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Analytic results for Schwinger-Dyson equations with a mass term

Introduction

As a way to reach non-perturbative informations of a Quantum Field Theory (QFT), the Schwinger-Dyson equations have been quite extensively studied over the past few decades. The most common approach to tackle them was, and maybe still is, numerical study of simplified versions of the equations, that however display important physical features, e.g. of QCD. For a recent paper in this domain, the reader can referred to [START_REF] Mezrag | Toward a Pion Generalized Parton Distribution Model From Dyson-Schwinger equations[END_REF].

On the other hand, some progresses have been made these last few years to analytically study some Schwinger-Dyson equations. The anomalous dimension (from which the dressed propagator could be extracted using the renormalization group equation, as shown in [START_REF] Kreimer | An etude in non-linear Dyson-Schwinger equations[END_REF]) have been computed order by order in [START_REF] Bellon | Higher loop corrections to a Schwinger-Dyson equation[END_REF]. Its asymptotic has also been extracted in the same article. Corrections to this asymptotic behaviour have been computed in [START_REF] Bellon | Higher order corrections to the asymptotic perturbative solution of a Swinger-Dyson equation[END_REF]. This have been rephrased in the Borel plane in [START_REF] Bellon | Study of a Schwinger-Dyson Equation in the Borel Plane[END_REF], where some number-theoretical results could be shown to hold at every order in the corrections to the asymptotic behaviour of the anomalous dimension.

However, there is still an important lack of exact known solutions of Schwinger-Dyson equations. To our knowledge, the only one is for a massless and linear equation and was found by David Broadhurst and Dirk Kreimer in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. This paper aims to be a step toward filling this hole in the field of Schwinger-Dyson equations by applying the method of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] to more general cases.

The result of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] rests upon three crucial steps. First, the integrodifferential Schwinger-Dyson equation is written as a differential one. This equation, when written with the right functions, can be integrated in the second step. Then, as a third step, it can be solved for some functions having the integrated functions as arguments. Using the initial conditions, we end up with a parametric solution of the initial Schwinger-Dyson equation.

The first of this steps is made possible by the linearity of the initial equation. We therefore will only study here linear equations. In order to perform the angular integration in the loop integrals it is needed to have the field without corrections to its two points function to be massless. Here, we will keep that constraint. However, the second and third steps can give results for theories more general than the one studied in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. In some cases (infrared limit of massive Yukawa model) we end up with equations simple enough to be solve explicitly (although only at a given impulsion of reference in the soft IR case).

This paper is organized as follow: in the sections 1 and 2, we derive the Schwinger-Dyson equations for the massive Yukawa model and for a linear version of a Wess-Zumino model (a massive version of the model studied in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF]). In both cases, we use kinematic renormalization to do so. In section 3, a parametric solution to the massive Yukawa model in the ultraviolet limit is found. Section 4 is devoted to the study of the massive Yukawa model in the infrared limit.

Finally, in section 5, a parametric solution to the massive supersymmetric model is found. In order to keep the length of this article within reasonable size, a full presentation of the method of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] is not included. Nevertheless, a short summary of this method could be found in section 3, leaving aside any technical details.

Schwinger-Dyson equations of the massive Yukawa model

For the Yukawa models, the Schwinger-Dyson equations are linear:

-1 = 1 -a (1) 
with 1 denoting the free propagator and the dressed fermionic propagator being

P nSU SY = 1 G(q 2 ) / q + M (q 2 )m . (2) 
In order to find back the free propagator at a the impulsion of reference µ, we have the initial conditions G(µ 2 ) = M (µ 2 ) = 1. So the equation ( 1) can be written in term of Feynman integrals:

G(p 2 ) / p + M (p 2 )m = / p + m - 2a π 2 d 4 l G(l 2 )/ l -mM (l 2 ) G 2 (l 2 )l 2 -M 2 (l 2 )m 2 1 (p + l) 2 + S 1/ p + S 2 m. (3) 
S 1 and S 2 are two counterterms that will be fixed using the initial conditions. Note that we are here using the sign convention of [START_REF] Itzykson | Quantum Field Theory[END_REF]. The basic idea is that the / p and the m parts do not talk to each other, so their coefficients should independently vanish. Hence we are left with a system of two coupled integral equations:

G(p 2 ) = 1 - 2a π 2 d 4 l G(l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) 1 p 2 l.p (p + l) 2 + S 1 (4a) M (p 2 ) = 1 + 2a π 2 d 4 l M (l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) 1 (p + l) 2 + S 2 . ( 4b 
)
From now on those two equations will be the ones referred as the Schwinger-Dyson equations.

