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Abstract: 

This paper presents a new method of computing constant scallop height tool paths in 5-axis 

milling on sculptured surfaces. Usually, iso-scallop tool paths computation methods are based on 

approximations. The attempted scallop height is modelled in a given plane to ensure a fast 

computation of the tool path. We propose a different approach, based on the concept of the 

machining surface, which ensures a more accurate computation. The machining surface defines 

the tool path as a surface, which applies in 3 or 5-axis milling with the cutting tools usually used. 

The machining surface defines a bi parametric modelling of the locus of a particular point of the 

tool, and the iso-scallop surface allows to easily find iso-scallop tool centre locations. An 

implementation of the algorithms is done on a free-form surface with a filleted endmill in 5-axis 

milling.  

Keywords: 
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Symbols: 

SSh  constant scallop height surface 

Sn  CAD surface 

MS  machining surface 

sh  scallop height (mm) 

Cc  cutter contact point  

CL  cutter location point 

P  point onto the scallop curve 

K  cutter location point on the guiding surface 

n  surface normal  

f  tool feed vector 

t  tangent to the surface 

u  tool axis vector 

R  tool radius (mm) 

r  tool corner radius (mm)  

θt  tilt angle 

θn  yaw angle  

ξ1
,ξ2

  surface parameters 
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Introduction 

The manufacturing process of sculptured surfaces is an important issue in 

aeronautic, mould and die industries. This process is based on 3 or 5-axis end 

milling and consists in the sweeping of the surface by the tool. The process must 

produce parts respecting the functional requirements and reduce machining time. 

In particular, the machining strategy has a great influence on the machining time 

and the effective roughness.  

The sculptured surface realization process is based on the followings steps:  

- the numerical definition of the part in a CAD software ; 

- the computation of the necessary tool paths in a CAM software ; 

- the effective realization of the part by means of a machine tool ; 

- the measurement of the part and the checking of the respect of the awaited 

quality level. 

The machining tool path defines all the positions which have to be reached by the 

tool in a given description format, so that the surface generated by sweeping 

respects the geometrical specifications of form deviation and roughness. This 

trajectory is thus a geometrical model associated to the CAM activity: the CAM 

model. Its geometrical richness makes it more or less relevant. 

We can define another geometrical model used in the process: the virtual 

manufactured model. The transformation from the CAM model to the virtual 

manufactured model is obtained by the computation of the envelope surface. The 

envelope surface of the tool movement is the skin of the volume swept by the tool 

during its displacement along the path. More generally, according to [1],[2],[3] 

one regards as swept volume the volume generated by a solid object displacement 

along an unspecified trajectory with possible rotations. The equation of the 

envelope surface can be simple, for example in the case of the skin of the volume 

swept by a sphere. The envelope surface of the tool movement is a pipe surface of 

radius equal to the tool radius and whose generator is the curve followed by the 

cutter location point CL. The extraction of the equation of the swept volume 

surface is a difficult operation especially when it presents self-intersections. 

Extracting the equation of the envelope surface of a filleted tool is thus not 

considered. On the other hand, at every moment the locus of the generating profile 
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points of the envelope surface, and for any tool [2] is defined by the next 

equation:  

0tool =⋅ nV      (1) 

with V the speed vector and ntool the tool normal vector at the considered point. 

This equation will help us to determine the points generated by the tool on the part 

and especially the scallop points. 

To compute a tool path respecting the above mentioned specifications, we have to 

plan the tool path by choosing a tool driving direction and the transversal and 

longitudinal discretization steps [4]. Along the machining direction, i.e., the 

longitudinal direction, the calculated tool path must lead to the respect of the 

dimensional and form deviations specifications. From the exact theoretical tool 

path that perfectly machines the surface, we can build a pipe whose diameter is 

lower than the specification of form deviation. The calculated tool path must be 

contained in this pipe. The computed tool path is the modelization of the 

theoretical tool path according to a chosen interpolation format. This is significant 

regarding the machined surface quality and the effectiveness of the machine tool. 

