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Summary

• Quantitative plant disease resistance is believed to be more durable than qualita-
tive resistance, since it exerts less selective pressure on the pathogens. However, the
process of progressive pathogen adaptation to quantitative resistance is poorly un-
derstood, which makes it difficult to predict its durability or to derive principles for
its sustainable deployment. Here, we study the dynamics of pathogen adaptation in
response to quantitative plant resistance affecting pathogen reproduction rate and
its carrying capacity.

• We developed a stochastic model for the continuous evolution of a pathogen popu-
lation within a quantitatively resistant host. We assumed that pathogen can adapt
to a host by the progressive restoration of reproduction rate or of carrying capacity,
or of both.

• Our model suggests that a combination of QTLs affecting distinct pathogen traits
was more durable if the evolution of repressed traits was antagonistic. Other-
wise, quantitative resistance that depressed only pathogen reproduction was more
durable.

• In order to decelerate the progressive pathogen adaptation, QTLs that decrease the
pathogen’s ability to extend must be combined with QTLs that decrease the spore
production per lesion or the infection efficiency or that increase the latent period.
Our theoretical framework can help breeders to develop principles for sustainable
deployment of quantitative trait loci.

Key words: Continuous adaptive dynamics, birth and death process, QTL erosion,
resistance durability, partial resistance, breeding strategies.

1



1 Introduction

The use of resistant disease cultivars in agro-ecosystems has a considerable effect on the
evolutionary dynamics of pathogens (McDonald & Linde, 2002; Mundt et al., 2002). Two
types of resistance have historically been distinguished: qualitative and quantitative re-
sistance (Ainsworth, 1981). Qualitative resistance is based on gene-for-gene relationships
subjected to relatively simple genetic control, and it renders a cultivar immune to dis-
ease (Flor, 1971; Dangl & Jones, 2001). The mechanisms of the rapid adaptation of the
pathogen to this type of resistance, and the evolutionary consequences of its deployment,
have already been studied in detail (van den Bosch & Gilligan, 2003; Bourget et al.,
2013). In contrast, the genetic mechanisms underlying pathogen adaptation to quantita-
tive plant resistance, which reduces the level of disease rather than conferring immunity
(Young, 1996), are poorly understood. It has been shown that quantitative resistance in
a host population can be associated with the presence of quantitative trait loci, QTLs,
in its genome (Young, 1996; St.Clair, 2010). QTLs can be overcome by a swift pathogen
adaptation like a qualitative resistance (Lehman & Shaner, 1996; Moury et al., 2004; Pal-
loix et al., 2009). In this case pathogen adaptation can be described by existing models
(Bourget et al., 2013). Here, we consider a progressive pathogen adaptation when the
polygenic structure is overcome by multiple successive genetic changes in the pathogen
population (McDonald & Linde, 2002; Poland et al., 2009) that can make quantitative
resistance more durable (Andrivon et al., 2007; Palloix et al., 2009; Brun et al., 2010).
Moreover, it has been shown that quantitative resistance can depress distinct life-history
traits of the pathogen population, such as the latent period, infection efficiency, lesion
size or the spore production rate (Pariaud et al., 2009; Azzimonti, 2012; Lannou, 2012;
Berg et al., 2013). However, no study, whether theoretical or empirical, has demonstrated
how the ways of restoring the various pathogen traits could drive the speed of pathogen
adaptation. The lack of empirical studies can be explained by the fact that observation
of the progressive adaptation by the pathogen to quantitative resistance is a labor- and
time-consuming process. Indeed, the corresponding pathogen populations can display a
distribution of pathogenicity that may vary considerably from year to year as a result of
the strong genotype-by-environment interactions that occur for quantitative characters in
both the plant and the pathogen (McDonald & Linde, 2002; Caffier et al., 2014). Thus,
to be able to predict the durability of quantitative resistance, we need a theoretical ap-
proach to explore the process of progressive pathogen adaptation driven by the stochastic
restoration of depressed life-traits.

