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Micro-emboli detection: an ultrasound

Doppler signal processing view point

Jean-Marc Girault, Student Member, IEEE, Denis Kouamé, Member, IEEF,

Abdeldjalil Ouahabi, Member, IEEFE, and Frédéric Patat

Abstract

Several studies have been carried out in the last twenty years on the characterization and detection of cerebral artery
emboli. From the detection point of view, the existing methods are in a large part based on the classical Fourier analysis
of which the well known limitations yield poor accuracy. This paper first recalls existing methods based on Fourier,
Wigner-Ville and wavelet approaches.

Then, it presents new emboli detection methods based on parametric signal processing approaches. The basic idea
of this parametric method is to track the deviation between the Doppler embolic signal and its modeled signal. It uses
an autoregressive model of the Doppler signal to construct a decision information which contains the signature of the
sought micro-embolus. Then, the sought embolus is detected with a certain probability of truth.

In order to perform a comparison between these new methods and classical analysis, a realistic embolic signal
simulation is also presented. Furthermore, to validate our theoretical study, we test new algorithms with in vivo signals.
This comparison emphasizes the significant inaccuracy of existing methods as far as micro-emboli detection is concerned.

Finally in vivo investigations are performed to validate the theoretical study.
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I. INTRODUCTION

N recent years, researchers have taken interest in monitoring clinically silent circulating micro-

emboli in the hope to identify patients at increased risk of thromboembolic stroke.
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Embolism, which corresponds to an intravascular migration of an insoluble body, can stop the blood
flow and lead to ischemia.

Obstruction of a blood vessel can be performed either by a large embolus (Fig. 1) or a hail of small
emboli. Emboli may appear in the shape of a gas bubble [1], a fat globule [2], a blood clot, a plaque
of atheroma and a piece of thrombus [3], [4], [5].

Concerning micro-emboli, on the one hand their origin and their processes of development remain
fairly unknown notably because of their small size and the limitations of detection systems; on the other
hand circulating micro-emboli may indicate an increased risk of macro-embolism leading to stroke.

The scientific community agrees that transcranial Doppler system [6] is adapted for embolic research
in the cerebral circulation.

Nowadays, manufacturers have developed commercial software systems aimed at automatically de-
tecting, counting and characterizing particles in human blood. But these systems do not permit to
point out all emboli and particularly the smallest.

From a signal processing standpoint, most of the available techniques in automatic emboli detection
are based on the power spectrum obtained by classical Fourier analysis, the limitation of which are
well-known (conflict between time and frequency resolutions, choice of analyzing windows).

Different alternatives can be envisaged. To our knowledge, they are all non parametric techniques.
The first one is the Wigner-Ville transform [7] which gives a better temporal resolution and then
improves the detection. Another technique, recently introduced by Guetbi and al [8], Lui and al [9],
is the wavelet analysis. These techniques provide better results than those obtained by the Fourier
analysis.

The motivation of our paper is to propose a new automatic detection method based on an abrupt
change approach in order to investigate the problem of micro-emboli detection. This original approach
consists in highlighting discontinuities which appear in stationary segments of the signal (segmentation)

by calculating a decision information (DI). DI is a quantity generated from the Doppler signal which



contains the embolus signature. Detecting an embolus comes down to doing an hypothesis test that
explains the fact that there is or there is not an embolus, respectively. To construct the decision
information, we do not directly use the Doppler signal but a parametric model of this signal. This
parametric model is a time-variant AutoRegressive (AR) model. Here, we propose to use two DI: the
autocorrelation of the innovation [10] and the modulus of the derivative of AR parameters.

In order to compare the presented methods, we propose to apply them to a simulated embolic
Doppler signal. These artificial signals are performed with an algorithm based on simulations pro-
posed by Wendling [11]. The comparison between methods is performed using the Receiver Operating
Characteristic (ROC) curves. These curves permit to highlight the performances of each method in
terms of probability of non detection and probability of false alarm. Finally an in vivo validation is
provided.

