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ON AUTOMORPHISM GROUPS OF LOW COMPLEXITY

MINIMAL SUBSHIFTS

SEBASTIÁN DONOSO, FABIEN DURAND, ALEJANDRO MAASS, AND SAMUEL PETITE

Abstract. In this article we study the automorphism group Aut(X, σ) of a
minimal subshift (X, σ) of low word complexity. In particular, we prove that

Aut(X, σ) is virtually Z for aperiodic minimal subshifts with affine complexity
on a subsequence, more precisely, the quotient of this group by the one gen-
erated by the shift map is a finite group. In addition, we provide examples
to show that any finite group can be obtained in this way. The class con-
sidered includes minimal substitutions, linearly recurrent subshifts and even
some minimal subshifts with polynomial complexity. In the case of polyno-
mial complexity, first we prove that for minimal subshifts with polynomial
recurrence any finitely generated subgroup of Aut(X, σ) is virtually nilpotent.
Then, we describe several subshifts of polynomial complexity to illustrate that
the group of automorphisms can still be virtually Z. This behavior seems to
be very frequent for low complexity minimal subshifts. The main technique
in this article relies on the study of classical relations among points used in
topological dynamics, in particular asymptotic pairs.

1. Introduction

An automorphism of a topological dynamical system (X,T ), where T : X → X
is a homeomorphism of the compact metric space X , is a homeomorphism from X
to itself which commutes with T . We call Aut(X,T ) the group of automorphisms of
(X,T ). There is a similar definition for measurable automorphisms when we con-
sider an invariant measure µ for the system (X,T ) or a general measure preserving
system. The group of measurable automorphisms is historically denoted by C(T )
that stands for the centralizer group of (X,T, µ).

The study of automorphism groups is a classical and widely considered subject
in ergodic theory. The group C(T ) has been intensively studied for mixing systems
of finite rank. We refer to [17] for an interesting survey. Let us mention some key
theorems. D. Ornstein proved in [28] that a mixing rank one dynamical system
(X,T, µ) has a trivial (measurable) automorphism group: it consists in powers of
T . Later, A. del Junco [11] showed that the famous weakly mixing (but not mixing)
rank one Chacon subshift also shares this property. Finally, for mixing systems of
finite rank J. King and J.-P. Thouvenot proved in [22] that C(T ) is virtually Z.
That is, its quotient by the subgroup 〈T 〉 generated by T is a finite group.

Date: October 20, 2014.
2010 Mathematics Subject Classification. Primary: 54H20; Secondary: 37B10.
Key words and phrases. Minimal subshifts, automorphism group, complexity.
This research was partially supported by grants Basal-CMM & Fondap 15090007, CONICYT

Doctoral fellowship 21110300, ANR SubTile and the cooperation project MathAmSud DYSTIL.
The first and third authors thanks University of Picardie Jules Verne where this research was
finished.

1
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In the non weakly mixing case, B. Host and F. Parreau [21] proved, for a family
of constant length substitution subshifts, that C(σ) is also virtually Z and equals
to Aut(X, σ), where σ is the shift map. Concomitantly, M. Lemańczyk and M.
Mentzen [24] realized any finite group as the quotient of C(σ) by 〈σ〉 with constant
length substitution subshifts.

Priorly to these results, in the topological setting G. A. Hedlund in [18] described
the automorphism groups for a family of binary substitutions including the Thue-
Morse subshift. Precisely, he proved that Aut(X, σ) is generated by the shift and a
flip map (a map which interchanges the letters). In the positive entropy situation,
M. Boyle, D. Lind and D. Rudolph [5] obtained that the group of automorphisms
of mixing subshifts of finite type contains various subgroups, so this group is large
in relation to previous examples.

In this paper we focus on the group of automorphisms Aut(X, σ) of minimal
subshifts of subaffine complexity and, more generally, on zero entropy subshifts
without assuming any mixing condition. All evidence described before in the mea-
surable and topological context shows that we must expect that low complexity
systems have a simple automorphism group. This is one of the main questions we
want to address in this paper. Here, by complexity we mean the increasing function
pX : N → N that for n ∈ N counts the number of words of length n appearing in
points of the subshift.

Recently V. Salo and I. Törmä in [33] proved that for subshifts generated by
constant length or primitive Pisot substitutions the group of automorphisms is
virtually Z. This generalizes a result of E. Coven for constant length substitutions
on two letters [9]. In [33] is asked whether the same result holds for any primitive
substitution or more generally for linearly recurrent subshifts. In this paper we
answer positively to this question, proving the following more general theorem
whose proof is given in Section 3.

Theorem 1.1. Let (X, σ) be an aperiodic minimal subshift. If

lim inf
n∈N

pX(n)

n
<∞

then Aut(X, σ) is virtually Z.

The class of systems satisfying the condition of Theorem 1.1 includes primitive
substitutions, linearly recurrent subshifts [14] and more generally subaffine com-
plexity subshifts or even some families with polynomial complexity (see Section 4).
In addition, we illustrate this by realizing any finite group as the quotient group
Aut(X, σ)/〈σ〉, where (X, σ) is a substitutive subshift. We observe that this result
can be obtained combining the main results of [21] and [24] but we prefer to present
here a different and straightforward proof.

Extending Theorem 1.1 for subshifts of polynomial complexity seems to be more
intriguing. Nevertheless, several classes of examples still show that Aut(X, σ) has
small growth rate. Indeed, in Sections 3 and 4 we give classes of minimal subshifts
with polynomial complexity where Aut(X, σ) is virtually nilpotent (Theorem 3.8)
and in most cases the finite group is Abelian. Also, very recently, V. Cyr and B.
Kra [10] proved the fact that for transitive subshifts with subquadratic complexity
Aut(X, σ)/〈σ〉 is periodic, meaning that any element in this group has finite or-
der. Their proof translates the question into a coloring problem of Z2 and uses a
deep combinatorial result of A. Quas and L. Zamboni [31]. Our results arise from
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obstructions related to some classical and some less classical equivalence relations
associated to fibers of special topological factors. This idea was already used by
J. Olli in [27] to prove that Aut(X, σ) of Sturmian subshifts consists only in pow-
ers of the shift by studying the irrational rotation defining the subshift. Here, we
consider the maximal nilfactor ([20],[35]) of a minimal subshift to find a class of ex-
amples with arbitrarily big polynomial complexity whose group of automorphisms
is virtually Z.

2. Preliminaries, notation and background

2.1. Topological dynamical systems. A topological dynamical system or just
a system is a homeomorphism T : X → X where X is a compact metric space. It
is classically denoted by (X,T ). Let dist denote a distance on X and for x ∈ X
Orb(x) denotes its orbit {T nx;n ∈ Z}. A topological dynamical system is minimal
if the orbit of any point is dense in X and is transitive if at least one orbit is dense
in X .

An automorphism of the topological dynamical system (X,T ) is a homeomor-
phism φ of the space X such that φ◦T = T ◦φ. We let Aut(X,T ) denote the group
of automorphisms of (X,T ).

Let (X,T ) be a topological dynamical system. We say that x, y ∈ X are proximal
if there exists a sequence (ni)i∈N in Z such that

lim
i→+∞

dist(T nix, T niy) = 0.

A stronger condition than proximality is asymptoticity. Two points x, y ∈ X are
said to be asymptotic if

lim
n→+∞

dist(T nx, T ny) = 0.

Non trivial asymptotic pairs may not exist in an arbitrary topological dynamical
system but it is well known that a non-empty aperiodic subshift always admits one
[2].

A factor map between the topological dynamical systems (X,T ) and (Y, S) is
a continuous onto map π : X → Y such that π ◦ T = S ◦ π. We also say that
(Y, S) is a factor of (X,T ) or that (X,T ) is an extension of (Y, S). We also use the
notation π : (X,T ) → (Y, S) to indicate a factor map. If π : X → Y is a factor map,
we say that (X,T ) is a proximal extension of (Y, S) if for x, x′ ∈ X the condition
π(x) = π(x′) implies that x, x′ are proximal. For minimal systems, the extension
(X,T ) is called an almost one-to-one extension if there exists a point y ∈ Y with
at most one pre-image for the map π.

The relation between these two notions is given by the following folklore lemma.

Lemma 2.1. Let π : (X,T ) → (Y, S) be an almost one-to-one extension of minimal
systems. Then, (X,T ) is a proximal extension of (Y, S)

Proof. Let y0 ∈ Y be a point with one pre-image by π. For any points x, x′ ∈ X
with the same image π(x) = π(x′), there is a sequence (ni)i∈N in Z such that
T niπ(x) converges to y0 as i goes to infinity. Since π(x) = π(x′), the sequence
(T niπ(x′))i∈N also converges to y0. Taking a subsequence if needed, the sequences
(T nix)i∈N and (T nix′)i∈N converge to the same unique point in the pre-image of y0
by π. This shows that points x and x′ are proximal. �
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2.2. Subshifts. Throughout this paper the shift map is denoted by σ : AZ → AZ

where A is some finite alphabet and AZ is the set of bi-infinite sequences (xn)n∈Z
on this alphabet. It is defined by σ((xn)n∈Z) = (xn+1)n∈Z. The elements of A
are called letters. A subshift is a topological dynamical system (X, σ) where X
is a closed σ-invariant subset of AZ (we consider the product topology on AZ).
Observe that even if the alphabet may change we continue to denote the shift map
by σ. For convenience, when we state general results about topological dynamical
systems we use the notation (X,T ), and we use (X, σ) to state particular results
about subshifts. Let φ : (X, σ) → (Y, σ) be a factor map. By the Curtis-Hedlund-

Lyndon Theorem, φ is determined by a local map φ̂ : A2r+1 → A in such way that

φ(x)n = φ̂(xn−r . . . xn . . . xn+r) for any n ∈ Z and x ∈ X , where r ∈ N is called

a radius of φ. The local map φ̂ naturally extends to the set of words of length at

least 2r+ 1, and we denote this map also by φ̂.
A word w = w0 . . . wℓ−1 with symbols wi’s on the alphabet A is a element of

the free monoid A∗ endowed with the concatenation. The length of w is ℓ and is
denoted by |w|. For a subshift (X, σ) we call language of X to the set L(X) of all
words xnxn+1 . . . xn+ℓ−1, xn ∈ A, appearing in some sequence x ∈ X . We denote
by Ln(X) the set of words of L(X) of length n. The map pX : N → N defined by
pX(n) = ♯Ln(X) is called the complexity function of (X, σ).