If one controls the tool by linear interpolation, the distance between the tool 

locations must be sufficiently weak to respect the tolerance of form deviation [4]. 

But that can produce facets on parts with large curvature radii. Then, we must add 

interpolation points where the tool path presents large curvature radii. However a 

too small distance between following points limits high speed machining 

performances because of the processing time of the NC code by the numerical 

control units [5]. The use of polynomial interpolators in the development of tool 

path generators brings a better solution to this problem. Tool paths described in 

the polynomial format do not generate facets and the machine tool reaches the 

expected feedrate easier. On the other hand, it is essential to detect discontinuities 

during the calculation of the tool paths [6]. 

In the transversal direction, the distance between two consecutive tool paths must 

be sufficiently weak so that the specifications of form deviation and roughness are 

respected all over the part. According to the tools geometry, the specified 

roughness defines a maximum scallop height sh. We can thus define the constant 

scallop height surface SSh, which is the offset surface of the design surface with a 

magnitude equal to the maximum scallop height. In order to machine the expected 

surface with the right specifications, all the scallops generated by the successive 
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tool paths must lie between the CAD surface and the constant scallop height 

surface SSh. 

In fact, it should be noticed that the problem is not so uncoupled. It has been 

showed that the precision of the tool path in the longitudinal direction has an 

influence on the transversal profile. Indeed, the tool contact points, along two 

adjacent tool paths, are not always synchronized in the transversal direction. In 

this case the transversal profile of the machined surface is not composed of the 

same scallops, lying perfectly on the CAD surface, but of a succession of more or 

less deep scallops [7]. 

The machining strategy plays a significant role on the respect of roughness. With 

the conventional strategies where the tool is driven along parallel planes or iso-

parametric curves on the surface, only the maximum scallop height can be 

managed between two adjacent tool paths. To be able to control the scallop height 

on a specific area, we have to tighten the entire tool path. Then, scallops left on 

the part are lower than the expected limit almost all over the part. In order to 

improve the machined surface quality and to potentially minimize machining 

time, we can use the constant scallop height tool path strategy. 

This strategy, also called the iso-scallop strategy [8], ensures that scallops on the 

part will be evenly distributed. It has been showed that this machining strategy 

optimizes the sweeping of the surface by the tool [9]. In a constant scallop height 

strategy, the scallop curve is lying on the constant scallop height surface SSh. 

Starting from an initial tool path, we find the intersection curve of the swept 

volume with the constant scallop height surface. Then, based on the found scallop 

curve, we compute the next tool path [14],[15]. In 3-axis milling, several 

approaches have been developed to compute iso-scallop tool paths with ball 

endmill [9],[10],[11]. Tool paths are planned in the parametric space of the CAD 

surface and the two first fundamental forms are used to evaluate the surface 

properties at the considered point. In 5-axis milling, two methods have been 

developed, one for the filleted endmill [12] and another one for the flat endmill 

[13]. This last method is quite similar to those developed for the 3-axis milling 

because the effective cutting profile of the tool is approached by a circle in the 

plane normal to the tool path. We compared our approach, [14], with those 

founded in the literature and showed that our method were more precise in terms 

of scallop height as well as more efficient on curvature discontinuities. 
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Now, our objective is to apply our method [14] in the case of 5-axis milling with a 

filleted endmill. The proposed method is based on the use of the concept of the 

machining surface. We consider that the surface is the most accurate model to 

compute high quality tool paths, to respect the expected quality and to take into 

account the connection between the longitudinal and transversal steps. It would 

bring an enrichment to facilitate the generation of iso-scallop tool paths because 

the gap between two adjacent tool locations is filled by a surface element 

[16],[17]. The Machining Surface (MS) is a surface including all the information 

necessary for the driving of the tool, so that the envelope surface of the tool 

movement sweeping the MS gives the expected free form.  

We will initially present in detail the concept of the machining surface and the 

geometry of the machining surface in 3 and 5-axis milling. Then, we will focus on 

the calculation of the iso-scallop tool paths. An application of the approach is 

proposed at the end of the paper. 

