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Abstract -- In the  eld of biological tissue characteri-zation, 

fundamental acoustic attenuation properties have been demonstrated 
to have diagnostic importance. Attenu-ation caused by scattering and 
absorption shifts the instan-taneous spectrum to the lower frequencies. 
Due to the time-dependence of the spectrum, the attenuation 
phenomenon is a time-variant process. This downward shift may be 
eval-uated either by the maximum energy frequency of the spec-trum 
or by the center frequency. 

In order to improve, in strongly attenuating media, the results given 
by the short-time Fourier analysis and the short-time parametric 
analysis, we propose two approaches adapted to this time-variant 
process: an adaptive method and a time-varying method. Signals 
backscattered by an homogeneous medium of scatterers are modeled 
by a computer algorithm with attenuation values ranging from 1 to 5 
dB/cmMHz and a 45 MHz transducer center frequency. 

Under these conditions, the preliminary results obtained with the 
proposed time-variant methods, compared with the classical short-time 
Fourier analysis and the short-time auto-regressive (AR) analysis, are 
superior in terms of stan-dard deviation (SD) of the attenuation 
coefficient estimate. This study, based on nonstationary AR spectral 
estimation, promises encouraging perspectives for in vitro and in vivo 
applications both in weakly and highly attenuating media. 

 
I. Introduction 

 
Great progress has been made recently in high fre-

quency ultrasound imaging [1]. In particular, several 
studies have shown the interest of echographic exploration 
for frequencies ranging from 20 to 100 MHz in dermatol-ogy 
and ophthalmology [2]. These results are extending the  eld 
of application of tissue characterization. 

As an acoustic pulse propagates through soft tissue, 
it experiences an attenuation-dependent frequency-shift. 

Several techniques can be used to determine the fre-
quency shift of backscattered signals. Fourier analysis and 
parametric spectral estimation [3], [4], commonly em-ployed 
in the tissue characterization field, give similar re-sults in 

weakly attenuating media. These two methods are based 

upon local stationary signal assumptions and use a 
sliding window technique. In the reflection mode and 
only in highly attenuating media, it has been shown [5] 
that the parametric spectral analysis, and more precisely 
the autoregressive spectral analysis, provides a better 
estima-tion of attenuation than the Fourier approach in 
terms of relative error. This parametric analysis consists 
in model-ing the echographic signal as the output of a 
linear  lter driven by a white Gaussian noise. This  lter, 
referred to as AR, is a linear combination of the previous 
samples (Regressive) of the output itself (Auto). 

To improve the performances obtained by the conven-
tional parametric approach and the Fourier approach, both 
in moderately and highly attenuating media, another class 
of parametric spectral analysis is investigated: the nonsta-
tionary autoregressive spectral analysis. 

In this paper, we propose two new approaches of 
para-metric spectral analysis for attenuation estimation: 
an adaptive method and a time-varying recursive 
method. The first method computes and updates the AR 
parame-ters at each sampling time using the prediction 
error (the di erence between the echographic signal and 
the esti-mated output of the AR process) and a constant 
forgetting factor. This forgetting factor is equivalent to 

introducing an exponential window which forgets the 
previous sam-ples. In the second one, each AR 
parameter is allowed to change in time by assuming it is 
a linear combination of a known set of time functions. 

The fundamental di erence between the algorithm 
structures of nonstationary and conventional (AR or 
Fourier) analyses is that the proposed algorithms directly 
give N spectra when N signal samples are processed. In 
the classical analyses, the signal composed of N samples is 
truncated into P windows (for example, 16 windows, with 
50% overlapping) and P spectra are computed (P < N). The 
two new methods applied to backscattered simulated 
signals are compared to the short time Fourier analysis and 
the short time AR analysis, for di erent attenuation 
coefficient values (1 to 5 dB/cmMHz) with a 45 MHz ul-
trasonic transducer center frequency. 
This paper is organized as follows: in Section II, we de-
scribe how the backscattered signals are modeled, and we 
introduce the attenuation estimation. We review the AR 
modeling and the parameters computation in Sections III 
and IV. Section V is concerned with the spectral esti-
mation. Results and interpretation are performed in Sec-
tion VI, and Section VII is the conclusion.  