This paper is organized as follows: first we describe a realistic embolic Doppler signal simulation
which allows us to test the presented methods. Finally, the performances of the methods are evaluated

and discussed using ROC curves.

II. SIMULATION OF THE DOPPLER EMBOLIC ULTRASOUND SIGNAL

In order to compare the different methods presented in the following chapters, we develop simulations
of Doppler embolic signals. These synthetic signals, that are very realistic, offer a better flexibility

than using real signals.

A. Problem statement

Embolic Doppler signals observed can be described by a random process z(t) such that:

x(t) = S(t) + g Ei(t — 0¢) + % Ap(t = bar) + B(1). (1)

k=1
This relation describes the relevant information that constitutes the embolic Doppler signal. S(¢), the

background signal backscattered by the blood, may be considered as a piece-wise stationary signal; for



each i, F; represents a high intensity signal of brief duration, with time occurrence 6,;, and corresponds
to the temporal signature of an embolus; the A; terms may be related to artifacts occurring at times
0.r; finally, measurement noise that is stationary throughout the observation is gathered in the term
B(t); the entities ne and na represent respectively the random number of temporal occurrences of brief
useful events and artifact transient signal over the period of observation. Notice that S(t) and E; are
related because, in blood vessels, we suppose that emboli circulate with the same speed as Red Blood
Cells (RBC), haemodynamically this looks like a good approximation.

In our study, we do not take into account the artifact term because the technique proposed by
Smith and al [12], based on a dual gated Doppler ultrasound, allows us to differentiate between emboli
(unidirectional signals) and artifacts signals (bi-directional signals). Usually, the Doppler signal to
measurement noise ratio is about 15 dB, without emboli. Now let us focus on expressing S(¢) and

E(t).

B. Modeling of Doppler embolic signal

The original simulation of the Doppler embolic signal, that we propose, is based on the temporal
simulation of the pulsed Doppler signal [11], in which we have incorporated an embolus. However,
the numerical implementation of this algorithm does not depend on the aspect of the embolus. More
precisely, only the energy backscattered by the embolus embedded in the circulating blood is taken
into account.

In fact, the Doppler embolic signal must include random characteristics due to the random phase
of scattering particles which are present in the sample volume and must take into account the fact
that an embolus crosses a multi-scatterer medium. Other effects such as geometric broadening and
spatially varying velocity also affect the signal.

The radio-frequency backscattered signal from a single particle within the sample volume is given



by:

R;(t) = Cj orpoj cos(Va(t) + ¢5), (2)
with

wd(t) = u)gt + wd(t),

and with

wy(t) = 2—6:0 cos(av) /Ot v(T)dr.

C; both is proportional to the amplitude of the two-way beam pattern at the location of the particle
J and to the envelope of the transmitted pulse and also to the shape of the receiver gate. ogrpc;
is the backscattering cross section of one particle. Owing to the random location of the particle 7,
the phase ¢; is random and uniformly distributed. Finally, ¢4(¢) is the time-dependent phase caused
by the particle motion. wgy(t) is the Doppler shift related to the instantaneous flow velocity v(t), to
the ultrasound speed ¢ and to the carried frequency wy. « is the angle between the direction of the
ultrasound beam and the blood flow. The total signal from all scatterers is obtained by summing over
all particles j. In the Doppler device, this radio-frequency signal is multiplied by cos(wgt) and low pass
filtered in order to get the Doppler audio-signal of which the first quadrature has the form:

S(t) = Z Cjorpoj cos(wa(t) + ¢;).

