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Abstract

Eyke Hüllermeier provides a very convincing approach to learn from fuzzy data, both

about the model and about the data themselves. In the process, he links the shape

of fuzzy sets with classical loss functions, therefore providing strong theoretical links

between fuzzy modeling and more classical machine learning approaches. This short

note discusses various aspects of his proposal as well as possible extensions. I will first

discuss the opportunity to consider more general uncertainty representations, before

considering various alternatives to the proposed learning procedure. Finally, I will

briefly discuss the differences I perceive about a loss-based and a likelihood-based

approach.

1. Introduction

The paper [3] by Eyke Hüllermeier is a crystal clear exposition of what I think are

two important contributions: first, he lays bare the idea of data disambiguation, i.e., the

fact that in case of data uncertainty learning about the model and about the data should

go “hand in hand”; second he makes a formal connection between learning with fuzzy

data and learning with specific loss functions. This latter contribution may even be

more important than the first, as it provides fuzzy sets and fuzzy modeling with a clear

interpretation in terms of loss functions, therefore bringing them closer to classical

machine learning techniques.

The paper provides a generic method and illustrates it on simple examples, showing

why it makes sense to use such a method. It opens wide area of potential research, in

terms of problems to which the method can be applied to. Yet I think the view of the

author as well as the idea of data disambiguation could be expanded in various ways,

which I briefly discuss here. My background being mainly in uncertainty treatment, my

comments will focus on that aspect rather than on aspects related to learning issues. I

will address the following points:
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• The extension of the proposed method to more general uncertainty models, with

short examples;

• The possibility of using other ”choice” rules, including non-precise ones;

• The disambiguation process and its ambiguity in the fuzzy case;

• The differences between a likelihood-based approach and a loss-based approach.

2. The use of more general uncertainty models

In the paper, data uncertainty is considered to be described by fuzzy sets, reduced

to the case of classical sets or intervals in the first part to facilitate exposure. As fuzzy

sets are known to be somehow of limited expressiveness (e.g., they do not include

probabilities as particular cases), I think there may be some interest in extending the

current proposal to more generic models of uncertainty. In particular, since the value

L(Y, ŷ) of the fuzzy loss function can be interpreted as a lower expectation (provided

the possibility measure induced by the fuzzy set is read as an upper probability [2]),

its extension to the case where the uncertainty of an observation Yi is described by a

(convex) probability set Mi would be straightforward. Namely, given a model M, an

observation xi and a loss function L, the generalized loss function L(Yi,M(xi)) would

read as

L(Yi,M(xi)) = inf
p∈Mi

E(L(Yi),M(xi)) (1)

with E the expectation of the function L of the random variable Yi having distribution

p ∈ Mi. As Walley’s lower previsions [6] provide a subjective interpretation of Mi

without necessitating the assumption that there exists a precise yet unknown probability

inside Mi, I think this kind of modeling is in line with the data uncertainty considered

in the paper. I see at least two advantages in doing that:

• It would include both fuzzy and probabilistic uncertainty as particular instances;

• It would allow for more general statements of uncertainty when labeling the data,

that could not be properly modeled by fuzzy sets nor probabilities. For instance,

over a finite set of classes λ1, . . . ,λK , experts could provide lower and upper

probabilistic bounds over each class [1] (statements of the kind ℓi ≤ p(λi)≤ ui)

or even provide comparative statements inducing a partial order over the likeli-

hood of observing the classes [4] (statements of the kind p(λi)≤ p(λ j)).

The obvious disadvantages of such an extension to the proposed framework would be

an increased computational cost (which could be limited if chosen uncertainty models

remain simple enough), and perhaps more importantly a less obvious connection with

loss functions, as the uncertainty models could not be reduced to a simple function over

the space Y .
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3. The “minimin” approach vs other ones

The approach adopted in the paper can be considered as a decision problem in

which an optimistic or a “minimin” approach is adopted. That is, the chosen model

(and the associated data disambiguation) is the one that optimizes our decision in the

best possible situation. I agree that in the case considered by Eyke Hüllermeier, that

is learning a unique best possible model, the “minimin” choice made in the paper is

probably the most sensible one, as other decision rules leading to a unique choice

(such as minimax or minimax regret) would lead to another unique model likely to not

make the best out of the situation. This is quite different from risk analysis or robust

optimization problems, where the decision maker wants to prevent him/herself against

uncertainty.

