Marwa Banna 
email: marwa.banna@u-pem.fr
  
Limiting spectral distribution of Gram matrices associated with functionals of β-mixing processes

Keywords: Random matrices, sample covariance matrices, Stieltjes transform, absolutely regular sequences, limiting spectral distribution, spectral density, Marcenko-Pastur distributions. Mathematical Subject Classification (2010): 60F99, 60G10, 62E20

We give asymptotic spectral results for Gram matrices of the form n -1 X n X T n where the entries of X n are dependent across both rows and columns and that are functionals of absolutely regular sequences and have only finite second moments. We derive, under mild dependence conditions in addition to an arithmetical decay condition on the β-mixing coefficients, an integral equation of the Stieltjes transform of the limiting spectral distribution of n -1 X n X T n in terms of the spectral density of the underlying process. Applications to examples of positive recurrent Markov chains and dynamical systems are also given.

Introduction

For a random matrix X n ∈ R N ×n , the study of the asymptotic behavior of the eigenvalues of the N × N Gram matrix n -1 X n X T n gained interest as it is employed in many applications in statistics, signal processing, quantum physics, finance, etc. In order to describe the distribution of the eigenvalues, it is convenient to introduce the empirical spectral measure defined by µ n -1 XnX T n = N -1 N k=1 δ λ k , where λ 1 , . . . , λ N are the eigenvalues of n -1 X n X T n . This type of study was actively developed after the pioneering work of Marcenko and Pastur [START_REF] Marcenko | Distribution of eigenvalues for some sets of random matrices[END_REF], who proved that under the assumption lim n→+∞ N/n = c ∈ (0, +∞), the empirical spectral distribution of large dimensional Gram matrices with i.i.d. centered entries of finite variance converges almost surely to a non-random distribution. The limiting spectral distribution (LSD) obtained, i.e. the Marcenko-Pastur distribution, is given explicitly in terms of c and depends on the distribution of the entries of X n only through their common variance. The original Marcenko-Pastur theorem is stated for random variables having moment of forth order; for the proof under second moment only, we refer to Yin [START_REF] Yin | Limiting spectral distribution for a class of random matrices[END_REF].

Since then, a large amount of study has been done aiming to relax the independence structure between the entries of X n . For example, Bai and Zhou [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] treated the case where the columns of X n are i.i.d. with their coordinates having a very general dependence structure and moments of forth order. Recently, Banna and Merlevèvde [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF] extended along another direction the Marcenko-Pastur theorem to a large class of weakly dependent sequences of real random variables having only second moments. Letting (X k ) k∈Z be a stationary process of the form X k = g(• • • , ε k-1 , ε k , ε k+1 , . . .), where the ε k 's are i.i.d. real valued random variables and g : R Z → R is a measurable function, they consider the N × N sample covariance matrix

A n = 1 n n k=1 X k X T
k with the X k 's being independent copies of the vector X = (X 1 , . . . , X N ) T . Assuming only that X 0 has a moment of second order, and imposing a dependence condition expressed in terms of conditional expectation, they prove that if lim n→∞ N/n = c ∈ (0, ∞), then almost surely, µ An converges weakly to a non-random probability measure µ whose Stieltjes transform satisfies an integral equation that depends on c and on the spectral density of the underlying stationary process (X k ) k∈Z . In Theorem 2.4 of this paper, we let (ε k ) k∈Z be an absolutely regular (β-mixing) sequence, and we get, under the absolute summability of the covariance and a near-epoch-dependence condition, the same limiting distribution as in Theorem 2.1 of [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF].

In the above mentioned model, the random vector X = (X 1 , . . . , X N ) T can be viewed as an N -dimensional process repeated independently n times to obtain the X k 's. However, in practice it is not always possible to observe a high dimensional process several times. In the cases where only one observation of length N n can be recorded, it seems reasonable to partition it into n dependent observations of length N , and to treat them as n dependent observations. Up to our knowledge this was first done by Pfaffel and Schlemm [START_REF] Pfaffel | Limiting spectral distribution of a new random matrix model with dependence across rows and columns[END_REF] who showed that this approach is valid and leads to the correct asymptotic eigenvalue distribution of the sample covariance matrix if the components of the underlying process are modeled as independent moving averages. They derive the LSD of a Gram matrix having the same form as the one defined in (2.3) and associated with a stationary linear process (X k ) k∈Z with i.i.d. innovations of finite forth moments under a polynomial decay condition of the coefficients of the underlying linear process.

In this work, we study the same model of random matrices as in [START_REF] Pfaffel | Limiting spectral distribution of a new random matrix model with dependence across rows and columns[END_REF] but considering the case where the entries come from a non causal stationary process (X k ) k∈Z of the form

X k = g(• • • , ε k-1 , ε k , ε k+1 , . . .)
where (ε k ) k∈Z is an absolutely regular sequence and g : R Z → R is a measurable function such that X k is a proper centered random variable of finite second moment. Under an arithmetical decay condition on the β-mixing coefficients, we prove in Theorem 2.1 that the Stieltjes transform is concentrated almost surely around its expectation as n tends to infinity. Then, along a similar direction as in [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF] and assuming the absolute summability of the covariance plus a near-epoch-dependence condition, we prove in Theorem 2.2 that almost surely, µ Bn converges weakly to the same non-random limiting probability measure µ obtained in the cases mentioned above.

