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Induced decompositions of highly dense graphs

Given two graphs F and G, an induced F -decomposition of G is a partition of E(G) into induced subgraphs isomorphic to F . Bondy and Szwarcfiter [J. Graph Theory,

Introduction

Given two graphs F and G, an F -decomposition of G is a partition of the edges of G into subgraphs isomorphic to F . It is called an induced decomposition if the subgraphs are induced copies of F . Starting from Section 2 we shall only deal with the induced notion of these terms, and occasionally omit the word 'induced' hoping to not cause confusion.

In [START_REF] Bondy | Induced decompositions of graphs[END_REF], Bondy and Szwarcfiter defined the function ex * (n, F ) as the maximum number of edges in a graph on n vertices that admits an induced F -decomposition. They determined the exact value of ex * (n, F ) (with arithmetic restrictions on n in some cases) when F is one of the following graphs: C 4 (the cycle of length four), K 1 + K 2 (the graph with three vertices and one edge), 2K 1 + K 2 (the graph with four vertices and one edge), K 1 + K 1,2 (the graph with four vertices and two intersecting edges), K 1,k (a star), or a complete r-partite graph with the same number k of vertices in each part. They also proved that ex * (n, K - 4 ) ≤ n 2 -n 5 and ex * (5n, K - 4 ) ≥ 5n 2 -10n, where K - 4 = K 4e is the graph with four vertices and five edges.

Besides those graphs, the value of ex * (n, F ) is known for some values of n when F is a complete graph. Indeed, as any complete subgraph is necessarily induced, the equality ex * (n, K k ) = n 2 is equivalent to the existence of an (n, k, 1) BIBD (see [START_REF]Handbook of Combinatorial Designs[END_REF] for such values when k ≤ 9). In particular, for k = 3, the existence of Steiner Triple Systems gives ex * (n, K 3 ) = n 2 when n ≡ 1, 3 (mod 6). More generally, a theorem of Wilson [START_REF] Wilson | An existence theory for pairwise balanced designs, III: Proof of the existence conjectures[END_REF] implies that ex * (n,

K k ) = n 2 -O(n).
Theorem 1 (Wilson [START_REF] Wilson | An existence theory for pairwise balanced designs, III: Proof of the existence conjectures[END_REF]). For any integer k and sufficiently large integer n ≥ n k , the complete graph K n can be decomposed into edge-disjoint copies of K k if and only if k 2 divides n 2 and k -1 divides n -1.

For intermediate values of n, which violate the divisibility conditions, Chee et al. [START_REF] Chee | Covering and packing for pairs[END_REF] recently proved that the number of K k subgraphs in a largest edge-disjoint packing is at most an additive constant c = c(k) away from

n k n-1 k-1 .
Another strong result of Wilson [START_REF] Wilson | Decomposition of complete graphs into subgraphs isomorphic to a given graph[END_REF] deals with the F -decomposition of large complete graphs; it is important to emphasize, however, that these decompositions are not induced decompositions.

Theorem 2 (Wilson [17]). For any graph F and sufficiently large integer n, the complete graph K n can be decomposed into edge-disjoint copies of F if and only if |E(F )| divides n 2 and n -1 is divisible by the greatest common divisor of the degree sequence of F .

In sharp contrast to the classical extremal theory of Turán-type problems, we prove that the asymptotic equality ex * (n, F ) = n 2o(n 2 ) holds for all graphs F as n → ∞ (Theorem 5). Moreover, for some small graphs F mentioned in [START_REF] Bondy | Induced decompositions of graphs[END_REF] for which the exact value of ex * (n, F ) is not settled so far, we provide explicit constructions of dense graphs admitting induced F -decompositions. Those F include 2K 2 (the perfect matching on 4 vertices -Theorem 3), K + 1,3 (the 'paw', i.e. a claw graph augmented with an edge), P 3 (the path of length two) and C 6 (the cycle of length six), the latter three given in Corollary 1.

The small graphs are treated in Section 2, while the general Theorem 5 is proved in Section 3.

It is important to note that several decades ago Frankl and Füredi [START_REF] Frankl | Colored packing of sets[END_REF] studied a very general problem on hypergraph packing, which is strongly related to the one investigated here. Given a family H of t-subsets of a k-set, they call a family F of k-subsets of a v-set a (v, k, H)-packing if for each F ∈ F there is a copy H F of H such that the t-element sets of F corresponding to H F are covered only by F . The main result of [START_REF] Frankl | Colored packing of sets[END_REF] -proved by probabilistic methods -states that, for every fixed k and H, the largest size of a (v, k, H)-packing is asymptotically v t /|H| as v → ∞.