In recent years, growing attention has been paid to approaches in which epidemiology
and evolutionary ecology are merged to study the evolution of plant pathogens in response
to various different deployments of quantitative plant resistance. For instance, Lehman &
Shaner (1996) have demonstrated that quantitative resistance will select pathogens with
a shorter latent period. Using a deterministic model, Iacono et al. (2012) have shown
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that the increase in the proportion of hosts carrying quantitative resistance increases the
gain in the duration of the healthy canopy area. They have also shown that quantita-
tive resistance that reduces the infection efficiency gives a greater gain than quantitative
resistance that reduces the sporulation rate. Theoretical approaches investigating the
evolutionary consequences of partially effective (imperfect) vaccines have focused on two
main questions: how an imperfect vaccine selects for pathogens that are able to evade the
protective effects of the vaccine (van Boven et al., 2005), and how an imperfect vaccine
causes evolutionary changes in pathogen virulence defined as host mortality caused by
the pathogen (Gandon et al., 2001). Recently, Gandon & Day (2007) have developed a
model by which to consider a set of pathogen strains that arise and spread in the face of
vaccination and to classify them by their life-history parameters, rather than to distin-
guish only escape and virulent mutants within the pathogen population. However, none
of these models has provided a realistic description of continuous pathogen adaptation
within a host carrying quantitative resistance.

The objective of this paper is to study the dynamics of continuous pathogen adapta-
tion to a quantitatively resistant host. To do this, we adapted and analyzed a stochastic
model (Champagnat et al., 2006) that describes the birth, mutation, and death processes
of pathogen lesions on a quantitatively resistant host, underlying the dynamics of the
pathogen population. The model made it possible to classify pathogen strains by their
adaptation state and to track the adaptation dynamics of strains through the progressive
stochastic changes in evolution coefficients mimicking the restoration of the pathogens
life-history parameters that have been depressed by quantitative resistance. By numeri-
cal simulations, we studied pathogen adaptation dynamics in response to different impacts
of quantitative resistance on distinct pathogen life-history parameters. Our model sug-
gested that a combination of QTLs affecting distinct pathogen traits was durable, if the
restoration process of repressed traits was antagonistic or independent. Otherwise, quan-
titative resistance that depressed pathogen reproduction alone was more durable. We
discuss strategies for the judicious use of quantitative trait loci in plant breeding from the
viewpoint of potential pathogen adaptation.

2 Description

2.1 Model overview

Our model describes the evolutionary dynamics of a polycyclic disease on an individual
host. We consider the pathogen population as a set of lesions that can be produced by
genetically different strains. We assume that each pathogen lesion interacting with an
individual host is characterized by two quantitative traits of pathogenicity: the reproduc-
tion rate, that is the number of lesions produced by a lesion per unit of time, and the
pathogen’s carrying capacity, that is the maximum number of lesions that can coexist
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on a given host (Otto & Day, 2007). The reproduction rate combines the spore produc-
tion per lesion, the infection efficiency and the latent period. The magnitudes of both
the reproduction rate of the pathogen and its carrying capacity depend on the pathogen
characteristics, the level of host resistance as well as host-pathogen interactions (Lannou,
2012). Despite this fact, for the sake of simplicity, hereinafter we refer to pathogen repro-
duction rate and its carrying capacity as pathogen traits, since we assume that only the
pathogen population evolves and the host surface exposed to infection is fixed.

We assume that on a susceptible host, the reproduction rate of each lesion is r, and the
maximum number of lesions that can potentially coexist is K. If the pathogen attacks a
quantitatively resistant host, the host resistance depresses pathogen traits to some extent.
Thus, on a quantitatively resistant host, the pathogen reproduction rate is reduced to
βrr ≤ r and its carrying capacity is reduced to βKK ≤ K, where βr, βK ∈]0, 1]. We assume
that the pathogen is able to adapt to the host resistance by a progressive restoration of
the depressed traits to the original values, r and K, corresponding to a susceptible host.
When depressed pathogen traits attain the original values, the quantitative host resistance
is supposed to be completely eroded or overcome. In our model, the evolution of pathogen
traits on a quantitatively resistant host is assumed to be driven by stochastic mutations
and selection. We assume that the lesions have the same size and that this size is constant.
Thus, an increase in the carrying capacity, βKK, leads to the extension of the maximum
infected host surface. We designate βr and βK as evolution coefficients of pathogen traits,
since whether they are raised or lowered by stochastic mutations, they drive the evolution
of the reproduction rate and carrying capacity, respectively. Thus, the values of evolution
coefficients describe the adaptation state of a pathogen lesion. The higher the values
of βr and βK , the closer the abilities of the pathogen to those on a susceptible host and
consequently the pathogen strain becomes more adapted to a partially resistant host. The
emergence of new pathogen strains with different pathogen traits, βrr and βKK, leads to
a diversification of the pathogen population and, thereby, to inter-strain competition and
selection.

