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Abstract: 

The machining of sculptured surfaces like molds and dies in 3-axis milling relies on 

the chordal deviation, the scallop height parameter and the planning strategy. The 

choice of these parameters must ensure that manufacturing surfaces respect the 

geometrical specifications. The current strategies of machining primarily consist in 

driving the tool according to parallel planes which generates a tightening of the tool 

paths and over quality. The constant scallop height planning strategy has been 

developed to avoid this tightening. In this paper, we present a new method of constant 

scallop height tool path generation based on the concept of the machining surface. The 

concept of the machining surface is exposed and its use to generate constant scallop 

height tool paths. The approach is confronted with existing methods in terms of 

precision and in particular its aptitude to treat curvature discontinuities. 
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Symbols: 

SM   machining surface 

SD   design surface 

SSh   constant scallop height surface 

R  tool radius (mm) 

Sh  scallop height (mm) 

Ci  tool path  

CLi,j point on the tool path 

Ti  scallop curve 

Pi,j  Point onto the scallop curve 

CLi,j point on the tool path 

Ni,j  surface normal  

ni,j  pipe surface normal 

ti,j  tangent vector to Ti 

τi,j  tangent vector to Ci 



Introduction 

The machining of sculptured surfaces like molds and dies in 3 or 5-axis end milling 

requires the construction of successive tool paths and their juxtaposition according to a 

machining strategy. The machining strategy relies on the choice of a tool driving direc-

tion and two discretization steps, the step length along the path or chordal deviation 

(longitudinal step) and the cutter path interval or scallop height (transversal step). The 

tool path is then made of a discrete set of points representing the successive positions of 

the tool centre which will enable it to cover the surface. If the numerical control unit can 

read and interpret tool paths expressed in a polynomial, canonical, B-spline or Nurbs 

format, the tool path consists of curves respecting the chordal deviation criterion. 

The choice of the chordal deviation and the scallop height parameters must lead to the 

realization of manufactured surfaces respecting the geometrical specifications of form 

deviation and surface roughness [1]. For a given part, the use of High Speed Milling 

(HSM) makes it possible to increase the number of tool paths, therefore to reduce the 

scallop height, without increasing machining time [2]. However, the current strategies 

of machining primarily consist in driving the tool according to parallel planes, which 

does not optimize the rate of material removal. Along a tool path, the variations of the 

normal orientation on the surface in the perpendicular plane to the tool path generate a 

tightening of the tool path in its totality. This tightening increases machining time and 

creates over machining in some areas (Figure 1). 

In order to increase the quality and the speed of machining, we propose to exploit the 

constant scallop height planning strategy. This strategy generates uniform scallops on 

the surface and ensures a better coverage of the surface by tool path. The narrowing of 

successive paths obtained with other strategies can be removed.  



In the literature, few articles deal with the generation of constant scallop height tool 

paths for 3-axis milling with ball endmill [3] [4] [5]. Furthermore these methods are 

quite similar. Tool paths are planned in the parametric space and the two first funda-

mental forms are used to evaluate the surface properties at the considered point. 

In this paper, we use a new method of constant scallop height tool path generation 

based on the concept of the machining surface [6][7]. The machining surface enables us 

to consider the tool path as a surface and not anymore as a set of points (linear 

interpolation) or a set of curves (polynomial interpolation). Every curve onto the 

machining surface is a potential tool path which machines the surface without collision. 

Given a machining surface, the tool path generation consists in choosing a set of curves 

belonging to the surface. The knowledge of this surface gives us more elements to 

precisely plan the relative position of these curves.  

In the continuation of the article, the concept of the machining surface is presented. 

Following its use to generate constant scallop height tool paths. The approach is then 

confronted with the existing methods and in particular its aptitude to treat curvature 

discontinuities on the surface. 

The concept of the machining surface 

The concept of the machining surface has been developed to improve the quality of 

the machined surfaces by associating a surface representation to the tool paths. First of 

all, the qualitative profits come from the integration of the functional constraints of 

design in the construction of the machining surface so that the machined surface 

respects the design intent. From a tool path generation point of view, the improvements 

come from the continuous representation of the tool path, contrary to the conventional 

approaches where the tool path is a discrete representation. 