The concept of the machining surface 

The machining surface can be characterized as a biparametric space gathering all 

the information required to build a tool path. The shape of the machining surface 

must lead to the respect of the design intent, whatever the adopted machining 

strategy. 

The sampling phase from the CAD surface to the set of discrete CL points 

generates geometric deviations between the envelope of the tool movement and 

the CAD surface. The two-dimensional and continuous approach suggested by the 

machining surface prevents the degenerating of the CAD model in a set of points. 

Our objective is to build a surface on which we can compute curves as tool paths, 

according to the design intents and a machining strategy. The definition of the 

machining surface depends on whether the machining is performed in 3 or 5-axis 

milling and on the tool geometry. 

Machining surface in 3-axis milling: the MS is the surface P(u,v), locus of a 

particular point of the tool (centre or extremity), so that the free-form 

corresponds to the envelope surface of the tool movement when the particular 

point is sweeping the MS 

In 3-axis milling, the machining surface is the generalized offset surface. These 

offset surfaces have been already used to compute tool path especially with ball 
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endmills [18], [19] but also with flat and filleted endmills [20]. We focused on the 

definition of the MS in 5-axis end milling. 

Machining surface in 5-axis milling: the MS consists in a couple of surfaces 

P(u,v) and Q(t,w), with P(u,v) following the previous definition, so that for each 

point P of P(u,v), there exists a point Q on Q(t,w), so that PQ defines the direction 

of the tool axis. 

We now develop the geometrical model of the machining surface. In order to deal 

with a general case, let us consider the 5-axis milling with a filleted endmill. Then 

we will extrapolate the results to the other tool geometries.  

Fig. 1: Here 

In 3-axis milling, we are able to drive the tool centre location point CL and to find 

the resulting tool contact point CC like in the offset [18] and APT approaches. But 

this approach has not been applied in 5-axis milling due to its complexity [21]. 

Hence, the tool path generation in 5-axis milling usually consists in computing the 

tool center location CL and the tool axis vector u for each tool contact point CC 

between the tool and the surface along the tool path [22], [23]. To ensure the 

tangency between the tool and the machined surface and avoid gouging, the tool 

can be rotated around the two vectors t and n of the local coordinate frame defined 

by: (CC, f, n ,t) where:  f is the tool feed vector, n the vector normal to the surface 

and t the vector tangent to the surface with t = f ∧ n. We propose to change theses 

rotations (θt, t) and (θn, n) and to define these in the local coordinate frame 

(K, f, n, t), with K located on the meridian circle of the torus defined by: 

nCCK ⋅+= r      (2) 

K belongs to the instantaneous rotation vector of the tool. It thus remains fixed 

during the rotational movements of the tool. The rotations ensure a tangent 

contact between the tool and the part. It also should be made sure that the two 

rotations leave the tangent planes of the tool and surface confused at the contact 

point CC. Regarding to the rotation (θn, n), the result is immediately proved 

because n is orthogonal to the tangent plane. For the second rotation, obtaining 

the result has to be proved. We first of all define the position of the tool by defect 

as being that for θt = θn = 0 when :  

- vectors u and n are parallels,  

- u is in the plane defined by (K, f, n) 
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This configuration ensures a tangent contact because in any contact point CC 

between the tool and the surface, the normal on the surface passes by the axis of 

the torus. The demonstration is described in appendix A. 

Fig. 2: Here 

Consider C, the circle resulting from the intersection between the torus 

representing the active part of the tool and the plane (K, f, n). This plane passing 

by the axis of the torus, C is the circle of centre K which generates the torus by 

rotation around the meridian circle. The vector t is orthogonal to the circle C 

because orthogonal to (K , f , n) by definition. The rotation around t thus leaves 

the circle C identical to itself. Therefore, the active part of the tool remains 

tangent on the surface, only the contact point, belonging to the tool is modified. 

The contact point CC belonging to the surface is unchanged, the tool always 

machines the same point. 