We recall now that the absolutely regular (β-mixing) coefficient between two σ-algebras A and B is defined by

β(A, B) = 1 2 sup i∈I j∈J P(A i ∩ B j ) -P(A i )P(B j ) ,
where the supremum is taken over all finite partitions (A i ) i∈I and (B j ) j∈J that are respectively A and B measurable (see Rozanov and Volkonskii [START_REF] Volkonskii | Some limit theorems for random functions[END_REF]). For n > 0, the coefficients (β n ) n 0 of β-mixing of a sequence (ε i ) i∈Z are defined by

β 0 = 1 and β n = sup k∈Z β σ(ε ℓ , ℓ k) , (ε ℓ+n , ℓ k) for n 1. (1.1)
Moreover, (ε i ) i∈Z is said to be absolutely regular or β-mixing if β n → 0 as n → ∞.

Outline. In Section 2, we specify the models studied and state the limiting results for the Gram matrices associated with the process defined in (2.1). The proofs shall be deferred to Section 4, whereas applications to examples of Markov chains and dynamical systems shall be introduced in Section 3.

Notation. For any real numbers x and y, x ∧ y := min(x, y) whereas x ∨ y := max(x, y). Moreover, the notation [x] denotes the integer part of x. For any non-negative integer q, a null row vector of dimension q will be denoted by 0 q . For a matrix A, we denote by A T its transpose matrix and by Tr(A) its trace. Finally, we shall use the notation X r for the L r -norm (r ≥ 1) of a real valued random variable X.

For any square matrix A of order N with only real eigenvalues, its empirical spectral measure and distribution are respectively defined by

µ A = 1 N N k=1 δ λ k and F A (x) = 1 N N k=1 1 {λ k x} ,
where λ 1 , . . . , λ N are the eigenvalues of A. The Stieltjes transform of µ A is given by

S A (z) := S µ A (z) = 1 x -z dµ A (x) = 1 N Tr(A -zI) -1 ,
where z = u + iv ∈ C + (the set of complex numbers with positive imaginary part), and I is the identity matrix of order N .

Results

We consider a non causal stationary process (X k ) k∈Z defined as follows: let (ε i ) i∈Z be an absolutely regular process with β-mixing sequence (β k ) k 0 and let g : R Z → R be a measurable function such that, for any k ∈ Z,

X k = g(ξ k ) with ξ k = (. . . , ε k-1 , ε k , ε k+1 , . . .) (2.1)
is a proper two-sided random variable, E(g(ξ k )) = 0 and g(ξ k ) 2 < ∞. Now, let N := N (n) be a sequence of positive integers and consider the N × n random matrix X n defined by

X n = ((X n ) ij ) i,j = (X (j-1)N +i ) i,j =      X 1 X N +1 • • • X (n-1)N +1 X 2 X N +2 • • • X (n-1)N +2 . . . . . . . . . X N X 2N • • • X nN      ∈ M N ×n (R) (2.2)
and note that its entries are dependent across both rows and columns. Let B n be its corresponding Gram matrix given by

B n = 1 n X n X T n . (2.3) 
In what follows, B n will be referred to as the Gram matrix associated with (X k ) k∈Z . Our purpose is to study the limiting distribution of the empirical spectral measure µ Bn defined by

µ Bn (x) = 1 N N k=1 δ λ k ,
where λ 1 , . . . , λ N are the eigenvalues of B n . We start by showing that if the β-mixing coefficients decay arithmetically then the Stieltjes transform of B n concentrates almost surely around its expectation as n tends to infinity .

Theorem 2.1 Let B n be the matrix defined in (2.3) and associated with

(X k ) k∈Z defined in (2.1). If lim n→∞ N/n = c ∈ (0, ∞) and n 1 log(n) 3α 2 n -1 2 β n < ∞ for some α > 1 , (2.4) 
the following convergence holds: for any z ∈ C + , S Bn (z) -E S Bn (z) → 0 almost surely, as n → +∞ .

As the entries of X n are dependent across both rows and columns, classical arguments as those in Theorem 1 (ii) of [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF] are not sufficient to prove the above convergence. In fact, we use maximal coupling for absolutely regular sequences in order to break the dependence structure of the matrix.

Theorem 2.2 Let B n be the Gram matrix defined in (2.3) and associated with (X k ) k∈Z defined in (2.1). Provided that lim n→∞ N/n = c ∈ (0, ∞) and assuming that (2.4) is satisfied and that

k 0 |Cov(X 0 , X k )| < ∞ (2.5) and lim n→+∞ n X 0 -E(X 0 |ε -n , . . . , ε n ) 2 2 = 0 (2.6)
then, with probability one, µ Bn converges weakly to a probability measure whose Stieltjes transform S = S(z) (z ∈ C + ) satisfies the equation

z = - 1 S + c 2π 2π 0 1 S + 2πf (λ) -1 dλ , (2.7) 
where S(z

) := -(1 -c)/z + cS(z) and f (•) is the spectral density of (X k ) k∈Z . Remark 2.3
1. Condition (2.5) implies that the spectral density f (•) of (X k ) k∈Z exists, is continuous and bounded on [0, 2π). Moreover, it follows from Proposition 1 in Yao [START_REF] Yao | A note on a Marcenko-Pastur type theorem for time series[END_REF] that the limiting spectral distribution is compactly supported.