In the proof of Theorem 1.1 we will need the following well known notion that is
intimately related to asymptotic pairs. A word w ∈ L(X) is said to be left special
if there exist at least two distinct letters a and b such that aw and bw both belong
to L(X). In the same way we define right special words.

2.3. Equicontinuous systems. We recall that a topological dynamical system
(X,T ) is equicontinuous if the family of transformations {T n;n ∈ Z} is equicon-
tinuous. It is well known that for an equicontinuous minimal system (X,T ), the
closure of the group 〈T 〉 in the set of homeomorphisms of X , for the uniform topol-
ogy, is a compact Abelian group G acting transitively on X (see [2]).

A typical example is when X is topologically a Cantor set. The dynamical
system (X,T ) is then called an odometer. One can show that X is then a pro-finite
group. More precisely, there exists a nested sequence of finite index subgroups
. . . ⊂ Γn+1 ⊂ Γn ⊂ · · · ⊂ Γ0 ⊂ Z, with

⋂
n≥0 Γn trivial, such that X is isomorphic

to the inverse limit

lim
←n

(Z/Γn, πn) = {(xn)n∈N;xn ∈ Z/Γn, xn = πn(xn+1) ∀n ≥ 0},

where πn : Z/Γn+1 → Z/Γn denotes the canonical projection. The addition in this
group is thus given for (xn)n∈N, (yn)n∈N ∈ lim←n(Z/Γn, πn), by

(xn)n∈N + (yn)n∈N = (xn +n yn)n∈N,

with +n stands for the addition in Z/Γn. The group Z is a dense subgroup through
the injection i : k 7→ (k mod Γn)n∈N. The action T is then given by the addition
by i(1) in the group X . It is a minimal and uniquely ergodic action on X .

2.4. Nilsystems. We introduce a special class of systems which allows us to com-
pute the automorphism group in some interesting examples and that generalizes
equicontinuous systems.

Let G be a group. For g, h ∈ G we write [g, h] = ghg−1h−1 for the commutator of
g and h and for A,B ⊆ G we write [A,B] for the subgroup spanned by {[a, b]; a ∈
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A, b ∈ B}. The commutator subgroups Gj , j ≥ 1, are defined inductively by
setting G1 = G and Gj+1 = [Gj , G]. Let d ≥ 1 be an integer. We say that G is
d-step nilpotent if Gd+1 is the trivial subgroup. Notice that a subgroup of a d-step
nilpotent group is also d-step nilpotent, and any Abelian group is 1-step nilpotent.

Let G be a d-step nilpotent Lie group and Γ a discrete cocompact subgroup of
G. The compact manifold X = G/Γ is called a d-step nilmanifold. The group G
acts on X by left translations and we write this action as (g, x) 7→ gx. Let τ ∈ G
and T be the transformation x 7→ τx. Then (X,T ) or (X, τ) is called a d-step
nilsystem. Nilsystems are distal systems, meaning that there are no proximal pairs
and they are uniquely ergodic when the action is minimal. See [3] and [23] for
general references.

An important subclass of nilsystems is the class of affine nilsystems. Let d ∈ N

and let A be a d×d integer matrix such that (A− Id)d = 0 (such a matrix is called
unipotent). Let ~α ∈ Td and consider the transformation T : Td → Td, x 7→ Ax+ ~α.
Let G be the group spanned by A and all the translations of Td. Since A is
unipotent one can check that G is a d-step nilpotent Lie group. The stabilizer of 0
is the subgroup Γ spanned by A thus we can identify Td with G/Γ. The topological
dynamical system (Td, T ) = (G/Γ, T ) is called a d-step affine nilsystem and it is
proved in [29] that this system is minimal if the projection of ~α on Td/ker(A− Id)
defines a minimal rotation.

2.5. Maximal nilfactor. Let (X,T ) be a minimal topological dynamical system.
We say that x, y ∈ X are regionally proximal of order d if for any δ > 0 there exists
x′, y′ ∈ X and ~n = (n1, . . . , nd) ∈ Zd such that dist(x, x′) < δ, dist(y, y′) < δ and

dist(T ~n·~ǫx′, T ~n·ǫy′) < δ

for every ǫ = (ǫ1, . . . , ǫd) ∈ {0, 1}d \ {(0, . . . , 0)}, where ~n · ǫ = ∑d
i=1 ni · ǫi.

Let RP[d](X) denote the set of regionally proximal points of order d. It is proved

that RP[d](X) is an equivalence relation, first in [20] in the distal case and then in
[35] in the general minimal case. Of course the map T preserves each class, so that

it induces a map Td on the quotient space Zd(X) := X/RP[d](X).

Theorem 2.2 ([20],[35]). Let (X,T ) be a minimal topological dynamical system.
Then (Zd(X), Td) is isomorphic to an inverse limit of minimal d-step nilsystems.
Moreover, it is the maximal factor of (X,T ) with this property or maximal d-step
nilsystem, meaning that any other factor which is an inverse limit of minimal d-step
nilsystems is a factor of (Zd(X), Td).

In particular, (Z1(X), T1) is the maximal equicontinuous factor of (X,T ) [2].

2.6. General results on automorphisms through factor maps.

Definition 2.3. Let π : (X,T ) → (Y, S) be a factor map between the minimal
systems (X,T ) and (Y, S), and let φ be an automorphism of (X,T ). We say that π is
compatible with φ if π(x) = π(x′) implies π(φ(x)) = π(φ(x′)) for any x, x′ ∈ X. We
say that π is compatible with Aut(X,T ) if π is compatible with any φ ∈ Aut(X,T ).

If the factor map π : (X,T ) → (Y, S) is compatible with Aut(X,T ) we can define
the projection π̂(φ) ∈ Aut(Y, S) as the map defined by the equation π(φ(x)) =
π̂(φ)(π(x)) for every x ∈ X . We have that π̂ is a group morphism.
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Notice that the map π̂ : Aut(X,T ) → Aut(Y, S) may not be onto or injective.
For an irrational rotation on the circle, the group of automorphisms is the whole
circle but for its Sturmian extension the group of automorphisms is Z [27]. We will
show in Lemma 2.12 that this extension is compatible, hence π̂ is not onto. On the
other hand, the projection on the trivial system π̂ cannot be injective.

By considering compatible factor maps in this section we prove that the automor-
phism group of a d-step nilsystem and any proximal extension is d-step nilpotent.
Before considering factors we need two general properties of automorphism groups.

Lemma 2.4. Let (X,T ) be a minimal topological dynamical system. Then the ac-
tion of Aut(X,T ) on X is free, meaning that every non-trivial element in Aut(X,T )
has no fixed points.

Proof. Let φ ∈ Aut(X,T ) and let x ∈ X such that φ(x) = x. Since φ commutes
with T and is continuous, then by minimality φ is the identity. �

Lemma 2.5. Let (X,T ) be a minimal topological dynamical system. Let x ∈ X
and φ ∈ Aut(X,T ). Then x and φ(x) are proximal if and only if φ is the identity.

Proof. We prove the non-trivial direction. Let x ∈ X and φ ∈ Aut(X,T ) such
that (x, φ(x)) is a proximal pair. There exists a sequence (ni)i∈N in Z such that
limi→+∞ dist(T nix, T niφ(x)) = 0. We can assume that T nix converges to y ∈ X
and therefore dist(y, φ(y)) = 0. By Lemma 2.4 φ is the identity. �

Then considering a proximal extension between minimal systems we get that,

Lemma 2.6. Let π : (X,T ) → (Y, S) be a proximal extension between minimal
systems and suppose that π is compatible with Aut(X,T ). Then π̂ : Aut(X,T ) →
Aut(Y, S) is an injection.

Proof. It suffices to prove that π̂(φ) = idY , where idY is the identity map on Y ,
implies that φ = idX . Let φ be an automorphism with π̂(φ) = idY . For x ∈ X we
have that π(φ(x)) = π̂(φ)π(x) = π(x). Since π is proximal, points x and φ(x) are
proximal. By Lemma 2.5 we get the conclusion. �

Now we study the automorphism group of d-step nilsystems.

Lemma 2.7. Let π : (X,T ) → (Y, S) be an almost one-to-one extension between
minimal systems. Then, for any integer d ≥ 1, their maximal d-step nilsystems
(Zd(X), Td) and (Zd(Y ), Sd) are topologically conjugated.