2.2 Individual-based stochastic model for progressive pathogen

adaptation

Our model is an adjustment of the theoretical framework of Champagnat et al. (2006)
based on Markov chains, which captures stochastic adaptive dynamics influenced by a
continuous trait, as in the case of continuous pathogen adaptation to quantitative host
resistance. Being individual-based, our model makes it possible to follow the adaptation
state of each lesion and the stochastic dynamics of the number of lesions of each pathogen
strain infecting an individual host carrying quantitative resistance. Here, the strain is a
set of lesions having the same adaptation state. Let In(t) be a random variable for the

number of pathogen lesions making up the nth strain at time t. Thus, I(t) =
N(t)
∑

n=1

In(t)
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is a random variable for population size, that is the total number of pathogen lesions on
the host at time t, where N(t) is the total number of strains in the pathogen population.

Each lesion, i ∈ [1, I(t)], is characterized by a vector of adaptation state ~βi = (βi
r, β

i
K)

∈]0; 1]2, where βi
r and βi

K are the evolution coefficients of traits r and K, respectively.
The dynamics of the number of lesions of the nth strain, In(t), are driven by three major
processes: birth, death and mutation. These stochastic processes increase or decrease the
variable by one. The transition from one state of the variable In(t) to another In(t) ± 1
at the moment of time t is driven by transition functions (Nair & Pollett, 1993; Allen,

2003). For each lesion i with evolution vector ~βi, we define the birth transition function

without mutation, λ(~βi), the death transition function due to competition, µ(~βi), and the
birth transition function with mutation

γ(~βi) :


























λ(~βi) = βi
rr(1− ω)

µ(~βi) = βi
rr

βi
K
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I(t)∑

j=1
(βj

r+β
j
K
)

βi
r+βi

K
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γ(~βi) = βi
rrω

, (2.1)

where ω is the probability for a lesion to create a mutant lesion generating a new
strain. The product of the pathogen reproduction rate, βi

rr, and the probability of not

mutating, (1− ω), gives us the birth transition function of lesion i, λ(~βi), while with the

probability of mutating, ω, it gives us its mutation function, γ(~βi). The death function is
based on the Lotka-Volterra equation (Otto & Day, 2007), where the competition between
two lesions, i and j, is determined by the ratio between their mean evolution coefficients
(βj

r + βj
K)/(β

i
r + βi

K), while the carrying capacity of lesion i is βi
KK. The term βi

rr of the
death rate leads to equal birth and death rates, when all lesions have the same evolution
coefficients and the number of lesions reaches its maximum, βi

KK. Table 1 summarizes
the variables and parameters of the model.

Despite the fact that our model is continuous in time, for numerical simulations we
used time discretization with random step, tx. We assume that at time t+ tx, only one of
the events birth, death or mutation, can occur. To determine the time step tx and what
event happens to what pathogen lesion, we generate for each lesion i ∈ [1, I(t)] three

independent random numbers from the exponential distributions with parameters λ(~βi),

µ(~βi), γ(~βi), corresponding to birth, death and mutation events, respectively. Then, tx
becomes the smallest random number among 3I(t) generated ones. Note that tx follows

an exponential distribution with parameter
I(t)
∑

i=0

λ(~βi) + µ(~βi) + γ(~βi). We also memorize

the event and number of lesion i corresponding to tx. Thus, the time advances to t + tx
and the corresponding event happens for pathogen lesion i.

If a birth event happens for lesion i with evolution vector ~βi, then this lesion produces
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a new lesion with the same evolution coefficients, (βi
r, β

i
K). If a death event happens for

lesion i, this lesion dies because of the competition with the other lesions. If a mutation
event happens for lesion i, a new lesion corresponding to a genetically distinct strain
appears with a new evolution coefficient ~βi + ~z = (βi

r + zr, β
i
K + zk), where random

~z = (zr, zk) is determined according to scenarios of pathogen adaptation, described below
in part 2.3. Then, we again generate 3I(t) random numbers and repeat the iterations listed
above. The cycle is repeated until the convergence of one of the evolution coefficients, βi

r

or βi
K , to 1. Figure 1 summarizes the behavior of the model in terms of the transitions

possible in a small time interval, tx.