Condition

(2.6) is a so-called L 2 -near-epoch-dependent condition.
Now, for a positive integer n, we consider n independent copies of the sequence (ε k ) k∈Z that we denote by ε

(i) k k∈Z for i = 1, . . . , n. Setting ξ (i) k = . . . , ε (i) k-1 , ε (i) k , ε (i) k+1 , . . . and X (i) k = g ξ (i) k , it follows that X (1) k k∈Z , . . . , X (n) 
k k∈Z are n independent copies of (X k ) k∈Z . Define now for any i ∈ {1, . . . , n}, the random vector

X i = X (i) 1 , . . . , X (i) N
T and set

X n = (X 1 | . . . |X n ) and A n = 1 n X n X T n = 1 n n k=1 X k X T k . (2.8)
Theorem 2.4 Let A n be the Gram matrix defined in (2.8) and associated with (X k ) k∈Z defined in (2.1). Provided that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0 and assuming that (2.5) and (2.6) are satisfied, then, with probability one, µ An converges weakly to a probability measure whose Stieltjes transform S = S(z) (z ∈ C + ) satisfies equation (2.7).

Remark 2.5 The proof of Theorem 2.4 is quite similar to that of Theorem 2.2. Since the columns of the N × n matrix X n considered in (2.8) are independent copies of the random vector (X 1 , . . . , X N ) T , then, as a consequence of Theorem 1 (ii) of Guntuboyina and Leeb [START_REF] Guntuboyina | Concentration of the spectral measure of large Wishart matrices with dependent entries[END_REF], we can approximate directly S Bn (z) by its expectation and there is no need to any coupling arguments as those in Theorem 2.1 and thus there is no need to the arithmetic decay condition (2.4) on the absolutely regular coefficients. The rest of the proof follows exactly as that of Theorem 2.2 after simple modifications of indices.

Applications

In this section we shall apply the results of Section 2 to the Harris recurrent Markov chain and to some uniformly expanding maps in dynamical systems.

Harris recurrent Markov chain

The following example is a symmetrized version of the Harris recurrent Markov chain defined by Doukhan et al. [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF]. Let (ε n ) n∈Z be a stationary Markov chain taking values in E = [-1, 1] and let K be its Markov kernel defined by

K(x, .) = (1 -|x|)δ x + |x|ν ,
with ν being a symmetric atomless law on E and δ x denoting the Dirac measure at point x.

Assume that θ = E |x| -1 ν(dx) < ∞ then there exists a unique invariant measure π given by

π(dx) = θ -1 |x| -1 ν(dx)
and (ε n ) n∈Z is positively recurrent. We shall assume in what follows that the measure ν satisfies for any x ∈ [0, 1], dν dx (x) c x a for some a , c > 0 .

(3.9)

Now, let g be a measurable function defined on E such that

X k = g(ε k ) (3.10)
is a centered random variable with finite moment of second order.

Corollary 3.1 Let A n and B n be the matrices defined in (2.8) and (2.3) respectively and associated with (X k ) k∈Z defined in (3.10). Assume that for any x ∈ E, g(-x) = -g(x) and |g(x)| C|x| 1/2 with C being a positive constant. Then, provided that ν satisfies (3.9) and N/n → c ∈ (0, ∞), the conclusion of Theorem 2.4 holds for µ An . In addition, if (3.9) holds with a > 1/2 then the conclusion of Theorem 2.2 holds for µ Bn .

Proof. Notice that in this case (2.6) holds directly. Hence, to prove the above corollary, it suffices to show that conditions (2.5) and (2.4) are satisfied. Noting that g is an odd function we have

E(g(ε k )|ε 0 ) = (1 -|ε 0 |) k g(ε 0 ) a.s.
Therefore, by the assumption on g and (3.9), we get for any k 0,

E(X 0 X k ) = E g(ε 0 )E(g(ε k )|ε 0 ) = θ -1 E g 2 (x)(1 -|x|) k |x| -1 ν(dx) C 2 c θ -1 E x a+1 |x| (1 -|x|) k dx . (3.11)
By the properties of the Beta and Gamma functions, it follows that

|E(X 0 X k )| = O 1 k a+1
and thus (2.5) holds. Moreover, it has been proved in Section 4 of [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] that if (3.9) is satisfied then (ε k ) k∈Z is an absolutely regular sequence with β n = O(n -a ) as n → ∞ and thereby all the conditions of Theorem 2.4 are satisfied. However, if in addition a > 1/2 then (2.4) is also satisfied and Theorem 2.2 follows as well.

Uniformly expanding maps

Functionals of absolutely regular sequences occur naturally as orbits of chaotic dynamical systems. For instance, for uniformly expanding maps T : [0, 1] → [0, 1] with absolutely continuous invariant measure µ, one can write T k = g(ε k , ε k+1 , . . .) for some measurable function g : R Z → R where (ε k ) k 0 is an absolutely regular sequence. We refer to Section 2 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] for more details and for a precise definition of such maps (see also Example 1.4 in [START_REF] Borovkova | Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation[END_REF]). Hofbauer and Keller prove in Theorem 4 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] that the mixing rate of (ε k ) k 0 decreases exponentially, i.e.

β k Ce -λk , for some C, λ > 0 .

