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Abstract. We consider the mathematical model of a rigid ball moving in a
viscous incompressible fluid occupying a bounded domain Ω, with an external
force acting on the ball. We investigate in particular the case when the external
force is what would be produced by a spring and a damper connecting the
center of the ball h to a fixed point h1 ∈ Ω. If the initial fluid velocity is
sufficiently small, and the initial h is sufficiently close to h1, then we prove the
existence and uniqueness of global (in time) solutions for the model. Moreover,
in this case, we show that h converges to h1, and all the velocities (of the fluid
and of the ball) converge to zero. Based on this result, we derive a control
law that will bring the ball asymptotically to the desired position h1 even if
the initial value of h is far from h1, and the path leading to h1 is winding and
complicated. Now, the idea is to use the force as described above, with one
end of the spring and damper at h, while other end is jumping between a finite
number of points in Ω, that depend on h (a switching feedback law).

Key words. fluid-structure interactions, Navier-Stokes equations, PD con-
troller, global solutions, asymptotic stability, switching feedback.

AMS Subject Classification: 35Q35,35D05, 35Q30, 35Q72, 76D03

1. Introduction and main results

We consider a coupled system described by nonlinear partial and ordinary differ-
ential equations modelling the motion of a rigid body inside a viscous incompressible
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Figure 1: A domain Ω with the ball shown with the center at its initial position
h0. The feedback (1.12) is trying to bring the ball to the desired position h1. This
is equivalent to having connected a spring and a damper between the center of the
ball and h1, so that the spring is pulling the ball towards h1. In the situation shown
here, if the initial velocities are small, then the ball will not reach h1. The more
sophisticated feedback (1.19) will do the job.

——————————————

fluid in a bounded domain Ω. The fluid flow is described by the classical Navier-
Stokes equations (see (1.1)–(1.2) below), whereas the motion of the ball-shaped rigid
body is governed by the Newton laws (see (1.6)-(1.7) below), including an external
control force denoted by u acting on the ball.

The domain occupied by the fluid and the rigid ball is Ω ⊂ R
3, a connected open

bounded set with C2 boundary. The rigid ball has radius 1 and its center is located
at the (variable) point h which is at a distance > 1 from the boundary ∂Ω. We
denote by B(h) the closed set occupied by the ball. The fluid is homogeneous with
density ρ > 0 and viscosity ν > 0 and it occupies the domain

F(h) = Ω \ B(h) .

The full system of equations modelling the system, for t > 0, is

ρv̇ − ν∆v + ρ(v · ∇)v +∇p = 0 , x ∈ F(h(t)), (1.1)

div v = 0, x ∈ F(h(t)), (1.2)

v = 0, x ∈ ∂Ω, (1.3)

ḣ = g, (1.4)

v = g(t) + ω(t)× (x− h(t)), x ∈ ∂B(h(t)), (1.5)
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mġ = −

∫

∂B(h)

σ(v, p)n dΓ + u, (1.6)

Jω̇ = −

∫

∂B(h)

(x− h)× σ(v, p)n dΓ, (1.7)

h(0) = h0, ḣ(0) = g0, ω(0) = ω0 , (1.8)

v(x, 0) = v0(x), x ∈ F(h0). (1.9)

In the above system the state variables are v(x, t) (the Eulerian velocity field of the
fluid), h(t) (the position of the center of the rigid ball), its time derivative g(t), and
ω(t) (the angular velocity of the ball). The function p(x, t) is the pressure of the
fluid, which is not a state variable, because at any time instant it can be computed
from v at the same instant, up to an additive constant. We have denoted by n(x, t)
the unit normal to ∂B(h(t)) at the point x ∈ ∂B(h(t)), directed to the interior of
the ball, and by m and J the mass and the moment of inertia of the rigid ball. (If
we would take ν = 0, then (1.1)–(1.2) would be called Euler’s equations, but then
the other equations and the nature of the system would change.) We have denoted
by σ(v, p) the tensor defined by

σij(v, p) = − pδij + ν

(
∂vi
∂xj

+
∂vj
∂xi

)
(i, j ∈ {1, 2, 3}). (1.10)

This is the stress tensor in the fluid, and dΓ is the surface measure on ∂B(h). We
also need a notation for the set of points where the center of the ball can be:

Ω◦ = {x ∈ Ω | dist(x, ∂Ω) > 1} , (1.11)

and we assume this set to be connected.

The main difficulty in the analysis of (1.1)–(1.9) is that the Navier-Stokes equa-
tions are valid in a non-cylindrical space-time domain. This domain depends on the
solution, so that we have here a free boundary problem. Early references addressing
these difficulties are Conca, San Mart́ın and Tucsnak [1], Desjardins and Esteban
[3] and Hoffman and Starovoitov [10]. The case Ω = R

3 has been considered in
Galdi and Silvestre [7] and by Cumsille and Takahashi [2]. The global existence
and uniqueness of strong solutions has been proved for sufficiently small v0 in Taka-
hashi [17]. Local existence of strong solutions in the Lp context has been proved in
Geissert, Götze and Hieber [8]. The existence of global weak solutions for u = 0
(with possible contacts between the rigid body and ∂Ω) has been proved in San
Mart́ın, Starovoitov and Tucsnak [16] and in Feireisl [5]. Most the above references
considered the case in which u in (1.6) is a given function of time (often identically
equal to zero). The literature on this subject is large and, inevitably, we have left
out some relevant references. For instance, there are several works studying a fluid
with a rigid body moving according to a prescribed trajectory (that is independent
of the fluid).

One of the contributions of our work is that we prove the existence and uniqueness
of global (in time) strong solutions of (1.1)–(1.9) when u is given by a feedback law

3



of the form
u(t) = kp[h1 − h(t)]− kdḣ(t) , (1.12)

with a given h1 ∈ Ω◦ and kp > 0, kd > 0. This feedback may be regarded as
a proportional-derivative (PD) controller, as is often used in control engineering.
Another interpretation is that the force u from (1.12) is generated by a spring (with
constant kp) and a mechanical damper (with constant kd) connected between h(t)
and a fixed anchor point h1. This result (Theorem 1.1 below) assumes that the
initial velocity field v0 as well as the initial data g0, ω0 and h1 − h0 are sufficiently
small in a suitable sense. In addition to existence and uniqueness of global strong
solutions of (1.1)–(1.9) with (1.12), we show that these solutions satisfy

lim
t→∞

h(t) = h1, lim
t→∞

g(t) = 0, lim
t→∞

ω(t) = 0, (1.13)

lim
t→∞

∥v(·, t)∥H1(F(h(t))) = 0 . (1.14)

The last formula of course implies that limt→∞ ∥v(·, t)∥L2(F(h(t))) = 0, a fact that
will be proved before proving (1.14), using energy estimates.

We need more notation. If W is a Hilbert space and q ∈ N, we denote by
Hq

loc(0,∞;W ) the space of those v : (0,∞)→W for which the restriction v|(0,T ) is
in Hq(0, T ;W ), for every T > 0. If M is a subset of W then Hq

loc(0,∞;M) is the
set of those functions in Hq

loc(0,∞;W ) that have their range in M . If x is a vector
in a finite-dimensional normed space, then we denote its norm by |x|.

We now introduce sets of vector-valued functions with four components

[
v
h
g
ω

]
which

include possible state trajectories of the system (1.1)–(1.9) with an arbitrary control
input u. Thus, v is the velocity field, but extended to all of Ω, by considering also
the velocity field of the rigid ball. This function is required to satisfy div v = 0, in
accordance with (1.2). The function h represents the position of the center of the
rigid ball (which must be with values in Ω◦), g = ḣ is the velocity of the center of
the ball, while ω is its angular velocity. For compatibility, we impose that at any
moment t > 0, the restriction of v to B(h(t)) must be equal to the velocity field of
the rigid ball, as determined by h, g and ω:

T L2
loc([0,∞);L2(Ω)) =








v
h
g
ω


 ∈

L2
loc([0,∞);L2(Ω))
H2

loc(0,∞; Ω◦)
H1

loc(0,∞;R3)
H1

loc(0,∞;R3)

∣∣∣∣∣∣∣∣

v(x, t) = g(t)+
ω(t)× (x− h(t))

∀t > 0 , x ∈ B(h(t)),
div v = 0





.

The subset T C([0,∞);H1(Ω)) is defined similarly, but with C([0,∞);H1(Ω)) in
place of L2

loc([0,∞);L2(Ω)) in the top line. Another subset T H1
loc(0,∞;L2(Ω)) is

defined similarly, but with H1
loc(0,∞;L2(Ω)) in place of L2

loc([0,∞);L2(Ω)) in the
top line. Finally, the more complicated set

T L2
loc([0,∞);H2(F(h))) ⊂ T C([0,∞);H1(Ω))
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consists of those

[
v
h
g
ω

]
∈ T C([0,∞);H1(Ω)) for which v(·, t)|F(h(t)) ∈ H2(F(h(t)) for

almost every t > 0 and the scalar function t→∥v(·, t)|F(h(t))∥H2 is in L2
loc[0,∞).

We need to introduce also suitable sets of functions for the pressure p in (1.1).
For any given h ∈ H2

loc(0,∞; Ω◦) we set

L2
loc([0,∞);H1(F(h))) =




p ∈ L2

loc([0,∞);L2(Ω))

∣∣∣∣∣∣∣∣

p|F(h(t)) ∈ H1(F(h(t)) and
p|B(h(t)) = 0 for a.e. t > 0 ,∫ T

0
∥p∥2

H1(F(h(t))dt < ∞

for all T > 0





.

Two important intermediate results can be stated as follows:

Theorem 1.1. Let Ω ⊂ R
3 be an open, connected and bounded set with ∂Ω of class

C2 and let h1 ∈ Ω◦. Then for each kp > 0 and kd > 0 there exists δ > 0, depending
only on Ω, kp, kd and on the distance dist(h1, ∂Ω), such that for every h0 ∈ Ω◦,
v0 ∈ H1(F(h0);R

3) and every g0, ω0 ∈ R
3 satisfying





div v0 = 0, in F(h0),
v0(x) = 0, for x ∈ ∂Ω,
v0(x) = g0 + ω0 × (x− h0), for x ∈ ∂B(h0),
∥v0∥H1(F(h0)) + |g0|+ |ω0|+ |h1 − h0| 6 δ,

(1.15)

there exists a strong solution of (1.1)–(1.9) with the feedback (1.12), on the time
interval [0,∞). This solution satisfies




v
h
g
ω


 ∈ T L2

loc([0,∞);H2(F(h))) ∩ T H1
loc(0,∞;L2(Ω)) , (1.16)

p ∈ L2
loc([0,∞);H1(F(h))) , (1.17)

v ∈ L∞([0,∞);H1(Ω)). (1.18)

The above solution is unique up to an additive perturbation of p that depends only
on time.