The two integrals can be computed by separating their radial and angular parts. Then, using the 4-dimensional angular average

q 2 l 2 1 (q + l) 2 d=4 = min(q 2 , l 2 ) ( 5 
)
we are left with:

G(p 2 ) = 1 + a p 2 p 0 dl l 3 G(l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) l 2 p 2 + a +∞ p 2 dl lG(l 2 ) G 2 (l 2 )l 2 -mM 2 (l 2 ) + S 1 (6a) M (p 2 ) = 1 + 2a p 2 p 0 dl l 3 M (l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) + 2a +∞ p dl lM (l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) + S 2 . ( 6b 
)
Let us notice that, for the equations of G, we have used l.p = 1 2 (p + l) -p 2 -l 2 . Then, three terms have combined themselves together to cancel and we are left with such a simple equation for G. Now, using the initial conditions G(µ 2 ) = M (µ 2 ) = 1 allows to fix the counterterms:

S 1 = - a µ 2 µ 0 dl l 3 G(l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) l 2 µ 2 + µ 2 +∞ µ dl lG(l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) S 2 = - 2a µ 2 µ 0 dl l 3 M (l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 ) + µ 2 +∞ µ dl lM (l 2 ) G 2 (l 2 )l 2 -m 2 M 2 (l 2 )
.

Plugging those two counterterms into the Schwinger-Dyson equations, rewriting them with x = p 2 and switching the integration variable to y = l 2 allow us to write the Schwinger-Dyson equations in the following compact form

G(x) = 1 - a 2 x µ 2 dy G(y) G 2 (y)y -m 2 M 2 (y) + F (x) -F (µ 2 ) (7a) M (x) = 1 -a x µ 2 dy M (y) G 2 (y)y -m 2 M 2 (y) + E(x) -E(µ 2 ), (7b) 
with:

F (x) = a 2 x 0 dy G(y) G 2 (y)y -m 2 M 2 (y) y x 2 (8a) E(x) = a x 0 dy M (y) G 2 (y)y -m 2 M 2 (y) y x . (8b) 
Finally, taking two derivatives with respect to x, we can write the Schwinger-Dyson equations as two coupled ordinary differential equations:

G 2 (x)x -m 2 M 2 (x) D(D + 1)M (x) = -axM (x) (9a) G 2 (x)x -m 2 M 2 (x) D(D + 2)G(x) = -axG(x) (9b) 
With the differential operator D = x d dx . Here the key point is that the two integral terms surviving the differentiation process cancel each other. This is why the linearity of the Schwinger-Dyson equation ( 1) is crucial: it allows to end up with differential equations instead of integrodifferential ones.

Let us notice that in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF] the authors avoid to explicitly write the counterterms by taking the derivatives with respect to x first. This has the advantage that no ill-defined integrals appear in the computations. However we choose here to write down the couterterms before taking the derivatives to follow the presentation of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. Obviously the result is the same within the two approaches.

One can easily check that taking the massless limit M (x) = 0 in (9a) we find the Schwinger-Dyson equation of the massless Yukawa model already studied in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. Let us notice however that the generalization of the case studied in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] is not trivial. In particular, the right-hand-side appears to be now dependent of the external momenta. Now, when decoupling the equations (9a-9b), one ends up with complicated non-linear equations having a non-trivial denominator. It makes a rigorous analysis quite challenging, since we would have to take care that the denominator does not vanish. Instead, we will rather tackle the equations (9a-9b) in the physically relevant cases of the ultraviolet and infrared limits. Before we turn our attention to this task, let us derive the Schwinger-Dyson equation of a massive supersymmetric theory.