(3.12)

Moreover, setting for any k 0,

X k = f • T k -µ(f ), (3.13) 
where f : [0, 1] → R is a continuous Hölder function, we have by Theorem 5 of [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF] that (X k ) k 0 satisfies (2.5) and (2.6). Finally, as (2.4) holds by (3.12) then the conclusions of Theorem 2.4 and Theorem 2.2 hold for the associated matrices A n and B n respectively.

Proof of Theorem 2.1

Let m be a positive integer (fixed for the moment) such that m √ N /2 and let (X k,m ) k∈Z be the sequence defined for any k ∈ Z by,

X k,m = E(X k |ε k-m , . . . , ε k+m ). (4.1)
Consider the N × n matrix X n,m = ((X n,m ) ij ) i,j = (X (j-1)N +i, m ) i,j and finally set

B n,m = 1 n X n,m X T n,m . (4.2) 
The proof will be done in two principal steps. First, we shall prove that 

We note that for any two N × n random matrices A and B, we have

S AA T (z) -S BB T (z) √ 2 N v 2 Tr AA T + BB T 1/2 Tr(A -B)(A -B) T 1/2 . (4.5)
For a proof, the reader can check Inequalities (4.18) and (4.19) of [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF]. Thus, we get, for any

z = u + iv ∈ C + , S Bn (z) -S Bn,m (z) 2 2 v 4 1 N Tr(B n + B n,m ) 1 N n Tr(X n -X n,m )(X n -X n,m ) T (4.6)
Recall that mixing implies ergodicity and note that as (ε k ) k∈Z is an ergodic sequence of realvalued random variables then (X k ) k∈Z is also so. Therefore, by the ergodic theorem, 

lim n→+∞ 1 N Tr(B n ) = lim n→+∞ 1 N n N n k=1 X 2 k = E(X 2 
1 N n Tr(X n -X n,m )(X n -X n,m ) T = 0 a.s. (4.9)
By the construction of X n and X n,m and again the ergodic theorem, we get

lim n→∞ 1 N n Tr(X n -X n,m )(X n -X n,m ) T = lim n→∞ 1 N n N n k=1 (X k -X k, m ) 2 = E X 0 -X 0,m 2 a.s.
(4.9) follows by applying the usual martingale convergence theorem in L 2 , from which we infer that lim m→+∞ X 0 -E(X 0 |ε -m , . . . , ε m ) 2 = 0 (see Corollary 2.2 by Hall and Heyde [START_REF] Hall | Martingale limit theory and its application[END_REF]).

We turn now to the proof of (4.4). With this aim, we shall prove that for any z = u + iv and x > 0,

P S Bn,m (z) -ES Bn,m (z) > 4x 4 exp - x 2 v 2 N 2 (log n) α 320 n 2 + 32 n 2 (log n) α x 2 v 2 N 2 β Nn (log n) α , (4.10) for some α > 1. Noting that n 2 (log n) α β [n 2 /(log n) α ] < +∞ is equivalent to (2.4)
and applying Borel-Cantelli Lemma, (4.4) follows by (2.4) and the fact that lim n→∞ N/n = c. To prove (4.10), we start by noting that

P S Bn,m (z) -E S Bn,m (z) > 4x P Re S Bn,m (z) -E Re S Bn,m (z) > 2x + P Im S Bn,m (z) -E Im S Bn,m (z) > 2x
For a row vector x ∈ R N n , we partition it into n elements of dimension N and write x = x 1 , . . . , x n where x 1 , . . . , x n are row vectors of R N . Now, let A(x) and B(x) be respectively the N × n and N × N matrices defined by

A(x) = x T 1 | . . . |x T n and B(x) = 1 n A(x)A(x) T . (4.11)
Also, let h 1 := h 1,z and h 2 := h 2,z be the functions defined from R N n into R by

h 1 (x) = f 1,z dµ B(x) and h 2 (x) = f 2,z dµ B(x) ,
where

f 1,z (λ) = λ-u (λ-u) 2 +v 2 and f 2,z (λ) = v (λ-u)
2 +v 2 and note that S B(x) (z) = h 1 (x) + ih 2 (x). Now, denoting by X T 1,m , . . . , X T n,m the columns of X n,m and setting A to be the row random vector of R N n given by A = (X 1,m , . . . , X n,m ), we note that B(A) = B n,m and h 1 (A) = Re S Bn,m (z) . Moreover, setting F i = σ(ε k , k iN + m) for 1 i n with the convention that F 0 = {∅, Ω} and F [n/q]q+q = F n , we note that X 1,m , . . . , X i,m are F i -measurable. Finally, we let q be a positive integer less than n and write the following decomposition:

Re S Bn,m (z) -E Re S Bn,m (z) = h 1 (X 1,m , . . . , X n,m ) -Eh 1 (X 1,m , . . . , X n,m ) = [n/q]+1 i=1 E(h 1 (A)|F iq ) -E(h 1 (A)|F (i-1)q ) . Now, let (A i ) 1 i [n/q]+1
be a sequence of row random vectors of R N n defined for any i ∈ {1, . . . , [n/q]} by

A i = X 1,m , . . . , X (i-1)q,m , 0 N , . . . , 0 N 2q times
, X (i+1)q+1,m , . . . , X n,m , and for i = [n/q] + 1 by

