

Study of Venus' cloud layers by polarimetry with SPICAV/VEx

Loïc Rossi¹, Emmanuel Marcq¹, Franck Montmessin², Jean-Loup Bertaux², Anna Fedorova³⁴, Oleg Korablev³⁴, Daphne Stam⁵

¹LATMOS/UVSQ, Guyancourt, France ²LATMOS/CNRS, Guyancourt, France ³Space Research Institute/IKI, Russia ⁴Moscow Institute of Physics and Technology, Dolgoprudny, Russia ⁵Technische Universiteit Delft, Delft, The Netherlands

EGU GA 2014-04-30

Polarization studies of Venus

Ground-based observations 1920s-1970s (Lyot, Coffeen, Dollfus...)

Main results

- Hansen and Hovenier (1974) used a polarized radiative transfer code to retrieve the parameters of the cloud layers
- Pioneer Venus OCPP: polarimetric measurements analyzed by Kawabata (1980), Sato (1996) to retrieve parameters of the haze layer

Shape	spherical droplets	
Hazes	$r_{ m eff}^h \sim 0.25~\mu{ m m}$ $ u_{ m eff}^h \sim 0.25$	
Cloud	$r_{ m eff}^c \sim 1~\mu{ m m}$ $ u_{ m eff}^c \sim 0.07$	
Composition	i on concentrated	
	$H_2SO_4-H_2O$	
	solution	

Principle of measurement

SPICAV-IR is an infrared spectrometer onboard ESA's Venus Express spacecraft, working in the $0.65-1.7~\mu m$ range.

- spectral window and continuum measurement
- based on an acousto-optic tunable filter (AOTF)
- produces two beams polarized in perpendicular directions

Degree of linear polarization

$$P_{\ell} = \frac{P_{\perp} - P_{//}}{P_{\perp} + P_{//}} = \frac{d_1 - d_0}{d_1 + d_0}$$

L. Rossi Polarimetric study of Venus' clouds

L. Rossi Polarimetric study of Venus' clouds

Mie scattering

Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter $x = \frac{2\pi r}{\lambda}$.

- ► x ≪ 1: Rayleigh-like scattering, positive polarization
- ► x > 1: Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles

- spherical particles
- ► $r \sim 1 \ \mathrm{\mu m}$
- $n_r \sim 1.42$ at $\lambda = 1 \ \mu {
 m m}$

Mie scattering

Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter $x = \frac{2\pi r}{\lambda}$.

- ► x ≪ 1: Rayleigh-like scattering, positive polarization
- x > 1: Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles

- spherical particles
- ► $r \sim 1 \ \mu m$
- $n_r \sim 1.42$ at $\lambda = 1 \ \mu {
 m m}$

Mie scattering

Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter $x = \frac{2\pi r}{\lambda}$.

- ► x ≪ 1: Rayleigh-like scattering, positive polarization
- ► x > 1: Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles

- spherical particles
- ► $r \sim 1 \ \mu m$
- $n_r \sim 1.42$ at $\lambda = 1 \ \mu {
 m m}$

Cloud layers

- Polarized, multiple scattering radiative transfer model based on the doubling-adding method, provided by D. Stam
- ► Clouds bescribed by two layers, each homogeneously mixed
- Observations of glories will yield values for the cloud layer
- Observations at higher phase angles will provide information about hazes

Clouds parameters

	$r_{\rm eff}$	$\nu_{\rm eff}$	n_r	au
Haze layer	0.25	0.25	n	$ au_h$
Cloud layer	r_c	0.07	n	30

Modeling at $\lambda = 1.1 \ \mu m$

Modeling at $\lambda = 1.1 \ \mu m$

Parameters retrieval Parameter Main effet on degree of polarization n_r degree of polarization r_{eff} position of glory minimum glory minimum

Modeling at $\lambda = 1.1 \ \mu m$

Parameters retrieval

Parameter	Main effet on
n_r	degree of polariza-
	tion
$r_{ m eff}$	position of glory minimum
ν_{eff}	shape of glory

Modeling at $\lambda = 1.1 \ \mu m$

Parameters retrieval

Parameter	Main effet on
n_r	degree of polariza-
	tion
$r_{\rm eff}$	position of glory
	minimum
$ u_{ m eff}$	shape of glory
$ au_h$	positive polariza-
	tion

Low latitudes

L. Rossi Polarimetric study of Venus' clouds

Low latitudes

L. Rossi Polarimetric study of Venus' clouds

High latitudes

- At high latitudes, a strong positive polarization is observed
- Stronger influence of hazes required to match observations
- Optical depth vary from ~ 0.3 to ~ 0.7
- ► Upper limit for τ_h can reach 0.17 at very high latitudes

At high latitudes, a strong positive polarization is observed

High latitudes

- Stronger influence of hazes required to match observations
- Optical depth vary from ~ 0.3 to ~ 0.7
- ► Upper limit for τ_h can reach 0.17 at very high latitudes

0 ^{(°}) Atitude (°)

70

Phase angle

Conclusions

- SPICAV-IR polarization data is in good agreement with previous observations, in particular with OCPP
- ► Polarization maps confirm values of $r_{\rm eff} \sim 1~\mu\text{m}$, with narrow size distribution for cloud particles at a planetary scale
- We always observe the glory at low phase angles, as VMC in photometry: particles are spherical
- Retrieved refractive indices are compatible with sulfuric acid solution
- ► The haze optical thickness increases towards the poles

Perpectives

- ► Parameters retrieval for each orbit
- Investigate latitudinal, temporal variability (local time and long term)

Acknowledgments

This PhD thesis is funded by the LabEx "Exploration Spatiale des Environnements Planétaires" (ESEP) N° 2011 LABX-030. We want to thank the State and the ANR for their support within the programme "Investissements d'Avenir" through the excellence initiative PSL*(ANR-10-IDEX-0001-02).

Contact and presentation download

```
http://rossi.page.latmos.ipsl.fr
loic.rossi@latmos.ipsl.fr
```