Schwinger-Dyson equation of the supersymmetric model

We will work with a massive version of a Wess-Zumino-like model already studied in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF]. This model has two superfields, one massive, Ψ i , and one massless, Φ ij (i, j = 1, 2, ..., N ). Each superfield represent a complex scalar (A i or B ij ), a Weyl fermion (χ i or ξ ij ) and a complex auxiliary field (F i or G ij ):

Ψ i (y) = A i (y) + √ 2θχ i (y) + θθF i (y) Φ ij (y) = B ij (y) + √ 2θξ ij (y) + θθG ij (y).
With y the chiral coordinates defined by y µ = x µ + iθσ µ θ. This model has a cubic superfield interaction Lagrangian

L int = g √ N N i,j=1 d 2 θΨ i Φ ij Ψ j = g √ N N i,j=1 (A i G ij A j + 2A i B ij F j -χ i B ij χ j -χ i ξ ij A j -A i ξ ij χ j + h.c.).
A more detailed presentation of this model can be found in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF]. Such a model is of interest for us due to the existence of non-renormalization theorems, whose simplest proof is usually credited to Seiberg [START_REF] Seiberg | Naturalness Versus Supersymmetric Non-renormalization Theorems[END_REF]. A nice introduction of the subject can be found in [START_REF] Derendinger | Lecture notes on globally supersymmetric theories in fourdimensions and two-dimensions[END_REF]. The theorem implies that one only need wavefunction renormalization, as we will see later. The Schwinger-Dyson equations can be graphically written as

-1 = 1 -a (10a) -1 = 1 -a -a (10b) -1 = 1 -a -a (10c) 
-a with the plain lines being for the fermionic fields, the dashed lines for the scalar fields and the windy lines for the auxiliary fields. In the large N limit the one-loop contributions to the dressed propagators are the only one to not be suppressed. This is why we consider a model with a vectorial superfield and a matrix one: a solution of the above system is more than a solution of a truncated Schwinger-Dyson equation. It is the full dressed propagators of the theory in the large N limit. Now, supersymmetry imposes the following dressed propagators

Π -1 χ (q) = q 2 G χ (q 2 ) + m 2 q m σ m (11a) Π -1 A (q) = q 2 G A (q 2 ) + m 2 (11b) Π -1 F (q) = q 2 G χ (q 2 ) + m 2 q 2 (11c)
where we have dropped the subscript i for simplicity. Hence the system of Schwinger-Dyson equations can be written, after some simplifications as

q 2 G χ (q 2 ) = q 2 - g 2 4π 4 d 4 p q.p [p 2 G χ (p 2 ) + m 2 ](q -p) 2 - g 2 4π 4 d 4 p q 2 -q.p [p 2 G A (p 2 ) + m 2 ](q -p) 2 (12a) G F (q 2 ) = 1 - g 2 4π 4 d 4 p 1 [p 2 G A (p 2 ) + m 2 ](q -p) 2 (12b) q 2 G A (q 2 ) = q 2 - g 2 4π 4 d 4 p 1 p 2 G χ (p 2 ) + m 2 - g 2 4π 4 d 4 p p 2 [p 2 G F (p 2 ) + m 2 ](q -p) 2 (12c) - g 2 4π 4 d 4 p Tr(p m σ m (q n -p n )σ n ) [p 2 G χ (p 2 ) + m 2 ](q -p) 2 .
We did not write explicitly the counter-terms in this system in order to keep it of reasonable size. Now, as already noticed in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF], a coherent ansatz to solve this system is

G χ (q 2 ) = G F (q 2 ) = G A (q 2 ) = G(q 2 ). ( 13 
)
Indeed, with this ansatz, the first integral of (12a) cancels the q.p term of the second integral and therefore (12a)⇔(12b). Moreover, using Tr(σ m σ n ) = 2η mn and -2q.p = (q -p) 2 -p 2 -q 2 we end up with (12c)⇔(12b). This fact is obviously a consequence of supersymmetry. Finally, within this ansatz, we only have one equation to solve

G(p 2 ) = 1 - 2a π d 4 l 1 [G(l 2 )l 2 + m 2 ] (l + p) 2 + S (14) 
with S a counter-term and a = g 2 2π 3 the fine-structure constant of the theory. The Feynman integral above can be computed by performing the angular integral [START_REF] Bellon | Study of a Schwinger-Dyson Equation in the Borel Plane[END_REF] as in the Yukawa model. We end up with

G(p 2 ) = 1 - 2a p 2 p 0 l 3 dl G(l 2 )l 2 + m 2 + p 2 +∞ p ldl G(l 2 )l 2 + m 2 + S.
The counterterm S is fixed by the initial condition G(µ 2 ) = 1. This provides:

S = 2a µ 2 µ 0 l 3 dl G(l 2 )l 2 + m 2 + µ 2 +∞ µ ldl G(l 2 )l 2 + m 2 .
Thus the Schwinger-Dyson equation simply becomes:

G(p 2 ) = 1 -2a 1 p 2 p 0 l 3 dl G(l 2 )l 2 + m 2 - 1 µ 2 µ 0 l 3 dl G(l 2 )l 2 + m 2 - p µ ldl G(l 2 )l 2 + m 2 . ( 15 
)
Let us rewrite the previous equation with x = p 2 and y = l 2

G(x) = 1 + a x µ 2 dy G(y)y + m 2 + F (µ 2 ) -F (x) (16) 
with

F (x) = a x 0 dy G(y)y + m 2 y x . ( 17 
)
Taking two derivatives with respect to x of (16) it comes:

G(x) + m 2 x D(D + 1)G(x) = a (18) 
with once again D = x d dx . Now, we will see how, following the footsteps of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF], we can reach non-perturbative informations about our theories using the Schwinger-Dyson equations (9a-9b) and ( 18). We will start by studying the ultraviolet limit of the massive Yukawa model.

Ultraviolet limit of the massive Yukawa model

In this limit the exterior impulsion is much higher than the mass of the fermion. So the equations (9a-9b) become:

G 2 (x)D(D + 1)M (x) = -aM (x) (19a) G(x)D(D + 2)G(x) = -a. ( 19b 
)
We obviously start with the equation (19b) since it is only an equation on G. It is actually the equation solved in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF], so we will not give all the details of the resolution. Let us just say that the right change of variables is:

z = x µ 2 2 G = 2 a zG(µ 2 √ z).
Then the equation (19b) is simply:

2 G(z) G′′ (z) = -1 ⇔ G′ (z) 2 = ln G(z) + cste.
So we can simply write G as a function of p := G′ . Then looking for a differential equation for α = z/ G and finding its asymptotic expansion allowed the authors of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] to find a simple parametric solution of (19b):

G(q 2 ) = a 2π 1 exp(p 2 )erfc(p) (21a) q 2 = µ 2 erfc(p) erfc(p 0 ) . ( 21b 
)
Moreover the parameter p 0 := G(1) is linked to the anomalous dimension δ by:

p 0 = 1 √ 2a (γ + 2). ( 22 
)
The relation between the external impulsion q 2 and the parameter p was found by using the initial conditions on α and the intermediate result G = exp(p 2 -p 2 0 ). A more detailed derivation is given in section 5 for a similar problem. To tackle (19a) let us define the analog of G for the mass function

M (z) = √ zM (µ 2 √ z).
Then, (19a) written in term of M and G is (after simplifications):

G2 (z) √ z 2 M (z) d dz √ z M ′ (z) = -1. (23) 
We can rewrite this equation as a differential equation in p by using the resolution of (19b) and

dp dz = G′′ = -1 2 G .
To do so, we will write h(p) the function defined as M seen as a function of p: h(p) := M (z(p)). We end up with:

h ′′ (p) + [2p + f ′ (p)]h ′ (p) + 2h(p) = 0. ( 24 
)
Here the prime stands for a derivative with respect to p, while in the previous equations it was for a derivative with respect to z and f (p) is by definition:

f (p) = 1 2 ln [erfc(p)] ⇒ f ′ (p) = - G(z(p)) z(p) . ( 25 
)
The last equality comes from the solution (21a) and the definition of G. Notice that the complementary error function erfc is defined as

erfc(z) = 2 √ π +∞ z e -t 2 dt.
Therefore it is a positive function and f is a well-defined real function. We solve (24) with one last change of variable: let us define the new function B(p):

h(p) = e B(p) . ( 26 
)
From the definition of h(p) and since M (q 2 ) is the mass function and therefore is expected to be positive, we see that B(p) has to be a real function. Now the equation ( 24) is a first order differential equation in B ′ (p):

B ′′ (p) + [f ′ (p) + 2p + 1] B ′ (p) + 2 = 0
Whose solution is:

B ′ (p) = e -p 2 -p-f (p) λ -2 p p0 e f (x)+x+x 2 dx (27)
We can determine the integration constant λ by using the initial conditions.