II. Backscattered Signal Modeling and 
 

Attenuation Estimation 
 
A. Backscattered Signal Modeling 
 

A reasonable accurate model for signals backscattered 
by a biological tissue [6] consists of a linear transformation 
of components representing di erent contributions: on the 
one hand, the measuring system impulse response (basic 
ultrasonic wavelet), and on the other hand, the scattering 
and the absorption function of the explored medium. Con-
sequently, the reflected signal x(t) from a given region of a 
medium can be represented as a function of the ultrasound 
wavelet e(t) and a time-varying impulse response h(t; ) of 
the explored tissue: 

 (1) 
where G denotes a linear function. 

An example of backscattered signal, as well as an 
over-simpli ed scheme of our simulated medium, is 
given in Fig. 1. 

We assume that scatterers have a random spatial distri-
bution and are point scatterers. This assumption implies 
that the shape of scatterers is not taken into account. We 
also consider that attenuation is homogeneous and that 
only simple scattering takes place (that there is no multi-ple 
scattering, i.e., the Born's approximation is satis ed). 

Concerning the transducer, we assume that the 
power spectral density of the emitted signal e(t) has a 
Gaussian form (see Fig. 2); this implies that its spectral 

variance s
2
 is constant versus depth. Moreover, we 

neglect the diffraction effects. 
 

mailto:jmgirault@univ-tours.fr
http://dx.doi.org/10.1109/58.677609


 651 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The medium (a), typically backscattered signal (b).  Fig. 2. Evolution of the normalized PSD of the reflected signal in the  

rst analyzing window (a) and in the last analyzing window (b). 
Theoretical PSD (solid line), averaged PSD evaluated by the FFT 
(dotted line) and second-order AR PSD (dashed line). The simulation 

conditions are: f0 = 45 MHz, s = 7:46 MHz, = 5 dB/cmMHz and fs = 

400 MHz. 
 

Accordingly, the spectrum of the backscattered signal 
by L scatterers is given by: 

  (2) 
where is the ultrasonic attenuation, E(f) is the transfer 

function of the transducer, and i is a random amplitude 

uniform in the interval (0; 1). 
 

The summation term represents the composite nature 
of the backscattered echoes detected at the random 

arrival times τi, where τi and ξi are assumed to be 

uncorrelated random variables. 
 

The performances of the di erent proposed methods 
are tested on uncorrelated simulated A mode echo lines. 
Di erent media with attenuations ranging from 1 to 5 

dB/cmMHz are considered. The sampling frequency fs is 

400 MHz, the transducer center frequency f0 is 45 MHz 

and the spectral standard deviation σs is 7.46 MHz. 

Each simulation contains 256 A-lines of 1024 samples, 
with a speed of ultrasound of 1530 m/s leading to a 
depth of ex-plored tissue around 2 mm. 
 
B. Attenuation Estimation 
 

Suppose that the attenuation (dB/cm) is linearly de-
pendent on frequency [5], [7]. We can de ne the slope of 
attenuation or the attenuation coefficient (dB/cmMHz): 

 (3) 
Consequently, the power spectral density (PSD) of x(t) can 
be expressed as a function of frequency and depth d: 

 (4) 
 

where Se(f) is the PSD of e(t). 

The frequency-shift, due to the attenuation e ects, ap-
pears in all depth-varying frequencies and particularly for 
the maximum energy frequency (the frequency correspond-
ing to the maximum of the PSD) and the center frequency 
(de ned as the centroid of the PSD). Because the PSD of 
the emitted signal e(t) has a Gaussian form [8], the power 
spectrum of the reflected signal is given by: 

   (5) 

where f0 is the emitted transducer center frequency and 

σs the spectral standard deviation that is related to the 

transducer bandwidth. 
 

Now, let us focus our study on the maximum energy 
frequency derived by di erentiating (5) with respect to f 
and setting it to zero: 

   (6) 
By differentiating (6) with respect to t = 2d=c (c: speed 

of ultrasound) the slope of the attenuation is given by: 

  (7) 
 
Expression (7) is identical to the one obtained in the 
case of the center frequency [5]. By using a linear 
regression, we can obtain the attenuation coefficient. 
From (7), it is obvious that the better the estimation of the 
maximum energy frequency (or the centroid fre-quency), 
the better the attenuation coefficient estimation. In the most 
usual case and for small values of attenuation, the short-
time Fourier technique is used for this purpose. However, it 
is well-known that this technique has many limitations such 
as di culties to choose an analysis win-dow whose length 
takes into account nonstationarity in the signal, and lack of 
accuracy in frequency estimation.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Evolution of the relative error (a) and the standard devia-tion (b) 
of the attenuation coefficient estimate versus the AR order p. The 

simulation conditions are: f0 = 45 MHz, s = 7:46 MHz, = 5 dB/cmMHz, 

and fs = 400 MHz (same behavior for = 1, 2, 3, 4 dB/cmMHz). The 

illustrated results are averaged with 256 radio-frequency lines. 
 