However, the order of rotations is significant to preserve a tangent contact. If the 

rotation (θt, t) takes place in first, the point CC  remaining unchanged, the normal 

n is also unchanged.  The second rotation (θn, n) thus leaves the tangent planes 

confused. On the other hand if (θn, n) is the first rotation, the plane (K, f, n) is not 

any more the meridian plan of the torus and the intersection between the torus and 

this plane is an oval of Cassini (Fig. 2). Consequently the rotation around t does 

not leave any more the active part of the tool identical to itself, an interference 

occurs. In this case, the rotation must be done around the vector t’, image of the 

vector t by rotation (θn, n). 

Fig. 3: Here 

We decide to retain the point K to calculate the tool location but we should define 

at least a second fixed point of the tool. For that we will use the point CL such as 

v = KCL (Fig. 1). With two points to locate the tool, there remains a possible 

rotation around the vector v . However, it should be noticed that the tool axis 

vector u, the vector v and the normal vector n passing through CC remain always 

coplanar during the two rotations (θt, t) and (θn, n). Indeed, they are coplanar 

since the beginning of the setting in position because at any point CC, the normal 

to the surface passes by the axis of the torus. Then, the two rotations (θt, t) and 

(θn, n) leave the vectors u, v, n coplanar (Fig. 3). Knowing points K, CL and the 
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normal vector n is sufficient to position the tool in the 3D space. The tool axis 

vector is then defined by:  

vn

vn
vu ∧∧∧=      (3) 

The points K and CL define a unique tool position because they are located in the 

symmetry plane of the tool. 

Fig. 4: Here 

The MS is thus composed of two surfaces S1 and S2, loci of the points K and CL 

(Fig. 4). We call the surface S1 the guiding surface and surface S2 the orientation 

surface. The guiding surface S1 is the offset surface of the nominal surface with 

magnitude equal to the corner radius r of the tool. It is thus independent of the 

machining strategy. The orientation surface S2 is the surface that gives the 

orientation of the tool axis according to the considered machining strategy. 

From the CAD surface Sn described by the parametric function F(ξ1
,ξ2

), we can 

determine the parametric function of the guiding surface S1, F
gui

(ξ1
,ξ2

) : 

( ) ( ) ( )212121
,.,(,( ξξξξξξ nr

gui += FF     (4) 

The orientation surface is built according to the orientation we wish to give to the 

tool along the tool path. The orientation of the tool axis is described by u(ξ1
,ξ2

). 

One can evaluate the parametric function F
ori

(ξ1
,ξ2

) of the orientation surface S2 

followed by the centre of various types of tools. The results obtained in the case of 

5-axis milling with a filleted endmill can be extended to the other tool geometries. 

The flat endmill can be described as a filleted endmill with a corner radius r null. 

Thus, K coincides with the cutter contact point CC and the surface S1, locus of the 

points K is the nominal surface to be machined. In this case, the machining 

strategy controls the cutter contact point. The ball endmill can be considered as a 

filleted endmill with a principal radius R equal to zero. The point K then coincides 

with the point CL. The adopted solution that uses points K and CL is not valid for 

this type of tool. Thus, we use the standard configuration with the parameters CL 

and u. 

The following table presents all the definitions of the guiding and orientation 

surfaces, according to the used machine and tool. 

Table 1: The different machining surfaces 
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 3-axis  5-axis 

Filleted 

endmill 

S1 : F + r n S1 : F + r n S2 : F + r n + u 

Ball endmill 

 

S1 : F + R.v S1 : F S2 : F + R.v 

Flat endmill 

  

S1 : F + r.n + R.v S1 : F + r n S2 : F + r n + R.v 

Iso-scallop tool path generation in 5-axis machining 

We first recall that 5-axis machining with a filleted endmill allows to get different 

machining strip width regarding the tool axis orientation. Indeed, the effective 

cutting profile is an ellipse. The minor and the major axes and radii depend on the 

tilt and yaw angles. The local radius of the effective cutting profile Reff is equal to 