Proof. Let πd : X → Zd(X) and π̃d : Y → Zd(Y ) denote the quotient maps and let
p : Zd(X) → Zd(Y ) be the natural factor map (it exists by maximality of Zd(X)).
Let x ∈ X be such that π−1{π(x)} = {x}. We claim that p−1{p(πd(x))} = {πd(x)}.
Let x′ be such that p(πd(x)) = p(πd(x

′)). Then π̃d(π(x)) = π̃d(π(x
′)) and thus

(π̃(x), π̃(x′)) ∈ RP[d](Y ). Particularly, there exists a sequence (~ni)i∈N in Zd such
that S~ni·ǫπ(x′) converges to π(x) for every ǫ ∈ {0, 1}d \ {(0, . . . , 0)}. Taking a
subsequence we can assume that T ~ni·ǫx′ converges to some point in π−1{π(x)}. By
our assumption, T ~ni·ǫx′ can only converge to x for every ǫ ∈ {0, 1}d \ {(0, . . . , 0)}
and thus (x, x′) ∈ RP[d](X), which means that πd(x) = πd(x

′). It follows that p
is an almost one-to-one map between distal systems and thus it is a topological
conjugacy. �

We deduce that,



ON AUTOMORPHISM GROUPS OF LOW COMPLEXITY MINIMAL SUBSHIFTS 7

Corollary 2.8. Let π : (X,T ) → (Y, S) be an almost one-to-one extension between
minimal systems. If (Y, S) is a nilsystem of order d, then it is the maximal d-step
nilsystem of (X,T ).

For instance, since any Sturmian subshift is an almost one-to-one extension of
a rotation on the circle [14], this rotation is its maximal 1-step nilsystem or more
classically its maximal equicontinuous factor. Similarly, Toeplitz subshifts are the
symbolic almost one-to-one extensions of odometers [13]. These odometers are
hence their maximal 1-step nilsystems.

The next result is a characterization of the automorphisms of an equicontinuous
system. In particular, we get that its group of automorphisms is Abelian.

Lemma 2.9. Let (X,T ) be an equicontinuous minimal system. Then Aut(X,T )
is the closure of the group 〈T 〉 in the set of homeomorphisms of X for the topology
of uniform convergence. Moreover Aut(X,T ) is homeomorphic to X.

We deduce the automorphism group of an odometer is the whole odometer group.

Proof. Let x be a point in X and let φ be an automorphism in Aut(X,T ). Let
G denote the closure of the group 〈T 〉. By Ascoli’s Theorem it is a compact
Abelian group. Let us consider a sequence of integers (ni)i∈N such that the sequence
(T nix)i∈N converges to φ(x). Taking a subsequence if needed, we can assume that
the sequence of maps (T ni)i∈N converges to a homeomorphism g in G. So we get
that g−1 ◦ φ(x) = x, and then φ belongs to G by Lemma 2.4. This lemma also
ensures that the map g ∈ G 7→ g(x) is a homeomorphism onto its image. The latter
being T invariant, it is equal to X . �

If (Y, S) = (G/Γ, τ) is a d-step nilsystem, we can generalize previous results.

Theorem 2.10. Let (G/Γ, τ) be a minimal d-step nilsystem. Then Aut(G/Γ, τ) is
a d-step nilpotent group.

Proof. Let φ be an automorphism of (G/Γ, τ) and let µ be the unique ergodic
invariant measure of (G/Γ, τ). Since φ commutes with τ we have that τφµ =
φτµ = φµ and thus τφµ = φµ. Since µ is the unique τ -invariant measure we have
that φµ = µ. Hence φ is also an automorphism of the system (G/Γ, τ, µ) in the
measurable setting (a measure preserving transformation that commutes with τ).
It is proved in [19] that G/Γ is isomorphic to G/Γ′ where G is a nilpotent Lie group
of measure preserving transformations of G/Γ. By Lemma 5.5 of [19], φ belongs to
G and thus Aut(G/Γ, τ) is d-step nilpotent. �

Theorem 2.11. Let (X,T ) be an inverse limit of d-step nilsystems. Then, its
automorphism group Aut(X,T ) is a d-step nilpotent group.

On the other hand, by definition of the regionally proximal relation of order d
we have that,

Lemma 2.12. Let (X,T ) be a minimal topological dynamical system. Let φ ∈
Aut(X,T ). Then (x, y) ∈ RP[d](X) if and only if (φ(x), φ(y)) ∈ RP[d](X). Con-
sequently, the projection πd : X → Zd(X) from X to its maximal d-step nilsystem
is compatible with Aut(X,T ).

Combining Theorem 2.11, Lemma 2.12 and Lemma 2.6 we get,
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Corollary 2.13. Let (X,T ) be a proximal extension of a minimal d-step nilsystem.
Then, Aut(X,T ) is a d-step nilpotent group.

Since Sturmian and Toeplitz subshifts are almost one-to-one extensions of their
maximal equicontinuous factors, they are also proximal extensions (Lemma 2.1).
We obtain as a corollary that their automorphism groups are Abelian. More pre-
cisely, Lemma 2.12 and Lemma 2.6 imply that their automorphism groups are
subgroups of the automorphism group of their maximal equicontinuous factors,
characterized in Lemma 2.9. In addition, it is not difficult to construct minimal
symbolic almost one-to-one extensions of d-tep nilsystems by considering codings
on well chosen partitions. An example will be developed in Section 4.

3. On the automorphisms of subshifts with polynomial complexity

In this section we prove the main results of this paper. We start by proving
Theorem 1.1 and in a second part we give new proofs of byproduct results from [21,
24]. Namely, a characterization of the automorphisms of bijective constant length
substitutions and the realization of any finite group as the quotient Aut(X,T )/〈T 〉.
We end this section by presenting a tentative generalization of Theorem 1.1 to
polynomial complexity by using a result on the growth rate of groups.

For the sequel, we recall that a group G satisfies virtually a property P (e.g.,
nilpotent, solvable, isomorphic to a given group, ...) if there is a finite index sub-
group H ⊂ G satisfying the property P.

3.1. Proof of Theorem 1.1. Let (X,T ) be a topological dynamical system. It is
clear from the definition that for any proximal (asymptotic) pair (x, y) ∈ X×X and
for any φ ∈ Aut(X,T ) we have that (φ(x), φ(y)) is a proximal (asymptotic) pair. We
say that the asymptotic pairs (x, y) and (x′, y′) belong to the same class if they are
in the same orbit, meaning that there exists n ∈ Z such that (x′, y′) = (T nx, T ny).
A class of asymptotic pairs is a (non closed) T × T -invariant subset of X ×X . We
denote by [(x, y)] the class of the asymptotic pair (x, y). We say that two classes
[(x, y)], [(x′, y′)] are equivalent if there is an asymptotic pair (x′1, y

′
1) ∈ [(x′, y′)] such

that x = x′1 or x and x′1 are asymptotic. This defines an equivalence relation and
any class is called an asymptotic component. We denote by AS [(x,y)] the asymptotic
component of the class [(x, y)] and by AS the collection of asymptotic components.

It is also plain to check for φ ∈ Aut(X,T ) and two equivalent asymptotic classes
[(x, y)] and [(x′, y′)], that classes [(φ(x), φ(y))] and [(φ(x′), φ(y′))] are also equiva-
lent. So the automorphism φ induces a permutation j(φ) on the collection AS of
asymptotic components of (X,T ). By denoting PerAS the set of such permutations,
formally we have the group morphism

j : Aut(X,T ) → PerAS(1)

φ 7→
(
AS [x,y] 7→ AS [(φ(x),φ(y))]

)
.

In the case of subshifts, the following lemma is a key observation which relates
the complexity of the subshift with asymptotic classes. The proof relies in classical
ideas from [32].

Lemma 3.1. Let (X, σ) be a subshift. If (X, σ) has a sublinear complexity, then
there is a finite number of asymptotic classes. More generally, if the complexity
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pX(n) satisfies

lim inf
n→+∞

pX(n)

n
< +∞ ,

then there is a finite number of asymptotic classes.

In particular, this lemma provides a sufficient condition to bound the number of
asymptotic components.

Proof. For the first statement see [32] Lemma V. 22. For the second claim we
proceed as follows. The hypothesis implies the existence of a constant κ and an
increasing sequence (ni)i∈N in N such that pX(ni+1)− pX(ni) ≤ κ. Indeed, if not,
for any A > 0 and for any integer n large enough we have pX(n+ 1)− pX(n) ≥ A.

It follows that pX(n) − pX(m) =
∑n−1

i=m pX(i + 1) − pX(i) ≥ (n − m)A for any

n ≥ m enough large. From here we get that lim infn→+∞
pX (n)

n
≥ A which is a

contradiction since A is arbitrary.
Hence, the number of left special words of length ni (see Section 2.2 for the

definition) is bounded by κ. Any asymptotic pair defines a sequence with arbitrarily
long special words, so there are at most κ asymptotic classes. �

A second main ingredient for proving Theorem 1.1 is the following direct corollary
of Lemma 2.5. We recall that an asymptotic pair is proximal and that the map j
used in the following corollary has been defined in (1).

Corollary 3.2. Let (X,T ) be a minimal topological dynamical system with at least
one asymptotic pair. We have the following exact sequence

1 // 〈T 〉 Id
// Aut(X,T )

j
// PerAS,

where PerAS denotes the set of permutations on the collection of asymptotic com-
ponents of (X,T ). Moreover, for any automorphism φ, the permutation j(φ) has a
fixed point if and only if φ is a power of T .

As a byproduct of this result and Lemma 3.1 we get Theorem 1.1 that we recall
and extend here.

Theorem. Let (X, σ) be a minimal aperiodic subshift with lim inf
n→+∞

pX(n)

n
< +∞.

Then,

(1) Aut(X, σ) is virtually isomorphic to Z.
(2) The quotient group Aut(X, σ)/〈σ〉 is isomorphic to a finite subgroup of

permutations without fixed points. In particular, ♯Aut(X, σ)/〈σ〉 divides
the number of asymptotic components.