J

The embolic signature is expressed as:
Ei (t) = CiO-Ei COS(QJd(t) + ¢l),

where op; is the backscattering cross section of one embolus. In order to present the problem in a
simpler manner, suppose that there is only one embolus in the sample volume (Fig. 1) . Here, we
consider that an embolus is a large RBC; that is not restrictive. In practice, we measure ”the embolus

to blood ratio” (EBR) already introduced by Moehring and Klepper [13]:



P
EBR = 10logy,( ]’?B).
B

P g is the backscattered power measured with blood and embolus in the Doppler sample volume,
Pg is the backscattered power measured from blood alone in the sample volume (Fig. 2). Figs. 2 and
3(a) show that artificial embolic signals are very realistic compared to those recorded from a classical
Doppler device. Those signals are obtained with a 2 M Hz emitted frequency and a 2 mm sample
volume length. In this study, sets of 3,6,8 and 10dB have been simulated. In the following chapters,

all illustrated examples are performed with FBR = 6dB.

III. NON-PARAMETRIC METHODS

As it is introduced by Spencer [14], the embolic Doppler signal is a signal in which sharp transients
appear. In order to identify irregularities (emboli) in the signal backscattered by the blood, it is
common to divide long-term signals into blocks of short duration and to compute a decision information
(DI). DI is a quantity generated from the Doppler signal which contains the embolus signature. In all

the methods, the detection is obtained if DI > T},,csn, Where Th,.q, is the detection threshold.

A. The Spectrogram or the Short Time Fourier Transform (STFT)

The basic idea of the spectrogram is to find the power spectral density of the signal at time ¢ by

analyzing a small segment of the signal around ¢. It is written as follows:

P )= [ aln)g e - e g

Here, x(t) represents the analyzed Doppler signal. The signal is multiplied by a window function ¢ in
order to reduce the random effects resulting from the computation of P(¢, f).The superscript asterisk
denotes complex conjugation. The spectrogram (see Fig. 2(b)) describes approximately the energy
density of the signal at point (¢,f). The problem with the STFT is that both time and frequency

resolutions of the transform are fixed over the entire time-frequency plane. In addition, choosing a
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short analysis window may cause poor frequency resolution. On the other hand, while a long analysis
window may improve frequency resolution, it compromises the assumption of stationarity within the
window. In this study, the STF'T is performed using a 64 points Hamming window with an overlap of
50% and no zero padding is used. The decision information (DI) is the same as in commercial devices,

it is the maximum of the power spectrum:
DI, = max(P(t, )|, (4)

where subscript ¢t denotes that the maximum power spectrum is sought for each time ¢ and for all
frequencies. Figs. 4(a) and 4(d) show DI; with (EBR = 6dB) and without an embolus crossing the
sample volume. These figures indicate that a high intensity associated to an embolus appears with a

poor resolution.

B. The Wigner-Ville Transform (WVT)

The Wigner-Ville distribution is a useful tool suitable for the analysis of time-varying signals [15],
[16]. The main advantage of the WVT is that it does not require the analyzed signal to be stationary
within the analysis time interval. It produces results with high temporal resolution.

Recently, Smith and al [7] have introduced the use of the WVT (Fig. 3(a)) for the analysis of embolic
signals. They emphasize that the use of the WV'T gives better results than the Fourier approach in
terms of emboli detection.

The WVT of a signal x(t) is defined as:

Wit )= [ :O o{t+ 2)a(t = D) (5)

Here, the commonly used DI is the maximum energy of W (¢, f).
DIy = max(W(t, )]s, (6)

where subscript ¢ denotes that the maximum of W (¢, f) is performed at each time ¢ and for all

frequencies. Figs. 4(b) and 4(e) show DI, with (EBR = 6dB) and without an embolus.