A [ n q ]+1 = X 1,m , . . . , X [ n q ]q,m , 0 N , . . . , 0 N n-[n/q]q times . Noting that E h 1 (A [n/q]+1 )|F n = E(h 1 A [n/q]+1 )|F [n/q]q , we write Re S Bn,m (z) -E Re S Bn,m (z) = [n/q]+1 i=1 E h 1 (A) -h 1 (A i )|F iq -E h 1 (A) -h 1 (A i )|F (i-1)q + [n/q] i=1 E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q := M [n/q]+1, q + [n/q] i=1 E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q . (4.12)
Thus, we get

P Re S Bn,m (z) -E Re S Bn,m (z) > 2x P |M [n/q]+1, q | > x + P [n/q] i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) > x . (4.13)
Note that (M k,q ) k is a centered martingale with respect to the filtration (G k,q ) k defined by G k,q = F kq . Moreover, for any k ∈ {1, . . . , [n/q] + 1},

M k,q -M k-1,q ∞ = E(h 1 (A) -h 1 (A k )|F kq ) -E(h 1 (A) -h 1 (A k )|F (k-1)q ) ∞ 2 h 1 (A) -h 1 (A k ) ∞
Noting that f ′ 1,z 1 = 2/v then by integrating by parts, we get

|h 1 (A) -h 1 (A k )| = f 1,z dµ B(A) -f 1,z dµ B(A k ) f ′ 1,z 1 F B(A) -F B(A k ) ∞ 2 vN Rank A(A) -A(A k ) , (4.14) 
where the second inequality follows from Theorem A.44 of [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF]. As for any k ∈ {1, . . . , [n/q]}, Rank A(A) -A(A k ) 2q and Rank A(A) -A(A [n/q]+1 ) q, then overall we derive that

M k,q -M k-1,q ∞ 8q vN and M [n/q]+1,q -M [n/q],q ∞ 4q vN a.s.
and hence applying the Azuma-Hoeffding inequality for martingales we get for any x > 0,

P |M [n/q]+1, q | > x 2 exp - x 2 v 2 N 2 160 q n . (4.15)
Now to control the second term of (4.12), we have, by Markov's inequality and orthogonality, for any x > 0,

P [n/q] i=1 E(h 1 (A i )|F iq )-E(h 1 (A i )|F (i-1)q ) > x 1 x 2 [n/q] i=1 E(h 1 (A i )|F iq )-E(h 1 (A i )|F (i-1)q ) 2 2 .
(4.16) Fixing i ∈ {1, . . . , [n/q]}, we construct by Berbee's maximal coupling lemma [START_REF] Berbee | Random Walks with Stationary Increments and Renewal Theory[END_REF], a sequence (ε ′ k ) k∈Z distributed as (ε k ) k∈Z and independent of F iq such that for any j > iqN + m,

P(ε ′ k = ε k , for some k j) = β j-iqN -m . (4.17)
Let (X ′ k,m ) k 1 be the sequence defined for any k 1 by

X ′ k,m = E(X k |ε ′ k-m , . . . , ε ′ k+m ) and let X ′ i,m be the row vector of R N defined by X ′ i,m = (X ′ (i-1)N +1,m , . . . , X ′ iN,m
). Finally, we define for any i ∈ {1, . . . , [n/q]} the row random vector A ′ i of R N n by

A ′ i = X 1,m , . . . , X (i-1)q,m , 0 N , . . . , 0 N 2q times , X ′ (i+1)q+1,m , . . . , X ′ n,m . As X ′ (i+1)q+1,m , . . . , X ′ n,m are independent of F iq then E(h 1 (A ′ i )|F iq ) = E(h 1 (A ′ i )|F (i-1)q
). Thus we write

E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q = E h 1 (A i ) -h 1 (A ′ i )|F iq -E h 1 (A i ) -h 1 (A ′ i )|F (i-1)q .
and infer that

E h 1 (A i )|F iq -E h 1 (A i )|F (i-1)q 2 E h 1 (A i ) -h 1 (A ′ i )|F iq 2 + E h 1 (A i ) -h 1 (A ′ i )|F (i-1)q 2 2 h 1 (A i ) -h 1 (A ′ i ) 2 (4.18)
Similarly as in (4.14), we have

h 1 (A i ) -h 1 (A ′ i ) 2 vN Rank(A(A i ) -A(A ′ i )) 2 vN n ℓ=(i+1)q+1 1 X ′ ℓ,m =X ℓ,m 2n vN 1 ε ′ k =ε k , for some k (i+1)qN +1-m .
Hence by (4.17), we infer that

h 1 (A i ) -h 1 (A ′ i ) 2 2 4n 2 v 2 N 2 β qN +1-2m 4n 2 v 2 N 2 β (q-1)N , (4.19) 
Starting from (4.16) together with (4.18) and (4.19), it follows that

P [n/q] i=1 E(h 1 (A i )|F iq ) -E(h 1 (A i )|F (i-1)q ) > x 16n 3 x 2 v 2 q N 2 β (q-1)N . (4.20) 
Therefore, considering (4.13) and gathering the upper bounds in (4.15) and (4.20), we get

P Re S Bn,m (z) -E Re S Bn,m (z) > 2x 2 exp - x 2 v 2 N 2 160 q n + 16n 3 x 2 v 2 q N 2 β (q-1)N .
Finally, noting that P Im S Bn,m (z) -E Im S Bn,m (z) > 2x also admits the same upper bound and choosing q = [n/(log n) α ] + 1, (4.10) follows ending the proof of Theorem 2.1.