[23]:  

22 sin)sin(cossin

)sin(

ntnt

t
eff θθθθ

θ
rRr

rRr
R ++

+=    (5) 

To be as effective as possible, the iso-scallop tool path strategy must be linked to 

minimum tool axis orientation angles. In 5-axis milling, the MS is made of two 

surfaces, the guiding and the orientation surface. The guiding surface can be 

directly computed from the initial surface. But the orientation surface cannot be 

defined before the end of the tool path generation. Its construction depends on the 

tool axis orientation, which is defined with the tool feed direction. But the tool 

feed direction will be found during the tool path generation. So we only use the 

guiding surface to compute iso-scallop tool path, the corner radius offset surface. 

The orientation surface may be used to modify the tool axis orientation to avoid 

gouging after the iso-scallop computation. 

Computing a scallop point 

The computation of the tool positions proceeds in two stages. During the first 

stage, we try to find the scallop point P associated with an initial position of the 

cutter location point K. The geometrical conditions to respect are as follows : 

-  P is belonging to the constant scallop height surface SSh: 

),(),(
2121 ξξξξ nP ⋅+= hn sS     (6) 

-  P is belonging to the active part of the tool, it respects the next toroidal 
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surface equation (the next equation is given for a tool axis oriented along the Z 

axis): 

( ) ( ) ( )( ) ( ) ( )( ) 0RrR =−+−−−+−+−+− 2222222222
4 yLxLzLyLxL CPCPCPCPCP  (7) 

-  P is on the generative profil of the tool which creates the scallop curve: 

( ) 0=⋅
P

toolnV     (8) 

V is the speed of the considered point P belonging to the tool. 

Fig. 5: Here 

We thus have a non-linear system of three equations with three unknown factors 

Px, Py, Pz that yields a non-linear system of two equations in the two unknowns 

(ξ1
, ξ2

) in the parametric space of the CAD surface. 

The resolution of the system can be done with the Newton algorithm, the 

difficulty is the determination of an initial solution which ensures convergence. 

We consider as an initial solution the preceding scallop point and to walk on the 

intersection between the constant scallop height surface SSh (6) and the toric tool 

(7) until the equation (8) is checked (Fig. 5).  

Consider the intersection between the constant scallop height surface SSh and the 

toric tool. One of the surfaces, SSh, is a bi-parametric surface Fsh(ξ1
,ξ2

) and the 

other is described as an implicit surface St(X, Y, Z) = 0. 

The mathematical formulation of this intersection problem is to find zeros of the 

function G (from [0,1]
2
 to ú3

) : G(ξ1
,ξ2

) = St(Fsh(ξ1
,ξ2

)X, Fsh(ξ1
,ξ2

)Y, Fsh(ξ1
,ξ2

)Z) 

The non linear equation G(ξ1
,ξ2

) = 0 presents 2 unknowns (ξ1
,ξ2

). The solution is 

a 3D parametric curve C with C(τ) = FSh(ξ1
(τ),ξ2

(τ)). The objective is not to 

compute the curve C but to keep marching on this curve. 

Fig. 6: Here 

Marching on the curve is done with the marching method algorithm, including 3 

steps: prediction, correction and progression (Fig. 6). 

Prediction consists in doing a step of a distance d in the direction of the tangent Tp 

to the curve C(τ) at the point Cp. This way we find a valuable approximation C* 

of the solution Cp+1. We can write:  
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>−<=
+=

+ p1pp

p

p
p

,CCsigns

. d .  S C*C

T

T

T

    (9) 

During the correction step, the following point Cp+1 is computed based on the 

prediction point C*. Cp+1 is built as the intersection between C(τ) and the hyper-

plane normal to the prediction direction, Tp passing thru C*.  

dCC 1pp =>−<
=

+
P

P

T
T

C

,

0)(τ
    (10) 

The progression distance d must be evaluated regarding the normal curvature of 

C(τ) to optimize computing time. For each step along the curve C(τ), we check if 

equation (8) is solved. It is then necessary to compute the speed vector of the 

considered point Cp belonging to the tool. The speed of a point M of the tool is 

computed by the next formula: 