Theorem 1.2. With the notation and assumptions of Theorem 1.1, the solution
(v, p, h, g, ω) of (1.1)–(1.9) satisfies (1.13) and (1.14).

The above theorem tells us that we can move the ball from any initial point
h0 ∈ Ω◦ asymptotically to another point h1 ∈ Ω◦, if h0 and h1 are sufficiently close
to each other, by connecting a spring and a damper to the ball and pulling the ball
towards h1. One reason why we need h0 and h1 to be close to each other is to ensure
that on the way, the ball will not hit the boundary ∂Ω.

We would like to have a result that tells us something similar to the above theorem,
but without the requirement that h0 is close to h1. We achieve this by imposing a
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more complicated control law, in which the anchor point of the spring and damper is
not fixed at h1, but instead it jumps between a finite number of possible points. In
this way, it is possible to navigate the ball along a curved path, as may be necessary
due to the shape of Ω, see Figure 1.

Theorem 1.3. Let Ω ⊂ R
3 be an open, connected and bounded set with ∂Ω of class

C2, with Ω◦ connected. Then for each h0, h1 ∈ Ω◦ and kp > 0, kd > 0 there exists
δ > 0 such that if v0 ∈ H1(F(h0)), g0, ω0 ∈ R

3 satisfy





div v0 = 0, in F(h0),
v0(x) = 0, for x ∈ ∂Ω,
v0(x) = g0 + ω0 × (x− h0), for x ∈ ∂B0,
∥v0∥H1(F(h0)) + |g0|+ |ω0| 6 δ,

then there exists a piecewise constant function s : [0,∞) → Ω◦ such that the strong
solution of (1.1)–(1.9) with

u(t) = kp[s(t)− h(t)]− kdḣ(t) (t > 0) , (1.19)

satisfies the stability properties (1.13) and (1.14).

As pointed above, one of the main difficulties to study the system (1.1)–(1.9)
comes from the fact that the domain of the fluid is moving. To overcome this
difficulty, we introduce in Section 2 a change of variables in order to rewrite the
system in a cylindrical domain. Using this change of variables, we prove in Section
3 the local in time existence and uniqueness of a solution. The energy estimates and
H1 estimates established respectively in Section 4 and in Section 5 allow to deduce
the global in time existence of solutions under a smallness assumption of the initial
data. Then, using the feedback (1.12), we show in Section 6 that the H1 norm of
the solutions tends to zero and that the position of the center of the ball tends to
h1. This result is the keystone to deduce the proof of the main results in Section
7. Finally, in Section 8, we state similar results for the bidimensional case. In that
case, we can skip the smallness condition that is necessary in dimension 3.

2. Changing variables to a fixed domain

In this section we recall the construction of a change of variables which, when
applied to the system (1.1)–(1.9), transforms equation (1.1) in a PDE valid, for
every t ≥ 0, in the fixed domain F(h(0)). This change of variables has been widely
used in the study of fluid-structure interactions so that most of the results in this
section are stated without proofs. We refer to [17] and to San Mart́ın and Tucsnak
[13] for the detailed proofs.

Let T > 0 and let h ∈ H2(0, T ; Ω◦) (this means that h is of class H2 on the
interval (0, T ) and its range is in Ω◦ defined in (1.11)). As in the previous section,
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we denote by B(h(t)) the closed ball of radius 1 centered at h(t) and we set F(h(t)) =
Ω \ B(h(t)). We define the function w : R3 × [0, T ] → R

3 by

w(x, t) =
1

2
ḣ(t)× x.

It is easily seen that

rotw(x, t) = ḣ(t) for t > 0, x ∈ R
3 .

Using the Sobolev embedding theorem, a short argument shows that there exists
ε > 0 such that h ∈ C([0, T ]; Ω1+ε), where Ωα the set of points in Ω that are at a
distance larger than α from ∂Ω. In particular,

|x− h(t)| > 1 + ε ∀ x ∈ ∂Ω , t ∈ (0, T ). (2.1)

Let ξ ∈ C∞(R3) be a function with compact support contained in Ω ε
2
and with

ξ ≡ 1 on Ωε. We define the vector field Λ : R3 × [0, T ] → R
3 by

Λ(x, t) = rot(ξw)(x, t) (x ∈ R
3, t > 0). (2.2)

It is not difficult to check that for every t ∈ [0, T ] we have

Λ(x, t) =

{
ḣ(t) if x ∈ Ωε ⊃ B(h(t)) ,
0 if x ̸∈ Ω ε

2
.

Next, consider the time dependent vector field X(·, t) satisfying





∂X

∂t
(y, t) = Λ(X(y, t), t), for y ∈ R

3, t > 0,

X(y, 0) = y for y ∈ R
3.

(2.3)

The first properties of the map X are summarized in the following two lemmas.
As mentioned above, we refer to [17] and to [13] for the detailed proofs.

Lemma 2.1. With the above assumptions, for all y ∈ Ω, the initial-value problem
(2.3) has a unique solution X(y, ·) : [0,∞)→Ω and for every t > 0, we have that the
mapping y 7→ X(y, t) is a C∞-diffeomorphism of Ω and from F(h(0)) onto F(h(t)).
Moreover, X satisfies the following conditions:

1. The restriction of X to B(h(0)) is a translation, i.e.,

X(y, t) = y + h(t)− h(0) for y ∈ B(h(0)), t > 0 .

2. The Jacobian matrix JX of X satisfies

det JX(y, t) = 1 for y ∈ Ω, t > 0.

7



3. The map y 7→ X(y, t) is invertible for every t > 0 and its inverse map Y
satisfies

∂Y

∂t
(x, t) = − (Λ(x, t) · ∇)Y (x, t), for x ∈ Ω, t > 0,

Y (x, 0) = x, for x ∈ Ω .
(2.4)

We mention that the map x 7→ Y (x, τ) (for a fixed τ > 0) can also be found by
solving (2.3) backwards in time, i.e., solving the final time problem

∂Ỹ

∂t
(x, t) = Λ(Ỹ (x, t), t), for x ∈ Ω, t ∈ [0, τ ],

Ỹ (x, τ) = x, for x ∈ Ω

and then setting Y (x, τ) = Ỹ (x, 0).

The result below gives some information on the “distance” from X(y, t) to y for
positive t and it shows that this distance is “controlled” by h(t) and its derivatives.

Lemma 2.2. Let T > 0 and assume that h ∈ H2(0, T ; Ω◦) and that ε > 0 satisfies
(2.1). Then there exists a positive constant K that depends only on ε and Ω such
that the function X defined by (2.3) satisfies:

∥X − idΩ ∥C(Ω×[0,T ]) 6 K∥ḣ∥L1([0,T ];R3), (2.5)

∥∇X − I3∥C(Ω×[0,T ]) 6 K∥ḣ∥L1([0,T ];R3) exp
(
K∥ḣ∥L1([0,T ];R3)

)
, (2.6)

∥∥∇2X
∥∥
C(Ω×[0,T ])

+
∥∥∇3X

∥∥
C(Ω×[0,T ])

6 K∥ḣ∥L1([0,T ];R3) exp
(
K∥ḣ∥L1([0,T ];R3)

)
. (2.7)

Moreover, the above estimates are still valid if we replace ∇α
yX with ∇α

xY , where
0 6 α 6 3.

In the above result, we use the supremum norm on C(Ω× [0, T ]) and we write

∇αX =

(
∂αXi

∂yβ1

1 ∂yβ2

2 ∂yβ3

3

)

β∈N3, β1+β2+β3=α

.

In order to transform (1.1)–(1.9) into a system written in a cylindrical domain, we
define, following Inoue and Wakimoto [11], the vector field V : F(h(0))×[0, T ] → R

3

and the scalar field P : F(h(0))× [0, T ] → R by

V (y, t) = JY (X(y, t), t)v(X(y, t), t) (y ∈ F(h(0)), t ∈ [0, T ]), (2.8)

P (y, t) = p(X(y, t), t) (y ∈ F(h(0)), t > 0), (2.9)

where JY is the Jacobian of the inverse map Y of X, introduced in Lemma 2.1.
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In order to write the equations satisfied by V (y, t) and P (y, t) we define for each
i ∈ {1, 2, 3} the differential operators

(LV )i =
3∑

j,k=1

∂

∂yj

(
gjk

∂Vi

∂yk

)
+ 2

3∑

j,k,l=1

gklΓi
jk

∂Vj

∂yl

+
3∑

j,k,l=1

{
∂

∂yk
(gklΓi

jl) +
n∑

m=1

gklΓm
jlΓ

i
km

}
Vj, (2.10)

(NV )i =
3∑

j=1

Vj
∂Vi

∂yj
+

3∑

j,k=1

Γi
jkVjVk, (2.11)

(MV )i =
3∑

j=1

∂Yj

∂t

∂Vi

∂yj
+

3∑

j,k=1

{
Γi
jk

∂Yk

∂t
+

∂Yi

∂xk

∂2Xk

∂t∂yj

}
Vj, (2.12)

(GP )i =
3∑

j=1

gij
∂P

∂yj
. (2.13)

We have denoted, for each i, j, k ∈ {1, 2, 3}, (see, for instance, [4])

gij(y, t) =
3∑

k=1

∂Yi

∂xk

(X(y, t), t)
∂Yj

∂xk

(X(y, t), t) (metric contravariant tensor),

gij(y, t) =
3∑

k=1

∂Xk

∂yi
(y, t)

∂Xk

∂yj
(y, t) (metric covariant tensor),

Γk
ij =

1

2

3∑

l=1

gkl
{
∂gil
∂yj

+
∂gjl
∂yi

−
∂gij
∂yl

}
(Christoffel’s symbol). (2.14)

Indeed, this follows in an elementary way from (2.6), (2.7) and (2.14).