Proof of Theorem 2.2

To prove Theorem 2.2 it suffices to show that for any z ∈ C + , S Bn (z) → S(z) a.s.

(

where S(z) satisfies equation (2.7). However, by Theorem 2.1, it becomes sufficient to prove that, for any z ∈ C + , lim

n→∞ E S Bn (z) = S(z). (5.2) 
Now, let (Z k ) k∈Z be a centered Gaussian process with real values, whose covariance function is given for any

k, ℓ ∈ Z by Cov(Z k , Z ℓ ) = Cov(X k , X ℓ ) . (5.3) 
For a positive integer n, we consider n independent copies of the Gaussian process (Z k ) k∈Z that are also independent of (X k ) k∈Z . We shall denote these copies by (Z

(i) k ) k∈Z for i = 1, . . . , n. Now, consider the N × n matrix Z n = ((Z n ) u,v ) uv = (Z (v)
u ) uv and note that its columns are independent copies of the vector (Z 1 , . . . , Z N ) T . Finally, consider its associated Gram matrix

G n = 1 n Z n Z T n . (5.4) 
Banna and Merlevède proved in Section 4.4 of [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF] that

lim n→∞ E S Gn (z) = S(z) . (5.5) 
This was accomplished with the help of Theorem 1.1 of Silverstein [START_REF] Silverstein | Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices[END_REF] combined with arguments developed in the proof of Theorem 1 of Yao [START_REF] Yao | A note on a Marcenko-Pastur type theorem for time series[END_REF]. Thus, the proof of (5.2) is reduced to prove, for any z ∈ C + , lim n→∞ E S Bn (z) -E S Gn (z) = 0 .

(5.6)

The proof of (5.6), being technical, will be divided into three major steps (Sections 5.1 to 5.3).

A First Approximation

By (2.6), there exists a sequence (a n ) n 1 of positive integers such that lim n→+∞ a n = +∞ and lim

n→+∞ a n n X 0 -E(X 0 |F n -n ) 2 2 = 0. ( 5.7) 
Let p := p(m) = a m m and define k N = N p+3m . We write now the subset {1, . . . , N n} as a union of disjoint subsets of N as follows:

[1, N n] ∩ N = n i=1 [(i -1)N + 1, iN ] ∩ N = n i=1 k N +1 ℓ=1 I i ℓ ∪ J i ℓ ,
where, for i ∈ {1, . . . , n} and ℓ ∈ {1, . . . , k N },

I i ℓ := (i -1)N + (ℓ -1)(p + 3m) + 1 , (i -1)N + (ℓ -1)(p + 3m) + p ∩ N, J i ℓ := (i -1)N + (ℓ -1)(p + 3m) + p + 1 , (i -1)N + ℓ(p + 3m) ∩ N ,
and, for ℓ = k N + 1, I i k N +1 = ∅ and

J i k N +1 = (i -1)N + k N (p + 3m) + 1 , iN ∩ N . Now, since X k is centered, we write for k ∈ I i ℓ , X k -Xk,m 2 = X k -X k,m -E(X k -X k,m ) 2 2 X k -X k,m 2 2 X k -E(X k |B i,ℓ ) 2 + 2 X k,m -E(X k |B i,ℓ ) 2
Analyzing the second term of the last inequality, we get

X k,m -E(X k |B i,ℓ ) 2 = E(X k -ϕ M (X k )|B i,ℓ ) 2 X k -ϕ M (X k ) 2 = (|X 0 |-M ) + 2 .
(5.17)

As X 0 belongs to L 2 , then lim M →+∞ (|X 0 | -M ) + 2 = 0. Now, we note that for k ∈ I i ℓ , σ(ε k-m , . . . , ε k+m ) ⊂ σ(B i,ℓ ) which implies that

X k -E(X k |B i,ℓ ) 2 X k -E(X k |ε k-m , . . . , ε k+m ) 2 = X 0 -E(X 0 |ε -m , . . . , ε m ) 2 = X 0 -X 0,m 2 . (5.18)
where the first equality is due to the stationarity. Therefore, by (5.17), (5.18), the fact that pk N N and

Card n i=1 k N +1 ℓ=1 J i ℓ N n -npk N , we infer that 1 N n E|Tr(X n -Xn,m )(X n -Xn,m ) T | 8 X 0 -X 0,m 2 2 + 8 (|X 0 | -M ) + 2 2 + (3(a m + 3) -1 + a m mN -1 ) X 0 2 2 . (5.19) 
Thus starting from (5.15), considering the upper bounds (5.16) and (5.19), we derive that there exists a positive constant C not depending on (n, m, M ) such that lim sup

M →∞ lim sup n→∞ E S Bn (z) -E S Bn,m (z) C v 2 X 0 -X 0,m 2 2 + 3 a m .
Taking the limit on m, Proposition 5.1 follows by the martingale convergence theorem in L 2 .

Approximation by a Gram Matrix with Independent Blocks

By Berbee's classical coupling lemma [START_REF] Berbee | Random Walks with Stationary Increments and Renewal Theory[END_REF], one can construct by induction a sequence of random variables (ε * k ) k 1 such that:

• For any 1 i n and 1 ℓ k N ,

B * i,ℓ = (ε * (i-1)N +(ℓ-1)(p+3m)+1-m , . . . , ε * (i-1)N +(ℓ-1)(p+3m)+p+m )
has the same distribution as B i,ℓ defined in (5.8).