However, the alternative mentioned by Eyke Hüllermeier to select a set of opti-

mal models, for instance using the partial ordering induced by the whole distributions

rM(α) in the fuzzy case, or using other approaches such as stating that M1 is preferred

to M2 when the condition

min{L(y,M1(x))−L(y,M2(x))|(x,y) ∈ X ×Y}> 0

is satisfied1, seems to me very interesting. Such approaches would be less conserva-

tive than simply applying the extension principle, yet would provide cautious decisions

allowing for abstention, as well as a kind of partial disambiguation, as not all replace-

ments would have the same status with respect to the set of possibly optimal models.

As the unique optimal model retained in the paper would still be included in this set,

one could then still decide to use it in order to obtain a unique model and disambigua-

tion if needed. Of course, the challenge of adopting such a view would be to come up

with computationally efficient methods, especially in large problems.

4. The disambiguation process

In the interval or set-valued data case, the data disambiguation process provides a

(unique) precise disambiguation or selection, which is a nice result. However, in the

fuzzy data case, the disambiguation process currently ends up with a gradual element

(number in the case of real-valued data), and it is not clear in the paper how one can

go from this gradual element to a crisp and precise replacement (this remark extends to

Equation (1), where the disambiguation would be the selected probability distribution).

I may be wrong, but in the paper there seems to be no proposed means to obtain a

unique precise disambiguation from fuzzy data. Should we select a given alpha-cut?

The average value of the gradual element (if such an average can be defined)? The

prediction provided by the optimal model and included in the fuzzy set support?

One alternative to obtain such a disambiguation using ideas similar to those of

this paper would be to search such a precise disambiguation together with an optimal

1This is close to the maximal decision criterion [5] used in imprecise probability theory.
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model, penalizing models leading to unlikely disambiguations. For instance, if X ×Y

are the fuzzy data, we may define an optimal disambiguation x∗,y∗ and model M∗ as

(x∗,y∗,M∗) = arg min
x,y∈X×Y

M∈M

Remp(M)+λ (1−µX×Y (x,y))

where µX×Y (x,y) is the membership value of the disambiguation (x,y) (obtained, e.g.,

through the extension principle) and where λ ≥ 0 is a parameter that determines how

much choosing unlikely disambiguations is penalized. Provided µX×Y is obtained by

the extension principle, this would probably correspond to pick a suitable degree α

(induced by the value of λ ) in the paper method, and then use the set-valued procedure

on the α-cut to obtain the optimal model. The above idea could also be extended to

more general uncertainty models, replacing µ with a corresponding uncertainty mea-

sure (i.e., plausibility measure, upper probability, . . . ).

5. Likelihood and loss

I think the comparison made with Denoeux’s approach sheds a very interesting light

on this latter approach, and shows one possible interpretation of it. However, beyond

the interpretation in terms of loss functions, I think (but Eyke Hüllermeier or Thierry

Denoeux may disagree on that) there is an essential philosophical difference between

the two: that while Eyke Hüllermeier’s approach includes a subjective decision com-

ponent in its method through the loss function, Thierry Denoeux’s approach tries to

obtain what I would call an “objective” description of the data population.

Indeed, Thierry Denoeux’s approach aims at estimating the parameters θ of a para-

metric distribution Pθ describing the data, the distribution Pθ not depending on a partic-

ular decision maker. Once this is done, any loss function can be plugged to the model

Pθ . On the contrary, Eyke Hüllermeier’s approach will lead to an optimal predictive

model that may change when the loss function is modified, hence may vary between

decision makers.

I think both views offer advantages and disadvantages. If one wants to separate the

process of inference from the process of decision (because the loss function to be used

is not yet known, or for other reasons [6, Sec. 1.5.]), then I would favor Denoeux’s

approach. If the loss function (or a good approximation of it) is available and one

wants to provide (unique) optimal decisions, then I agree with Eyke Hüllermeier that

his approach is likely to make the best out of the available information, and is more

adapted in this case.
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