We need a version of the space T L2
loc([0,∞);L2(Ω)) introduced in Section 1, but

this time on a finite time interval. For any T > 0 we set

T L2([0, T ];L2(Ω)) =








v
h
g
ω


 ∈

L2([0, T ];L2(Ω))
H2(0, T ; Ω◦)
H1(0, T ;R3)
H1(0, T ;R3)

∣∣∣∣∣∣∣∣

v(x, t) = g(t)+
ω(t)× (x− h(t))

∀ t ∈ (0, T ) , x ∈ B(h(t)),

div v = 0, g = ḣ





.

The subset T C([0, T ];H1(Ω)) is defined similarly, but with C([0, T ];H1(Ω)) in place
of L2([0, T ];L2(Ω)) in the top line. Another subset T H1(0, T ;L2(Ω)) is defined
similarly, but with H1(0, T ;L2(Ω)) in place of L2([0, T ];L2(Ω)) in the top line. The
more complicated set

T L2([0, T ];H2(F(h))) ⊂ T C([0, T ];H1(Ω))
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consists of those

[
v
h
g
ω

]
∈ T C([0, T ];H1(Ω)) for which v(·, t)|F(h(t)) ∈ H2(F(h(t))

holds for almost every t ∈ [0, T ] and the scalar function t→∥v(·, t)|F(h(t))∥H2 is in
L2[0, T ]. For any given h ∈ H2(0, T ; Ω◦) we set

L2([0, T ];H1(F(h))) =



p ∈ L2([0, T ];L2(Ω))

∣∣∣∣∣∣

p|F(h(t)) ∈ H1(F(h(t)) and
p|B(h(t)) = 0 for a.e. t ∈ [0, T ] ,∫ T

0
∥p∥2

H1(F(h(t))dt < ∞



 .

With this notation we have the following result, which is proved in [17]:

Proposition 2.3. Let h ∈ H2(0, T ; Ω◦) and let ε > 0 be such that (2.1) holds.
Denote h0 = h(0), F0 = F(h0) and B0 = B(h0). Let h1 ∈ Ω◦ and let v, g, ω, p be
functions such that



v
h
g
ω


 ∈ T L2([0, T ];H2(F(h))) ∩ T H1(0, T ;L2(Ω)) , (2.15)

p ∈ L2([0, T ];H1(F(h))) . (2.16)

These functions satisfy (1.1)–(1.9) with (1.12) if and only if the functions V, P de-
fined by (2.8)–(2.9) satisfy the regularity conditions

V ∈ L2([0, T ];H2(F0;R
3)) ∩ C([0, T ];H1(F0;R

3)) ∩ H1(0, T ;L2(F0;R
3)), (2.17)

P ∈ L2([0, T ];H1(F0)), (2.18)

and together with g and ω they satisfy the equations

ρ
∂V

∂t
− ν(LV ) + ρ(MV ) + ρ(NV ) + (GP ) = 0 in F0 × (0, T ), (2.19)

div V = 0 in F0 × (0, T ), (2.20)

V = 0 on ∂Ω , (2.21)

ḣ = g , (2.22)

V (y, t) = g(t) + ω(t)× (y − h0) on ∂B0 × (0, T ), (2.23)

mġ(t) = −

∫

∂B0

σ(V, P )n dΓ + kp[h1 − h(t)]− kdg(t) for t ∈ (0, T ), (2.24)

Jω̇(t) = −

∫

∂B0

(y − h0)× σ(V, P )ndΓ for t ∈ (0, T ), (2.25)

V (y, 0) = v0(y) for y ∈ F0, (2.26)

g(0) = g0, ω(0) = ω0 , (2.27)

where, denoting by I the identity matrix and using D from (4.1),

σ(V, P ) = − PI + 2νD(V ) .
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The next result asserts that, for T small enough, the operators L and G defined in
(2.10), (2.13) are close to the operators ∆ and ∇, respectively, and that the operator
M defined in (2.12) is small in an appropriate sense. This lemma is taken from [13,
Lemma 2.3.4]. We continue to use the notation F0 = F(h(0)).

Lemma 2.4. Let ε > 0 and let h ∈ H2(0, T ; Ω◦) be such that (2.1) holds. Let V
and P be functions as in (2.17) and (2.18). Denote

R1 = ∥V ∥L2(0,T ;H2(F0;R3)) + ∥V ∥C([0,T ];H1(F0;R3)) + ∥∇P∥L2(0,T ;L2(F0;R3)) (2.28)

η = ∥ḣ∥H1(0,T ;R3) + ∥ḣ∥L∞(0,T ;R3) . (2.29)

Then there exist a positive constant K, depending only on Ω, ε and the physical
parameters (ν, ρ), such that

1. ∥ν(L−∆)V ∥L2([0,T ];L2(F0;R3)) 6 KTR1η exp(KηT ),

2. ∥ρMV ∥L2([0,T ];L2(F0;R3)) 6 KT
1

2R1η exp(KηT ),

3. ∥(G−∇)P∥L2([0,T ];L2(F0;R3)) 6 KTR1η exp(KηT ).

We end this section by an estimate for the nonlinear operator N defined in (2.11).
To accomplish this, we first recall the following result:

Lemma 2.5. Let T > 0 and denote I = [0, T ]. Let V and W be functions as in
(2.17). Then (W · ∇)V ∈ L5/2(I;L2(F0)), and for all i, j ∈ {1, 2, 3}, we have that
WiVj ∈ C(I;L2(F0)). Moreover, there exist C1, C2 > 0, depending only on Ω, such
that:

∥(W · ∇)V ∥L5/2(I;L2(F0)) 6 C1∥W∥C(I;H1(F0))∥V ∥
1/5

C(I;H1(F0))
∥V ∥

4/5

L2(I;H2(F0)
, (2.30)

∥WiVj∥C(I;L2(F0)) 6 C2∥W∥C(I;H1(F0))∥V ∥C(I;H1(F0)). (2.31)

The first estimate appears as Lemma 5.2 in [18], for a two-dimensional domain.
However, thanks to the continuous Sobolev embedding H1(Ω) ⊂ Lq(Ω), valid for
any bounded domain Ω ⊂ R

3 and for 1 6 q 6 6, the same proof works also for a
three-dimensional domain. The second estimate is a direct consequence of the same
Sobolev embedding (with q = 4) and the simple estimate ∥ab∥L2 6 ∥a∥L4∥b∥L4 .
Using the above lemma, one can prove the following result.

Lemma 2.6. With the notation and assumptions in Lemma 2.4, there exists a
positive constant K, depending only on Ω and ε, such that for all T 6 1,

∥ρNV ∥L2([0,T ];L2(F0;R3)) 6 KR2
1T

1

10 exp(Kη). (2.32)
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3. Local existence of solutions

In this section we show that the method introduced in [17] and [18] in order to
prove local in time existence and uniqueness of solutions of (1.1)–(1.9) for u = 0 can
be adapted for u given in feedback form by (1.12). Consider the C2 domain Ω and
the points h0 ∈ Ω◦ (initial position of the center of the ball) and h1 ∈ Ω◦ (anchor
point of the spring and damper) to be fixed, with dist(h0, ∂Ω) > 1 + ε for some
ε > 0. Recall the notation F0 = F(h0) and introduce

Ĥ1(F0) =

{
q ∈ H1(F0),

∫

F0

q(x)dx = 0

}
.

A basic ingredient in tackling the above local existence and uniqueness problem
consists in studying the linearized system

∂V

∂t
− ν∆V +∇P = f1, in F0 × [0, T ], (3.1)

div V = 0, in F0 × [0, T ], (3.2)

V = 0, on ∂Ω , (3.3)

V (y, t) = g(t) + ω(t)× (y − h0), y ∈ ∂B0, t ∈ [0, T ], (3.4)

mġ(t) = −

∫

∂B(h0)

σ(V, P )ndΓ− kdg(t) + f2(t), t ∈ [0, T ], (3.5)

Jω̇(t) = −

∫

∂B0

(y − h0)× σ(V, P )n dy , t ∈ [0, T ], (3.6)

V (x, 0) = v0(x), x ∈ F0, (3.7)

g(0) = g0, ω(0) = ω0, (3.8)

where T > 0, combined with the application of a fixed point method. These equa-
tions have been obtained from (2.19)–(2.27) by replacing the terms LV and GP with
their linear approximations ∆V and with ∇P , respectively, and “throwing out” the
other nonlinear terms (any term that depends on h is considered nonlinear). Note
that the function h does not appear in the above equations. The new functions f1
and f2 will account for all the modifications that we did.

Proposition 3.1. With the above notation, let

f1 ∈ L2((0, T );L2(F0;R
3)), f2 ∈ L2((0, T );R3), v0 ∈ H1(F0;R

3)

and g0, ω0 ∈ R
3 be such that

div v0 = 0 in F0, v0 = 0 on ∂Ω,

v0(y) = g0 + ω0 × (y − h0), y ∈ ∂B0.

Then the system (3.1)–(3.8) admits a unique solution (V, P, g, ω) with

V ∈ L2((0, T );H2(F0;R
3)) ∩ C([0, T ];H1(F0;R

3)) ∩ H1((0, T );L2(F0;R
3)),
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P ∈ L2((0, T ); Ĥ1(F0)/R), g, ω ∈ H1(I;R3) .

Moreover, there exists a Kε > 0, depending only on Ω and on ε, such that

∥V ∥L2((0,T );H2(F0;R3)) + ∥V ∥C([0,T ];H1(F0;R3)) + ∥V ∥H1((0,T );L2(F0;R3))

+ ∥∇P∥L2((0,T );L2(F0;R3)) + ∥g∥H1(I;R3) + ∥ω∥H1(I;R3)

6 Kε

[
∥v0∥H1(F0;R3) + |g0|+ |ω0|+

(
∥f1∥

2
L2(I;L2(F0;R3)) + ∥f2∥

2
L2(I;R3)

) 1

2

]
. (3.9)

This follows from Takahashi [17, Corollary 5.4]. Actually the proof in [17] is for a
two-dimensional domain, but (as explained in [17, Section 9]) the same proof works
also in three dimensions.

Remark 3.2. Let us denote

H1
div,∂Ω(F0) =

{
V ∈ H1(F0;R

3) | div V = 0 in F0, V = 0 on ∂Ω
}
.

From a system theoretic point of view, the equations (3.1)–(3.8) determine a well-
posed linear control system with input ũ =

[
f1
f2

]
∈ L2(F0;R

3) × R
3 and state z =[

V
g
ω

]
∈ H1

div,∂Ω(F0)×R
3×R

3, in the sense of [24] (see also [21, Section 4.5]). Thus, the

equations can be reformulated in the form ż = Az+Bũ, where A generates a strongly
continuous semigroup on the state space X. This state space X consists of those

triples
[
V
g
ω

]
as above that satisfy the compatibility condition V (x) = g+ω×(x−h0)

for all x ∈ ∂B0. The control operator B is unbounded since the vector Bũ =
[
f1
f2
0

]

need not be in X. The semigroup generated by A is analytic.