Proof. Only the second part of statement (2) is not straightforward from Corollary
3.2. The group Aut(X, σ)/〈σ〉 acts freely on the finite set of asymptotic component
AS: the stabilizer of any point is trivial. Thus, AS is decomposed into disjoint
Aut(X, σ)/〈σ〉-orbits, and any such orbit has the same cardinality as Aut(X, σ)/〈σ〉.

�

Statement (2) of the theorem enables us to perform explicit computations of
the automorphism group for easy cases. A first example comes from Sturmian
subshifts. It is well-known that this system admits just one asymptotic component,
so any automorphism is a power of the shift map. A bit more general case is when
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the number of asymptotic components is a prime p (e.g., 2 for the Thue-Morse
subshift), then the group Aut(X, σ)/〈σ〉 is a subgroup of Z/pZ: either the trivial
one or Z/pZ. In particular, since the Thue-Morse subshift admits an automorphism
which is not the power of the shift map, then the quotient automorphism group is
isomorphic to Z/2Z.

One could ask whether the automorphism group is computable algorithmically,
at least for substitution subshifts, or explicitly by theoretical arguments for some
families of subshifts. This will be achieved in [16] for substitutive and linearly
recurrent subshifts.

Statement (2) is not a real restriction. Given any finite group G, it acts on
itself by left multiplication Lg(h) = g · h for g, h ∈ G. The map Lg defines then
a permutation on the finite set G without fixed points. So G is a subgroup of
elements of the permutation group on ♯G elements which verifies statement (2) in
the theorem. Thus, it is natural to ask whether we can realize any finite group as
Aut(X,T )/〈T 〉 or if we can characterize those finite groups. This is done in the
next subsection.

Finally, notice that the complexity condition of Theorem 1.1 is compatible
with lim supn→+∞ pX(n)/n = +∞. In Section 4.4 we construct a minimal sub-
shift with subexponential complexity satisfying lim infn→+∞ pX(n)/n < +∞ and
lim supn→+∞ pX(n)/nd = +∞ for every d > 1. Thus, in this case, the automor-
phism group is virtually Z by Theorem 1.1.

3.2. A characterization of Aut(X, σ)/〈σ〉 for constant length substitutions.

In this section, by using the results of Section 3.1, we provide a characterization
of the automorphism group for subshifts given by a constant length substitution
τ : A → A∗ on a finite alphabet A. Our characterization follows from the one
of asymptotic components. We deduce then new and direct proofs of two already
known results. The first one is due to B. Host and F. Parreau [21] on the character-
ization of the automorphism group of bijective constant length substitutions. The
second one is a combination of results in [24] and [21], giving an explicit example of
a substitutive minimal subshift (X, σ) such that Aut(X, σ)/〈σ〉 is isomorphic to an
arbitrary finite group G. Notice that in [24] the authors have a similar statement
but in the measurable setting.

We recall that a substitution τ : A → A∗ is of constant length ℓ > 0 if any word
τ(a) for the letter a ∈ A is of length ℓ. A substitution of constant length is bijective
if the corresponding letters at position i ∈ {0, . . . , ℓ − 1} of all τ(a)’s are pairwise
distinct. We denote by Xτ the subshift

Xτ = {x ∈ AZ; any word of x appears in τn(a) for some n ≥ 0 and a ∈ A}.
For constant length substitution, it is well known (e.g. see [32]) that the subshift
(Xτ , τ) is minimal if and only if the substitution τ is primitive, that is, for some
power p ≥ 0 and any letter a ∈ A, the word τp(a) contains all the letters of the
alphabet. Recall that the substitution τ is aperiodic if and only if Xτ is infinite.

Lemma 3.3. Let τ be a primitive aperiodic bijective constant length substitution.
Let (x, y) = ((xn)n∈Z, (yn)n∈Z) ∈ X2

τ be an asymptotic pair with xn = yn for any
n ≥ 0 and x−1 6= y−1. Then, there exists an asymptotic pair ((x′n)n∈Z, (y

′
n)n∈Z) ∈

X2
τ with x′n = y′n for any n ≥ 0 and x′−1 6= y′−1, such that

τ((x′n)n∈Z) = (xn)n∈Z and τ((y′n)n∈Z) = (yn)n∈Z.
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Proof. Let ℓ be the length of the substitution τ . By the classical result of B. Mossé
[25, 26] on recognizability, the substitution τ : Xτ → τ(Xτ ) is one-to-one. Moreover,
the collection {σkτ(Xτ ) : k = 0, . . . , ℓ−1} is a clopen partition of Xτ . So, there are
x′ = (x′n)n∈Z, y

′ = (y′n)n∈Z ∈ Xτ and 0 ≤ kx, ky < ℓ such that σkxτ(x′) = x and
σkyτ(y′) = y.

We claim that we have kx = ky = 0. Since the sequences x and y are asymptotic,

there are integers n ≥ 0, k′ ∈ {0, . . . , ℓ − 1} such that σn(x), σn(y) ∈ σk′

(τ(Xτ )).
The substitution τ is of constant length ℓ, so we have σℓ ◦ τ = τ ◦ σ. Therefore, we
get x and y are in the same clopen set σk(τ(Xτ )) for some k ∈ {0, . . . , ℓ− 1}. Let
us assume that k ≥ 1. The words x−1x0 . . . xk−1, y−1y0 . . . yk−1 are then prefixes
of the words τ(x′−1) and τ(y′−1) respectively. Since the substitution τ is bijective
and x0 = y0, we have x

′
−1 = y′−1. In particular, we get x−1 = y−1: a contradiction.

To finish the proof, notice that the substitution τ is injective on the letters, so
we obtain x′n = y′n for any n ≥ 0 and x′−1 6= y′−1. �

Lemma 3.4. Let τ be a primitive aperiodic bijective constant length substitu-
tion. Then, there exists an integer p ≥ 0 such that for any asymptotic pair
((xn)n∈Z, (yn)n∈Z) ∈ X2

τ the one-sided infinite sequences

(xn+n0)n≥0, (yn+n0)n≥0 are equal for some n0 ∈ Z and fixed by τp.

Proof. Shifting the indices if needed by some σn0 , we can assume that for the
asymptotic pair (x, y) = ((xn)n∈Z, (yn)n∈Z) we have xn = yn for any integer n ≥ 0
and x−1 6= y−1. Let p ≥ 0 be an integer such that for any letter a ∈ A, any
word in {τpn(a)}n≥1 starts with the same letter. Hence, the sequence of sequences
(τpn(aa · · · ))n≥0 converges to a one-sided infinite word fixed by τp.

Applying inductively Lemma 3.3 to the substitution τp, we get a sequence of
asymptotic pairs ((x(i), y(i)))i≥0 verifying the conclusions of the lemma and such

that τp(x(i+1)) = x(i), τp(y(i+1)) = y(i), x(0) = x and y(0) = y. By the definition
of p, all sequences x(i) and also y(i), i ≥ 0, share the same letter a at index 0. The
conclusion of the lemma follows straightforwardly since we assume that τpn(a · · · )
converges to a one-sided infinite word fixed by τp. �

Thanks to this lemma we can obtain another proof of the following result due
to B. Host and F. Parreau.

Theorem 3.5. [21] Let τ be a primitive bijective constant length substitution.
Then, any automorphism of the subshift Xτ is the composition of some power of

the shift with an automorphism φ of radius 0. Moreover, its local rule φ̂ : A → A
satisfies

τ ◦ φ̂ = φ̂ ◦ τ.(2)

Conversely, notice that a local map satisfying (2) defines an automorphism of
the subshift. Hence we obtain an algorithm to determine in this case the group of
automorphisms since there is just a finite number of local rules of radius 0.

Proof. Notice first that when Xτ is finite, it is reduced to a finite orbit. Hence any
automorphism is a power of the shift map by Lemma 2.9.

Let us assume now that the substitution τ is aperiodic and let x = (xn)n∈Z, y =
(yn)n∈Z ∈ Xτ be two asymptotic sequences. Lemma 3.4 provides a power p ≥ 0
such that, shifting the sequences if needed by some σn0 , we can assume that (xn)n≥0
and (yn)n≥0 coincide and are fixed by τp.
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Let φ be an automorphism of the subshift (Xτ , σ). The pair (φ(x), φ(y)) is
also an asymptotic pair. Again, Lemma 3.4 ensures that for some integer n1 ∈ Z,
the sequences (φ(x)n+n1 )n≥0 and (φ(y)n+n1 )n≥0 coincide and are also fixed by τp

(observe as stated in Lemma 3.4, we can use the same power p for any couple of
asymptotic pairs). In the following, we will consider the automorphism φ′ = σn1 ◦φ,
thus by definition, the sequence (φ′(x)n)n≥0 is also fixed by τp.

Let r and φ̂′ denote the radius and the local map of φ′ respectively. Taking
a power of τp if needed, we can assume that the length ℓ of τp is greater than
2r + 1. Suppose now that xn = xm for some n,m ≥ 0. We have φ′(x)mℓ+r

= φ̂′(xmℓ . . . xmℓ+2r) = φ̂′(τp(xm)[0,2r]) = φ̂′(τp(xn)[0,2r]) = φ′(x)nℓ+r, where for
a word u = u0 . . . uℓ−1, u[0,2r] stands for the prefix u0 . . . u2r. Since φ′(x)nℓ+r and

φ′(x)mℓ+r are the r+1th letters of the words τp(φ′(x)n) and τ
p(φ′(x)m) respectively,

and the substitution τ is bijective, we obtain that φ′(x)n = φ′(x)m.