Induced decompositions into some small graphs

In this section we give constructions of dense graphs decomposable into induced copies of the graphs 2K 2 , K + 1,3 , P 3 , and C 6 . Our constructions begin with the Kneser graphs, which are good candidates for 2K 2 -decompositions. This approach is strong enough to verify the lower bound n 2o(n 2 ) on ex * (n, 2K 2 ), nevertheless the bound obtained will be improvable by a refinement of the method. We use the standard notation [p] := {1, 2, . . . , p}.

Definition. The Kneser graph KG p k has the vertex set

V (KG p k ) = [p] k = {S : S ⊆ [p] such that |S| = k}
where two vertices S, S ′ are adjacent if and only if S ∩ S ′ = ∅.

Theorem 3. We have ex * (n, 2K 2 ) = n 2 -O(n 5 
3 ).

Proof. KG 6 3 is a 1-regular graph with 10 edges, and therefore admits an induced 2K 2 -decomposition. More generally KG p 3 is a p-3 3 -regular graph with Decomposition results for other small graphs like P 3 or K + 1,3 seem to be not obtainable using this family of graphs. While there may exist an instance of KG p 3 admitting a decomposition into P 3 , what one would need is a way to ensure that all of them -or most of them -do so when p grows large; but the technique above does not work, as the copies of KG p 3 [S] would not be disjoint anymore. We now give an alternative construction achieving precisely that, e.g. when F is one of P 3 , C 6 , or K + 1,3 .

Definition. The Bipartite Kneser Graph BK p1 ,p2 is defined over the set of

p 1 p 2 vertices 1 V (BK p 1 ,p 2 ) = {v : v = {v 1 , v 2 } with v 1 ∈ [p 1 ] 1 and v 2 ∈ [p 2 ] 2 },
where

[p 1 ] 1 and [p 2 ] 2 are disjoint copies of [p 1 ] and [p 2 ], and two vertices v, v ′ are adjacent if and only if v ∩ v ′ = ∅.
Remark. The graph BK p 1 ,p 2 is isomorphic to L(K p 1 ,p 2 ), the complement of the line graph of a complete bipartite graph on p 1 + p 2 vertices.

We prove in Theorem 4 that a Bipartite Kneser Graph decomposes arbitrarily larger ones. This will be sufficient to obtain that ex * (n,

F ) = n 2 -O(n 3 
2 ) holds for F = 2K 2 , P 3 , C 6 , K + 1,3 , as these graphs decompose small Bipartite Kneser Graphs. Indeed, 2K 2 ∼ = BK 2,2 , P 3 decomposes C 6 and C 6 ∼ = BK 3,2 , and K + 1,3 decomposes BK 4,3 as will be shown in Lemma 1 below.

Theorem 4. The graph BK p 1 ,p 2 admits an induced BK a 1 ,a 2 -decomposition whenever K p 1 and K p 2 respectively admit a K a 1 -decomposition and a K a 2 -decomposition.

Proof. Let S 1 and S 2 be respectively a subset of [p 1 ] 1 or cardinality a 1 and a subset of [p 2 ] 2 of cardinality a 2 , and let

BK p 1 ,p 2 [S 1 , S 2 ] denote the subgraph induced in BK p 1 ,p 2 by the vertices {v = {v 1 , v 2 } ∈ BK p 1 ,p 2 : v 1 ∈ S 1 , v 2 ∈ S 2 }. For any choice of sets S 1 and S 2 , BK p 1 ,p 2 [S 1 , S 2 ] is isomorphic to BK a 1 ,a 2 .
By assumption, there exists for i = 1, 2 a collection C i of sets of size a i such that any two elements v i , v ′ i of [p i ] i appear together in exactly one element of C i . We can produce an induced BK a 1 ,a 2 -decomposition of BK p 1 ,p 2 by considering the collection

{BK p 1 ,p 2 [S 1 , S 2 ] : S 1 ∈ C 1 , S 2 ∈ C 2 }. Indeed, for each edge between v = {v 1 , v 2 } and v ′ = {v ′ 1 , v ′ 2 } there exists exactly one set S 1 ∈ C 1 containing both v 1 and v ′ 1 , and one S 2 ∈ C 2 containing both v 2 and v ′ 2 .
Therefore, the collection is the desired induced decomposition.