General definition of the machining surface: the Machining Surface is a surface 

including all the information necessary for the driving of the tool, so that the envelope 

surface of the tool movement sweeping the MS gives the expected free-form [6]. 

Considering each tool geometry and for each type for machining (3 or 5-axis) in end-

milling or in flank-milling, a specific definition of the machining surface is proposed 

[7]. In 3-axis end-milling, the definition of the machining surface corresponds to the 

definition of general offset surface. Since we use the ball endmill in this article, the 

machining surface is the traditional offset surface. 

The tool path generation using offset surfaces has already been the object of nume-

rous papers [8][9]. Among the problems encountered in the tool path generation using 

offset surfaces, the most constraining are the problems of loops or self intersections and 

of precision [10] [11]. The problem of loops comes when using a tool which radius is 

larger than the smallest concave curvature radius of the surface. In order to be free from 

loop problems, we will consider tools whose radius is smaller than the smallest concave 

radius of curvature of the surface to be machined. This appears coherent within the 

framework of finishing milling used to generate constant scallop height tool paths. The 

problem of precision comes from the model of representation of offset surfaces. Indeed 

for most cases, it is not possible to model these surfaces by a parameterized NURBS 

surface without approximations. Therefore we will adopt in our study an implicit repre-

sentation of the machining surface: )v,u(NR)v,u(S)v,u(S DM ⋅+=  

The advantage to use the machining surface to generate tool paths with constant 

scallop height, is that the distance between the driven point (the tool center) and the 

associated point on the scallop curve is constant and equal to the radius of the tool. In 

the methods where the point of contact between the tool and the surface (CC point) is 



driven, the distance between the CC point and the associated points of scallop varies all 

along the tool path.  

The geometry of constant scallop height tool path 

Let us consider two adjacent tool paths Ci et Ci+1 located onto the machining surface 

SM, offset surface of amplitude R of the design surface, and the surface of constant 

scallop height SSh, offset surface of amplitude equal to the scallop height Sh. For each 

path, the envelope surface of the tool movement is a pipe surface the radius of which is 

equal to the tool radius and whose spine is the curve followed by the tool center. The 

scallop curve generated by the two paths is thus the intersection of the two pipe 

surfaces. In the case of a constant scallop height machining, this curve belongs to the 

surface of constant scallop height SSh. 

Practically, the previous geometrical problem can be uncoupled in two successive 

problems. The first problem consists in finding the scallop curve Ti which is generated 

by the first path Ci, where Ti is the intersection of the envelope surface associated to Ci, 

with the surface of constant scallop height SSh (Figure 2). In the second problem, we 

build the adjacent tool path Ci+1 which belongs to the machining surface SM starting 

from the scallop curve, so that the scallop curve Ti is the intersection of the two pipe 

surfaces associated to Ci and to Ci+1 (Figure 3). 

We show now that the curve Ci+1 is the intersection of the machining surface with 

the pipe surface generated by the scallop curve Ti . 

For each point Pi,j onto the scallop curve Ti , the tangent ti,j to the curve Ti is given by 

the cross product:  

j1,iji,ji, +∧= nnt       (1) 



with ni,j and ni+1,j the unit normals to the pipe surfaces at the considered point: 

ji,j1,ij1,iji,ji,ji, PCLPCL ++ == nn    (2) 

CLi,j and CLi+1,j are the tool locations which generate the point Pi,j onto the scallop 

curve. 

To a scallop point Pi,j, we can associate a tool center point CLi+1,j on the path Ci+1 

with: 

0RP),dist(CL ji,j1,ij1,i =⋅= ++ tn    (3) 

The searched path Ci+1, locus of the points CLi+1,j, thus belongs to a pipe surface of 

radius R whose spine is the scallop curve Ti. Finally, the tool path Ci+1 is the intersection 

of the previous pipe surface and the machining surface SM. Moreover, one will notice 

that the intersection of the pipe surface associated to Ti, with the machining surface SM 

actually gives two curves which one is Ci+1 and the other is Ci, which is in agreement 

with (1) and (2). The construction of constant scallop height tool paths can thus be 

carried out by successive intersections between pipe surfaces and the machining and 

constant scallop height surfaces. 