We have the following local in time existence and uniqueness result:

Theorem 3.3. Suppose that ∂Ω is of class C2 and let ε, δ > 0. Let h0, h1 ∈ Ω, with
dist(h0, ∂Ω) > 1+ε, let g0, ω0 ∈ R

3 and let v0 ∈ H1(F0;R
3). Moreover, assume that





div v0 = 0, in F0,
v0 = 0, on ∂Ω,
v0(x) = g0 + ω0 × (x− h0), x ∈ ∂B(h0),
∥v0∥H1(F0) + |g0|+ |ω0|+ |h1 − h0| 6 δ .

Then there exists Tmax > 0, depending only on ε and on δ, such that the equations
(1.1)–(1.9) with (1.12) admit, for every T ∈ [0, Tmax), a solution with




v
h
g
ω


 ∈ T L2([0, T ];L2(Ω)) ∩ T H1(0, T ;L2(Ω)) ,

p ∈ L2([0, T ];H1(F(h))).

This solution is unique up to an additive perturbation of p that depends only on t.
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Proof. The first step: For each T > 0 we define

ET = L2([0, T ];L2(F0;R
3))× L2([0, T ];R3),

which is the Hilbert space with the product norm. This is the space in which we
choose

[
f1
f2

]
in the system (3.1)–(3.8). For any R > 0 we denote by BT (R) the closed

ball centered at the origin and of radius R in the Hilbert space ET . For any R > 0
we shall define a complicated input-output mapping ZT for the system (3.1)–(3.8),
defined on a short time interval [0, T ] with T < 1, and for all

[
f1
f2

]
∈ BT (R). This

time horizon T depends on Ω, ε, v0, g0, ω0 and on R, in a way that will be specified
later. The map

ZT : BT (R)→ET , ZT

[
f1
f2

]
=

[
y1
y2

]
(3.10)

will be defined in three stages. Throughout, we assume that
[
f1
f2

]
∈ E1, because

even if f1, f2 are defined on a shorter interval [0, T ], we can extend them to [0, 1] by
taking them to be zero for t > T . It will be convenient to denote

λ0 = ∥v0∥H1(F0;R3) + |g0|+ |ω0| . (3.11)

In the first stage, we solve the linear equations (3.1)–(3.8) with the given v0, g0
and ω0 on the time interval [0, 1], which is possible according to Proposition 3.1.

Moreover, if



V
g
ω


 and P are the solution, then we know that these functions satisfy

the smoothness conditions and the estimates stated in Proposition 3.1. In particular,
g ∈ H1(0, 1;R3) and for every t ∈ [0, 1] we have (from (3.9))

|g(t)| 6 |g0|+

∫ t

0

|ġ(θ)|dθ 6 |g0|+ ∥g∥H1(0,1;R3)

6 |g0|+Kελ0 +Kε

∥∥∥∥
[
f1
f2

]∥∥∥∥
Et

. (3.12)

In the second stage, we define the function h : [0, 1] → R
3 by

h(t) = h0 +

∫ t

0

g(θ)dθ .

Clearly h ∈ H2(0, 1;R3) and since dist(h(0), ∂Ω) > 1 + ε, due to (3.12) there exists
a T > 0 such that (2.1) holds for any

[
f1
f2

]
∈ BT (R). Indeed, this T must satisfy

T · [|g0|+Kελ0 +KεR] 6 dist(h0, ∂Ω)− 1− ε.

Thus, T depends only on the initial conditions and on R. Using h we define a
t-dependent transformation X on Ω as in Lemma 2.1, and its inverse Y .
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In the third stage we define the operators L, N, M, G from (2.10)–(2.13), for t ∈
[0, T ], based on the transformations X and Y constructed in the second stage.
Finally, we define the functions y1 and y2 by

y1 = ν(L−∆)V − ρMV + (∇−G)P − ρNV , (3.13)

y2 = kp (h1 − h) . (3.14)

We see from Lemmas 2.4 and 2.6 and from Proposition 3.1 that indeed [ y1y2 ] ∈ ET ,
so that ZT is now well defined.

The second step: For any fixed R > 0, we have seen in the first step that ZT

can be defined on BT (R), if T > 0 is sufficiently small. Now we show that if T is
sufficiently small (possibly it needs to be smaller than in the first step), then ZT

leaves BT (R) invariant: ZTBT (R) ⊂ BT (R). We take
[
f1
f2

]
∈ BT (R).

To estimate ∥y1∥, first we note, using (3.12), that

∥ḣ∥L1([0,T ];R3) = ∥g∥L1([0,T ];R3) 6 T

(
|g0|+Kελ0 +Kε

∥∥∥∥
[
f1
f2

]∥∥∥∥
ET

)
.

Using Lemma 2.4 and Lemma 2.6, we deduce that

∥y1∥L2([0,T ];L2(F0;R3)) 6 K(η2 +R2
1)T

1

10 exp(Kη),

with (from Proposition 3.1),

η 6 Kε(λ0 + R), R1 6 Kε(λ0 +R).

As a consequence there exists a constant K depending on the geometry, the physical
parameters and ε such that

∥y1∥L2([0,T ];L2(F0;R3)) 6 K(λ0 +R)2T
1

10 exp(K(λ0 +R)).

To estimate ∥y2∥, we observe that for all t ∈ [0, T ] we have |h1 − h(t)| < DΩ,
where DΩ is the diameter of Ω. Hence

∥y2∥L2([0,T ];R3) 6 kpDΩT
1

2 .

Looking at the last two estimates, it is now clear that for T > 0 sufficiently small,
∥ [ y1y2 ] ∥ 6 R, i.e., BT (R) is invariant under ZT .

The third step: We show that for any R > 0, ZT has a fixed point in BT (R),
if T > 0 is sufficiently small. Throughout we assume that T ∈ (0, 1) is sufficiently
small so that BT (R) is invariant under ZT , but this is not enough to guarantee a
fixed point, we may need to take T even smaller than in the second step.

We take
[
f1
f2

]
,
[
f̃1
f̃2

]
∈ BT (R). Let V, P, g, ω, respectively Ṽ , P̃ , g̃, ω̃ be the corre-

sponding solutions of (3.1)–(3.8). We then set

h(t) = h0 +

∫ t

0

g(θ)dθ , h̃(t) = h0 +

∫ t

0

g̃(θ)dθ ,
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and we denote by X and Y , respectively X̃ and Ỹ the transformations constructed
from h, respectively h̃, according to the procedure described in Lemma 2.1. Let
L, N, M, G, respectively L̃, Ñ , M̃ , G̃ be the corresponding operators obtained ac-
cording to (2.10)–(2.13), for t ∈ [0, T ], based on the transformations. Finally, let
[ y1y2 ], respectively

[
ỹ1
ỹ2

]
be the corresponding outputs defined by (3.13)–(3.14).

According to (3.13) we have

y1 − ỹ1 = ν(L− L̃)V − ρ(M − M̃)V + (G̃−G)P − ρ(NV − Ñ Ṽ )

+ ν(L̃−∆)(V − Ṽ )− ρM̃(V − Ṽ ) + (∇− G̃)(P − P̃ ) . (3.15)

Therefore, the last three terms in (3.15) can be estimated by using Lemma 2.4 with
V − Ṽ in place of V , P − P̃ in place of P , and L̃, M̃ , G̃ in place of L, M, G. We
obtain, using the notation Kε introduced in the second step,

∥∥∥ν(L̃−∆)(V − Ṽ )− ρM̃(V − Ṽ ) + (∇− G̃)(P − P̃ )
∥∥∥
L2([0,T ];L2(F0;R3))

6 KεT
1

2

(
∥ ˙̃h∥H1(0,T ) + ∥ ˙̃h∥L∞(0,T )

)
exp

(
Kε

(
∥ ˙̃h∥H1(0,T ) + ∥ ˙̃h∥L∞(0,T )

))

×
(
∥V − Ṽ ∥L2([0,T ];H2(F0;R3)) + ∥V − Ṽ ∥C([0,T ];H1(F0;R3))

+ ∥∇(P − P̃ )∥L2([0,T ];L2(F0;R3))

)
.

Now we estimate the norms on the right-hand side above using (3.9), which leads to

∥∥∥ν(L̃−∆)(V − Ṽ )− ρM̃(V − Ṽ ) + (∇− G̃)(P − P̃ )
∥∥∥
L2([0,T ];L2(F0;R3))

6 KT
1

2 (λ0 +R) exp (K(λ0 + R)) · |||f − f̃ ||| , (3.16)

where we have used the notation

|||f − f̃ ||| =
(
∥f1 − f̃1∥

2
L2([0,T ];L2(F0;R3)) + ∥f2 − f̃2∥

2
L2([0,T ];R3)

) 1

2

. (3.17)

To estimate the first three terms on the right-hand side of (3.15), we note that
Proposition 6.14 in [17] implies, modulo some slight adaptations, that there exists
a constant K > 0, depending only on the geometry, the physical arameters and ε
such that

∥∥∥ν(L− L̃)V − ρ(M − M̃)V + (G̃−G)P
∥∥∥
L2([0,T ];L2(F0;R3))

6 KT
1

2Q
(
∥ḣ− ˙̃h∥L∞([0,T ];R3)

)
exp

(
K∥ḣ∥L1(0,T )

)
,

where

Q = ∥V ∥L2([0,T ];H2(F0;R3)) + ∥V ∥C([0,T ];H1(F0;R3)) + ∥∇P∥L2([0,T ];L2(F0;R3)).
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Since, by Proposition 3.1 we have Q+ ∥ḣ∥L1(0,T ) 6 Kε(λ0 +R), it follows that
∥∥∥ν(L− L̃)V − ρ(M − M̃)V + (G̃−G)P

∥∥∥
L2([0,T ];L2(F0;R3))

6 KT
1

2 (λ0 + R) exp (K(λ0 +R)) |||f − f̃ ||| . (3.18)

The fourth term on the right-hand side of (3.15) can be estimated using Propo-
sition 6.15 in [17] (again, with slight adaptations): there exists a constant K > 0,
depending only on the geometry, the physical parameters and ε such that
∥∥∥ρ(NV − Ñ Ṽ )

∥∥∥
L2([0,T ];L2(F0;R3))

6 KT
1

10

(
∥V ∥+ ∥Ṽ ∥

)
exp

(
K(∥ḣ∥L∞(0,T ) + ∥ ˙̃h∥L∞(0,T ))

)
∥V − Ṽ ∥

+KT exp
(
K(∥ḣ∥L∞(0,T ) + ∥ ˙̃h∥L∞(0,T ))

)
∥Ṽ ∥2∥ḣ− ˙̃h∥L∞(0,T ) ,

where all the norms without subscript are taken in U(0, T ;F0). Combining the
above with (3.9) gives
∥∥∥ρ(NV − Ñ Ṽ )

∥∥∥
L2([0,T ];L2(F0;R3))

6 KT 1/10(λ0 +R) exp (K(λ0 +R)) |||f − f̃ ||| . (3.19)

Combining (3.15), (3.16), (3.18) and (3.19), we obtain that there exists a constant
K > 0, depending only on the geometry, the physical parameters and ε such that

∥y1 − ỹ1∥L2([0,T ];L2(F0;R3)) 6 KT 1/10(λ0 +R) exp (K(λ0 +R))

∥∥∥∥
[
f1
f2

]
−

[
f̃1
f̃2

]∥∥∥∥
ET

.

