In their seminal paper, Ahadi and Dehghan proved that it is NP-complete to decide whether -→ χ (G) = 2 for planar graphs G. We first improve their reduction and show that it is NP-complete to decide whether -→ χ (G) ≤ 2, for planar subcubic graphs G. Moreover, we prove that deciding whether -→ χ (G) ≤ ∆(G) -1 is an NP-complete problem for general graphs G. Finally, we show that it is also NP-complete to decide whether -→ χ (G) ≤ 3 for planar bipartite graphs G with maximum degree 5.

Due to space limitation, we omit the proofs of these results.

General upper bound

Theorem 1. Let G be a bipartite graph and let k be a positive integer.

If ∆(G) > 2k + √ 1+8k+1 2 , then - → χ (G) ≤ ∆(G) -k.

Sketch of proof.

In order to prove this theorem, we describe an algorithm (see Algorithm 1) that produces a proper (∆(G) -k)-orientation. Let G = (X ∪ Y, E) be a bipartite graph as in the statement of Theorem 1. The algorithm consists of two phases.

The first phase (lines 1 to 8 in Algorithm 1) produces an orientation, not necessarily proper, of the edges of G in such a way that the indegree of each vertex in X is at most k and the indegree of each vertex in Y is at most ∆(G) -k. It proceeds as follows. We first orient all edges xy ∈ E(G) from x to y, where x ∈ X and y ∈ Y . Then we define k matchings as described subsequently.

Let G 1 = G, and let M 1 be a matching in G 1 that covers all vertices of maximum degree. For each i ∈ {2, . . . , k}, let G i be the graph obtained from G i-1 by removing the edges in

M i-1 , that is G i = G i-1 \M i-1 ,
and let M i be a matching in G i that covers all vertices of degree ∆(G i ). Such a M i exists since it is well known that every bipartite graph H has a proper ∆(H)-edge-colouring. Clearly, we have ∆(

G i ) = ∆(G i-1 ) -1, for each i ∈ {2, 3, . . . , k}. Let M := k i=1 M i . Observe that if a vertex has degree ∆(G) -k + j in G,
where j ∈ {1, 2, . . . , k}, then it is incident to at least j edges in M . Hence, for all j ∈ {1, 2, . . . , k} and for each vertex y in Y of degree ∆(G) -k + j in G, we reverse the orientation of exactly j edges in M incident to y. This ends the first phase.

The second phase reverses the orientation of some edges in E(G) \ M , step by step, in order to obtain a (∆(G) -k)-orientation. This orientation is proper under the assumption of Theorem 1.

Algorithm 1: Proper Orientation of Bipartite Graphs

Input: Bipartite graph G = (X ∪ Y, E) and k ∈ N s.t. ∆(G) > 2k + √ 1+8k+1 2 . Output: Proper (∆(G) -k)-orientation for G. 1 G 1 ←-G 2 Orient all edges in G from X to Y 3 for i = 1, . . . , k do 4 M i ←-matching of G i saturating all vertices of degree ∆(G i ) 5 G i+1 ←-G i -M i 6 M ←- k i=1 M i 7 foreach y ∈ Y do 8 reverse the orientation of max{0; d G (y) -∆(G) + k} edges of M incident to y 9 X ←-X 10 for ℓ = ∆(G) -k -1, . . . , 2 do 11 while ∃x ∈ X s.t. |N ≤ℓ (x)| ≥ ℓ -d -(x) and |N =ℓ (x)| ≤ ℓ -d -(x) do 12 Y ←-set of ℓ -d -(x) vertices of highest indegree in N ≤ℓ (x) 13 foreach y ∈ Y do 14
Reverse the orientation of xy (i.e. re-orient xy towards x)

15 X ←-X \ {x} Theorem 2. If G is a bipartite graph, then - → χ (G) ≤ ∆(G)+ √ ∆(G) 2 + 1.

Sketch of proof. By Theorem 1, for every

k ∈ N, if ∆(G) > 2k + √ 1+8k+1 2 , then - → χ (G) ≤ ∆(G) -k.
In order to obtain a good upper bound for -→ χ (G), we must find the largest positive integer k such that the condition of Theorem 1 holds for a given graph G.