 

Spectra computed with the FFT have a signi cant vari-
ance that contributes to increase the variance of the  nal 
estimation of the attenuation coefficient. 

To overcome these limitations, parametric analysis has 
been used in many  elds and namely in speech processing, 
seismology, and Doppler ultrasound. Parametric tools have 
been recently applied to ultrasonic attenuation estimation 
[3], [5]. However, this approach requires a compromise be-
tween the accuracy that can only be achieved with large 
data segments and the time resolution required to track the 
spectrum, which can only be achieved with short data 
segments. Compared to FFT, it only reduces the relative 
error in highly attenuating media (no improvement in a 
weakly attenuating medium). In order to improve the stan-
dard deviation, we suggest the use of new methods that 
directly take into account the nonstationary signal charac-
ter. These methods should give better results in cases such 
as the ones we encounter in a highly attenuating medium. 
 

III. Nonstationary Autoregressive Modeling 
 

The echographic signal x(n), which is strongly nonsta 
tionary in highly attenuating media is digitized with a 
sampling frequency f s in N samples. This numerical sig-
nal is modeled as the output of a linear  lter driven by 
white Gaussian noise u(n) with zero mean and variance 
σ

2
u[9]. It is given by: 

  (8) 

where ai(n) are the AR parameters at time n, where n is 

related to distance by d = nTsc=2, c is the speed of ultra-

sound, Ts is the sampling interval, and p is the order of 

the AR model (or the number of parameters ai). In 

practice, the order of the AR model must be chosen. For 
di er-ent values of the AR order p, we have computed 
the rel-ative error and the standard deviation of the 
attenuation coefficient estimate (see Fig. 3). In our study, 
it appears that a second-order AR process (AR2) is su 
cient. It is important to point out that the AR model 
matches the signal spectrum very closely near spectrum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Evolution of the relative error (a) and the standard devia-tion (b) 
of the attenuation coefficient estimate versus the dimension of the 
basis functions and for the three proposed basis functions. 
Trigonometric (Fourier) basis function (dashed line), Legendre ba-sis 
function (dashdot line), and Power of time basis function (solid line). 

The simulation conditions are: f0 = 45 MHz, σs = 7:46 MHz, β= 5 

dB/cmMHz, and fs = 400 MHz (same behavior for β = 1, 2, 3, 4 

dB/cmMHz). The illustrated results are averaged with 256 radio-
frequency lines. 
 
 

peaks, even if the order is low. Thus, a second-order AR 
model can e -ciently estimate the maximum energy 
frequency or center frequency of a signal. 

If we suppose that the time-varying parameters are 
linear combinations of a set of deterministic basis time-

varying functions Fg(n), then we transform a linear non-
stationary problem into a linear stationary one by replac-
ing a scalar process with a vector process [10]. In this 
case, time-varying AR parameters are expressed by: 

   (9) 

where ai;g are AR constant coefficients and m is the dimen-

sion of time functions basis Fg(n). The AR time-varying 

model for a nonstationary sample signal x(n) is [10], [11]: 

 (10) 
The number of unknowns is multiplied by (m + 1), but 

this seems a small price to pay compared to the bene t 
of keeping the problem linear. 

Several base functions (Appendix A) have been used 
in di erent  elds, for example, in speech processing [10], 
[11]. Among all these bases, we decided to study the 
three most commonly used: 

 Power of time functions [10] that usually are 
used in a quasi linear time-varying 
parameters evolution. 

 Legendre functions [10] that are often used 
when pa-rameter evolution is rapid. 

 Trigonometric functions [12] that are commonly 
used when time-varying parameters evolution 
is periodic. 