C. The Wavelet Transform (WT)

The wavelet theory was tied together by Grossman and Morlet in 1984 [17]. Later a preliminary
study applied to emboli detection was proposed in our research group by Guetbi and al [8]. The
wavelet transform of a signal z(¢) is the decomposition of this signal over a set of functions obtained
after dilatation and translation of an analyzing wavelet ( which verifies some admissibility conditions

[17]. The coefficients or details resulting from this decomposition are denoted C,; with:

Car= [ 20yt (7

where a and b respectively represent the scaling factor (dilatation/compression coefficient) and the
time (shifting coefficient) and the superscript asterisk denotes the complex conjugation. The set of

basic wavelets is expressed by:

gab(t) -

); (8)

o] @
for a # 0, b € R, where R denotes the real set. The set of Cyj, constitutes the wavelet transform.

Here we use the Morlet wavelet:

C(t) = ej"’te_% 9)

The Morlet wavelet is chosen first because of its simplicity and secondly because its shape looks like
the embolus signature. W'T has a variable time-frequency resolution over the time-frequency plane by
providing good time resolution at high frequency and good frequency resolution at low frequencies.
The detection of an embolus is given when the maximum of C,; crosses the threshold. Here, the DI
is given by:

DI = max(Cup)ls, (10)

where subscript b denotes that the maximum of C, is evaluated at each shifting coefficient b and for

all scaling factors a. Figs. 4(c) and 4(f) show DI3 with (EBR = 6dB) and without an embolic signal.



IV. DETECTION THROUGH PARAMETRIC MODELING

The presented approach is in keeping with the detection of abrupt change [18], [19]. This approach
consists in pointing out discontinuities existing in stationary segments of signal by computing the DI.

To built the DI, a parametric estimation based on time-variant AutoRegressive (AR) modeling is used.

A. Time-Variant AR Modeling

The parametric analysis consists in modeling the Doppler signal as the output of a linear filter
driven by a white noise. This filter, referred to as AR, is a linear combination of the previous samples

(Regressive) of the output itself (Auto). For more details, we can refer to [20] and [21] for example:

z(n) = =3 ai(n)z(n — i) +1(n), (11)

i=1
where 7 is a white complex noise and n is the sample time. An order test [22] shows that p = 2 may
be sufficient.

There are many algorithms to compute AR parameters, here we focus on the most popular one: the
adaptive least-square algorithm. Note that if the background noise added to the signal is colored, an
instrumental variable (IV) algorithm [23] should rather be used.

Let us rewrite equation (11) in a matrix form:

z(n) = ¢, 0 + n(n), (12)

with
¢T = [—x(n - 1)7 _x(n - 2)]7
0 = [a1, as)”.
If long data sequences are available, it is possible to use a time-variant identification method. In this

section, we describe a time-variant algorithm that allows us to obtain a new set of parameters whenever

a new sample is available. This is accomplished by updating the previously evaluated parameter using
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the prediction error, and weighting by means of a forgetting factor A . In fact, using a forgetting factor
is equivalent to the introduction of an exponential window. The length of this window indicates which
of the last samples are effectively taken into account to compute AR parameters. For example, if the
forgetting factor is equal to 0.95, the 20 last samples are mainly accounted for in the window, whereas
if it is equal to 0.99 the last 100 samples are taken into account.

This adaptive least-squares method evaluates the a; parameters by minimizing the cost function:

Jy = Z M= (2(n) — 2(n))?, (13)

where in practice 0.80 < A < 1 and k is the index of the last sample considered.
The general expression of the recursive adaptive algorithm using (12) is given by [21] and [24]:
P, n—1

P, = 1
1

i Pn—lQSnQSan—l
)‘ + ¢’£Pn—1¢n

)7

TA
€n = Tp — ¢n0n—17

én = én—l + Pn¢n6n7

where 6, is the estimated parameters vector, P, is the gain, ¢, is the observation vector and ¢, is the
prediction error.

Due to the recursive nature of this algorithm, first a transient region appears and secondly it is
required to initialize the gain P, and the AR parameters. A standard initialization value of the gain
is Py = 101 (I is an identity matrix).

The underlying idea is that a parametric model of the Doppler signal without emboli is no longer
valid when an embolus is present in the sample volume. In this case, the embolus signature appears

in the prediction error (Fig. 5(c)) as well as in AR parameters (Fig. 6(b)).