2.3 Scenarios of pathogen adaptation

Let us consider five different scenarios of pathogen adaptation. Recall that the adaptation
process is driven by random evolution coefficients. The distribution law of evolution
coefficients seems to be relatively tightly distributed around the initial coefficients (Martin
& Lenormand, 2006; Sanjuán, 2010). Thus, for all the adaptation scenarios, we considered

a uniform mutation law that truncates ~βi + ~z = (βi
r + zr, β

i
K + zK) in order to keep the

evolution coefficients within ]0, 1]2. This means that after a mutant birth, when picking
mutant coefficients βi

r + zr or β
i
K + zK > 1 (or βi

r + zr or β
i
K + zK < 0), βi

r + zr or β
i
K + zK

is set to 1 (or to 0.0001, respectively).
Let us formally define the five possible adaptation scenarios for pathogen lesion i (for

a more detailed description of mutation laws see Supporting Information Notes S1):

(1) Identical (r,K)-restoration: when both depressed traits, i.e. βi
rr < r and βi

KK < K,
evolve with the same evolution coefficients, that is for all lesions i at any time t,
βi
r = βi

K = βi. A pathogen lesion evolving through a reproduction creates a new
lesion j of a new pathogen strain with the evolution coefficients βj

r = βj
K = βi + z.

Here, z follows a uniform law in [−b, b] where b is the maximum rise and fall of the
evolution coefficient, induced by a mutation.

(2− 3) r- (or K-)restoration: when only one trait is depressed by host resistance, βi
rr < r

(or βi
KK < K), and evolves during adaptation. Thus, for all lesions i, βi

r (or βi
K)

can evolve, and βi
K (or βi

r) stays constant at 1. Then, a pathogen lesion evolving
through a reproduction creates a new lesion j of a new pathogen strain with the
evolution coefficients βj

r = βi
r + z (or βj

K = βi
K + z) and βi

K (or βi
r) stays constant

at 1. Here, z follows a uniform law in [−b, b].

(4) Independent (r,K)-restoration: when both depressed traits evolve independently.
Then, a pathogen lesion evolving through a reproduction creates a new lesion j of
a new pathogen strain with the evolution coefficients βj

r = βi
r + zr and βj

K = βi
K

or βj
r = βi

r and βj
K = βi

K + zK , zr and zK are two independent random variables
following a uniform law in [−b, b].
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(5) Antagonistic (r,K)-restoration: when the evolution of both depressed traits is de-
termined by a trade-off between them. Then, a pathogen lesion evolving through
a reproduction creates a new lesion j of a new pathogen strain with the evolution
coefficients βj

r = βi
r + zr and βj

K = βi
K + zK . With a probability 1/2 we picked zr

uniformly in [−(8/5)b, (8/5)b], and we fixed zK = −zr/2, and with a probability 1/2
we picked zK uniformly in [−(8/5)b, (8/5)b] and we fixed zr = −zK/2. Intervals were
set in order to keep the mutation variances equal to those from the other scenarios.

To test the sensitivity of the model to mutation laws, we considered two different
stochastic laws for the case of the adaptation driven by identical (r,K)-restoration, that
is βi

r = βi
K = βi. Firstly, we assume z to follow a truncated normal law, N (0, b/

√
3).

As for the antagonistic (r,K)-restoration process the variance is set to be equal to
that from the uniform stochastic law. Secondly, z follows a truncated uniform scaling
law, U[−2b(1.1−βi),2b(1.1−βi)], representing a situation when at the beginning of the process
pathogen lesions are poorly adapted and so most mutations are advantageous, but then,
when the individuals have almost completely adapted, advantageous mutations become
uncommon, as observed in Novella et al. (1995). Since the variance changes during the
simulation, it is the only situation where the variance is not equal to that from the trun-
cated uniform law.

2.4 Model implementation

For all adaptation scenarios, at the beginning of the adaptation process, the pathogen
population consisted of 10 lesions of a single strain, I1(0) = 10. We assumed that these
lesions interacted with a host carrying quantitative resistance. Thus, for each of the
adaptation scenarios, we defined the initial values of evolution coefficients as equal to
0.2 for depressed traits and 1 for non-depressed traits. The established initial conditions
correspond to a primary infection of a quantitatively-resistant host by a single pathogen
strain.