In practice, the basis and its dimension must be chosen 
from the three bases above, we calculate for di erent val-es 
of the dimension m, the relative error (RE) and the standard 



deviation (SD) of the attenuation coefficient es-timate (Fig. 
4). In this study, we found that the power of time functions 
with m = 2 is the best choice in terms of both RE and SD as 
well as in terms of complexity. In-deed, the choice of 
superior dimensions only increases the algorithm 
complexity without signi cant improvement. 
 

IV. AR Parameter Estimation 
 

There are many algorithms to compute AR param-
eters required for the spectrum estimation: Levinson, 
Burg, least-squares method, gradient method, Lattice  l-
ter, Kalman  lter [9], [13], [14]. We will focus on the most 
popular one: the least-squares algorithm [14]. This 
method is applied with the simulation conditions 
presented in Sec-tion II. 
 
A. Batch Least-Squares Method with Sliding Window 
 

First, we recall the least-squares technique on which 
the following algorithms are based, and then the sliding 
window technique. Note that this technique is very close 
to the Burg's technique introduced by [5], [15]. 

Let us rewrite (8) in matrix form: 

    (11) 
and for N data points: 

     (12) 

   (13) 

    (14) 

   (15) 

    (16) 

   (17) 
Estimation is given by: 

     (18) 
where the hat indicates the estimated value. 

The batch least-squares method evaluates the ai 

param-eters by minimizing the cost function: 

   (19) 

     (20) 
The estimated parameters vector is: 

    (21) 
Owing to the nonstationary character of the radio-frequency 
signal, a Hamming window is shifted (for ex-ample 16 
windows, with 50% overlapping) with a constant step along 
the signal and in each window AR parameters are 
evaluated. Therefore, this method does not permit the 
determination of a new spectrum at each sample, but at 
each window. It implies a global estimation of the attenu-
ation in a  xed range of depths. Fig. 5 shows the evolution 
of the centroid frequency versus depth, both for the short 
time Fourier approach and for the short time AR approach. 
These curves were averaged for 256 radio-frequency lines. 
 

B. Recursive Weighted Least-Squares Method 
 

If long data sequences are available, it is possible to use 
a time-variant identi cation method. In this section, we de-

scribe a time-variant algorithm that allows us to obtain a 
new set of parameters whenever a new sample is available. 
This is accomplished by updating the previously evaluated 
sample on the basis of the prediction error, and weighting 
by means of a forgetting factor . In this way, it is possi-ble to 
calculate an instantaneous spectrum, hence to study the 
spectral characteristics even under nonstationary con-
ditions. In this case, the cost function becomes: 

   (22) 
where in practice 0:95 < λ < 1 and k is the index of the 
last sample considered. 
 

The general expression of the recursive algorithm is 
given by: 

      (23) 

  (24) 
Due to the recursive nature of this algorithm, a transient 

region appears and it is required to initialize the gain Pn 

and AR parameters. A standard initialization value of the 

gain is P0 = 10I (I is an identity matrix) [13]. 

That is accomplished through the use of the forgetting 

factor in the expression of Pn: 

  (25) 

    (26) 

 
Use of a constant forgetting factor is equivalent to the 
introducing of an exponential window. The length of this 
window indicates which of the past samples are e ectively 
taken into account. For example, if = 0:95, there are 20 
samples in the window whereas if = 0:99 there are 100 
samples. In this section, we have searched the forgetting 
factor that o ers the best trade-o  between a good ac-
curacy and a reduced statistical fluctuation on parameters 
estimation. In other words, for di erent attenuation coe -
cient values, we sought the value of that gives the lowest 
RE and SD of the attenuation coefficient estimate. Fig. 6 
illustrates that the best forgetting factor is = 0:98. 
 

C. Recursive Time-Varying Least-Squares Method 
 
Extension of the recursive weighted algorithm can be 
performed by multiplying the regression vector by the ba 
sis functions and increasing the AR order p by p(m + 1) 
while setting the forgetting factor to one. By using (8), 
the algorithm becomes: 

    (27) 

     (28) 

   (29) 

  (30) 
where ϕ is de ned in (14). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Evolution of the center frequency, fc (centroid frequency) 

evaluated by the short-time Fourier approach (dashed line) and by the 
short-time auto-regressive (AR2) approach (dashdot line) versus 
depth. The theoretical curve calculated by (5) is illustrated by the solid 
line. The proposed curves are averaged with 256 radio-frequency 

lines. The simulation conditions are: f0 = 45 MHz, s = 7:46 MHz,= 5 

dB/cmMHz, and fs = 400 MHz. 