Hence, we can define the local map ψ̂ : A → A by ψ̂(xn) = φ′(x)n for any n ≥ 0.
This provides a shift commuting map ψ : AZ → AZ such that for any word w in
the language L(Xτ ), we have that ψ(τ

p(w)) = τp(ψ(w)). Thus ψ(Xτ ) ⊂ Xτ . Since
the substitution τ is bijective we also get relation (2). In the same way, using φ′−1

instead of φ′ we obtain that ψ is invertible. By construction, we have that ψ−1φ′(x)
is asymptotic to x, so by Lemma 2.5, ψ = φ′ = σn1 ◦ φ. �

A second consequence of Lemma 3.4 is the realization of any finite group as the
group Aut(X, σ)/〈σ〉 for a substitutive subshift of constant length.

Proposition 3.6. Given a finite group G, there is a substitutive minimal subshift
(X, σ) such that Aut(X, σ)/〈σ〉 is isomorphic to G.

Proof. The Fibonacci subshift is both a substitutive and a Sturmian subshift, then
by previous discussion the quotient group Aut(X, σ)/〈σ〉 is trivial. Then, let us
assume that the finite group G is not trivial. We choose an enumeration of its
elements G = {g0, g1, . . . , gp−1} with p ≥ 2 where g0 denotes the neutral element.

For an element h ∈ G, we denote by Lh : G → G the bijection g 7→ hg. We
consider the alphabet G, viewed as a finite set, and define the substitution τ from
the set of letters G into the set of words G∗, by

τ : g 7→ Lg(g0)Lg(g1) · · ·Lg(gp−1).

Since the map Lg is a bijection on G, the substitution τ of constant length is
primitive and bijective. Thus the associated subshift (Xτ , σ).

Moreover observe that for any letter g ∈ G, the word τ(g) starts by the letter g,
so any sequence (τn(gg · · · ))n≥1 converges to a τ -invariant infinite word.

We claim that the subshift (Xτ , σ) is not periodic, i.e., not reduced to a periodic
orbit. To show this it suffices to give an example of an asymptotic pair. The
word g0g1 belongs to the language L(Xτ ) of the subshift Xτ . Hence the words
τ(g0)τ(g1) and its sub-word gp−1g1 (which is different from the word g0g1) also
belong to L(Xτ ). It follows for any integer n ≥ 0 that the words τn(g0).τ

n(g1) and
τn(gp−1).τ

n(g1) are also in the language. Taking a subsequence if needed, these
words converge as n goes to infinity to two sequences x and y ∈ Xτ that are, by
construction, asymptotic.

Given an element g ∈ G we extend the definition of the map Lg to G
∗ by defining

for a word w = h1 . . . hn, Lg(w) := Lg(h1) . . . Lg(hn). By concatenation, it defines
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a left continuous G-action on GZ. It is important to note that we have the relation
for any g, h ∈ G

Lg(τ(h)) = τ(Lg(h)).(3)

Hence any map Lg preserves the subshift Xτ and we have a left action of G on
Xτ . It is plain to check that L : g 7→ Lg defines an injection of G into Aut(Xτ , σ).
Actually, we claim that we have a converse which allows to finish the proof.

Lemma 3.7. For the subshift Xτ defined above the map

ϕ : Z×G → Aut(Xτ , σ)

(n, g) 7→ σn ◦ Lg

is a group isomorphism.

Proof of Lemma 3.7. To show the injectivity of the map ϕ let us assume there are
g ∈ G and an integer k such that Lg(x) = σk(x) for any x ∈ X . Necessarily k = 0,
otherwise the infinite sequence Lg

(
limn→+∞ τn(g−1g−1 · · · )

)
, which is equal to

limn τ
n(g0g0 · · · ) by formula (3), is ultimately periodic. This is impossible since

the subshift Xτ is not periodic. The injectivity of the map L implies finally that
the map ϕ is injective.

To show it is also onto, it is enough to prove that any automorphism φ ∈
Aut(Xτ , σ) may be written as a power of the shift composed with a map of the kind
Lg. Let (x, y) be an asymptotic pair. By Lemma 3.4 up to shift x, y and compose φ
with a power of the shift map, there exist g1, g2 ∈ G such that the sequences x, y are
positively asymptotic to limn→+∞ τ

n(g1), and φ(x), φ(y) are positively asymptotic
to limn→+∞ τ

n(g2g2 · · · ). It follows from (3) that the points x and Lg1(g
−1
2 ) ◦ φ(x)

are asymptotic. So, by Lemma 2.5 the maps φ and (Lg1(g
−1
2 ))

−1 = Lg2(g
−1
1 ) coin-

cide. �

�

3.3. Recurrence and growth rate of groups. We try to extend Theorem 1.1
to subshifts with higher complexity. For this, we need to introduce a stronger
condition. We define, for a topologically transitive subshift (X, σ) and an integer
n ≥ 1, a local recurrence time:

NX(n) := inf{|w|; w ∈ L(X) contains any word of X of length n}.
Clearly, this value is well defined and satisfies NX(n) ≥ pX(n)+n. For instance, it
is well-known that any primitive substitutive subshift is linearly repetitive meaning

that supn≥1
NX (n)

n
< +∞. We obtain the following result.

Theorem 3.8. Let (X, σ) be a transitive subshift such that supn≥1
NX(n)

nd < +∞
for some d ≥ 1. Then, there is a constant C depending only on d, such that any
finitely generated subgroup of Aut(X, σ) is virtually nilpotent of step at most C.

Proof. Let S = 〈φ1, . . . , φℓ〉 ⊂ Aut(X, σ) be a finitely generated group. Let r be an
upper bound of the radii of the local maps associated to all generators φi of S and
their inverses. For n ∈ N consider

Bn(S) = {φs1i1 · · ·φsmim ; 1 ≤ m ≤ n, i1, . . . , im ∈ {1, . . . , ℓ}, s1, . . . , sm ∈ {1,−1}} .
Let w be a word of length NX(2nr+1) containing any word of length (2nr+1) of

X . If φ, φ′ ∈ Bn(S) are different then φ(w) 6= φ′(w). Then, Bn(S) can be injected
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into the set of words of length NX(2nr+1)− 2r (the injection is just the valuation
of φ on w). This implies that ♯Bn(S) ≤ pX(NX(2nr + 1) − 2r). We deduce from

the hypothesis on NX that ♯Bn(S) ≤ nd2+1 for all large enough integers n ∈ N.
Therefore, by the quantitative result of Y. Shalom and T. Tao in [34] generalizing
Gromov’s classical result on the growth rate of groups, we get the conclusion. �

Notice that the constant C may be given explicitly in the result of [34]. It is
clear that a subshift of polynomial local recurrence complexity has a polynomial
complexity. The converse is not clear, but an additional possible condition is that
the subshift has bounded repetitions of words. The natural question here is whether
the automorphism group of a minimal subshift of polynomial local recurrence com-
plexity, or just polynomial complexity, is finitely generated.

4. Gallery of examples

We present here examples of subshifts with various complexities. The first two
examples are substitutive subshifts with superlinear complexity. Even if we can not
apply straightforwardly the main results of the paper (e.g., the substitutions are
not primitive), we study their asymptotic components to prove their automorphism
groups are isomorphic to Z. Next, we define a coding of a nil-translation with a
polynomial complexity of arbitrary high degree but having an automorphism group
which is virtually Z. To enlarge the zoology of automorphism groups we provide a
subshift whose automorphism group is isomorphic to Zd. We end with a subshift
whose complexity is, for infinitely many integers, subaffine and superpolynomial.
Theorem 1.1 applies in this case.

4.1. Substitutions with superlinear complexity. Recall that substitutive sub-
shifts have a prescribed complexity: with growth bounded or equivalent to n,
n log logn, n logn, or to n2 (see [30]). Below we give two examples having a unique
asymptotic component. This is enough to conclude that their automorphism groups
are isomorphic to Z.

4.1.1. A n log logn complexity substitutive subshift. Let A = {a, b} and consider
the substitution τ1 : A → A∗ defined by

τ1(a) = aba and τ1(b) = bb.

We set

Xτ1 = {x ∈ {a, b}Z; any word of x appears in some τn1 (c), n ≥ 0, c ∈ {a, b}}.
It can be checked that (Xτ1 , σ) is a non minimal transitive subshift. Moreover, it
is proven in [6] that its complexity is equivalent to n log2 log2 n.

In the sequel we need some specific notations. For a sequence x ∈ {a, b}Z we
set x− = · · ·x−2x−1, x+ = x0x1 · · · and x = x−.x+. Let b+∞ = bbbbb . . . ∈ AN

and b−∞ = . . . bbbbb ∈ AZ<0 , where Z<0 is the set of negative integers. Thus the
sequence x = . . . bb.bb . . . ∈ {a, b}Z can be written b−∞.b+∞. In the same spirit
we put τ+∞1 (c) for limn→+∞ τn1 (cc . . .), when it exists in {a, b}N, and, τ−∞1 (c) for
limn→+∞ τ

n
1 (· · · cc), when it exists in {a, b}Z<0.

Let us ckeck (Xτ1 , σ) has a unique asymptotic component. We show that as-
ymptotic points should end with b+∞.
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Let (x, y) be an asymptotic pair. We can suppose, shifting if needed, that

x = x−a.x+ = · · ·x−−4x−−3x−−2a.x+0 x+1 x+2 · · ·
y = y−b.x+ = · · · y−−4y−−3y−−2b.x+0 x+1 x+2 · · · .

Observe that x+0 = b because aa does not belong to L(Xτ1):

x = · · ·x−−4x−−3x−−2a.bx+1 x+2 x+3 · · ·
y = · · · y−−4y−−3y−−2b.bx+1 x+2 x+3 · · · .