0Rtool /ΩMKVV KM ∧+=     (11) 

with K the point of the tool belonging to the guiding surface and 0Rtool /Ω  the 

instantaneous speed rotation vector of the tool in its motion along the surface. In 

3-axis milling, this vector is null because the tool axis stay parallel to the Z axis of 

the machine tool. But in 5-axis milling, the tool is oriented in the local coordinate 

system R1 defined by (K, f, n, t), and furthermore, this local coordinate system 

evolves all along the tool path. 

We can write:  

0110 RRRtoolRtool /// ΩΩΩ +=     (12) 

1/RtoolΩ is defined by the tool orientation angles chosen by the user and:  

ntΩ nt ../ θθ +=1Rtool     (13) 

To compute the instantaneous speed rotation vector 01 RR /Ω , we use the next 

formula which proof is given in appendix B:  

)(.
2
1

0/
dt
d

dt
d

dt
d

RR1
ttnn

f
fΩ ∧+∧+∧=    (14) 

In kinematics, the variable t represents time but in our application, t is the 

parameter of the tool path curve followed by K. 
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The two vectors aα defined as follows belongs to the tangent plane to the guiding 

surface: 

2,1== αξαα
d

d
gui

Fa     (15) 

They define the natural covariant base of the tangent plane. The surface normal 

vector n is computed as the vector product of the two derivatives aα. We use this 

base to compute 01 RR /Ω . 

Once the scallop point is determined, the tangent to the scallop curve in each 

scallop point P is given by the vector product of the normals of the tool and the 

scallop height surface.  

Computing the cutter location point of the next path 

At the time of the second stage, the problem is to find the position of the cutter 

location point K on the guiding surface. The tool located on K has to generate the 

previous scallop point P while remaining tangent to the scallop curve and the 

CAD surface. Since the tool is generating the scallop point P, P must be located 

on the generative profile of the tool. Furthermore, the previous scallop curve is the 

intersection between the tool motion and the scallop surface. The tool normal 

vector is then perpendicular to the scallop curve tangent vector in P. 

The new system of equation to solve is the following:  

-  K belongs to the guiding surface SG 

),(),(
2121 ξξξξ nK ⋅+= rSn      (16) 

- the scallop point P belongs to the tool 

( ) ( ) ( )( ) ( ) ( )( ) 0RrR =−+−−−+−+−+− 2222222222
4 yLxLzLyLxL CPCPCPCPCP  (17) 

- P is on the generative profil of the tool 

( ) 0=⋅ PtoolnV       (18) 

- The tool normal vector is perpendicular to the scallop curve tangent 

vector  
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( ) 0=⋅ PtoolnT       (19) 

If the system is solved in the parametric space of the CAD surface, it becomes a 

[3 x 3] system which unknowns are the parametric coordinates (ξ1
,ξ2

) of the 

driven point K, and the tool feed direction f. This direction is parameterised by an 

angle θ in the guiding surface tangent plane defined by vectors aα.  

In 3-axis milling, the tool feed direction results from two tangency conditions 

between the CAD surface and the scallop itself. In 5-axis milling, the tool feed 

direction must lead to the respect of these conditions, while taking into account 

the curvature evolution of the CAD surface, that is to say, the instantaneous speed 

rotation vector 01 RR /Ω . 

The system is solved using the Newton algorithm. The initial solution is computed 

as the symmetric of the tool location point on the previous tool path. The 

symmetry plane pass through the scallop point P and contains the tangent to the 

scallop curve and the normal vector to the CAD surface. 

Fig. 7: Here 

Implementation and example. 

The implementation of the algorithm has been done on a personal computer under 

Linux operating system with the Matlab programming language. The test surface 

is a ruled Nurbs surface based on an arc of circle and a segment of straight lines 

(Fig. 7). We used an object approach to compute the characteristics of the Nurbs 

surface based on the algorithms developed in [24]. The tool radii are R = 10 mm 

and r = 1.5 mm and the scallop height is set to 10 µm. The first tool path is the 

right isoparametric boundary of the surface. 