Solving the inequality for k, we obtain that k <

∆(G)- √ ∆(G) 2 . Since k is integer, we conclude that - → χ (G) ≤ ∆(G) - ∆(G)- √ ∆(G) 2
+ 1, and the result follows.

Note that if G is bipartite and ∆(G) ∈ {2, 3, 4}, then the bound of Theorem 2 is equal to the trivial upper bound -→ χ (G) ≤ ∆(G). For ∆(G) = 1 and ∆(G) = 2, this bound is tight due to the paths with 2 and 4 vertices, respectively. In addition, there exists a bipartite graph G with ∆(G) = 3 and -→ χ (G) = 3.

Trees

Theorem 3. If T is a tree, then the following statements hold:

(1) if ∆(T ) ≤ 3, then - → χ (T ) ≤ 2; (2) if ∆(T ) ≤ 6, then - → χ (T ) ≤ 3; (3) - → χ (T ) ≤ 4.
Sketch of proof. We prove the three statements by using similar arguments. For i ∈ {1, 2, 3}, we consider a minimal counter-example M i to statement (i) with respect to the number of vertices, and derive a contradiction that implies that no counter-example exists. Since M i is a minimal counter-example, we have -→ χ (M i ) > i + 1, but -→ χ (T ) ≤ i + 1, for any proper subtree T of M i . We use the latter fact to derive a proper (i + 1)-orientation of M i , which contradicts -→ χ (M i ) > i + 1.

The three statements of the theorem are tight in the following sense: there is a tree with maximum degree 4 and proper orientation number 3, and a tree with maximum degree 7 and proper orientation number 4.

NP-completeness

Ahadi and Dehgan [START_REF] Ahadi | The complexity of the proper orientation number[END_REF] showed that it is NP-complete to decide whether -→ χ (G) ≤ 2 for planar graphs G by using a reduction from the Planar 3-SAT problem. We first improve this result by showing that it is NP-complete to decide whether the proper orientation number of planar subcubic graphs is at most 2.

Theorem 4. The following problem is NP-complete:

Input : A planar graph G with ∆(G) = 3 and δ(G) = 2. Question : - → χ (G) ≤ 2?
Sketch of proof. We show a reduction from the problem of deciding whether a planar 3-SAT formula is satisfiable. It is known that the Planar 3-SAT problem is NP-complete [START_REF] Lichtenstein | Planar formulae and their uses[END_REF]. Let φ = (X, be an instance of this problem, where X = {x 1 , . . . , x n } is the set of variables and C = {C 1 , . . . , C m } is the set of clauses. Using the variable and clause gadgets depicted in Figures 1(a Recall that -→ χ (G) ≤ ∆(G), for any graph G. On the other hand, the following theorem shows that, for any integer k ≥ 3, it is already NP-complete to determine whether -→ χ (G) < k, for graphs G with ∆(G) = k. Sketch of proof. We show a reduction from the problem of deciding whether a planar monotone 3-SAT formula is satisfiable. This problem was recently shown to be NP-complete [START_REF] Berg | Optimal binary space partitions for segments in the plane[END_REF]. The idea of our reduction is roughly the same as in Theorems 4 and 5.

  ) and 1(b), respectively, we construct a planar graphG ′ (φ) such that -→ χ (G ′ (φ)) ≤ 2 if,and only if, φ is satisfiable. Gadget associated to variable x i . (b) Gadget associated to clause C j .
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 1 Figure 1: The variable and clause gadgets.
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 56 Let k be an integer such that k ≥ 3. The following problem is NP-complete:Input : A graph G with ∆(G) = k and δ(G) = k -1. Question : -→ χ (G) ≤ k -1?Finally, we show that it is NP-complete to decide whether -→ χ (G) ≤ 3, for planar bipartite graphs G. The following problem is NP-complete: Input : A planar bipartite graph G with ∆(G) = 5. Question : -→ χ (G) ≤ 3?
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