The methods developed by Suresh and Yang [3], Sarma and Dutta [4], and Lin and 

Koren [5] have in common the planning of tool paths in the parametric space while 

using fundamental forms to define differentials characteristics of the surface at the 

considered point. The initial path is sampled to calculate the points of the following 

path. This last one is then built by interpolation of calculated points. To be able to 

compare performances of our approach with existing methods and not to leave 

ambiguities on the way are generated the surface intersections, we suggest to generate 

successive tool paths point by point in the parametric space. The initial path is sampled 



and in every point we compute the associated scallop point as well as the corresponding 

point of the next tool path.  

The first part of the problem is the search for the point Pi,j element of the scallop 

curve when the tool is located on the point CLi,j on the initial path. The point Pi,j is given 

by: (Figure 4) 

{ } { } { }1SSphere1PPlaneShSP ∩∩=  where Sphere S1 is the active part of the tool 

and Plane P1 the plane normal to Ci passing through CLi,j. 

The second part of the problem consists in determining the point CLi+1 of the 

following path from the scallop point Pi,j. The point CLi+1,j is given by: (Figure 5) 

{ } { } { }2SSphere2PPlaneShS
1i

CL ∩∩=+  where Sphere S2 is the active part of the 

tool and Plane P2 the plane normal to Ti passing through Pi,j. 

Contrary to [3] and [5] where the assumption is made that the problem is plane, i.e. 

that the point CLi+1,j is located in the plane perpendicular to Ci passing through CLi,j, 

construction is done in two different planes. The point Pi,j is in the P1 plane and the 

point CLi+1,j in the P2 plane. Actually, the problem is indeed plane because the three 

points Pi,j, CLi,j et CLi+1,j are in the P2 plane of normal ti,j (1)(2) but this plane is not 

known at the beginning of the construction. 

Algorithms 

In existing methods, it is necessary to associate a curve with each whole of calculated 

points CL to generate the following path. This is necessary to calculate the tangent 

vector to the tool path or to the scallop curve in order to define the study plane. This is 

not the case when using the method of the machining surface. The tangent vector is 

given by the cross product of the normals of both surfaces considered for intersection 



calculation (1). In order to compare the methods, we thus propose to consider two 

versions of the method of the machining surface. We use the association of curves to 

compare the performances of the various methods (algorithm 1) and the other does not 

in order to study the impact of curve association on the behaviour of calculated paths 

(algorithm 2). 

 
Algorithm 1:  Computation of the tool positions CLi,j on successive path Ci  

  with association of curve 

Initial conditions:   Design Surface    SD : S(u,v) 

   Constant Scallop height Surface  SSh : S(u,v)+Sh . n(u,v) 

   Machining Surface   SM : S(u,v) + R . n(u,v) 

For i = 1,n 

 For j = 1,m 

  Compute cutting plane P1j, perpendicular to Ci at CLi,j 

  Compute the intersection point Pi,j of SSh, P1j and Sphere S1 

 End 

 Associate the scallop curve Ti to {Pi,j}  

 For j = 1,m 

  Compute cutting plane P2j, normal to Ti at Pi,j 

  Compute the intersection point CLi+1,j of SM, P2j and Sphere S2 

 end 

 Associate the tool path Ci+1 to {CLi+1,j}  

End 

 

Algorithm 2 :  Computation of the tool positions CLi,j on successive path Ci  

 without association of curve 

Initial conditions :   Design Surface    SD : S(u,v) 

   Constant Scallop height Surface  SSh : S(u,v) + Sh . n(u,v) 

   Machining Surface   SM : S(u,v) + R . n(u,v) 

For i = 1,n 

 For j = 1,m 

  Compute the tangent to the intersection curve between the pipe surface (Ci) and SSh 

  Compute the intersection point Pi,j of SSh, P1j and Sphere S1 

 End 

 For j = 1,m 

  Compute the tangent to the intersection curve between the pipe surface (Ti) and SM 

  Compute the intersection point CLi+1,j of SM, P2j and Sphere S2 

 End 

End 

The selected method for curve fitting is the interpolation by cubic B-spline curves. 