In particular, 2K 2 ∼ = BK 2,2 decomposes BK p 1 ,p 2 for any choice of p 1 , p 2 ≥ 2.

Corollary 1. For every fixed p 1 and p 2 we have ex * (n,

BK p 1 ,p 2 ) = n 2 -O(n 3/2 ). Moreover, by transitivity, ex * (n, F ) = n 2 -O(n 3/2 ) for F = 2K 2 , P 3 , C 6 , K + 1,3 .
Proof. By Theorem 1, for i = 1, 2, there exists constants c i such that K c i k admits a K a i -decomposition for any integer k. Hence, BK c 1 k,c 2 k admits an induced BK a 1 ,a 2 -decomposition for any integer k. As k gets large, the number of nonedges in BK c 1 k,c 2 k grows with n 3/2 (where n = c 1 c 2 k 2 ), while the gap between

(c 1 k, c 2 k) and (c 1 (k + 1), c 2 (k + 1)) adds an error term of O(n) for intermediate values of n.
Besides, we quote from Corollary 2 of [START_REF] Bondy | Induced decompositions of graphs[END_REF] that ex * (n, 2K 2 ) ≤ n 2 -Θ(n 3/2 ). Since C 6 decomposes into induced copies of 2K 2 , this upper bound implies ex * (n, C 6 ) ≤ n 2 -Θ(n 3/2 ), too. Hence, combining these inequalities with our Corollary 1 we obtain:

Corollary 2. We have ex * (n, 2K 2 ) = n 2 -Θ(n 3/2 ) and ex * (n, C 6 ) = n 2 - Θ(n 3/2 ).
At the end of this section we prove a lemma that completes the proof of Corollary 1 for K + 1,3 .

Lemma 1. The graph BK 4,3 admits an induced K + 1,3 -decomposition.

Proof. The following decomposition was obtained with the software Sage [START_REF] Stein | Sage Mathematics Software (Version 4.6.2)[END_REF], asked to compute a maximum independent set in the graph of all induced K + 1,3

subgraphs of BK 4,3 , two of them being adjacent when they share an edge. It produced a list of 9 edge-disjoint graphs with 4 edges, each of them being isomorphic to K + 1,3 , which partitions the 36 edges of BK 4,3 . Alternatively, if we label the columns with {a, b, c, d} and the rows with {1, 2, 3} (1a being the bottom-left corner and 3d the top-right one), the decomposition is given by the graphs induced by the following sets of vertices: {1a, 2d, 3b, 3d} {1c, 2b, 3d, 2d} {2c, 1d, 3b, 3d} {2a, 1d, 3c, 3d} {1a, 2b, 3c, 2c} {3a, 1b, 2c, 1c} {1b, 2d, 3c, 3d} {2a, 1c, 3b, 1b} {3a, 1d, 2b, 2d}

Induced decomposition into general graphs

This section is devoted to the proof of the following general result.

Theorem 5. We have ex * (n, F ) = n 2o(n 2 ) for any graph F .

Let us begin with a preliminary remark. Although the family of Bipartite Kneser Graphs is sufficient to obtain decomposition results for some graphs, it cannot be hoped to provide a proof for all graphs. Indeed, Bipartite Kneser Graphs are "complements of line graphs of bipartite graphs", and for this reason none of them contains e.g. the complement of the claw graph (i.e. the graph K 1 + K 3 , cf. Fig. 1) as an induced subgraph. The second drawback comes from the method itself: in order to deduce anything on the value of the ex * function, we need to prove that a graph decomposes a Bipartite Kneser Graph, an operation which we have no specific tool for. We now enlarge the graph class once more, and prove that any graph is an induced subgraph of some graph in this family (Lemma 2).

Definition. The Multipartite Kneser Graph MK p 1 ,...,p k is defined over the set of

k i=1 p i vertices 2 V (MK p 1 ,...,p k ) = [p 1 ] 1 × • • • × [p k ] k = {v = {v 1 , . . . , v k } : v i ∈ [p i ] i }.
Two vertices of MK p 1 ,...,p k are adjacent if and only if their corresponding sets of size k are disjoint. We denote by MK p×k the graph MK p,...,p on p k vertices (see Fig. 1). Remark. As a generalization of the bipartite case, the graph MK p 1 ,...,p k is isomorphic to L(K (k) p 1 ,...,p k ), the complement of the line graph (intersection graph) of a complete k-partite hypergraph whose i th vertex class has p i vertices for i = 1, 2, . . . , k.