(3.20)

Now we estimate y2 − ỹ2, using (3.14):

∥y2 − ỹ2∥L2([0,T ];R3) = kp∥h− h̃∥L2([0,T ];R3) 6 kpT
1

2 sup
t∈[0,T ]

|h(t)− h̃(t)|

6 kpT
1

2

∫ T

0

|g(t)− g̃(t)|dt 6 kpT∥g − g̃∥L2([0.T ];R3) .

Using (3.9) we get

∥y2 − ỹ2∥L2([0,T ];R3) 6 kpKεT

∥∥∥∥
[
f1
f2

]
−

[
f̃1
f̃2

]∥∥∥∥
ET

.

Combining this last estimate with (3.20), we obtain that there is a constantK > 0,
depending only on the geometry, the physical parameters and ε such that
∥∥∥∥
[
y1
y2

]
−

[
ỹ1
ỹ2

]∥∥∥∥
ET

6 KT 1/10 [(λ0 + R) exp (K(λ0 +R)) + kp]

∥∥∥∥
[
f1
f2

]
−

[
f̃1
f̃2

]∥∥∥∥
ET

.

Now we see that for T small enough, ZT is a strict contraction, so that ZT has a
fixed point in BT (R).

17



We remark that, together with the outputs y1 and y2, the well-posed control
system from Remark 3.2 could be called a non-linear well-posed system, in the sense
that on any finite time interval, we have continuous mappings from the initial state
and the input function to the final state and the output function.

4. Energy estimates

In this section we derive some energy estimates for the strong solutions of (1.1)–
(1.9). We use the notation introduced in Section 1 and we introduce the strain rate
tensor D(v) by

Dij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
for i, j ∈ {1, 2, 3} . (4.1)

Proposition 4.1. Let T > 0 and let u ∈ L2
loc ([0, T ];R

3) and let

[
v
h
g
ω

]
be a solution

of (1.1)–(1.9) for t ∈ [0, T ], with a corresponding pressure field p, satisfying the
regularity assumptions (2.15)–(2.16). Then for all τ ∈ [0, T ],

ρ

2

∫

F(h(τ))

|v(x, τ)|2dx+
m

2
|g(τ)|2+

J

2
|ω(τ)|2−

ρ

2

∫

F(h0)

|v0(x)|
2dx−

m

2
|g0|

2−
J

2
|ω0|

2

=

∫ τ

0

[
−2ν

∫

F(h(t))

|D(v)(x, t)|2dx+ u(t) · g(t)

]
dt. (4.2)

Proof. We first note that (1.1) can be rewritten as Cauchy’s equation

ρ[v̇ + (v · ∇)v]− div σ(v, p) = 0 in L2
loc([0,∞);L2(F(h))) ,

where σ has been defined in (1.10) and (div σ)i =
∑3

j=1
∂σij

∂xj
. If we take the pointwise

inner product of both sides of the last formula with v (which, according to (1.16)
is a continuous function of time, with values in L2(Ω;R3)) and we integrate over
F(h(t)), it follows that we have, for almost every t > 0,

ρ

2

∫

F(h(t))

∂

∂t
|v|2dx+ ρ

∫

F(h(t))

[(v · ∇)v] · vdx =

∫

F(h(t))

(div σ(v, p)) · vdx. (4.3)

Applying the Reynolds transport formula (see Gurtin [9, Section III.10]) to the first
term above, this first term can be rewritten as follows:

ρ

2

∫

F(h(t))

∂

∂t
|v|2dx =

ρ

2

d

dt

∫

F(h(t))

|v|2dx−
ρ

2

∫

∂B(h(t))

|v|2 (v · n)dΓ .

Integrating by parts the second term in (4.3), it follows that

ρ

∫

F(h(t))

[(v · ∇)v] · vdx =
ρ

2

∫

∂B(h(t))

|v|2 (v · n)dΓ .
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Integrating by parts the right-hand side of (4.3) and using (1.2), it follows that

∫

F(h(t))

div σ(v, p) · vdx =

∫

∂B(h(t))

σ(v, p)n · vdΓ− 2ν

∫

F(h(t))

|D(v)|2dx. (4.4)

Putting together (4.3)–(4.4), it follows that

ρ

2

d

dt

∫

F(h(t))

|v|2dx = − 2ν

∫

F(h(t))

|D(v)|2dx+

∫

∂B(h(t))

σ(v, p)n · vdΓ . (4.5)

On the other hand, taking the inner products of (1.6) with ḣ(t), of (1.7) with ω(t)
and using (1.5), it follows that

m

2

d

dt
|ḣ(t)|2 +

J

2

d

dt
|ω(t)|2 = −

∫

∂B(h(t))

σ(v, p)n · vdΓ + u(t) · ḣ(t). (4.6)

Adding (4.5) and (4.6) we obtain on the left-hand side the time derivative of the
energy function

E(t) =
ρ

2

∫

F(h(t))

|v(x, t)|2dx+
m

2
|g(t)|2 +

J

2
|ω(t)|2 .

It is easy to see from (1.16) that E ∈ H1
loc(0,∞). Therefore, by integration we

obtain the conclusion (4.2).

The above proposition suggests a candidate to a feedback control such that the
corresponding state trajectory satisfies (1.13) and (1.14). We take the PD controller
applied to the position error h1 − h(t), given in (1.12). As already explained in
Section 1, this feedback is equivalent to a spring and a damper between the points
h(t) and h1. Intuitively, we expect the resulting feedback system to satisfy the
stability requirements (1.13) and (1.14), if the ball could go in a straight line from
h0 to h1. In fact, we expect this feedback control to work even in some other cases,
but not always: see Figure 1 for a geometry where the control (1.12) will not bring
the ball into the desired final position.

Proposition 4.2. With the notation and assumption of Proposition 4.1, let h1 ∈ Ω◦

and assume that u satisfies the feedback law (1.12). Then

ρ

2

d

dt

∫

F(h(t))

|v(x, t)|2dx+
m

2

d

dt
|g(t)|2 +

J

2

d

dt
|ω(t)|2 +

kp
2

d

dt
|h(t)− h1|

2

= − 2ν

∫

F(h(t))

|D(v)(x, t)|2dx− kd|g(t)|
2 . (4.7)

Proof. If we combine the obvious formula

1

2

d

dt
|h(t)− h1|

2 = (h(t)− h1) · g(t) ,

19



with (4.2), it follows that

ρ

2

d

dt

∫

F(h(t))

|v(x, t)|2dx+
m

2

d

dt
|g(t)|2 +

J

2

d

dt
|ω(t)|2 +

kp
2

d

dt
|h(t)− h1|

2

= − 2ν

∫

F(h(t))

|D(v)(x, t)|2dx+ [u(t) + kp(h(t)− h1)] · g(t) .

The above formula, combined with (1.12), yields the conclusion (4.7).

Corollary 4.3. With the notation and assumption of Proposition 4.1, let h1 ∈ Ω◦

and assume that u satisfies the feedback law (1.12). Then, for every t ∈ [0, T ]

ρ

∫

F(h(t))

|v(x, t)|2dx+m|g(t)|2 + |ω(t)|2 + kp|h(t)− h1|
2

6 ρ

∫

F(h0)

|v0(x)|
2dx+m|g0|

2 + |ω0|
2 + kp|h0 − h1|

2 . (4.8)

Moreover, there exists δ, ε > 0, depending only on Ω, kp and h1, such that if

ρ

∫

F(h0)

|v0(x)|
2dx+m|g0|

2 + |ω0|
2 + kp|h0 − h1|

2
6 δ2,

then
dist(h(t), ∂Ω) > 1 + ε ∀ t ∈ [0, T ].

Proof. The estimate (4.8) is a direct consequence of (4.7). In order to prove the last
statement in the corollary, using the fact that h1 ∈ Ω◦, we can choose ε > 0 such
that

dist(h1, ∂Ω) > 1 + 2ε.

From (4.8) we deduce

|h(t)− h1|
2
6 |h0 − h1|

2 +
1

kp

(
ρ

∫

F(h0)

|v0(x)|
2dx+m|g0|

2 + |ω0|
2

)
.

Consequently, if

|h0 − h1|
2 +

1

kp

(
ρ

∫

F(h0)

|v0(x)|
2dx+m|g0|

2 + |ω0|
2

)
< ε2,

then
dist(h(t), ∂Ω) > 1 + ε ∀ t ∈ [0, T ].
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5. Proof of Theorem 1.1

In order to prove the global existence result in Theorem 1.1 we need the following
result, which can be proved by slightly adapting the proof of Lemma 4.3 in [2].