 
 

Owing to the recursive nature of the algorithm, the co-
e cients become constant after the convergence region. 

Just like the ai;g coefficients, the AR parameters (9) and 

the frequency estimates have a transient region 
 

V. Spectral Estimation 
 
 

From known AR parameters, a standard approach 
con-sists in computing  rst the whole spectrum then 
estimat-ing a particular frequency (the centroid 
frequency or the maximum energy frequency). 

Accordingly, the power spec-tral density Sxx(f; n) of a 

nonstationary AR process is given by: 

  (31) 

where f is the normalized frequency 0 f 0:5, and u
2
(n) is 

the noise power at time n. Extension to the time-varying 
AR model, this expression becomes: 

 (32) 
An interesting alternative is to evaluate frequencies. In 

this case, only one frequency has to be esti-mated instead 
of the whole spectrum. This implies an im-portant reduction 
of the computing time. In other words, attenuation 
information that appears in the time-varying spectrum can 
be derived from many particular frequencies such as the 
centroid frequency, the maximum energy fre-quency (the 
frequency that corresponds to the maximum energy of the 
spectrum), or the resonating frequency. Here, we develop 
the mathematical relationships involved in the second-order 
AR model to evaluate the spectral shift, and particularly we  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Evolution of the relative error (a) and the standard devia-tion (b) 
of the attenuation coefficient estimate versus the forgetting factor used 

in the adaptive approach. The simulation conditions are: f0 = 45 MHz, 

s = 7:46 MHz, = 2, 3, 4, 5 dB/cmMHz, and fs = 400 MHz. The 

illustrated results are averaged with 256 radio-frequency lines. = 2 
(dotted line), = 3 (dashed line), = 4 (dashdot line), and = 5 (solid line). 

 
 
 
will focus on the maximum energy fre-quency [3]: it is 
obtained by di erentiating (31) with re-spect to f and setting 
it to zero: 

 (33) 

and the resonating frequency [16]: it corresponds to the 
phase of the complex poles de ned in the transfer 
function of ultrasonic echoes: 

  (34) 
In order to have theoretical references and an idea of the 
initial values of the AR parameters in the estimation pro-
cess, we propose the introduction of an approximated the-
oretical value of AR parameters. From (33) and (34) with 

two unknowns a1 and a2, by assuming that the resonating 

frequency is equal to the maximum energy frequency, we 

can give a theoretical approximated expression of the 
two AR parameters: 

   (35) 

     (36) 

where the variable f(n) may be fmax or fres. 

The numerical evaluation of the normalized di erence 

between (34) and (33) (i.e., between fres and fmax) is 

small [16] for the range of typical values of a1 and a2 (a 

typical range for a1 is −1:90 < a1 < −1:52 and for a2 is 

0:9 < a2 < 1, the corresponding bandwidth is 20 MHz < f 

< 45 MHz). This implies that the resonating frequency of 
a second-order AR system can be approxi-mately 
represented by the frequency of the maximum en-ergy.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Evolution of fmax (dotted line) and fc (dashed line) versus 

depth obtained by the adaptive approach. The theoretical curve cal-
culated by (5) is illustrated by the solid line. Those proposed curves 
are averaged with 256 radio-frequency lines. The simulation condi-

tions are: f0 = 45 MHz, s = 7:46 MHz, = 2, 3, 4, 5 dB/cmMHz, and fs = 

400 MHz. 
 

 
Consequently, as their values are very similar, we 

only focus on the maximum energy frequency. 
By using (6), (35) becomes : 

  (37) 

where d is the depth, is the attenuation coefficient, s
2
 is 

the spectral variance. 
Note that the initial values of the AR parameters de-

pend on the transducer center frequency f0 and the 

sam-pling frequency fs. With (35) and (36) we determine 

the initial values of a1 and a2 at time n = 0: 

  (38) 

     (39) 

  (40) 

with fs = 400 MHz and f0 = 45 MHz. 

Here, we emphasize, in a theoretical manner, the fact 
that an accurate estimation of , via the computation of 
the linear regression, cannot be carried out without an 
accurate estimation of the AR parameters. This means 
that estimation of the AR parameters must be performed 
with great care. From (6), it is obvious that variance of is 

proportional to variance of fmax: 

    (41) 
According to Appendix B, Taylor expansion of the vari- 

ance of fmax is: 

 
where  are two AR estimated parameters with 

variances σa
2

1,σ a
2

2 and covariance a1;a2. 