B. Parametric decision information

« The first decision information, presented by Kouamé and al [25] with a differential approach, is the
autocorrelation of the prediction error €(n) recursively estimated at a time different to the initial time.

The prediction error or the innovation can be rewritten as follows:
e(n) = x(n) — z(n). (14)

Its autocorrelation is given by:

m=+00

uln)= Y c(m)e*(m —n). (15)

m=—0oQ

Here the autocorrelation is the decision information. I'..(n) is computed for a time (n = 1) that is just
after the initial (n = 0). Indeed, without an embolus, the innovation tends to be a white noise and its
autocorrelation is quasi zero at any time different to the initial. From (15) the autocorrelation can be

recursively estimated as in [25], [26]:
DIy(n) = yDIy(n — 1) + (1 = 7)e(n)e(n — 1), (16)

v = 0.9 is a weighting factor.

o The main idea of the second DI is that an abrupt change produced by an embolus is a high frequency
phenomenon. To increase the contrast between an embolus and the blood, a high pass filter (or a
derivative operation) can be used. Accordingly, we propose a DI based on the modulus of the AR

parameters derivative. This latter is based on the idea introduced by Hagglund [27] and Girault [28] :

|dan (t)]
DI(t) = ) 1
(1 == (17)
From a numerical point of view, the DI becomes:
DI5(n) = |ay(n) — a1 (n — 1)|. (18)

In order to reduce the false alarm, we can introduce a weighting factor, ~:

DI5(n) = vDIs(n — 1) + (1 = y)ax(n) — ax(n = 1)]. (19)
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Fig. 6 shows the evolution of a;(n) with (EBR = 6dB) and without an embolic signal. These curves
obtained with a forgetting factor of 0.8 explain the stochastic nature of both the AR parameters and
their decision information. Indeed, the forgetting factor permits us to obtain a trade-off between a
good accuracy and reduced statistical fluctuations on parameters estimation. Fig. 7 illustrates the DI
of parametric methods with (FBR = 6dB) and without an embolic signal. At this stage, it seems to

be a promising way to detect emboli.

V. COMPARISON OF THE PRESENTED METHODS ON SIMULATED SIGNALS

In order to compare the previous methods, four sets of simulated data have been computed (each
containing 100 Doppler embolic signals). These four sets correspond to different values of EBR : 3,6,8

and 10dB.

A. Case of only one embolus

The previous methods are compared using different statistic tools.
« Non detection is the fact of not detecting an embolus which has effectively crossed the sample volume.
We evaluate the probability of non detection (PND) by:

NND
PND = —— 20
N (20)

where NN D is number of non detections obtained for N R realizations.
« False alarm is the fact of detecting an embolus event where in reality no embolus has crossed the
sample volume. We evaluate the probability of false alarm (PFA) by:

NFA

where NF' A is number of false alarms obtained for N R realizations.
For example, from the Fig. 8(d), a test is performed in order to know if there is an embolus. Knowing
that an embolus is present in the sample volume, if there is more than one value of DI, superior to

Thresn then there is a false alarm. In the case where there is only one value superior to the threshold,
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and located in the embolus region, there is a true detection. These operations are performed 100 times
in order to evaluate the probabilities for each threshold and for each value of EBR.

« The Receiver Operating Characteristic (ROC) curves illustrate the evolution of the PFA versus the
PND. It passes through the point (1,0) and (0, 1), it is convex and under the first bisecting line. An
ideal method is a method that approaches the point (0,0), i.e. PFA = PND = 0. An example is
illustrated in the Fig. 8(a).