• The array (B * i,ℓ

) 1 i n, 1 ℓ k N is i.i.d.
• For any 1 i n and 1 ℓ k N , P(B i,ℓ = B * i,ℓ ) β m .

(see page 484 of [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] for more details concerning the construction of the array (B * i,ℓ ) i,ℓ 1 ). We define now the sequence ( X * k,m ) k 1 as follows:

X * k,m = h k (B * i,ℓ ) if k ∈ I i ℓ , (5.20) 
where the functions h k are defined in (5.12).

We construct the N 

× n random matrix X * n,m = (( X * n,m ) ij ) i,j = ( X * (j-1)N +i, m ) i,j . Note that the block of entries ( X * k,m , k ∈ I i ℓ ) is independent of ( X * k,m , k ∈ I i ′ ℓ ′ ) if (i, ℓ) = (i ′ , ℓ ′ ).
E S Bn,m (z) -E S B * n,m (z) √ 2 v 2 1 N Tr( Bn,m + B * n,m ) 1/2 1 1 N n Tr( Xn,m -X * n,m )( Xn,m -X * n,m ) T 1/2 1 (5.23) Notice that X * k,m 2 = h k (B * i,ℓ ) 2 = h k (B i,ℓ ) 2 = Xk,m 2 2 X 0 2
, where the second equality follows from the fact that B * i,ℓ is distributed as B i,ℓ whereas the last inequality follows from (5.10). Thus, we get by the definition of B * n,m and the fact that pk N N , By the construction of Xn,m and X * n,m , we write

1 N E Tr( B * n,m ) = 1 N n n i=1 k N ℓ=1 k∈I i ℓ X * k,m 2 
1 N n E Tr( Xn,m -X * n,m )( Xn,m -X * n,m ) T = 1 N n n i=1 k N ℓ=1 k∈I i ℓ Xk,m -X * k,m 2 2 . 
(5.26)

Now, let L be a fixed positive real number strictly less than M and not depending on (n, m, M ).

To control the term Xk,m -X *

k,m 2 
2 , we write for k

∈ I i ℓ , Xk,m -X * k,m 2 2 = (h k (B i,ℓ ) -h k (B * i,ℓ ))1 B i,ℓ =B * i,ℓ 2 2 4 h k (B i,ℓ )1 B i,ℓ =B * i,ℓ 2 2 = 4 Xk,m 1 B i,ℓ =B * i,ℓ 2 2 12 Xk,m -E(X k |B i,ℓ ) 2 2 + 12 E(X k |B i,ℓ ) -E(ϕ L (X k )|B i,ℓ ) 2 2 + 12 E(ϕ L (X k )|B i,ℓ )1 B i,ℓ =B * i,ℓ 2 2 . 
Since P(B i,ℓ = B * i,ℓ ) β m and ϕ L (X k ) is bounded by L, we get

E(ϕ L (X k )|B i,ℓ )1 B i,ℓ =B * i,ℓ 2 2 
L 2 β m .

Therefore, following the lines of the proof of Proposition 4.3 of [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF], we get for any z = u+iv ∈ C + , E S B * n,m (z) -E S Gn (z) where the last inequality follows from (5.17 

C(1 + M 5 )N 1/2 p 2 v 3 (1 ∧ v)n + C(1 + M 2 )(1 + c 2 (n))p nv 3 (1 ∧ v 2 ) + C(1 + c 2 (n)) v 2 (1 ∧ v) k≥m+1 |Cov(X 0 , X k )| + C nv 2 (1 ∧ v)(N ∧ n)

SS

  Bn (z) -S Bn,m (z) = 0 a.s. Bn,m (z) -E S Bn,m (z) = 0 a.s. (

Proposition 5 . 2 E

 52 Let Bn,m and B * n,m be defined in (5.13) and (5.21) respectively. Assuming that lim n→∞ N/n = c ∈ (0, ∞) and lim n→∞ β n = 0 then for any z ∈ C + , S Bn,m (z) -E S B * n,m (z) = 0. (5.22) Proof. By (4.5) and Cauchy-Schwarz's inequality, it follows that

  23),(5.16) and (5.24), we infer that Proposition 5.2 follows once we prove that lim Xn,m -X * n,m )( Xn,m -X * n,m ) T = 0 .(5.25)