Suppose x+1 = a. Then, we should have x+2 x
+
3 = bb because aba is necessarily

followed by bb. Thus, bbabb should appear in some element of x which is not the
case. Therefore x+1 = b:

x = · · ·x−−4x−−3x−−2a.bbx+2 x+3 x+4 · · ·
y = · · · y−−4y−−3y−−2b.bbx+2 x+3 x+4 · · · .

Suppose x+ begins with b2n+1a for some n ≥ 1. Then, abab2n+1aba should belong
to the language of Xτ1. But it should appear in some τ1(u) and then we must have
abab2n+1aba = τ1(ava) for some word v ∈ L(Xτ1), hence b

2n+1 = τ1(v), which is
not possible. Thus, x+ begins with b2na for some n ≥ 1 or it is equal to b+∞.
Suppose we are in the first situation:

x = · · ·x−−4aba.b2nabax+2n+3 · · ·
y = · · · y−−4y−−3y−−2b.b2nabax+2n+3 · · · .

It can be checked that τ1 is one-to-one on Xτ1 . Consequently, there are two unique
sequences

x(1) = x(1−)a.bnabax(1+) and y(1) = y(1−)b.bnabax(1+)(4)

belonging to Xτ1 such that

x = τ1(x
(1−)a).τ(bnabax(1+)) and y = τ1(y

(1−)b).τ(bnabax(1+)).

Thus, (x(1), y(1)) is also an asymptotic pair. From the observation made before,
n should be even and we can obtain a new asymptotic pair (x(2), y(2)) having the
shape given by (4). Of course n is decreasing at each step and we can continue
until n = 1: we get an asymptotic pair (x(k), y(k)) such that

x(k) = · · · a.baba · · ·
y(k) = · · · b.baba · · · .

But ababa does not belong to L(Xτ1). Consequently x
+ = b+∞ and (Xτ1 , σ) has

a unique asymptotic component.

Furthermore, it can be checked, using already used arguments, that z−.b+∞ is
in Xτ1 \ {b−∞.b+∞} if and only if z− = τ−∞1 (a)bn for some non-negative integer n.
Hence, if (x, y) is an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(τ−∞(a).b+∞); i ∈ Z}.
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4.1.2. A n2 complexity substitutive subshift. Below we use the notation of the pre-
vious section. Consider the substitution τ2 : A → A∗ defined by

τ2(a) = aab and τ2(b) = b.

It is easy to check that the subshift (Xτ2 , σ) is transitive but not minimal. More-
over, from [30] its complexity is of the order n2. Before showing it has a unique
asymptotic component, let us introduce some key concepts for the treatment of this
example.

Let x be a sequence of BN, where B is an alphabet. We denote by L(x) the set
of words having an occurrence in x. A return word to u ∈ L(x) is a word w ∈ L(x)
such that wu belongs to L(x), contains exactly two occurrences of u and has u as
a prefix. We denote by Rx(u) the set of return words to u.

In [7] is defined the notion of sparse sequence on the alphabet B. It is an element
x of BN satisfying:

∃b ∈ A, ∀n ∈ N, bn ∈ L(x) and #Rx(b
n) = 2.

It is proven that px(n) (the number of words of length n appearing in x) is less
than or equal to (n2 + n + 2)/2 whenever x is sparse. In Example 4.7.67 of [7] it
is claimed that x = τ+∞2 (a) is sparse. Using Lemma 4.5.15 in [7] one can deduce
that for all n ≥ 1,

Rx(b
n) = {b, bnu}, where τn2 (a) = ubn.(5)

We show (Xτ2 , σ) has a unique asymptotic component. Let (x, y) be an asymp-
totic pair. It suffices to prove that x and y end with b+∞. We can suppose that
x = x−.x+0 ax

+ and y = y−.y+0 bx
+. We set x+ = x+2 x

+
3 · · · .

Suppose that x+2 = a. Then the only possibility to have bax+3 in L(Xτ2) is x
+
3 =

a. Consequently, aaa would belong to L(Xτ2), which is not the case. Therefore,
x+2 = b and necessarily x−−1x

−
0 = ba:

x = · · ·x−−1b.aabx+3 x+4 x+4 · · ·
y = · · · y−−2y−−1.y+0 bbx+3 x+4 x+5 · · · .

Suppose we are in the following situation:

x = · · ·x−−1b.aabnaax+n+4 · · ·
y = · · · y−−2y−−1.y+0 bbnaax+n+4 · · · .

From (5) one gets that

x = · · ·x−−1b.aabnτn+1
2 (a) · · ·

y = · · · y−−2y−−1.y+0 bbnτn+1
2 (a) · · · .

Then, using (5) again, x would have an occurrence of w = τn2 (a)τ
n
2 (a)τ

n
2 (a), but

w does not belong to L(Xτ2). Indeed, if it was the case, by a finite recurrence we
prove that aaa should belong to L(Xτ2), which is not the case. Hence, x+3 x

+
4 x

+
4 · · · =

b+∞ and (Xτ2 , σ) has a unique asymptotic component.

Observe that (σ−n(τn2 (a
−∞)).b+∞) converges in Xτ2 . Let z denote its limit. We

can check that if (x, y) is an asymptotic pair then x and y belong to

{b−∞.b+∞, σi(z); i ∈ Z}.
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We finish this section by proving that in both examples (Xτ1 , σ) and (Xτ2 , σ)
the group of automorphisms is isomorphic to Z.

Lemma 4.1. Let τ denote either the substitution τ1 or τ2. Then, the group
Aut(Xτ , σ) is generated by the shift map σ.

Observe that the main result of [10] gives only that the group Aut(Xτ1 , σ) is a
periodic group.

Proof. Let us first recall that for any asymptotic pair (x, y) of (Xτ , σ), x and y
belong to

{b−∞.b+∞, σi(z); i ∈ Z},
for some z ∈ Xτ .

Notice that (Xτ , σ) has a unique minimal subsystem, namely ({b−∞.b+∞}, σ).
Moreover, it is clear that an automorphism φ of the subshift (Xτ , σ) maps any
minimal subsystem onto a minimal subsystem, so φ fixes the sequence b−∞.b+∞.
The morphism φ mapping asymptotic pairs onto asymptotic pairs, σi(z) should be
mapped to some σj(z). The orbit {σk(z); k ∈ Z} being dense in Xτ one deduces
that φ ◦ σi = σj . Thus, φ is a power of the shift map. �

4.2. Coding a nil-translation. We introduce a class of examples of symbolic
systems with polynomial complexity of arbitrarily high degree and with a group of
automorphisms which is virtually Z. We build these systems as symbolic extensions
of minimal nilsystems.

We start by stating some general results we need and then review some general-
ities about the coded systems.

Let (X,T ) be a minimal topological dynamical system and let U = {U1, . . . , Um}
be a finite collection of subsets of X . We say that U covers X if

⋃m
i=1 Ui = X . For

two covers U = {U1, . . . , Um} and V = {V1, . . . , Vp} of X we let U ∨ V denote the
cover given by {Ui ∩ Vj ; i = 1, . . .m, j = 1, . . . p}.

Let U = {U1, . . . , Um} be a finite cover of X and let A denote the set {1, . . . ,m}.
We say that ω = (wi)i∈Z ∈ AZ is a U-name of x if x ∈ ⋂

i∈Z

T−iUwi
. Let XU denote

the set

{ω ∈ AZ;
⋂

i∈Z

T−iUwi
6= ∅} ⊆ AZ.

It is easy to check that XU is closed when each Ui is closed and if we let U denote
the collection {U1, . . . , Um} we have that XU ⊂ XU . For N ∈ N, let

UN =

N∨

i=−N

T−iU .

We say that the cover U separates points if every ω ∈ XU is a name of exactly
one x ∈ X . If U separates points in X , we can build a factor map π between
(XU , σ) and (X,T ) where π(ω) is defined as the unique point in

⋂
i∈Z

T−iUwi
.

Lemma 4.2. Let (X,T ) be a minimal topological dynamical system and let U =
{U1, . . . , Um} be a partition which covers and separates points in X. Let suppose
that for every N ∈ N every atom of UN has non-empty interior, then (XU , σ) is a
minimal system.
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Proof. Let ω, ω′ ∈ XU and let N ∈ N. We denote x = π(ω) and x′ = π(ω′). By

definition we have that
⋂N
−N T−iUwi

6= ∅ and therefore it has non-empty interior.

Since (X,T ) is minimal, there exists n ∈ Z such that T nx′ ∈ int(
⋂N
−N T−iUwi

).
This implies that w′[n−N,n+N ] = w[−N,N ] and the proof is finished. �

Now we compute the automorphism groups of symbolic extensions of some nil-
systems. First we recall the construction of the systems studied in [1]. Let us

consider the infinite matrix A = (ai,j)i,j∈N where ai,j =
(
j
i

)

A =




1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
· · · · · ·



.

It is proven in Section 4 of [1] that for all i ∈ N, Ai is well defined and

Ai =




1 i i2 i3 i4 · · ·
1 2i 3i2 4i3 · · ·

1 3i 6i2 · · ·
1 4i · · ·

1 · · ·
· · · · · ·



.

Let α ∈ [0, 1] be an irrational number. For any d ∈ N, consider Ad+1 the
restriction of A to (d + 1) × (d + 1) coordinates. We let Td : T

d → Td denote the
application that maps (x0, . . . xd) to the d first coordinates of Ad+1(x0, . . . , xd, α)

t.
For example, T2 is the application (x0, x1) 7→ (x0 + x1 + α, x1 + 2α) and T3 is the
application (x0, x1, x2) 7→ (x0 + x1 + x2 + α, x1 + 2x2 + 3α, x2 + 3α).

We can represent the transformation Td as Td(x) = Adx + ~α where ~α is the
restriction to the first d-coordinates of the last column of Ad+1 multiplied by α.
This is the classical presentation of an affine nilsystem.