Curves of Figs. 9(a) and 9(b) show the PFA versus the PND in the Fourier (DI;), Wigner-Ville
(DI,) and Wavelet (DI3) approaches, respectively. When no embolus is detected, the curve tends to
a straight line that passes through the point (1,0) and (0,1). Each plotted numbers correspond to
a fixed energy level such as EBR(3,6,8,10dB). Figs. 9(a) and 9(b) illustrate the superiority of the
Wigner-Ville and Wavelet approaches compared to the Fourier approach. Indeed, for Doppler embolic
signals with a fixed energy, curves obtained by the WVT and the WT are very close to the ideal point
(0,0); this is not verified for the Fourier approach. This can be explained by the good behavior of the
WVT and WT in terms of time and frequency resolutions. Fig. 9(b) emphasizes the fact that the
WVT gives same results as the WT, but the computation speed of the WT is higher.

Now, let us focus our attention on the comparison between non parametric and parametric ap-
proaches. Fig. 10(a) highlights that the parametric method based on the derivative of AR parameters
(DI5) is by far superior to all non parametric methods. We can explain the good results obtained
from parametric methods because they use supplementary information that it is not taken into ac-
count in all non parametric methods. This complementary information is the linear prediction error.
When an embolus crosses the sample volume, this random event, not predictable by nature, implies an
abrupt change in the prediction of the signal. This predictive information combined with the energetic
information explains in part the superiority of the parametric methods.

Concerning the comparison between parametric methods, it seems that the one based on the au-

tocorrelation of the prediction error (DI,) gives, by far, better results than the one related to the



derivative of AR parameters. This is due to the noise introduced by numerical derivation.

In practice, it is reasonable to consider that PFA = PND < 10% produces reliable emboli detection.
In these conditions, we apply the same criterion to simulated data and we search, on ROC curves
(see Fig.s 9, 10), which methods that are located in the area delimited by PFA = PND < 10%.
For example, from Fig. 9, it appears that Fourier method can be located in this region only for
EBR > 12dB. Wigner-Ville and Wavelet approaches are located in this area for FBR > 10dB.
Parametric methods are located in this area for EBR > 5dB. A classification of those methods is
summarized in Table I. When micro-emboli (5dB < EBR < 10dB) are present, the Fourier approach
seems unable to detect them in a reliable manner. However, it seems that parametric approaches will
allow their detection (with a good degree of accuracy).

An extrapolation leads us to believe that detection with classical devices is reliable only for EBR >

12dB. Note that those EBR formulations differ from those provided by [29].

B. Case of two emboli

In the case of two emboli, it is clear that if two emboli are very close together only high time
resolution methods could detect the two separately. This is the case with the Wigner-Ville and the
Wavelet approaches. In the Fourier approach, it is possible to detect these two emboli only if the delay
between them is higher than the time resolution. Concerning the implemented parametric methods,
the detection of both will be possible only if the delay between them is superior to the convergence
time (due to the recursive nature of the time-variant method). This convergence time, observed in

Fig. 7 can be significantly reduced by the use of a differential operator introduced by [30].

VI. In vivo STUDY

In order to confirm and validate our theoretical study, we have performed a short in vivo study.
From one patient, we have recorded 418 Doppler signals with the MDX-4 TCD-8 DWL Elektronische

Systeme GmbH during one hour. Conditions of recording are the following: the emitted frequency is
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2 M H z, the pulse repetition frequency is 6 K H z, the sample volume is 2 mm, the depth of analyze is
59 mm and the insonified vessel is the medium carotid artery.

From the recorded data we have made an energetic classification (according to the EBR) in order
to evaluate the corresponding ROC' curves. In the case of high energy all methods have well detected
high intensity transient signal (HITS). Concerning low energy, results are illustrated on the Fig. 11.
These ROC curves confirm and validate that parametric approaches are better than non-parametric
methods. Furthermore Fig. 11 highlights that high resolution methods (Wigner-Ville and Wavelets)

are better than the Fourier approach.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have reviewed the existing methods to detect emboli. Furthermore, we have
proposed an algorithm to make artificial Doppler embolic signals. From these synthetic signals, we
have compared non parametric methods to new parametric methods with statistical tools such as ROC
curves.