To evaluate the scallop height, scallops left by the tool are built with the method 

of the Z-buffer. We build in the studied zone a network of parallel straight lines 

and laid out on a grid which step indicates the precision. Then, we carry out the 

intersections between this network of lines and the envelope surfaces of the 

movement of the tool, the tool moving along line segments interpolating the 

calculated path. Lastly, one calculates the distance between each point of 

intersection and the machined surface.  
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Fig. 8: Here 

We first applied our approach with a tilt angle of 1 degree. The scallops were 

consistent with the specifications but interferences appeared between the tool an 

the part in the concave area (Fig. 8). We can remove these interferences by using a 

tilt angle of 2 degrees all over the part. The specification of scallop height is 

always respected, interferences are removed but the tool paths are tightened since 

the machining strip width is smaller with a tilt angle of 2 degrees. 
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Conclusion and future works 

We have developed the concept of the Machining Surface to get a continuous 

representation of the tool path and also to improve the machined surface quality 

by associating directly the MS to the design constraints (this part of the concept is 

not presented in the paper). The bi-parametric representation of the tool path used 

by the offset tool path generation methods for 3-axis is extended to 5-axis milling. 

The MS is made of the guiding and the orientation surfaces which allows to 

uncouple the respect of design and dynamics constraints. Based on the bi-

parametric representation of the tool path, we developed a method of computing 

constant scallop height tool path in 5-axis milling with a filleted endmill. The 

concept of the machining surface appears as an excellent support to compute 

constant scallop height tool path because it enables us to use various geometries 

of tool while preserving the same mathematical formulation. We succeed to apply 

our method in 3-axis milling for the filleted and ball endmill. However, it does not 

apply for the cylindrical tool because of the discontinuity in tangency caused by 

the edge of the tool. 

The method is thus reliable to compute constant scallop height tool path. 

Nevertheless, effective calculation is conditioned by the CAD surface. We 

showed that the form of the tool path generated by the constant scallop height 

strategy is prone to the variations of curvature of the machined surfaces, which 

can prevent the result of calculation. The aim of our current work is about 

analysing more in detail the difficulties of constant scallop height tool path 

planning. Since our computation is based on sampled points on the first path, the 

convergence of the calculation depends on the choice of the first path. 

Furthermore, the density of points on each path depends on the sampled on the 

first one. 
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Appendix A 

Implicit equation of the torus:  
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Let D1 and D2 be the two lines passing through the normal vector and the tool axis 

vector. O is the torus centre, M1 is a point on the axis of revolution : 
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The distance between the two lines is d : 
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If M1 is the origin of the coordinate system, we find : 
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whatever the location of the point M0 on the torus. The two lines D1 and D2 

intersect. 
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Appendix B 

Let R1 = {O1, x1, y1, z1} be a coordinate system attached to a solid S, moving in a 

fixed coordinate system R0 = {O, x0, y0, z0}. The basis vector of R1 are normalized 

and perpendicular. Let 0/RR1Ω  be the rotation vector of  S (or R1) compared to R0. 

We can write :  
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By multiplying each term with the considered basis vector, we get:  ( ) ( ) ( ) ( ) ( )1/11/11/1111 000 xΩzxΩyxΩxzz
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We then use the double vector product simplification:  
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after gathering all the terms:  
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Figure 1: geometry of the cutting tools 
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Figure 2: intersection between a plane and the tool 
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Figure 3: movement of the characteristics vectors during the setting of the tool 
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Figure 4: the guiding surface and the orientation surface 



25 

Constant scallop
height surface

Generating profile

P

 
Figure 5: locus of the scallop point P on the tool 



26 

Cp

d

pT

C*

p

d

pT

Cp+1

 
Figure 6: marching method algorithm 
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Figure 7: testing surface 
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Figure 8: scallops left on the part with and without interferences 