To study the speed of pathogen adaptation, 1000 simulations were run for every pa-
rameter set. A simulation stopped when its time reached 1.1T , where T was the first time
when the population evolution coefficient of one of the depressed traits reached 0.9.

For each run k ∈ 1, 2, ..., 1000, we determined dynamics of the total population size,
Ik(tky) and the dynamics of the population evolution vector over the whole population,

β̄k
r (t

k
y) =

I(tky)
∑

i=1

βi
r/I(t

k
y), and β̄k

K(t
k
y) =

I(tky)
∑

i=1

βi
K/I(t

k
y),

where tky is the time at the yth event of the run k.
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Then, we calculated the mean population size over 1000 runs,

Ī(t̄y) =
1000
∑

k=1

Ik(tky)/1000,

and the mean evolution vector,

¯̄βr(t̄y) =
1000
∑

k=1

β̄k
r (t

k
y)/1000, and ¯̄βK(t̄y) =

1000
∑

k=1

β̄k
K(t

k
y)/1000,

where t̄y =
∑1000

k=1 t
k
y/1000 is the mean time of the yth event over 1000 runs.

We applied the Gillespie algorithm (Gillespie, 1977) to track the exact trajectories of
the Markov chain, and the model was implemented in C++ using Code Blocks and a GNU
GCC compiler. To perform numerical simulations, we used a range of parameters sweeping
a large spectrum of biological situations. We studied the speed of the adaptation process
in the five adaptation scenarios with the following parameter values: r = 1, K = 1000
and b = 0.2. To check the robustness of the results obtained, we performed numerical
simulations where we varied the mutation law and values of the r, K and b parameters.
With identical (r,K)-restoration with a truncated uniform law as the mutation law, r
were varied in {0.5, 1, 2, 3}, for each fixed carrying capacity, K ∈ {100, 500, 1000, 2000}
and with b taking values in {0.1, 0.2, 0.3}. We also examined model behavior for two pairs
of r and K: r = 0.5 and K = 2000, and r = 2 and K = 500 (not illustrated). We tested
the normal truncated law and a uniform scaling law with r = 1, K = 1000 and b = 0.2.
In all simulations ω was fixed to 0.05.

3 Results

3.1 Progressive pathogen adaptation by the restoration of its

life-traits

To study the speed of pathogen adaptation to a partially resistant host population, we
considered five scenarios: identical (r,K)-restoration process, r- or K-restoration, in-
dependent (r,K)-restoration and antagonistic (r,K)-restoration. Numerical simulations
showed that the dynamics of the mean evolution coefficients and the growth of the mean
size of the pathogen population were increasing sigmoid functions for every adaptation
scenario (Fig. 2). If the pathogen adapts to a quantitative resistance by the evolution
of its carrying capacity, K, the adaptation will proceed at the highest speed (Fig. 2).
Moreover, the establishment stage is very short, and the dynamics of the mean evolution
coefficient, ¯̄βK , soon become a quasi-linear function. In this situation, the growth of the
mean number of lesions also occurs quickly, but the mean number of lesions is higher at the
end of the adaptation process in the r-restoration case (Fig. 2b). The lowest adaptation
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speed and growth of mean number of lesions correspond to adaptation by the antago-
nistic restoration of r and K traits. The curves of the dynamics of the mean evolution
coefficients corresponding to the cases of identical (r,K)-restoration, and r-restoration,
and the independent restoration of both traits are located between the extreme curves in
decreasing order of the adaptation speed. Surprisingly, the speed of the adaptation by
identical (r,K)-restoration exceeds that by r-restoration. Apart from r-restoration, the
growth of the number of lesions is of the same order, since it corresponds to the growth
of the adaptation curves of the carrying capacity (Fig. 2b). Note that (r,K)-restoration
with independent or antagonistic evolution coefficients is driven by the restoration of the
r-trait at the beginning of the process (Fig. 2a), and subsequently by the restoration of
the K-trait. In the case of antagonistic evolution coefficients, the restoration process of
the reproduction rate is much slower.

3.2 The impact of model parameters on adaptation by the iden-

tical (r,K)-restoration

First, we studied the impact of three parameters, r, K, and b on the adaptation process
that resulted from identical (r,K)-restoration. Numerical simulations showed that the
dynamics of the mean evolution coefficients retained a sigmoid shape for any parameter
values (Fig. 3a-c). The higher the values of r, K, or b, the faster the growth of the mean
evolution coefficients, which implies rapid pathogen adaptation. Since r multiplies all
transition functions, its impact is obvious: variation of r changes the time scale only. In
contrast to r and b, the increase in the carrying capacity, K, has a saturating effect on
the speed of pathogen adaptation (Fig. 3b). K values above a certain threshold have a
negligible impact on the speed of adaptation.