Fix d ∈ N and for i, n ∈ Z letHi,n be the plane given by the equation
∑d−1

k=0 i
kxk+

idα = n. It can be proven that Hi,n = T−id H0,n and for a fixed value of i, the planes

Hi,n are projected in Td to the same plane Ĥi. We remark that

Ĥ0 = {(0, x1, . . . , xd−1); (x1, . . . , xd−1) ∈ Td−1}.
We refer to Section 4 of [1] for further details.

We consider the partition U given by the cells generated by the planes Ĥ0, . . . ,

Ĥd−1. The partition
∨n+d−1

i=0 T−id U coincides with the cells generated by the planes

Ĥ0, . . . , Ĥn+d−1 (see Section 6 of [1]). Let (x0, . . . , xd−1) and (y0, . . . , yd−1) be
different points in Td and let k = max{k;xk 6= yk}. Then the difference (in R)

between
∑d−1

k=0 i
kxk+ i

dα and
∑d−1

k=0 i
kyk+ i

dα grows to infinity as i goes to infinity

since this difference behaves like ik(xk − yk). This implies that for big enough N ,

(x0, . . . , xd−1) and (y0, . . . , yd−1) lie on different cells of
∨N

i=−N T−id U since for big

enough i these points are separated by the cells generated by Ĥi.
We recall that (XU , σ) is the subshift associated to U . By Lemma 4.2, one can

see that (XU , σ) is a minimal system and it is an extension of (Td, Td) since U
separates points. Moreover, the complexity function of (XU , σ) is given by
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p(n) =
1

V (0, 1, . . . , d− 1)

∑

0≤k1<k2<···<kd≤n+d−1

V (k1, k2, · · · , kd)

where V (k1, k2, · · · , kd) =
∏

1≤i<j≤d

(kj − ki) is a Vandermonde determinant. We

remark that varying d ∈ N we get an arbitrarily large complexity with a polynomial
growth.

By construction and Corollary 2.8 we also get:

Lemma 4.3. The maximal d-step nilfactor of (XU , σ) is the nilsystem (Td, Td).

Proposition 4.4. The group Aut(XU , σ) is virtually Z.

Proof. Let φ be an automorphism of (XU , σ) and let π : XU → Td be the natural
factor map. Let W = {ω ∈ X ; #π−1{π(ω)} ≥ 2} be the set of points where π
is not one-to-one. Since φ preserves the regionally proximal pairs of order d, we
have that W is invariant under φ. We remark that the projection of W under π

are the points which fall in F := Ĥ0 ∪ Ĥ1 ∪ · · · ∪ Ĥd−1 under some power of T ,

which is nothing but
⋃

j∈Z T
jF =

⋃
j∈Z T

jĤ0. We have that the projection π̂(φ) is
an automorphism that commutes with the affine ergodic transformation T which
has eigenvalues equal to 1. By Theorem 2 and Corollary 1 in [36] we have that
π̂(φ) has the form (x0, . . . , xd−1)

t 7→ B(x0, . . . , xd−1)
t + β where B is an integer

matrix and β ∈ Td. Since W is invariant under φ we get that the projection

π̂(φ) leaves invariant
⋃

j∈Z T
jĤ0. Particularly, since Ĥ0 is the restriction of a

plane to Td, so is its image under π̂(φ) and therefore there exists j ∈ Z such that

π̂(φ)Ĥ0 = T jĤ0. Hence, the automorphism T−jπ̂(φ) leaves invariant Ĥ0. So we

are left to study the automorphisms of (T, Td) which leave invariant Ĥ0. Let ϕ be
such an automorphism. By [36] we can assume that ϕ has the form

ϕ




x0
x1
...

xd−1


 = B




x0
x1
...

xd−1


+




β0
β1
...

βd−1




where the matrix B = (bj,k)j,k=1...,d has integer entries and ~β = (β0, . . . , βd−1)
t ∈

Td. Since ϕ commutes with T we have that B commutes with Ad (as real matrices)

and (B − Id)~α = (Ad − Id)~β in Td.

Since ϕ(0, x1, . . . , xd−1) ∈ Ĥ0, for any (x1, . . . , xd−1) ∈ Td−1 we deduce that
b1,2 = · · · = b1,d = 0 = β0. Since A

i
dB = BAi

d for any i ∈ N, by looking at the first
row of these matrices we deduce that for any j = 1, . . . , d and any i ∈ N

d∑

k=1,k 6=j

(bj,k)i
k−1 + (bj,j − b1,1)i

j−1 = 0.

Since the vectors (1, i, i2, . . . , id−1) are linearly independent for different values
of i we deduce that B = b1,1Id. Therefore, (Ad − Id)β = (B − Id)~α = (b1,1 − 1)~α.
Since Ad is upper triangular with ones in the diagonal, this condition implies that
(b1,1 − 1)α ∈ Q and thus b1,1 = 1. We conclude that B is the identity matrix and

then ϕ is the rotation by ~β := (0, β1, . . . , βd−1)
t and (Ad−Id)~β ∈ Zd. We can write

this system as
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0 1 1 1 1 · · ·
0 2 3 4 · · ·

0 3 6 · · ·
0 4 · · ·

0 d
· · · 0







0
β1
β1
...

βd−1




∈ Z.

This implies that dβd−1 ∈ Z and this is possible for finitely many βd−1 ∈ T.

Inductively, we deduce that there are finitely many (and rational) solutions ~β =
(0, β1, . . . , βd−1)

t in Td. This means that the group of automorphisms that leaves

invariant Ĥ0 is a finite group of rational rotations. Therefore, π̂(Aut(XU , σ)) is
spanned by Td and a finite group. Since the map π̂ : Aut(XU , σ) → Aut(T, Td) is
an injection we have that Aut(XU , σ) is spanned by σ and a finite group. The result
follows. �

4.3. Example of a larger automorphism group. We remark that the statement
of Theorem 1.1 is no longer valid for an arbitrary polynomial complexity, as the
following shows.

Proposition 4.5. For any d ∈ N, there exists a minimal subshift (X, σ) with
complexity satisfying limn→+∞ pX(n)/nd+1 = 0 and where Aut(X, σ) is isomorphic
to Zd.

Proof. Let α1, . . . , αd ∈ R \ Q be rationally independent numbers. For every i =
1, . . . , d, let (Xi, σi) be the Sturmian extension of the rotation Rαi

by the angle
αi on the circle S1, and let X = X1 × X2 · · · ×Xd and σ = σ1 × σ2 · · · × σd. We
remark that for any i = 1, . . . , d, on (Xi, σi) the proximal relation and the regionally
proximal relation coincide and thus the proximal relation is an equivalence relation.
Since the maximal equicontinuous factor of (Xi, σi) is (S

1, Rαi
) via the factor map

πi, by [2], Chapter 11, theorems 7 and 9, we have that (X, σ) is a minimal system
and the product system ((S1)d, Rα1 × · · · × Rαd

) is its maximal equicontinuous
factor.

The complexity function of any (Xi, σi) is n+ 1, so we get that the complexity
function of (X, σ) is (n+1)d. On the other hand, we observe that φ1×· · ·×φd belongs
to Aut(X, σ) for any choice of φi ∈ Aut(Xi, σi). Since for every i, Aut(Xi, σi) is Z,
we conclude that Zd can be embedded as a subgroup of Aut(X, σ).

We claim this embedding is actually an isomorphism. To prove this, recall that
the Sturmian subshift Xi is an almost one-to-one extension of a rotation on the
circle via an onto map πi : Xi → S1 that it is injective except on the orbit of the
unit OrbRαi

(1), where any point has two pre-images (e.g., see [14]). By Lemma

2.12, for any automorphism φ ∈ Aut(X, σ), the automorphism π̂(φ) preserves the
set of points in (S1)d having a maximum number (namely 2d) of pre-images for the
factor map π = π1×· · ·×πd. This set is the product set OrbRα1

(1)×· · ·×OrbRαd
(1).

Clearly, the group of automorphisms of the form π̂(σn1
1 ×· · ·×σnd

d ), n1, . . . , nd ∈ Z,

acts transitively on this set. Since the group Aut((S1)d, Rα1 × · · · × Rαd
) acts

freely and the morphism π̂ is injective (Lemma 2.6), we get that any automorphism
φ ∈ Aut(X, σ) may be written as a product of automorphisms in Aut(Xi, σi). �
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4.4. Subshift with subexponential complexity. In this section we give an ex-
ample of a minimal subshift (X, σ) generated by a uniformly recurrent sequence
x ∈ {0, 1}Z such that:

• There exists C such that for infinitely many n’s one has pX(n) ≤ Cn.
• For any subexponential function φ there are infinitely many n’s such that
pX(n) ≥ φ(n), where subexponential means that limn→+∞ φ(n)/αn = 0
for all α ∈ R.

As for subshifts pz(n) will stand for the number of words of length n occurring
in the sequence z ∈ {0, 1}Z or z ∈ {0, 1}N.

The proofs of the two following lemmas are left to the reader.

Lemma 4.6. Let ξ be a substitution on {0, 1}∗ of constant length L and τ be an
endomorphism of {0, 1}∗ having all words of length 2 in its images. Let x ∈ {0, 1}N.
Then, for any y ∈ {0, 1}N having occurrences of all words of length 2 and 0 ≤ l ≤ L
we have

pξ◦τ(x)(l) = pξ(y)(l).

Below ρ stands for the Morse substitution: ρ(0) = 01 and ρ(1) = 10.

Lemma 4.7. Let ξ be a substitution on {0, 1}∗ of constant length L. Let x ∈
{0, 1}N. We have

pξ◦ρ3(x)(2L) ≤ 6L.