We use a parameter setting proportional to the chord length [12]. Whatever the method, 

tool paths are calculated in the parametric space. In the case of algorithm 1, it is 

necessary to calculate the tangent to the current curve (scallop curve or tool path) so that 



the cutting plane (P1 or P2) is defined. The tangent vector t to a curve C(t) or C(u(t),v(t)) 

lying on the surface Φ(u,v) = S(u,v) + d . N(u,v) where d takes the value R or Sh is 

given by : 

vu Φ(t)vΦ(t)u ⋅+⋅= &&t     (4) 

where (t)u& and ⋅(t)v& are the parametric tangent vectors and uΦ  and vΦ  the partial 

derivatives of the surface given by: 

α
N

dαSαΦ ∂
∂⋅+=     (5) 

α
N

∂
∂

 is the curvature operator defined by: 

ββα−=∂
∂

Sb
α
N

     (6) 

Finally, 

))SbS(bd(S(t)v))SbS(bd(S(t)ut v
2
2u

1
2vv

2
1u

1
1u ⋅+⋅⋅−⋅+⋅+⋅⋅−⋅= &&  (7) 

b is the tensor of curvature or the second fundamental form. 

Algorithms behaviour 

At first, the methods are applied on a Nurbs surface delimited by two lines and two 

arcs of circle (Figure 6). It thus presents concave and convex areas and does not include 

any discontinuity of tangency or of curvature. The tool radius R is 10 mm and the speci-

fied scallop height is 0.001 mm. 

The initial tool path is an isoparametric curve of the surface. Then, the initial tool 

path is sampled in points and points of the adjacent path are built one by one to define a 

first path and so on until the last tool path. Throughout this process we observe the 

propagation of the initial points, it is the traceability. We can thus visualise the tool 



center location or the surface contact point calculated before curves associations. 

Indeed, the interpolation hides the behaviour of each algorithm. 

The first test consists in comparing the proposed method with the method suggested 

in [3] and [4]. We pointed out that these methods use the association of curves 

inevitably. We thus use the method of the machining surface with association of curve 

(algorithm 1). The selected initial tool path is the isoparametric curve v0 = 1/3, and the 

machining is done in the -y axis direction (Figure 7). The tool paths are represented by 

curves with the points used for computation. The progression is done from the top to the 

bottom and only one tool path on ten is represented for more clearness. We notice first 

of all that the three curves diverge progressively with machining. Curves generated by 

Suresh & Yang [3] are those which present the greatest variation in comparison to the 

others. In their approach, the problem is regarded as plane and one passes from one path 

to the other without passing by the scallop curve (what makes it the fastest method). 

Moreover, the distance between successive tool paths is calculated in an approximate 

way. The two other methods are relatively close despite of a slight divergence. 

The second test consists in studying the influence of curve association on the calcu-

lated tool paths (Figure 8). The two versions of our method are compared. It is noticed 

that the interpolation largely influences the results. Although tool paths are very similar, 

points position calculated with both methods vary. This is explained by the fact that the 

interpolation modifies the direction of the tangent vector to the curves at the calculated 

points, but does not modify the distance between two adjacent tool positions. Adjacent 

points are not evaluated in the correct direction. We could have introduce tangency 

constraints in the interpolation scheme but it wouldn’t have been representative of the 

possibilities offered by the other methods. 



Moreover, differences between tool paths are found on the resulting scallop height. 

Let us take the example of the difference between the tool paths generated by the 

method [3] and those generated with the method of the machining surface without 

association of curve (Figure 7). At the end of 100 tool paths, the distance between the 

ways is approximately 2 mm. If one considers that the drift is constant progressively 

with the construction of the tool paths, it represents approximately 20 µm (7%) of error 

between two consecutive tool paths, that is to say an error on the scallop height of 0,15 

µm (15%) (Figure 9). 

Behaviour on curvature discontinuities 

We study in this part the treatment of curvature discontinuities. Indeed, the existing 

methods make the assumption that the surface curvature is constant around the consi-

dered point. This is not a problem during the machining of a B-spline surface made up 

of only one patch because this type of surface garantee the curvature continuity. But the 

majority of industrial parts are modelled with a multitude of patches connected in 

tangency and eventually with NURBS surfaces presenting curvature discontinuities. For 

example it is the case when we introduce blending radii. Let us consider the machining 

of a cylindrical surface along its generatrices whose profile (Figure 10) presents a 

curvature discontinuity at the point P0. The considered point is in the convex part of 

surface before P0 and with the hypothesis of constant curvature, the adjacent tool 

location calculated is in P*1 and not in P1 as it should be. The resulting scallop height is 

thus not the expected one. 