Lemma 5.1. Let h ∈ H2
loc((0,∞); Ω◦) and assume that u ∈ T L2

loc([0,∞);H2(F(h)))
and q ∈ L2

loc([0,∞);H1(F(h))) with u = ℓ+k× (x−h) on ∂B(h). Then, for almost
every t ∈ [0,∞) we have, using the symbol : to denote the Hilbert-Schmidt inner
product for 3× 3 matrices,

ν
d

dt

∫

F(h)

|Du|2 dx = −

∫

F(h)

div σ(u, q) · (u̇+ (Λ · ∇)u− (u · ∇)Λ) dx

+

∫

∂B(h)

σ(u, q)n ·
(
ℓ̇+ k̇ × (x− h)− ω × ℓ+ (k × ω)× (x− h)

)
dΓ

+

∫

F(h)

2νDu : [D ((u · ∇)Λ)− (∇u)(∇Λ)] dx. (5.1)

We also need the following result, which is a direct consequence of the Poincaré
and of the Korn inequalities:

Lemma 5.2. Let h ∈ Ω◦ and assume that v ∈ H1
0(Ω), with D(v) ≡ 0 in S(h). Then

there exists a positive constant C independent of v and h such that
∫

F(h)

|v|2 dx+m|g|2 + J |ω|2 +

∫

F(h)

|∇v|2dx 6 C

∫

F(h)

|Dv|2dx. (5.2)

Proof of Theorem 1.1. By classical arguments, the local in time solution (v, p, h, g, ω)
constructed in Theorem 3.3 can be extended to a maximal solution defined on the
time interval [0, T∗) with T∗ ∈ (0,∞]. Moreover, if T∗ < ∞, then we have either

dist(B(h(t)), ∂Ω) → 0 as t → T∗ (5.3)

or
∥v(·, t)∥H1(F(h(t))) → ∞ as t → T∗. (5.4)

From (4.3), we already know that there exists δ such that if the last condition
in (1.15) holds, then (5.3) never occurs. We now prove that for δ possibly smaller,
(5.4) is also false. This will imply that T∗ = ∞.

For t ∈ [0, T∗) we take the inner product of (1.1) with v̇+ (Λ · ∇)v− (v · ∇)Λ and
we integrate on F(h(t)), to obtain

∫

F(h(t))

ρv̇ · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx

−

∫

F(h(t))

div σ(v, p) · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx

+

∫

F(h(t))

ρ(v · ∇)v · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx = 0.
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Using Lemma 5.1, we deduce from the above relation that

∫

F(h(t))

ρv̇ · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx

+ ν
d

dt

∫

F(h)

|Dv|2dx−

∫

∂B(h)

σ(v, p)n · [ġ + ω̇ × (x− h)− ω × g] dΓ

−

∫

F(h)

2νDv : [D ((v · ∇)Λ)− (∇v)(∇Λ)] dx

+

∫

F(h(t))

ρ(v · ∇)v · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx = 0.

Inserting (1.6), (1.12) and (1.7) into the above equation, we obtain

∫

F(h(t))

ρv̇ · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx+ ν
d

dt

∫

F(h)

|Dv|2dx

+ [mġ + kdg + kp(h− h1)] · (ġ − ω × g) + J |ω̇|2

−

∫

F(h)

2νDv : [D ((v · ∇)Λ)− (∇v)(∇Λ)] dx

+

∫

F(h(t))

ρ(v · ∇)v · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx = 0.

We can write the above equation as

∫

F(h(t))

ρ|v̇|2dx+m|ġ|2 + J |ω̇|2 + ν
d

dt

∫

F(h)

|Dv|2dx+
1

2
kd

d

dt
|g|2

=

∫

F(h)

2νDv : [D ((v · ∇)Λ)− (∇v)(∇Λ)] dx

−

∫

F(h(t))

ρ(v ·∇)v · [v̇ + (Λ · ∇)v − (v · ∇)Λ] dx−

∫

F(h(t))

ρv̇ · [(Λ · ∇)v − (v · ∇)Λ] dx

− (kp(h− h1)) · (ġ − ω × g) +mġ · (ω × g). (5.5)

Applying Lemma 5.2 and performing a standard computation, we deduce from
equation (5.5) and from the definition of Λ in (2.2) that

∫

F(h(t))

ρ|v̇|2dx+m|ġ|2 + J |ω̇|2 + ν
d

dt

∫

F(h)

|Dv|2dx+
1

2
kd

d

dt
|g|2

6 C(|g|+ |g|2)

∫

F(h)

|Dv|2dx+ C

∫

F(h(t))

ρ|(v · ∇)v|2dx. (5.6)

Using the change of variables introduced in Section 2, we have

[(v · ∇)v] ◦X = (∇X)(NV ),
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where V is defined by (2.8) and NV is defined by (2.11). Recall the notation
F0 = F(h0). We can check that

∫

F(h)

ρ|(v · ∇)v|2dx 6 C∥∇X∥2L∞(Ω)

∫

F0

|(V · ∇)V |2dx

+ C∥∇X∥2L∞(Ω)∥Γ∥
2
L∞(Ω)

∫

F0

|V |4dx. (5.7)

Next, by applying the Hölder inequality combined with the continuous embeddings
H

1

2 (F0) in L3(F0) and H
3

4 (F0) in L4(F0) and with an interpolation inequality, we
obtain that there exists a positive constant C depending on Ω and on h such that
∫

F(h)

ρ|(v · ∇)v|2dx 6 C∥∇X∥2L∞(Ω)∥V ∥2L6(F0)
∥∇V ∥2L3(F0)

+ C∥∇X∥2L∞(Ω)∥Γ∥
2
L∞(Ω)∥V ∥4L4(F0)

6 C∥∇X∥2L∞(Ω)∥∇V ∥3L2(F0)
∥∇V ∥H1(F0)

+ C∥∇X∥2L∞(Ω)∥Γ∥
2
L∞(Ω)∥V ∥L2(F0)∥V ∥3

H1(F0)
. (5.8)

Applying Lemma 5.2 and Lemma 2.2, we deduce from the above inequality that
∫

F(h)

ρ|(v · ∇)v|2dx 6 C∥V ∥L2(F0)∥DV ∥3L2(F0)
+ C∥DV ∥3L2(F0)

∥∇2V ∥L2(F0). (5.9)

To estimate ∥∇2V ∥L2(F0), we recall that

−ν∆v +∇p = − ρv̇ − ρ(v · ∇)v , x ∈ F(h(t)), (5.10)

div v = 0, x ∈ F(h(t)), (5.11)

v = 0, x ∈ ∂Ω, (5.12)

v = g(t)− ω(t)× n, x ∈ ∂B(h(t)). (5.13)

Thus as long as dist(h, ∂Ω) > 1 + ε, there exists a positive constant such that

∥∇2v∥L2(F(h)) 6 C
(
∥v̇∥L2(F(h)) + ∥(v · ∇)v∥L2(F(h)) + |g|+ |ω|

)
. (5.14)

On the other hand, the change of variables of Section 2 and some tedious calcu-
lation yield

∥∇2V ∥L2(F0) 6 C
(
∥∇2v∥L2(F(h)) + ∥Dv∥L2(F(h))

)
. (5.15)

Combining (5.14) and (5.15), we obtain

∥∇2V ∥L2(F0) 6 C
(
∥v̇∥L2(F(h)) + ∥(v · ∇)v∥L2(F(h)) + ∥Dv∥L2(F(h))

)
. (5.16)

Inserting the above inequality in (5.9), we deduce

∫

F(h)

ρ|(v · ∇)v|2dx 6 C∥v∥L2(F(h))∥Dv∥3L2(F(h))

+ C∥Dv∥6L2(F(h)) + η∥v̇∥2L2(F(h)), (5.17)
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where η is a positive constant that can be chosen arbitrarily small. More precisely,
taking η small enough, and gathering (5.6) and (5.17), we obtain

1

2

∫

F(h)

ρ|v̇|2dx+m|ġ|2 + J |ω̇|2 + ν
d

dt

∫

F(h)

|Dv|2dx+
1

2
kd

d

dt
|g|2

6 C(|g|+ |g|2)

∫

F(h)

|Dv|2dx+ C∥v∥L2(F(h))∥Dv∥3L2(F(h))

+ C∥Dv∥6L2(F(h)) . (5.18)

We deduce from (5.18) and from Lemma 5.2 the existence of a positive constant
C1 such that

ν∥Dv(t)∥2L2(F(h(t))) +
1

2
kd|g(t)|

2
6 ν∥Dv0∥

2
L2(F0)

+
1

2
kd|g0|

2

+ C1ν

∫ t

0

(
∥Dv(s)∥3L2(F(h(s))) + ∥Dv(s)∥6L2(F(h(s)))

)
ds. (5.19)

Assume that the constant δ in the last estimate of (1.15) is chosen such that

ν∥Dv0∥
2
L2(F0)

+
1

2
kd|g0|

2 +
C1

2

[∫

F0

ρ|v0|
2dx+m|g0|

2 + J |ω0|
2

]
< ν. (5.20)

Then combining (5.19) and (4.7), we deduce that for every t ∈ [0, T∗),

∥Dv(t)∥L2(F(h(t))) < 1 . (5.21)

This contradicts (5.4) so that indeed T∗ = +∞. Moreover, it is now clear that (5.21)
holds for every t ∈ [0,∞), hence we have (1.18).

6. Proof of Theorem 1.2

To prove Theorem 1.2, we need to show (1.13) and (1.14). We work with the
notation and assumptions of Section 1. Let X = L2(Ω) × Ω◦ × R

3 × R
3 and define

W1, W2 : X → R by

W1




v0
h0

g0
ω0


 =

1

2

(
ρ

∫

F(h)

|v0(x)|
2dx+m|g0|

2 + J |ω0|
2

)






v0
h0

g0
ω0


 ∈ X


 , (6.1)

W2




v0
h0

g0
ω0


 =

kp
2
|h0 − h1|

2







v0
h0

g0
ω0


 ∈ X


 . (6.2)
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Let X1 = H1
0(Ω)× Ω◦ × R

3 × R
3 and define W3 : X1 → R by

W3




v0
h0

g0
ω0


 = 2ν

∫

F(h)

|D(v0)(x)|
2dx+ kd|g0|

2







v0
h0

g0
ω0


 ∈ X1


 . (6.3)

Let δ > 0 be the constant in Theorem 1.1 and let

V =








v0
h0

g0
ω0


 ∈ X1

∣∣∣∣∣∣∣∣

v0(x) = g0 + ω0 × (x− h0) x ∈ B(h0)
div v0 = 0 x ∈ Ω

∥v0∥H1(F(h0)) + |g0|+ |ω0|+ |h1 − h0| 6 δ





.