From simulations and @n vivo signals, this study highlights that the proposed parametric methods
are by far better than the existing methods such as the Fourier, Wigner-Ville and Wavelet approaches.

It has been stated that parametric methods have a good ability to detect emboli.

This study leads us to believe that, firstly commercial devices are unable to detect small emboli and

secondly that the use of parametric methods is a promising way to detect micro-emboli.
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TABLE 1

Methods Non Parametric | Parametric
DI, | DI, | DI; | DI, | DIDs
EBR, (dB) | 12 | 10 | 10 | 4 5

20

EBR,,;, obtained from PFA = PND < 10% and for all methods evaluated from artificial signals.

EBR,,;, corresponds to a reliable detection of embolus.
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Fig. 1.

An overscheme of a large embolus crossing the sample volume in a blood vessel.



23

o
o
= ——

real part of x(n)
o

|
o
ol
—

<«—— embolic signal
_1 | | |

0 1 2 3 4

embolic signal

normalized frequency

Fig. 2.
A time-frequency representation of the blood velocity in a vessel with an embolus (EBR = 6dB). An
artificial Doppler signal x(n) a) and its spectrogram b). A high intensity associated to an embolus

appears in the time-frequency domain with a poor resolution.
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Fig. 3.

A time-frequency representation of the velocity profile of blood circulating in a vessel with an embolus

Ville a) and Wavelet b)

-frequency representation evaluated by the Wigner-

(EBR =6dB). A time

transforms of an artificial Doppler signal. A high intensity associated to an embolic signal appears

with different resolutions for each method.
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Fig. 4.

Decision Information (DI) of the non parametric methods. Fourier a), WV b) and WT ¢) approaches
without embolic signal. Fourier d), WV e) and WT f) approaches with embolic signal (EBR = 6dB).

All three of the DI point out a high amplitude where there is an embolic signal.
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Fig. 5.

Prediction error of a synthetic signal. Real part of a Doppler signal backscattered by blood plus an
embolic signal (EBR = 6dB) a), real part of the Doppler signal modeled by an AR filter b) and error

between the Doppler signal and its modeled signal c).
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Fig. 6.
AR parameters of the parametric model. Real part of the autoregressive parameter a; without an
embolic signal a) and with an embolic signal (EBR = 6dB) b). Slow variations are related to the

systole and diastole phases of the circulating blood.
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Fig. 7.
Decision Information (DI) of the parametric methods. DI, without embolic signal in a), a
convergence region s located at the beginning of DI, and DIs. DI, with an embolic signal
(EBR = 6dB) in b), the embolus signature is located at about 2.5s. DI5 without an embolic signal in

c), the numerical derivation explains the stochastic nature of DI5. DI5 with embolic signal in d).
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Fig. 8.
ROC curves showing the PFA versus PND. Each curve corresponds to different values of EBR a).
PND wversus threshold b). PFA versus threshold ¢). DIyin the case of one embolus in the sample

volume and for EBR = 6dB.
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Fig. 9.

Non parametric ROC curves for different values of EBR. DIy (Fourier) (dotted line) and DI

(WVT) (dark line) a) and DIy (WT) (dashed dot line) b). When no embolic signal is detected,

30

curves tend to a straight line that passes through the point (0,1) and (1,0). For ideal methods, curves

tend to the point (0,0).
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Fig. 10.

ROC curves for different value of EBR with different DI. DIy (dark line) and DIy a) respectively
correspond to the Wigner-Ville and the derivative of AR parameters approaches. DI, (dashed dot
line) b) corresponds to the method of innovation autocorrelation. When no embolic signal is detected,
curves tend to a straight line that passes through the point (0,1) and (1,0). For ideal methods, curves

tend to the point (0,0).
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ROC curves from in vivo study and with different DI.
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