Analysis of the effects of the mutation laws on the adaptation process demonstrated
that for each of the laws considered, the mean evolution coefficients grew continuously,
changing in shape from the sigmoid curve obtained for normal and truncated uniform
laws to the concave shape obtained for a uniform scaling law (Fig. 3d). Compared to
the truncated uniform law, a normal distribution of mutation slightly accelerates the
adaptation process.

4 Discussion

In this article, we describe a stochastic framework developed to study the speed of
pathogen adaptation to quantitative plant resistance. The model allows us to provide
some general guidance about how to manage quantitative resistance so as to increase its
durability. In particular, we show that in order to decelerate the progressive pathogen
adaptation, QTLs that decrease the pathogen’s ability to extend must be combined with
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QTLs that decrease its rate of reproduction.

4.1 Sustainable use of QTLs that confer quantitative resistance

to cultivars

The shape of the adaptation curve is crucial for predicting the durability of the quantita-
tive resistance, since it allows us to predict the speed of the adaptation process. Novella
et al. (1995) showed that the fitness of RNA viruses increases exponentially. Nevertheless,
it has been shown that the experimental method used did not reflect the epidemiolog-
ical aspects of parasite evolution, since it did not consider the transmission of disease
from host to host (Ebert, 1998). Our model predicts that progressive pathogen adap-
tation is an S-shaped function with establishment, growth, and saturation stages. The
growth stage corresponds to the growth of the effective population size. Indeed, as the
number of lesions increases, the number of emerging pathogen mutants with a restored
trait increases, which speeds up the adaptation process, as pointed out by Ebert (1998).
The saturation stage, which corresponds to the deceleration of the adaptation process,
occurs when the adaptation is no longer driven by beneficial mutations, but rather by
the selection of strains with the highest evolution coefficients. Moreover, the higher the
mean evolution coefficient, the harder it is for a beneficial mutant to be fixed within the
pathogen population. In our within-host model, disease transmission among hosts is not
considered either, but the limitation of the evolution coefficient to a value of less than one
can explain the saturation that occurs following exponential growth and that results in
an S-shaped function. To validate the shape of the theoretical adaptation curve we need
experimental data for the long-term dynamics of pathogen fitness, or for the evolution of
quantitative traits of pathogenicity.

Moreover, we showed that the pathogen adaptation is slightly slower when partially
resistant cultivars control only the pathogen reproduction than when they reduce both
the pathogen reproduction rate and its carrying capacity, if the adaptation of both traits
proceeds at the same speed. This finding can be explained by the level of selection in a
pathogen population. When the partial resistance reduces only the pathogen reproduction
rate, strains can easily extend. Conversely, when partial resistance of the host reduces
both the pathogen reproduction rate and its carrying capacity, pathogen strains compete
with one another within a host, leading to strong selection for the better adapted strain
and acceleration of the adaptation process. Nevertheless, if the resistance affects only the
pathogen reproduction, the pathogen is still easily able to extend. This soon renders the
resistance ineffective at limiting pathogen invasion.

Recent empirical studies have demonstrated the existence of independent and antag-
onistic evolution of depressed pathogen traits in an adaptation process (Azzimonti, 2012;
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Azzimonti et al., 2013). Our model suggests that the most durable combinations of QTLs
are those that induce an antagonistic or an independent restoration of repressed repro-
duction rate and pathogen carrying capacity. This finding confirms the hypotheses of
Pariaud et al. (2009), suggesting that trade-offs between traits of pathogenicity might
constrain the pathogen adaptation to quantitative trait loci, since they apply divergent
selective pressures to the pathogen population. Thus, our theoretical results can be tested
and exploited in quantitative plant resistance breeding strategies.