Lemma 2. Any graph F is an induced subgraph of all MK p×k for sufficiently large p and k.

Proof. We prove that it is already sufficient to chose p = |V (F )| and k = |E(F )|. This implies that also any larger values of p and k satisfy the requirements. Let us 2 Notation here is analogous to that for bipartite Kneser graphs. The sets [p 1 ] 1 , . . . , [p k ] k are mutually disjoint copies of [p 1 ], . . . , [p k ], respectively. This allows us to view v = {v 1 , . . . , v k } as a k-element set rather than a k-tuple or a vector of length k. For instance, v ∩ v ′ then then simply means intersection and not the more complicated notion of the set of coordinates in which two k-tuples agree.

note that usually much smaller values work, too. 3Assuming that V (F ) = {1, . . . , p} and E(F ) = {e 1 , . . . , e k } (the set of nonedges of F ), we consider the set {v 1 , . . . , v p } of |V (F )| vertices of MK p×k , where

• If i is an endpoint of e j = ii ′ , we set the jth component v i j of vertex v i to min(i, i ′ ) implying that v i and v i ′ are not disjoint sets.

• If i is not an endpoint of e j , the jth component v i j of vertex v i is equal to i. In such a family, two vertices v i and v i ′ correspond to disjoint sets if and only if they are adjacent in F , ensuring that this collection of vertices induces a copy of F in MK p×k .

Considering the symmetry properties of the MK graphs, one can already expect to find many disjoints instances of F inside of large instances. It is quite unlikely, though, that for a fixed F all sufficiently large graphs MK p×k would admit an induced F -decomposition, if only because of arithmetical constraints. As it is also increasingly difficult to produce F -decompositions of MK graphs when F grows large, we change our proof's methodology.

Indeed, if trying to decompose MK p×k into induced copies of a graph F may be too ambitious, it is actually sufficient to be able to decompose a dense subgraph of MK p×k into copies of F to obtain the desired result. Hence, we could be satisfied with finding many edge-disjoint induced copies of F in MK p×k covering most of the edges. The union of these copies is a perfectly valid example of a dense graph admitting an induced F -decomposition.

In order to obtain this decomposition, we will use a powerful theorem from Pippenger and Spencer [START_REF] Pippenger | Asymptotic behavior of the chromatic index for hypergraphs[END_REF]. Their result being much more general, its content below is specialized to suit our problem, and is similar to the version appearing in [START_REF] Grable | More-than-nearly-perfect packings and partial designs[END_REF] (see also [START_REF] Frankl | Near perfect coverings in graphs and hypergraphs[END_REF][START_REF] Alon | On a hypergraph matching problem[END_REF]). As a matter of fact, the version in [START_REF] Frankl | Near perfect coverings in graphs and hypergraphs[END_REF] is already strong enough for our purpose. For a hypergraph H we introduce the notation ∆ 2 (H) := max

x,y∈V (H), x =y

|{e ∈ E(H) : x, y ∈ e}|, and call it the maximum co-degree of H.

Also, if H is regular, we denote by deg(H) the degree of regularity.

Theorem 6 (Pippenger, Spencer [START_REF] Pippenger | Asymptotic behavior of the chromatic index for hypergraphs[END_REF]). Let H be an infinite family of r-uniform regular hypergraphs. If

∆ 2 (H) ≪ deg(H)
as |V (H)| gets large (for any increasing sequence of hypergraphs H ∈ H), then there exists in H a set of mutually disjoint hyperedges missing at most o(|V (H)|) vertices.

This theorem can let us find the desired set of edge-disjoint induced copies of F in a large MK p×k if we can achieve a rephrasing of our problem in terms of a maximum hypergraph matching (a matching in an hypergraph is a set of mutually vertex-disjoint edges). What we need now is to define a hypergraph whose edges are all the induced occurrences of F in MK p×k .

Definition. Let H p×k be the hypergraph whose vertex set is the set E(MK p×k ) of all edges of MK p×k , and whose hyperedges are the edge sets of all the induced subgraphs of MK p×k isomorphic to F .