( 1 + M 5 )N 1 2 2,

 1512 k,m , X * ℓ,m -Cov X k , X ℓ ,(5.30) where C is a constant not depending on (n, m, M ) and c(n) = N/n. Since c(n) → c ∈ (0, ∞), it follows that lim n→∞ On the other hand, we get by (2.5) that lim m→∞ k≥m+1 |Cov(X 0 , X k )| = 0. Therefore, Proposition 5.3 follows if we prove that, for anyz ∈ C + , k,m , X * ℓ,m -Cov X k , X ℓ = 0 . (5.31)In fact, as B * i,s is distributed as B i,s then by (5.9) and (5.20) we have for k∈ I i s , E( X * k,m ) = E(h k (B * i,s )) = E(h k (B i,s )) = E( Xk,m ) = 0.For the same reasons, we have for k, ℓ∈ I i s , Cov( X * k,m , X * ℓ,m ) = E( X * k,m X * ℓ,m ) = E(h k (B * i,s )h ℓ (B * i,s )) = E(h k (B i,s )h ℓ (B i,s )) = Cov( Xk,m , Xℓ,m )Moreover, letting for k ∈ I i s , X k,m = E(X k |B i,s ) and noting that E( X k,m ) = 0, we writek∈I i s ℓ∈I i s Cov X * k,m , X * ℓ,m -Cov X k , X ℓ = k∈I i s ℓ∈I i s Cov Xk,m , Xℓ,m -Cov X k , X ℓ k∈I i s ℓ∈I i s Cov Xk,m , Xℓ,m -Cov X k,m , X ℓ,m + k∈I i s ℓ∈I i s Cov X k,m , X ℓ,m -Cov X k , X ℓ .(5.32) Now, by the stationarity of (X k ) k∈Z , the fact that the random variables are centered,(5.11) and Cauchy-Schwarz's inequality, we getCov Xk,m , Xℓ,m -Cov X k,m , X ℓ,m = Cov Xk,m , Xℓ,m -X ℓ,m -Cov X k,m -Xk,m , X ℓ,m -Xℓ,m -Cov X k,m -Xk,m , Xℓ,m2MXℓ,m -X ℓ,m 1 + Xk,m -X k,m 2 Xℓ,m -X ℓ,m 2 + 2M Xk,m -X k,m 1 8M (|X 0 | -M ) + 1 + 4 (|X 0 | -M ) + (5.33)

  Thus, X *

						n,m
	has independent blocks of dimension p separated by null blocks whose dimension is at least 3m.
	Setting	B * n,m :=	1 n	X * n,m	X * T n,m ,	(5.21)
	we approximate Bn,m by the Gram matrix B * n,m as shown in the following proposition.	

  ). Moreover, |x| -M + ≤ 2|x|1 |x|≥M which in turn implies that M |x| -M + ≤ 2|x| 2 1 |x|≥M . So, overall we get

	k∈I i s ℓ∈I i

s Cov Xk,m , Xℓ,m -Cov X k,m , X ℓ,m 32p 2 E(X 2 0 1 |X 0 | M ). (

5

.34) 

Acknowledgments

I am grateful to my thesis advisor Florence Merlevède who was generous with her time, knowledge and assistance. I also thank my co-advisor Emmanuel Rio for valuable discussions.

Note that for all i ∈ {1, . . . , n}, J i k N +1 = ∅ if k N (p + 3m) = N . Now, let M be a fixed positive number not depending on (n, m) and let ϕ M be the function defined by ϕ M (x) = (x∧M )∨(-M ). Setting B i,ℓ = (ε (i-1)N +(ℓ-1)(p+3m)+1-m , . . . , ε (i-1)N +(ℓ-1)(p+3m)+p+m ), (5.8) we define the sequences ( X k,m,M ) k 1 and ( Xk,m,M ) k 1 as follows:

and Xk,m,M = X k,m,M -E( X k,m,M ).

(5.9)

To soothe the notations, we shall write X k,m and Xk,m instead of X k,m,M and Xk,m,M respectively. Note that for any

where the last equality in (5.10) follows from the stationarity of (X k ) k . As Xk,m is σ(B i,ℓ )measurable then it can be written as a measurable function h k of B i,ℓ , i.e.

Xk,m = h k (B i,ℓ ).

(5.12)

Finally, let Xn,m = (( Xn,m ) ij ) i,j = ( X(j-1)N+i, m ) i,j and set

We shall approximate B n by Bn,m by the following proposition: Proof. By (4.5) and Cauchy-Schwarz's inequality, it follows that

Similarly and due to the fact that pk N N and (5.10),

(5.16)

Moreover, by the construction of X n and Xn,m , we have

Moreover, it follows by the fact that X k is centered and (5.17

. Hence gathering the above upper bounds and noting that pk N N , we infer that

Letting first M , then m and finally L tend to infinity, the right-hand-side converges to zero which considering (5.26) implies (5.25) and thus the Proposition.

Approximation by a Gram Matrix Associated with a Gaussian Process

In order to prove (5.6), it suffices, in view of (5. 

k be defined for any 1 i n and 1 k N by

where the

k 's are independent copies of the Gaussian process defined in (5.3). We define now the N × n matrix

u ) uv and finally set Proof. We don't give a full proof of this proposition because the computation involved has been almost exactly done in the proof of Proposition 4.3 of [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF]. Similarly as X * n,m , the matrix Xn considered in [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF] has independent blocks separated by blocks of zero entries. The dimensions of blocks considered differ but this does not affect the proof. For instance, p = m 2 in [START_REF] Banna | Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes[END_REF], however here p = a m m with a m being defined in (5.7).

Again, by the stationarity of (X k ) k∈Z , the fact that the random variables are centered, (5.10), Cauchy-Schwarz's inequality and (5.18), we get

Therefore,

(5.36) Therefore, starting from (5.32) together with (5.34) and (5.36), it follows that there exists a constant C not depending on (n, m, M ) such that

(5.37)

Letting n tend to infinity, N/(N ∧ n) converges to 1 ∨ c since lim n→+∞ N/n = c. Then letting M tend to infinity, the first term on the right hand side converges to zero since X 0 belongs to L 2 . Finally, letting m tend to infinity, the last term converges to zero by (5.7), which ends the proof of Proposition 5.3 and thus of Theorem 2.2.