We showed that the quick pathogen adaptation can be explained by the simultaneous
restoration of both traits, if the pathogen population has a high reproduction rate, and
mutations have a high deviation. Previous studies have shown that the impact of muta-
tions on individual fitness in a specific environment can be described by some particular
statistical functions (Martin & Lenormand, 2006; Sanjuán, 2010). These functions look
like normal laws for various species, e.g. Drosophila melanogaster, Caerorhabditis elegans,
Saccharomyces cervisiae or Cryptococcus neoformans (Martin & Lenormand, 2006), but
are more complicated for viruses, with functions somewhere between normal and uniform
laws (Sanjuán, 2010). Our model shows that normal mutation law results in slightly
faster adaptation to an unfavorable environment than the truncated uniform law, since
the distribution tails of a normal law allow, albeit with a low probability, mutations with
a strong effect to occur. Nevertheless, these two laws lead to adaptation curves with the
same shape, which can be explained by the symmetry of these laws and their constant
parameters. The uniform law considered with scaling boundaries leads to progressive
deceleration of the adaptation process as shown in Novella et al. (1995).

4.2 The robustness of the proposed stochastic approach for mod-

eling the progressive adaptation of the pathogen population

The birth and death processes are powerful tools for modeling the adaptation dynamics
of pathogens, since they can easily be adapted to many biological situations by adjusting
the transition rates (Allen, 2003; Novozhilov et al., 2006). Their extension to an infinite
state space makes it possible to model life history-trait evolution (Champagnat et al.,
2006). This approach allows us to monitor the stochastic dynamics of mutants, and then
to follow the evolution of pathogen traits, even if the genetic mechanisms underlying the
adaptation process are poorly understood. Note that the results of the model can be
affected by transition functions. However, a comparative analysis of the impact of various
transition functions on the dynamics of the model falls outside the scope of our study. To
preserve the simplicity of the model, we did not explicitly consider genetic recombination
between different pathogen strains. Nevertheless, since our mutations were modeled by
changes in the evolution coefficient, they can also be considered to be an implicit mimic
of recombination processes.
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Rouzine et al. (2008) showed that the evolution coefficient rises logarithmically with
the number of lesions until it becomes extremely large. This can be explained by the
fact that a beneficial mutation may not go on to be fixed, because of interference with
another mutation with a greater beneficial effect that arises either shortly before or shortly
after the first mutation (Barton, 1995). Our model confirms that if the carrying capacity
of the pathogen increases, the adaptation speed does not increase proportionally, but
logarithmically. Moreover, the model confirms findings reporting that a mutation with a
stronger effect, i.e. which corresponds to the extension of the boundaries of the mutation
law in our model, produces an overall reduction in the adaptation time (Metzgar & Wills,
2000). The model shows that if a pathogen adapts, then the strain with the highest
carrying capacity will eventually be selected despite the fact that lesions with the highest
reproduction rate have a selective advantage at the beginning of the adaptation process.
This finding is consistent with findings of theoretical studies revealing that a quantitative
form of resistance and imperfect vaccines select pathogens with higher levels of intrinsic
virulence, as measured from the induced host mortality (Gandon & Michalakis, 2000;
Gandon et al., 2001; Massad et al., 2006). It is also consistent with empirical studies
showing an increase in the severity of disease induced by pathogens in partially-resistant
cultivars in plant epidemiology (Cowger & Mundt, 2002; Caffier et al., 2014). Finally,
the model confirms the intuitive assumption that the existence of a trade-off between two
traits under selection would decelerate the adaptation process. Analysis of the model
showed that an increase in the pathogen reproduction rate or in its carrying capacity
will increase the adaptation speed in the five adaptation scenarios considered, but will
not change the order of the adaptation curves. Thus, we can conclude that the model’s
behavior is robust, and that the conclusions drawn about how to manage the progressive
adaptation of pathogens are credible.

4.3 Conclusion

Using a stochastic model, we studied the durability of quantitative plant resistance from
the viewpoint of its effects on the reproduction rate and carrying capacity of the pathogen
population. Our theoretical framework can help breeders to develop principles for the
sustainable deployment of quantitative trait loci. In particular, the model suggests that
in order to slow down progressive pathogen adaptation, QTLs should target pathogen
traits whose restoration will be subjected to a trade-off. Existence of putative trade-
offs among pathogen traits should be the first indication of their potential antagonistic
restoration if they are depressed by QTLs. Moreover, QTLs that decrease the pathogen
carrying capacity must be coupled with QTLs that decrease the spore production per
lesion, the infection efficiency or those that increase the latent period. Note that our
model is appropriate for systemic diseases as well. Our model can also be applied to any
situation in which individuals evolve continuously in order to adapt to an environment that
has depressed their fitness as a result, for example, of global climate change (Hoffmann
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& Sgro, 2011).
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Figure Legends