Below, when a substitution τ is of constant length L we set |τ | = L. Let us
construct inductively the sequence x. In fact, we will construct two increasing
sequences of integers (ai)i≥1 and (bi)i≥1, and a sequence of morphisms (τi)i≥1 such
that

(1) x = limi→∞ ρ3τ1 . . . ρ
3τi(0

∞), where 0∞ = 00 · · · ,
(2) a1 < b1 < a2 < b2 < . . .,
(3) px(ai) ≤ 3ai, i ∈ N and
(4) px(bi) ≥ φ(bi), i ∈ N.

We start fixing a1 = 2. Let x(1) = ρ3(0∞). Then, px(1)(a1) = 4, which is less than
3a1.

Let k1 be such that 2k1 ≥ φ(k1|ρ3|) (observe it is always possible because φ has
a subexponential growth) and τ1 be a substitution of {0, 1}∗ of length L1 = 2m1

such that τ1(0) starts with 0 and the number of words of length k1 in τ1(0) and
τ1(1) is 2

k1 . We set

b1 = k1|ρ3| and y(1) = ρ3τ1(0
∞).

One gets
py(1)(b1) ≥ φ(b1).

Moreover, notice that from Lemma 4.6 one has that

py(1)(l) = px(1)(l)

for all l ≤ |ρ3|. Now consider x(2) = ρ3τ1ρ
3(0∞). Then from Lemma 4.7

p(2|ρ3τ1|) ≤ 6|ρ3τ1|.
Setting a2 = 2|ρ3τ1|, one gets px(2)(a2) ≤ 3a2.

Let k2 ≥ k1 be such that 2k2 ≥ φ(k2|ρ3τ1ρ3|) and τ2 be a substitution of {0, 1}∗
of length L2 = 2m2 such that the number of words of length k2 in τ2(0) and τ2(1)
is 2k2 . We set
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b2 = k2|ρ3τ1ρ3| and y(2) = ρ3τ1ρ
3τ2(0

∞).

One gets that py(2)(b2) is greater than φ(b2). Moreover, notice that from Lemma
4.6 one has that

py(2)(l) = px(2)(l) ∀l ≤ |ρ3τ1ρ3|,
px(2)(l) = py(1)(l) ∀l ≤ |ρ3τ1|,
py(1)(l) = px(1)(l) ∀l ≤ |ρ3|.

Thus, py(2)(a1) ≤ 3a1, py(2)(b1) ≥ φ(b1) and py(2)(a2) ≤ 3a2.
Now suppose we have constructed:

(1) morphisms τi of constant length such that τi(0) starts with 0, 1 ≤ i ≤ n,
(2) x(i) = ρ3τ1 . . . τi−1ρ

3(0∞),
(3) y(i) = ρ3τ1 . . . τi−1ρ

3τi(0
∞), 1 ≤ i ≤ n,

(4) a1 < b1 < a2 < · · · < an < bn, such that
(a) ai = 2|ρ3τ1 . . . ρ3τi−1|,
(b) bi ≥ |ρ3τ1 . . . ρ3τi−1ρ3|,
(c) x(i)[0, |ρ3τ1 . . . τi−1ρ3|] is a prefix of y(i),
(d) y(i)[0, |ρ3τ1 . . . τi−1ρ3τi|] is a prefix of x(i+1),
(e) py(i)(l) = px(i)(l) for all l ≤ |ρ3τ1 . . . τi−1ρ3|,
(f) py(n)(ai) ≤ 3ai, 1 ≤ i ≤ n, and,
(g) py(n)(bi) ≥ φ(bi), 1 ≤ i ≤ n− 1.

We have seen this construction is realizable for n = 2. Proceeding as we did for
the first cases, it is not difficult to see that it can be achieved for every n ≥ 1.

To conclude, it suffices to observe that (y(n))n≥1 converges to the sequence x we
are looking for. Indeed, the convergence follows from (4c) and (4d). Also observe
that y(n) is a prefix of x. It is a classical exercise to show that x is uniformly
recurrent. From (4g) we get that px(bi) ≥ φ(bi) for all i ∈ N. For the last point,
px(ai) ≤ 3ai for all i ∈ N, it comes from (4f) because it is true for all n ≥ 1.

5. Comments and open questions

A standard question related to automorphisms is to determine if the transfor-
mation T has a root. That is, does it exist a transformation U such that Up = T
for some integer p ≥ 0. A classical way to deal with this problem is to notice that
a root is an automorphism.

The automorphism group is also related to the collection of conjugacy maps
between two systems. If π1 and π2 are two conjugacy maps between the same
systems, then π1 ◦ π−12 is an automorphism. Hence, a characterization of when the
automorphism group is trivial, i.e. Aut(X,T ) is generated by T , implies rigidity
results in both problems.

5.1. Automorphisms and nilfactors. We have shown that a large family of
minimal subshifts, either with sublinear or other type of polynomial complexity,
have automorphisms groups that are virtually Z. Even in the case of minimal
subshifts obtained as extensions of minimal systems whose automorphism group
is much complex (the case of extensions of nilsystems). So a natural question
is whether this behaviour is generally true just because the fibres over particular
topological factors are constrained.
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5.2. Eigenvalues, roots of T and automorphisms. We obtain, in the good
cases, that the group of automorphisms is a subgroup of the corresponding one of a
maximal nilfactor. This proves that there are connections between automorphisms
and continuous eigenvalues. To study these relations we can focus on rational
eigenvalues. So it is natural to ask: does a Cantor minimal system (X,T ) admit a
non trivial automorphism with finite order or have some roots, are there constraints
on the rational continuous eigenvalues of (X,T ) ?

Classical examples of Toeplitz sequences with a unique asymptotic component
(so Aut(X, σ) is generated by σ) show that the converse is false: a system may have
rational eigenvalues and no automorphisms of finite order.

5.3. Complexity versus group of automorphisms. The results of [10] and of
this paper show a relation between complexity and the growth rate of the groups. Is
it possible to be more precise ? For instance, is it true that for a transitive subshift
with a subquadratic complexity the group Aut(X, σ)/〈σ〉 is finite ? The result in
[10] states it is periodic, but we do not know any subshift with this complexity and
with an infinite group Aut(X, σ)/〈σ〉 (see Section 4.1.2).
Inspired by the main theorem of this paper and examples in Section 4.3 we ask,

Question. Let (X, σ) be a minimal subshift such that

d = inf{δ ∈ N; 0 < lim inf pX(n)/nδ < +∞} > 0.

Is it true that it is virtually Zd ? Can we extend these results to the category of
transitive subshifts ?

5.4. Measurable versus continuous automorphisms. The main result in [21]
shows a rigidity result, any measurable automorphism is almost everywhere contin-
uous for bijective constant length substitutions. Is it possible to enlarge this class
of subshifts with the same rigidity property ? A first answer is negative: This is
not true for substitution of non-constant length and even for Pisot substitution on
the alphabet {0, 1}. Consider the two substitutions τ and ξ defined by τ(0) = 010,
τ(1) = 01, ξ(0) = 001 and ξ(1) = 10. Let (Xτ , σ) and (Xξ, σ) be the subshift
they generate. It can be shown that they are both measure theoretically isomor-
phic to (S1, Rα) (see [4]), where Rα is the rotation of angle α = (1 +

√
5)/2, and,

thus (Xτ , σ) and (Xξ, σ) are measure theoretically isomorphic. But they cannot be
topologically isomorphic because their dimension groups are not isomorphic (see
[15] for their computations).

5.5. Realization of automorphism groups. By the Curtis-Hedlund-Lyndon
theorem, the collection of automorphisms of a subshift is countable. We leave open
the realization of any countable group as an automorphism group. More precisely,

Question. Given a countable group G (not necessarily finitely generated). Does
it exist a minimal subshift (X, σ) such that Aut(X, σ)/〈σ〉 is isomorphic to G ?

Notice that Toeplitz sequences can also be realized on residually finite groups
[8]. A priori, they may provide interesting solutions in this class. But, as stated in
the remark below Corollary 2.13, their automorphism group is Abelian. This kills
any non commutative group realization by this way.

A second question that was left open in the text is when the automorphism
group of polynomial complexity subshifts is finitely generated. Again, the intuition
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is based on the fact that asymptotic classes in such systems are few, and prevent
the growth of the automorphism group.

If we restrict to some families of subshifts (e.g. Sturmian or Toeplitz sub shifts),
we prove that their automorphism groups are subgroups of their maximal equicon-
tinuous factors. Can we characterize these groups for the Sturmian and Toeplitz
cases ?

5.6. Extension to higher dimensional subshifts. A natural question is to
study the generalization to Zd-subshifts with d ≥ 1, or to the geometrical no-
tion of tilings and Delone sets of Rd. More intrinsically, the method used in [10]
illustrates how properties on complexity of multidimensional subshifts give infor-
mation on one dimensional subshifts. Unfortunately, this uses results related to
the famous Nivat’s conjecture, that are known to be true only in dimension two.
Nevertheless, we can hope a similar strategy may provide interesting information
on multidimensional subshifts. We believe that the study of asymptotic compo-
nents or the similar notion of non-expansive directions in higher dimensions may
also provide useful results. For instance in [12], such a way leads to prove that the
automorphism group of the minimal component of the Robinson subshift of finite
type is trivial.
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[32] M. Queffélec Substitution dynamical systems–spectral analysis, Lecture Notes in Mathemat-
ics, vol. 1294, Springer-Verlag, 1987
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cartes, 77454 Marne la Vallée Cedex 2, France

E-mail address: sdonoso@dim.uchile.cl, sebastian.donoso@univ-paris-est.fr
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