We thus study the behaviour of our algorithm and those developed in [3] and [4]. We 

consider the machining of a sphere lying on a plane with a connection in tangency 

(Figure 11). The surface consists of three surfaces: a half sphere (radius 10 mm), a 



portion of torus (radii 10 and 20 mm) and a plane. It presents two curvature discontinui-

ties along the profile. The first one is located at the linking between the plane and the 

torus, the second between the torus and the sphere. 

The adopted machining strategy is a machining according to the circular isoparame-

tric from the outside of the surface towards the top of the sphere. Discontinuities are 

then well situated between two adjacent tool paths. We observe the scallop left by the 

tool at the two curvature discontinuities, with the three methods of tool path calculation. 

It is also pointed out that for a given scallop height and a given tool radius, the tool 

paths are more spaced (resp. less) when the curvature is concave (resp. convex). 

To compare the methods, the scallops left by the tool are built with the method of the 

Z-buffer. We build in the zone of interest a network of lines parallel to the z axis and 

laid out on a grid whose step indicates the precision. The step of the square grid is set to 

0.025 mm. Then, we carry out the intersections between this network of lines and the 

envelope surfaces of the tool movement.  

Results (Figure 12) show that methods that rely on constant curvature generate an 

abnormal scallop on the discontinuity, which is not the case for the method of the 

machining surface. At the junction between the torus and the sphere, results show a 

higher scallop than the others with the passage of discontinuity. The distance between 

paths is calculated as if the curvature were concave (torus) whereas it is convex 

(sphere). With a constant distance between path, the scallop height is larger on the 

sphere than on the torus. Between the planar zone and the torus, the scallops in errors 

are smaller. The algorithms calculate a distance between path as if the curvature were 

null (plane) whereas it is concave (torus). With a constant distance between paths, the 

scallop height is lower on the torus than on the plane.  



The experimental results confirm our assumptions on the influence of the curvature 

approximations. Approaching a surface by its osculating sphere during the calculation 

of constant scallop height tool path does not allow the correct treatment of curvature 

discontinuities. Thus molds and dies containing many blending radii cannot be 

machined with such algorithms, plastic injected molds in particular. The method of the 

machining surface successfully the treats curvature discontinuities by leaving a scallop 

in accordance with the specifications. 

Conclusion 

The concept of the machining surface enables to adopt a new method to generate 

constant scallop height tool path which shows benefits. First of all, there is no needs to 

associate an interpolating curve to build consecutive tool paths. Without interpolation, 

the proposed method is more accurate than the other methods. It doesn’t accumulate 

error from the beginning of the tool path calculation. Moreover, the method is characte-

rized by its aptitude to treat curvature discontinuities. However, it should be noticed that 

these improvements increase computation time.  

The concept of the machining surface also offers a framework to generate constant 

scallop height tool paths with flat-end or filleted endmills in 3-axis milling. But, 

whatever the method or the tool employed, it becomes necessary to tackle the problem 

of the tool path planning. Indeed, according to the initial tool path and the topology of 

the design surface, we have to extrapolate the tool paths close to the borders of the 

surface. Furthermore, the constant scallop height tool paths might contain loops. These 

loops could be eliminated but some tangent discontinuities would appear on the tool 

path.  
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Figure 1: Tool paths tightening 
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Figure 2: The geometry of constant scallop height tool path 
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Figure 3: The geometry of constant scallop height tool path 
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Figure 4: Discrete construction of the tool path 
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Figure 5: Discrete construction of the tool path 
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Figure 6: Test surface 1 
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Figure 7: Traceability of tool paths 
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Figure 8: Traceability of tool paths 
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Figure 9: Scallop height error 
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Figure 10: Curvature approximation 
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Figure 11: Test surface 2 



 

Figure 12: Performances on curvature discontinuities 