Figure 1: Model behavior. (a) Stochastic events with their transition functions (2.1) driving

continuous adaptation of the pathogen population to a quantitatively resistant host. We follow

stochastic dynamics of the number of pathogen lesions per strain. Let us assume that the adapta-

tion process starts at time t = t0 with one lesion with an evolution vector βi = (βr, βK). Mutation

at t = t3 leads to an emergence of a new strain with an evolution vector βi+2 = (βr+zr, βK+zK)

with (zr, zK) picked randomly according to a scenario of the pathogen adaptation (part 2.3). The

interval between two consecutive times ty and ty+1 is the time before an event happens. (b) Sam-

ple path of stochastic model (2.1). During the adaptation driven by identical (r,K)-restoration,

the pathogen population splits into five distinct strains characterized by evolution coefficients

β1, . . . , β5, which population sizes are driven by stochastic events. Due to inter-strain competi-

tion, the pathogen strain with the highest evolution coefficient, β5, is selected. The parameter

values and initial conditions are I1(0) = 10, r = 1, b = 0.2, ω = 0.05, K = 1000.
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Figure 2: Evolution of pathogen reproduction rate and its carrying capacity in five

scenarios of pathogen adaptation to quantitative resistance. A continuous adaptation

process is described in terms of the dynamics of mean evolution coefficients, ¯̄βr , ¯̄βK (a) and of

the mean size of the pathogen population (b). In (a), unbroken curves represent the dynamics

of the mean evolution coefficient of the carrying capacity, ¯̄βK , dashed curves - the dynamics

of the mean evolution coefficient of the reproduction, ¯̄βr, and dotted curves - the dynamics of

both evolution coefficients when they are equal, ¯̄β = ¯̄βr = ¯̄βK . The different colors represent

five adaptation scenarios. The inset figure shows the first 30 time units. Other parameters:

I1(0) = 10, r = 1, b = 0.2, ω = 0.05, K = 1000.
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Figure 3: The impact of the model parameters on the dynamics of adaptation driven

by identical (r,K)-restoration. (a) Impact of variation of the reproduction rate, r, on the

adaptation dynamics. Parameter values: K = 1000, b = 0.2. The mutation law is a truncated

uniform law; (b) Impact of variation of the carrying capacity, K, on the adaption dynamics.

Parameter values: r = 1, b = 0.2. The mutation law is a truncated uniform law; (c) Impact

of variation of the uniform law boundaries, b, on the adaptation dynamics. Parameter values:

r = 1, K = 1000. The mutation law is a truncated uniform law; (d) Impact of variation of the

mutation law on the adaption dynamics. Parameter values: r = 1, ω = 0.05, K = 1000, b = 0.2.

Other parameters for (a-d): βr = βK , I1(0) = 10, ω = 0.05.
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Table 1: Definition of variables and parameters used to model pathogen continuous

adaptive dynamics.

Name Value Description

In(t) N Number of lesions of strain n on the host at time t

I(t) N Total number of lesions on the host at time t

N(t) N Total number of strains at time t

r {0.5, 1, 2, 3} Pathogen reproduction rate on a susceptible host

K {100, 500,
1000, 2000}

Pathogen carrying capacity on a susceptible host

βi
r ]0; 1] Evolution coefficient of trait r of pathogen lesion i

at time t

βi
K ]0; 1] Evolution coefficient of trait K of pathogen lesion

i at time t

~βi = (βi
r, β

i
K) X =]0; 1]2 Evolution vector of pathogen lesion i at time t

ω 0.05 Mutation probability of a pathogen lesion

~z = (zr, zK) X Increment of the evolution coefficient

b {0.1, 0.2, 0.3} Maximum rise or fall of the evolution coefficient,

induced by a mutation

tky R Time of the yth event in the simulation run k

t̄y R Mean time of the yth event over 1000 runs

Ik(tky) N Size of the pathogen population at time tky in the

simulation run k

Ī(t̄y) N Mean size of the pathogen population at time t

over 1000 runs

β̄k
τ (t

k
y) ]0; 1] Evolution coefficient of trait τ ∈ {r,K} of the run

k at time tky
¯̄βτ (t̄y) ]0; 1] Mean evolution coefficient of trait τ ∈ {r,K} at

time t̄y over 1000 runs
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