For t > 0 we set

S(t)




v0
h0

g0
ω0


 =




v(t, ·)
h(t)
g(t)
ω(t)










v0
h0

g0
ω0


 ∈ V


 ,

where

[
v(t,·)
h(t)
g(t)
ω(t)

]
is the corresponding solution of (1.1)–(1.9) constructed in Theorem

1.1. With this notation, estimate (4.7) writes, for every t1, t2 > 0,

W1


S(t1)




v0
h0

g0
ω0





+W2


S(t1)




v0
h0

g0
ω0





−W1


S(t2)




v0
h0

g0
ω0





−W2


S(t2)




v0
h0

g0
ω0







=

∫ t2

t1

W3


S(σ)




v0
h0

g0
ω0





 dσ







v0
h0

g0
ω0


 ∈ V


 . (6.4)

We first prove that the kinetic energy W1 of the fluid-rigid system tends to zero
when t → ∞.

Proposition 6.1. Under the assumptions of Theorem 1.1 we have

lim
t→∞

W1


S(t)




v0
h0

g0
ω0





 = 0 . (6.5)

Proof. Within this proof we denote, for the sake of simplicity

Wk


S(t)




v0
h0

g0
ω0





 = Wk(t) (k ∈ {1, 2, 3}, t > 0).
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From (6.4), we deduce that for every t2 > t1,

W1(t2)−W1(t1) 6 |W2(t1)−W2(t2)|+

∫ t2

t1

W3(s) ds.

From (4.7) and (5.21), we deduce that there exists M > 0 such that

W1(t2)−W1(t1) 6 M(t2 − t1) (t2 > t1 > 0). (6.6)

On the other hand, (4.7) and Lemma 5.2 imply thatW1 ∈ L1[0,∞). Taking f = W1,
all the assumptions in Lemma 10.1 are satisfied, so that we obtain (6.5).

The next proposition complements the above proposition and states that

W2


S(t)




v0
h0

g0
ω0





→ 0 .

For this, we have to define weak solutions for the problem (1.1)–(1.9) with the
feedback (1.12). First we define, for every h ∈ Ω◦, the space

H1
R(h) :=

{
φ ∈ H1

0(Ω) | divφ = 0 in Ω, D(φ) = 0 in B(h)
}
. (6.7)

We notice that if the fluid velocity in (1.1)–(1.9) satisfies v(t, ·) ∈ H1
0(F(h(t))), then,

by extending it by

v(t, x) = g(t) + ω(t)× (x− h(t)) (t > 0, x ∈ B(h(t)), (6.8)

we obtain v(t, ·) ∈ H1
R(h(t)) for every t > 0. More precisely, according to Lemma

1.1 in [19, p. 23], for any φ ∈ H1
R(h), there exists gϕ and ωϕ such that

φ(x) = gϕ + ωϕ × (x− h) (x ∈ B(h)) . (6.9)

We can also extend the density ρ of the fluid by setting

ρ(t, x) =
3m

4π
(t > 0, x ∈ B(h(t)).

Definition 6.2. Assume T > 0. A quadruple




v
h
g
ω


 is a weak solution of (1.1)–(1.9)

with the feedback (1.12) on (0, T ) if

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω)), h ∈ W 1,∞(0, T ), g, ω ∈ L∞(0, T ),

h(t) ∈ Ω◦, ḣ = g,

v(t, ·) ∈ H1
R(h(t)) in (0, T ), with (6.8)
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and (using again the symbol : for the Hilbert-Schmidt inner product)

∫

(0,T )×Ω

(−ρv · φ+ 2νD(v) : D(φ)) dxdt =

∫

Ω

ρ(0, x)v(0, x) · φ(0, x)dx

+

∫ T

0

(kp[h− h1] + kdg) · gϕdt, (6.10)

for all φ ∈ C1([0, T ];H1
0(Ω)) with φ(t, ·) ∈ H1

R(h(t)) for every t ∈ [0, T ] and satisfy-
ing (6.9), together with φ(T, ·) = 0.

The above set of weak solutions is closed, with respect to the appropriate weak
topology, as stated below (see, for instance, [20] or [16] for the proof).

Proposition 6.3. Let h0 ∈ Ω1+ε and v0 ∈ H1
R(h0). Let (h0n)n>1, (v0n)n>1 be two

sequences such that h0n ∈ Ω1+ε and v0n ∈ H1
R(hn) for every n > 1. Let







vn
hn

gn
ωn







n>1

be a sequence of weak solutions of (1.1)–(1.9) on (0, T ), with the feedback (1.12) and,

for each n > 1, with the initial conditions







v0n
h0n

g0n
ω0n





. Assume that

h0n → h0, v0n → v0 in L2(Ω) ,

and that there exist v, h, g, ω such that

hn ⇀ h, gn ⇀ g, ωn ⇀ ω in L∞(0, T ) weak star,

vn ⇀ v in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω)) weak star.

Then




v
h
g
ω


 is a weak solution of (1.1)–(1.9) on (0, T ), with the feedback (1.12) and

with the initial conditions




v0
h0

g0
ω0


, where g0, ω0 are determined by v0 via (6.8).

Proposition 6.4. Under the assumptions of Theorem 1.1 we have

lim
t→∞

(W1 +W2)


S(t)




v0
h0

g0
ω0





 = 0 . (6.11)
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Proof. We know from Proposition 6.1 that

lim
t→∞

∥v(t, ·)∥L2(F(h(t)) = 0, lim
t→∞

ḣ(t) = 0. (6.12)

Moreover, since h(t) ∈ Ω1+ε for every t > 0 we have that the set (h(t))t>0 is relatively
compact in R

3 and all its limit points lie in Ω◦. Let (tn)n>0 be a sequence of positive
numbers such that

tn → ∞, lim
n→∞

h(tn) = h∗ ∈ Ω◦ . (6.13)

We also know from (6.4) that the map t 7→ W3

(
S(t)[v0 h0 g0 ω0]

⊤
)
is in L1[0,∞)

so that, given T > 0, we have

lim
n→∞

∫ T+tn

tn

W3

(
S(t)[v0 h0 g0 ω0]

⊤
)
dt = 0 .

A change of variables and the semigroup property of the family (S(t))t>0 imply that

lim
n→∞

∫ T

0

W3

(
S(τ)S(tn)[v0 h0 g0 ω0]

⊤
)
dτ = 0 . (6.14)

On the other hand, we know from (6.12) and (6.13) that

lim
n→∞

S(tn)[v0 h0 g0 ω0]
⊤ = [0 h∗ 0 0]⊤ in X. (6.15)

Denote
[v0n h0n g0n ω0n]

⊤ = S(tn)[v0 h0 g0 ω0]
⊤

and

[vn(τ, ·) hn(τ) gn(τ) ωn(τ)]
⊤ = S(τ)[v0n(·) h0n g0n ω0n]

⊤ (τ ∈ [0, T ]).

Then [vn hn gn ωn]
⊤ is the strong solution of (1.1)–(1.9) with the feedback (1.12)

in (0, T ) associated to the initial condition [v0n h0n g0n ω0n]
⊤ and thus it is a weak

solution for the same problem.

Using the energy estimate (6.4) it follows that there exists (h, v) such that, up to
the extraction of a subsequence, the sequences (hn) and (vn) satisfy the assumptions
in Proposition 6.3. Consequently, [v h g ω]⊤ is a weak solution of (1.1)–(1.9) on
(0, T ), with initial conditions [0 h∗ 0 0]⊤.

By combining (6.15) and Proposition 6.3, it follows that there exists a weak solu-
tion [v h g ω]⊤ associated with the initial conditions [0 h∗ 0 0]⊤ such that

D(vn) ⇀ D(v) in L2(0, T ;L2(Ω)).

In particular, the above convergence and (6.14) yield

∥D(v)∥L2((0,T )×Ω) 6 lim inf
n

∥D(vn)∥L2((0,T )×Ω) = 0.

We deduce that v = 0 in (0, T ) × Ω and in particular g = ω = 0. Writing that
[0 h∗ 0 0]⊤ satisfies (6.10) for all φ ∈ C1([0, T ];H1

0(Ω)), φ(t, ·) ∈ H1
R(h(t)) with (6.9),

and φ(T, ·) = 0, we obtain that h∗ = h1, which ends the proof.
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We can now end the proof of Theorem 1.2.

Proof of Theorem 1.2. It remains to prove (1.14). We already know that
∫

F(h(t))

|v(t, x)|2dx+m|g(t)|2 + J |ω(t)|2 +
kp
2
|h(t)− h1|

2 → 0 if t → ∞ (6.16)

and (5.21) holds. Thus, from (1.18) and (5.18) we deduce that there exists η > 0
such that

ν
d

dt

∫

F(h)

|Dv|2dx+
1

2
kd

d

dt
|g|2 6 η (for a.e. t > 0) . (6.17)

We set
W4(t) :=

∫

F(h(t))

|Dv(t)|2dx.

From (6.17) it follows that

W4(t)−W4(s) 6 η(t− s) (t > s > 0).

Moreover, we know from (4.7) that W4 ∈ L1[0,∞). By applying Lemma 10.1 in the
appendix the conclusion follows.

7. Proof of Theorem 1.3

Proof of Theorem 1.3. Assume h0, h1 ∈ Ω◦. Since Ω◦ is open and connected, it is
path-connected and thus there exists a continuous curve γ : [0, L] → Ω◦ such that
γ(0) = h0 and γ(L) = h1. Since Im (γ) is compact, there exists ε > 0 such that

dist(Im (γ), ∂Ω) > 1 + 2ε.

From Theorem 1.1 and Theorem 1.2, there exists δ > 0, depending only on Ω, kp,
kd and ε, such that for evry h∗ ∈ Im (γ) satisfying

∥v0∥H1(F(h0)) + |g0|+ |ω0|+ |h∗ − h0| 6 2δ ,

the solution of (1.1)–(1.9), with

u(t) = kp[h
∗ − h(t)]− kdḣ(t) ,

is global in time and, as t→∞, we have

∥v(·, t)∥H1(F(h(t))) + |g(t)|+ |ω(t)|+ |h∗ − h(t)| → 0 .

The construction of the control function u is based on the above facts and on the
choice of a family (h̃k) of points of Im (γ), such that for every k ∈ {0 . . . , K} we
have

h̃0 = h0, h̃K = h1, |h̃k − h̃k+1| < δ.
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We next construct a corresponding partition 0 = t∗0 < t∗1 < · · · < t∗K = +∞ of [0,∞)
as follows: assuming that k ∈ {0 . . . , K} and t∗k > 0 is such that

∥v(·, t∗k)∥H1(F(h(t∗k)))
+ |g(t∗k)|+ |ω(t∗k)|+ |h̃k − h(t∗k)| 6 2δ,

we set
uk(t) = kp(h̃k+1 − h(t))− kdḣ(t)) (t > t∗k).