We deduce from the edge-transitivity of MK p×k that the the hypergraph H p×k is vertex-transitive, hence regular. It is also

|E(F )|-uniform. Besides, a matching of H p×k covering (1 -o(1))|V (MK p×k )| vertices corresponds to a collection of induced edge-disjoint copies of F in MK p×k covering (1 -o(1))|E(MK p×k )|
edges, i.e. a dense subgraph of MK p×k admitting an induced F -decomposition. Hence, to obtain Theorem 5 we need to ensure that the conditions of Theorem 6 are satisfied.

We will prove that ∆ 2 (H p×k ) ≪ deg(H p×k ) holds for any fixed k > |E(F )| when p grows large. To do so, we show that the number of induced copies of F in MK p×k containing two given edges is negligible compared to the number of copies containing exactly one of the two edges in question.

For the proof, let us consider two vertices of H p×k , i.e. two edges

v 1 v ′ 1 , v 2 v ′ 2 in M K p×k ,
corresponding to four sets of size k. By the definition of adjacencies in

MK p×k we have v 1 ∩ v ′ 1 = ∅ and v 2 ∩ v ′ 2 = ∅, but v 1 ∪ v ′ 1 and v 2 ∪ v ′ 2 may very well intersect. Recall that V (MK p 1 ,...,p k ) = [p 1 ] 1 × • • • × [p k ] k ;
we shall refer to the elements of the components

[p i ] i (1 ≤ i ≤ k) as 'points'. In our case p 1 = • • • = p k = p holds, that means V (MK p×k ) = [p] 1 × • • • × [p] k . When k > |E(F )|, i.e.
when the size of the sets defining the vertices v 1 , v ′ 1 , v 2 , v ′ 2 of M K p×k is large compared to the number of non-edges of F , some of their points are not necessary to encode the adjacencies of a copy of F . Let us now consider a copy

F * ⊆ MK p×k of F containing the edges v 1 v ′ 1 , v 2 v ′ 2 .
We are going to distinguish a set of necessary points and modify this copy by playing with the other points.

According to the definitions, any non-edge of F * is represented by two intersecting sets, which correspond to two vertices of MK p×k . If the intersection of those two sets is contained in

v 1 ∪ v ′ 1 ∪ v 2 ∪ v ′ 2 ,
we mark one point in it. Having marked (at most) one point for every non-edge of F * , each of our four sets contains at least k -|E(F )| unmarked points.

The unmarked points of v 1 and v ′ 1 are not actually relevant to the adjacency properties of these sets with the other sets of the copy of F . Since As a conclusion, one can associate to any copy F * containing the edges

v 1 = v ′ 1 , v 2 , v ′ 2 , we can obtain a different induced copy of F containing v 2 v ′ 2 but avoiding v 1 v ′ 1 by replacing in v
v 1 v ′ 1 and v 2 v ′ 2 a set f (F * ) of at least (p -|V (F )|) k-|E(F )| copies of F using v 2 v ′ 2 but not v 1 v ′
1 (and differing from F * only by the content of v 1 ). Furthermore, at most c F choices of F * can produce a given alternative copy of F , where c F is a constant depending on F but not on p. (To reverse the operation, it is enough to identify one set of the copy and replace it with v 1 or v ′ 1 .) We deduce that in H p×k the degree of a vertex is at least Θ(p k-|E(F )| ) ≥ Θ(p) times more than the co-degree of the pair v 1 v ′ 1 , v 2 v ′ 2 (chosen arbitrarily), yielding ∆ 2 (H p×k ) ≪ deg(H p×k ) as p grows large. Thus, Theorem 6 implies the existence of a family of edge-disjoint induced copies of F in M K p×k covering almost all edges of M K p×k as p gets large. Now the proof is completed by the observation that M K p×k has p k vertices and is regular of degree (p -1) k = p k -O(p k-1 )the number of sets disjoint from a given set in

[p] 1 × • • • × [p] k -therefore almost all vertex pairs are adjacent in M K p×k .