Determination of statistical properties of time-varying 
frequency estimates is obtained in the same way as in 
the adaptive case. However, we have to replace  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Evolution of fmax (dotted line) and fc (dashed line) versus depth 

obtained by the time-varying approach versus depth. The the-oretical 
curve calculated by (5) is illustrated by the solid line. Those proposed 
curves are averaged with 256 radio-frequency lines. The simulation 

conditions are: f0 = 45 MHz, s = 7:46 MHz, = 2, 3, 4, 5 dB/cmMHz, and 

fs = 400 MHz. 

 
variance, co-variance, and bias of each parameter by 
statistical proper-ties of each basis coefficient. 
As expected, (39) shows that the precision (related to 
variance) of attenuation coefficient estimate is greatly 
de-pendent on the precision of the AR parameter 
estimates. 
 

VI. Interpretation and Discussion 
 

In order to characterize estimates, we focus our atten-
tion on the bias and the variance of estimation. To take into 
account the stochastic variation of the signal, these two 
statistical characteristics are examined as a function of 
depth. More precisely, the bias is calculated as the ex-
pectation of the di erence between the average estimated 
value and the theoretical value at each depth and the com-
putation of variance is based on the same principle. 

 
A. Statistical Analysis of Frequency Estimates 
 

Fig. 7 illustrates the evolution of fmax (33) and fc [5] 

versus depth obtained by the adaptive algorithm. These 
curves are averaged with 256 radio-frequency (RF). At 
the beginning of the frequency estimation, a transient 
region appears that is due to the recursive nature of the 
algo-rithm. However, the curves of frequency estimates 
are al-most parallel to those of theoretical frequencies. 

Although we have increased the number of unknowns, 
the time-varying method leads to improvement of parame-
ters estimation accuracy for a time-varying signal. Indeed, 

Fig. 8, which presents the evolution of fmax and fc, well il-

lustrates that the curves of frequency estimates are almost 
parallel to the theoretical frequencies. 

Fig. 9 shows the bias and the mean square error of 

fmax evaluated by the adaptive method. 

The analysis of results shown in Figs. 7, 8, and 9 lead 
to the following observations: 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Evolution of the bias (a) and the mean square error (b) of fmax 

versus depth by using the adaptive approach. The simulation condi-

tions are: f0 = 45 MHz, s = 7:46 MHz, = 1, 2, 3, 4, 5 dB/cmMHz, and fs 

= 400 MHz. The gap between the theoretical curve and the estimate 
increases with the increasing value of but not with the depth. Variance 
seems independent of the attenuation value and the depth. 
 

 

 Except the transient region, the bias and the 
variance of the frequency estimates are 
roughly independent of the explored medium 
depth. This trend also has been veri ed with 
the parameter estimates. This phe-nomenon 
can be simply explained thanks to the homo-
geneity of the medium and the lack of di 
raction ef-fects in the simulations. 
Consequently, this result con- rms that the 
estimation of can be obtained via the 

computation of the slope of fmax along the 

explored medium. 
 The systematic error on the frequency estimation 

(bias) is dependent on attenuation in the 
adaptive ap-proach, whereas in the time-varying 
approach it seems relatively independent on 
attenuation. This behavior is explained by the 
fact that the AR parameters eval-uated by the 
adaptive approach are much more biased than 
the ones estimated by the time-varying 
approach. The attenuation-dependence of 
frequency bias does not disturb attenuation 
estimation because its slope constitutes the 
relevant information (because the fre-quency 
bias is constant versus depth). 

 The variance of the frequency estimator, evaluated 
by the adaptive algorithm, is relatively 
independent on the attenuation. The same trend 
has been observed for the time-varying 
algorithm. Indeed, the variance of parameters 
are independent of depth. Accordingly, we can 
foresee that variance of is constant regardless 
of the di erent attenuation values. 

Estimation obtained either by using the maximum en-ergy 
frequency or the centroid frequency provides close results. 

This is due to the smoothness of the AR PSD. However, 
the  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Evolution of the relative error (a) and the standard de-viation 
(b) of the attenuation coefficient estimate versus the the-oretical 
attenuation coefficient values and for di erent approaches. 

 
 
 
 

computation of fmax is faster than that of fc, 

which explains our choice of fmax. 