According to Theorem 1.1 and Theorem 1.2, there exists t∗k+1 > t∗k such that

∥v(·, t∗k+1)∥H1(F(h(t∗k+1
))) + |g(t∗k+1)|+ |ω(t∗k+1)|+ |h̃k+1 − h(t∗k+1)| 6 2δ.

Using iteratively the above argument it follows that we have indeed (1.13), (1.14)
with

s(t) = h̃j (j ∈ {1 . . . , K}, t ∈ [tj−1, tj)).

8. The bidimensional case

In this section we consider the two-dimensional case, i.e., we assume that Ω is a
bounded open set in R

2 and the rigid ball is replaced by a disk of radius 1 in R
2.

More precisely, we consider the system described (for every t > 0) by

ρv̇ − ν∆v + ρ(v · ∇)v +∇p = 0 , x ∈ F(h(t)), (8.1)

div v = 0, x ∈ F(h(t)), (8.2)

v = 0, x ∈ ∂Ω, (8.3)

ḣ = g, (8.4)

v = g(t) + ω(t)(x− h)⊥, x ∈ ∂B(h(t)), (8.5)

mġ = −

∫

∂B(h)

σ(v, p)n dΓ + u, (8.6)

Jω̇ = −

∫

∂B(h)

(x− h)⊥ · σ(v, p)n dΓ, (8.7)

h(0) = h0, ḣ(0) = g0, ω(0) = ω0 , (8.8)

v(x, 0) = v0(x), x ∈ F(h0). (8.9)

In the above system, we have used the notation
[
x1

x2

]⊥
=

[
−x2

x1

]
.

We note that ω(t) ∈ R. We use again a feedback law of the form

u(t) = kp[h1 − h(t)]− kdḣ(t) ,

with a given h1 ∈ Ω◦ and kp > 0, kd > 0.

Similarly as for the usual Navier-Stokes system, we can derive stronger versions
of the results obtained in three dimensions. More precisely, the two dimensional
versions of Theorems 1.1, 1.2 and 1.3 are:
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Theorem 8.1. Let Ω ⊂ R
2 be an open, connected and bounded set with ∂Ω of class

C2 and let h1 ∈ Ω◦.

Then for every h0 ∈ Ω◦, v0 ∈ H1(F(h0);R
2) and every (g0, ω0) ∈ R

3 satisfying





div v0 = 0, in F(h0),
v0(x) = 0, for x ∈ ∂Ω,
v0(x) = g0 + ω0(x− h0)

⊥, for x ∈ ∂B(h0),

there exists kp > 0, depending only on Ω, ∥v∥H1(F(h0)), g0, ω0, h0 and h1, such that
for all kd > 0, there exists a strong solution of (8.1)–(8.9) with the feedback (1.12),
on the time interval [0,∞). This solution satisfies




v
h
g
ω


 ∈ T L2

loc([0,∞);H2(F(h))) ∩ T H1
loc(0,∞;L2(Ω)) , (8.10)

p ∈ L2
loc([0,∞);H1(F(h))) . (8.11)

The above solution is unique up to an additive perturbation of p that depends only
on time.

Theorem 8.2. With the notation and assumptions in Theorem 8.1, the constructed
solution (v, p, h, g, ω) of (8.1)–(8.9) satisfies (6.11).

Theorem 8.3. Let Ω ⊂ R
2 be an open, connected and bounded set with ∂Ω of class

C2 and let h0, h1 ∈ Ω◦. Assume v0 ∈ H1(F(h0);R
2) and g0 ∈ R

2, ω0 ∈ R satisfy





div v0 = 0, in F(h0),
v0(x) = 0, for x ∈ ∂Ω,
v0(x) = g0 + ω0(x− h0)

⊥, for x ∈ ∂B0.

Then there exists kp > 0 such that for all kd > 0 there exists a piecewise constant
function s : [0,∞)→Ω◦ such that the system (8.1)–(8.9), with

u(t) = kp[s(t)− h(t)]− kdḣ(t) . (8.12)

admits a strong solution, i.e., this solution has the regularity properties (8.10)–(8.11).
Moreover, this solution is unique up to an additive perturbation of p that depends
only on time and the stability property (6.11) holds.

We do not provide the proofs of the above three theorems since they are completely
similar to the proofs of Theorems 1.1, 1.2 and 1.3. The only difference is that in
the proof of Theorem 8.1 it is not difficult to show, by estimates similar to those in
the proof of Theorem 1.1, that the H1 norm of the velocity field does not blow up
in finite time (without any smallness assumption).
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9. Concluding remarks

We have studied an infinite-dimensional nonlinear dynamical system coupling
the Navier-Stokes equations with the rigid body dynamics, in the presence of a
free boundary. We have proposed a PD-type controller which asymptotically steers
the rigid body to a prescribed final position, while the velocities of the fluid and
of the rigid body tend to zero. The stabilizing mechanism is the viscosity of the
fluid which, due to the assumptions on the initial data and to the coupling at the
interface, suffices to stabilize both the fluid and the solid. The coupling of Navier-
Stokes equations with rigid body dynamics has been investigated in an “inverted”
context in Mazzone et al. [14, 6], where the rigid body has a cavity filled with a
Navier-Stokes fluid. In the situation studied in [14, 6] there is no free boundary but,
as in our case, it is shown that the viscosity of a fluid stabilizes both the fluid and
the solid to one of a finite number of equilibrium states.

An interesting open question is the extension of our stability analysis (in the three
dimensional case) to weak solutions which satisfy a strong energy inequality. In
order to perform this extension, a first step should be proving the existence of weak
solutions for fluid-rigid problems, which is an open question. Another interesting
open question is the large-time behavior of our system when the initial data are small
and the control u vanishes. Our methods can be easily adapted to show that the
velocities of the fluid and of the rigid body tend to zero when t → ∞, but it seems
difficult to say something precise about the asymptotic behavior of the position h(t)
when t → ∞. This question seems difficult, even in the simplified model, in which
the fluid-rigid system fills the whole space, as considered in Vázquez and Zuazua
[22, 23] or in Munnier and Zuazua [15].

10. Appendix: A Barbălat type lemma

A tool which is frequently used to deduce asymptotic stability of nonlinear systems
using Lyapunov-like approaches is Barbălat’s lemma. One of the version of this result
says that if f ∈ L1[0,∞) is uniformly continuous on [0,∞) then limt→∞ f(t) = 0,
see, for instance, Logemann and Ryan [12, p. 177]. Our version below shows that
for positive functions f the uniform continuity property can be slightly relaxed.

Lemma 10.1. Assume that f ∈ L1[0,∞) is a non negative continuous function
such that, the following “right uniform continuity” property holds: for every ε > 0
there exists δ > 0 such that

f(t)− f(s) 6 ε (t, s ∈ [0,∞), s 6 t 6 s+ δ).

Then limt→∞ f(t) = 0.

Proof. Let us assume, by contradiction, that f does not converge to zero for t → ∞.
Since f is non negative, this means that there exists ε > 0 and a sequence (tn) of
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positive numbers such that tn → ∞ and

f(tn) > ε (n ∈ N).

Denote
δn = max

{
δ > 0 | f(tn − δ) 6

ε

2

}
(n ∈ N),

so that
f(tn)− f(tn − δn) >

ε

2
(n ∈ N). (10.1)

Since f(t) > ε
2
for t ∈ [tn − δn, tn] and f ∈ L1[0,∞), it follows that

∑

n∈N

δn < ∞, hence lim
n→∞

δn = 0 .

Using the above convergence and the uniform right-continuity of f , it follows that

lim
n→∞

[f(tn)− f(tn − δn)] = 0,

which contradicts (10.1).
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(2013), pp. 760–765.

[7] G. P. Galdi and A. L. Silvestre, Strong solutions to the problem of motion
of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and
torques, in Nonlinear Problems in Mathematical Physics and Related Topics, I,
vol. 1 of Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, pp. 121–144.

33



[8] M. Geissert, K. Götze, and M. Hieber, Lp-theory for strong solutions
to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids,
Trans. Amer. Math. Soc., 365 (2013), pp. 1393–1439.

[9] M. E. Gurtin, An Introduction to Continuum Mechanics, vol. 158 of Math-
ematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jo-
vanovich, Publishers], New York-London, 1981.

[10] K.-H. Hoffmann and V. N. Starovoitov, On a motion of a solid body
in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9 (1999),
pp. 633–648.

[11] A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes
equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
24 (1977), pp. 303–319.

[12] H. Logemann and E. P. Ryan, Ordinary Differential Equations, Springer
Undergraduate Mathematics Series, Springer, London, 2014.

[13] J. S. Mart́ın and M. Tucsnak, Mathematical analysis of particulate flows,
in Fundamental trends in fluid-structure interaction, vol. 1 of Contemp. Chall.
Math. Fluid Dyn. Appl., World Sci. Publ., Hackensack, NJ, 2010, pp. 201–260.

[14] G. Mazzone, G. Galdi, and P. Zunino, On the inertial motions of liquid-
filled rigid bodies, Bulletin of the American Physical Society, 58 (2013).

[15] A. Munnier and E. Zuazua, Large time behavior for a simplified N-
dimensional model of fluid-solid interaction, Comm. Partial Differential Equa-
tions, 30 (2005), pp. 377–417.

[16] J. A. San Mart́ın, V. Starovoitov, and M. Tucsnak, Global weak solu-
tions for the two-dimensional motion of several rigid bodies in an incompressible
viscous fluid, Arch. Ration. Mech. Anal., 161 (2002), pp. 113–147.

[17] T. Takahashi, Analysis of strong solutions for the equations modeling the mo-
tion of a rigid-fluid system in a bounded domain, Adv. Differential Equations,
8 (2003), pp. 1499–1532.

[18] T. Takahashi and M. Tucsnak, Global strong solutions for the two-
dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid
Mech., 6 (2004), pp. 53–77.

[19] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-
Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Math-
ematics and its Applications, Vol. 2.

[20] M. Tucsnak, Weak stability of the solutions of a fluid-rigid body problem,
Ann. Univ. Buchar. Math. Ser., 4(LXII) (2013), pp. 105–112.

34



[21] M. Tucsnak and G. Weiss, Observation and Control for Operator Semi-
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