Conclusion

We have proved that the largest graphs of order n admitting an edge decomposition into induced copies of a given non-edgeless graph F have This question also appears as Problem 2 in [START_REF] Bondy | Induced decompositions of graphs[END_REF]. Some of our results also give a tight answer, apart from a multiplicative constant, to this formulation, exhibiting graphs F with n 2ex * (n, F ) = Θ(n 3/2 ). Some more cases are settled in the recent paper [START_REF] Halász | Asymptotically optimal induced decompositions[END_REF], solving Problem 1 of [START_REF] Bondy | Induced decompositions of graphs[END_REF] as a corollary. Substantially different examples, with linear growth, are K - 4 , the stars, C 4 and more generally the complete equipartite graphs in [START_REF] Bondy | Induced decompositions of graphs[END_REF], and further infinite families in [START_REF] Halász | Asymptotically optimal induced decompositions[END_REF] and [START_REF] Cs | Transversal designs and induced decompositions of graphs[END_REF]. It is worth noting that, although the order of magnitude of n 2ex * (n, F ) is determined in those cases, still there are very few graphs for which the exact value (as a function of n) is known.

Many problems of interest remain open. Some have been raised at the end of [START_REF] Bondy | Induced decompositions of graphs[END_REF]; here we mention further ones. Conjecture 2. For every F , with the value α defined in Conjecture 1, the sequence n 2ex * (n, F ) /n α has only finitely many limit points.

Note that more than one limit point can exist; for example if F = C 4 then there are two of them, one for n even and one for n odd.

Problem 2. What is the expected asymptotic growth f t (n) of n 2ex * (n, F ) as a function of n if F is chosen at random from the graphs on t vertices while n ≫ t but the parameter t also gets large?

An upper bound can be derived from the principles of our construction. One can observe that the value k in the multipartite Kneser graph M K p×k does not need to be larger than 1 plus the minimum k ′ such that the edge set of the complement F of F can be covered with k ′ complete subgraphs.

In the case where F is a complete graph, Problem 1 asks exactly about the smallest possible size of the leave graph of a partial Steiner system. Several related results are available for triple systems. The smallest leave of an STS(n) was determined by Schönheim [START_REF] Schönheim | On maximal systems of k-tuples[END_REF] and Spencer [START_REF] Spencer | Maximal consistent families of triples[END_REF]. Further relatively small graphs which are leave graphs of some STS(n) were described in [START_REF] Colbourn | Support sizes of sixfold triples systems[END_REF][START_REF] Milici | Coverable graphs[END_REF]. For a wealthy collection of results on leave graphs, we refer to Section 9 of [START_REF] Colbourn | Triple Systems[END_REF].
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 1 Figure 1: A realization of K 1 + K 3 as an induced subgraph of MK 3×3

1

 1 these unmarked points by any other point not contained in F * , i.e. at least p -|V (F )| alternatives for each of the k -|E(F )| unmarked points.
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 212 o(n 2 ) edges for each graph F as n gets large. This result solves the problem of Bondy and Szwarcfiter completely in the asymptotic sense. Viewing it from the other side, however, it just opens the field for a new track of studies: Given a graph F , determine the exact or asymptotic value of n ex * (n, F ) as a function of n.
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	edge-disjoint, and as KG 6 3 decomposes KG p 3 we obtain by transitivity that 2K 2 decomposes KG p 3 . When p 3 ≤ n < p+1 3 , we lower-bound ex * (n, 2K 2 ) with ex * ( p 3 , 2K 2 ),
	which leads to the result.
	1 2 6 edges -an even number -and we are going to show that KG 6 10 p 3 decom-p 6 6 3 = poses KG p 3 for any p > 6, which will yield the result. For any 6-subset S ⊆ [p], the graph KG p 3 [S] induced by the vertices of KG p 3 whose representative set belongs to S is isomorphic to KG 6 3 . Besides, an edge
	between two vertices u 6 induced copies of KG 6 3 are
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Notation is meant to ensure that we can speak about {v 1 , v

} as a set rather than an ordered pair or a vector of two components in[p 1 ] × [p 2 ].

It is for instance possible to chose k = ∆(F ) + 1 and use Vizing's theorem, or to optimize on both of p and k, or consider coverings of the edge set of F with subgraphs which are vertex-disjoint unions of complete graphs. Finding the smallest integers is probably an interesting combinatorial problem of its own.

Acknowledgments

The authors thank Adrian Bondy for helpful discussions and Jean-Claude Bermond for his careful readings. This work has been partially supported by EA EWIN, ANRs AGAPE and GRATEL and by the ESF EUROCORES programme Eu-roGIGA, CRP ComPoSe, Fonds National de la Recherche Scientifique (F.R.S.-FNRS). Research of the second author was supported in part by the Hungarian Scientific Research Fund, OTKA grant 81493, and by the Hungarian State and the European Union under the grant TAMOP-4.2.2.A-11/1/KONV-2012-0072.