 

B. Statistical Analysis of Attenuation 
 
Coefficient Estimates 
 

Fig. 10 shows the relative error and standard 
deviation for short-time Fourier, short-time AR, adaptive 
AR and time-varying AR methods. The following 
observations can be made: 

 In the case of the short-time Fourier analysis, 
evaluat-ing the attenuation coefficient by the use 
of the cen-troid frequency is by far more e cient 
than by using the maximum energy frequency. 

Indeed, fc represents an average value of the 

frequency distribution.  

 Because fc and fmax evaluated by the AR 

approach are similar, the corresponding 
attenuation coefficients are very close (Table 
I). 

 Concerning the attenuation estimate, results 

obtained using fc with the short-time Fourier 

analysis show a high variance compared to 
those obtained by the para-metric 
approaches. In addition, the RE reaches and 
even exceeds 10% for = 4 dB/cmMHz 
whereas the RE given by the parametric 
approaches is below 5%. Fig. 10(b) shows 
that standard deviation using the adaptive 
approach is lower than short-time analysis for 
high attenuations. 

 Time-varying method is better than adaptive and 
batch methods in terms of SD whereas the 
RE is nearly the same for all methods. 

Hence, by using a time-varying method, we can improve 
the standard deviation of short-time Fourier analysis by a 
factor 5. This means that the averaging operation can be  



   TABLE I      

 The RE and the SD of the Attenuation Coefficient   Evaluated via fmax and fc for Different Attenuations
1

. 

         

  Attenuation coe cient 1 2 3 4 5  
  (dB/cmMHz)       
         

  Relative Error of  : fmax 3.055 3.546 2.633 3.592 2.847  
 (%)       

  Relative Error of  : fc 2.012 1.951 1.972 3.33 2.368  

 (%)       

  Standard Deviation of  : fmax 0.474 0.485 0.456 0.373 0.365  

  (dB/cmMHz)       

  Standard Deviation of  : fc 0.496 0.493 0.489 0.392 0.375  

  (dB/cmMHz)       
 

1
The results are very close; however, we note some di erences: RE of evaluated 

via fc is better than the one obtained via fmax, whereas the SD of evaluated via 

fmax is better than the one obtained via fc. 

 
performed with less uncorrelated RF signals than com-
monly used. 

The a posteriori knowledge of RE means that it 
becomes possible to easily correct this error on the 
attenuation es-timation. 

 
VII. Conclusion 

 
We have proposed two new approaches for 

ultrasound attenuation estimation: adaptive AR2 and 
time-varying AR2. Both the time-varying approach, 
whose basis is a two-dimensional power time function, 
and the adaptive approach provide bias and variance on 
spectral estimation that are independent of the explored 
tissue depth. These two approaches, which are radically 
di erent in their prin-ciple, give a bias on the frequency 
estimate that is depen-dent on the attenuation coefficient 
value and a variance of the frequency estimate that is 
only weakly a ected by attenuation. 

Concerning the attenuation coefficient estimate, in 
terms of accuracy, the performances of the time-varying 
method are far superior to those of short-time Fourier 
and short-time AR analyses. Furthermore, the superior-
ity of the time-varying approach compared to the adap-
tive method indicates that it is very well adapted to non-
stationary signals encountered both in weakly and highly 
attenuating media. 

The joint use of high frequency and time-varying anal-
ysis is a promising way to evaluate tissue attenuation 
that has to be con rmed by both in vitro and in vivo mea-
surements. Potential applications are in dermatology and 
ophthalmology where tissue attenuation can be related 
to a pathological state. 

To better analyze the attenuation, it may be 
interesting to consider an adaptive algorithm using 
higher order statistics already introduced in signal 
processing [17] 

 
Acknowledgements 
 

We gratefully acknowledge Pr. Marc Lethiecq and Dr 
Christelle Guittet of University of Tours for the help with 
the manuscript. We are also indebted to anonymous 
reviewers for their helpful comments. 
 

Appendix A 
 

The dierent basis functions proposed are: 

 Legendre functions: 

 (A-1) 

 Power time functions: 

       (A-2) 

 Trigonometric functions: 

      (A-3) 
 

      (A-4) 
 
where F0(n) = 1. 
 

Appendix B 
 

The Taylor expansion of the variance of f max [18] with 
the help of (33) is given by: 

 
with 
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