B ′ (p 0 ) = - 2 a (1 + δ) ⇔ h(p 0 ) = 1 h ′ (p 0 ) = - √ 2a(1 + δ)
With δ := q 2 dM (q 2 ) dq 2 | q 2 =µ 2 the massive anomalous dimension. In order to have a more readable text, the obtained λ will only be written below, in the final solution. The next step is to integrate (27):

B(p) = ν + p p0 erfc(t) -1/2 e -t 2 -t λ -2 t p0 erfc(s) 1/2 e s 2 +s ds dt ( 28 
)
And ν is very simply determined by h(p 0 ) := M (1) = 1 ⇔ B(p 0 ) = 0 ⇔ ν = 0. Let us notice that B(p) is real as expected. Hence we get M and thus M . Putting everything together we end up with a parametric solution for the massive Yukawa model in the ultraviolet limit:

G(q 2 ) = a 2π 1 exp(p 2 )erfc(p) (29a) M (q 2 ) = erfc(p 0 ) erfc(p) exp p p0 erfc(t) -1/2 e -t 2 -t λ -2 t p0 erfc(s) 1/2 e s 2 +s ds dt (29b) λ = - 2 a (1 + δ)e p 2 0 +p0 erfc(p 0 ) 1/2 (29c) q 2 = µ 2 erfc(p) erfc(p 0 ) (29d)
Now we can move on to the other limit: the infrared one.

Infrared limit of the massive Yukawa model

In this case we have x << m 2 . However, two possibilities have to be separated. Indeed either a, the coupling constant of the theory is big enough so the RHS of (9a-9b) is of the order of the LHS, either it is not. Let us start with the first case, that is:

a ∼ m 2 x ( 30 
)
This case is called "soft infrared" since the external momenta is not small enough to have the coupling constant negligible. Then the equations (9a-9b) become:

m 2 M (x)D(D + 1)M (x) = ax (31a) m 2 M 2 (x)D(D + 2)G(x) = axG(x). (31b) 
We will start by solving (31a) since there is only one unknown function in it. Using the reduced coupling constant ã := a µ 2 m 2 let us change the variables:

z = x µ 2 2 (32a) M (z) = z ã M (µ 2 √ z). (32b) 
Then (31a) becomes:

4 M (z) d dz √ z d dz M (z) = 1. ( 33 
)
The previous analysis can be done one more time to this equation, but a critical step will there be missing because of the √ z into the outer derivative: we cannot integrate the equation. Actually, there is no definition of z and M that would makes the new version of (33) integrable. Fortunately we are saved by noticing that it exists a simple solution to (33):

M (z) = 2 √ 3 z 3/4 . ( 34 
)
This solution satisfies the initial condition M (1) = 1/ √ ã if, and only if, the reference scale is

µ = m 2 3 a . (35) 
This is coherent with the hypothesis (30) since the the impulsion q should be of the same order than the impulsion of reference. Notice that, at this impulsion of reference, one gets ã = 3/4. Now, plugging the solution (34) into the equation (31b) one gets, for the function G(z) = zG(µ 2 √ z), the very simple equation:

G′′ (z) = 3 16 G(z). ( 36 
)
Which has the simple solution

G(z) = A exp √ 3 4 z + B exp - √ 3 4 z .
The coefficients A and B are determined, thanks to the initial conditions G(1) = 1 and G′ (1) = 1 + γ/2. To summarize, we get a solution to the Schwinger-Dyson equation to the massive Yukawa model with a coupling constant of the order of m2 q 2 .

M (q 2 ) = 3 a m 2 q 2 (37a) G(q 2 ) = 9 16a 2 m 4 q 4 1 2 √ 3 ( √ 3 + 4 + 2γ) exp √ 3 4 16a 2 q 4 9m 4 -1 + ( √ 3 -4 -2γ) exp - √ 3 4 16a 2 q 4 9m 4 -1 (37b) 
Now, let us look at the case for a is not big enough to cancel the fact that we are in the infrared regime. By opposition to the previous case, this one is called "deep infrared". This case is more interesting from a physical point of view since the small energies (at which a << m 2 q 2 ) are easier to reach. Moreover, it is at those low energies that the coupling constant of QCD becomes too big to allow perturbative computations1 making the Schwinger-Dyson equations of interest for physicists as a door to non-perturbative regimes. In this case, the RHS of equations (9a-9b) is negligible, so this system becomes:

m 2 M 2 (x)D(D + 1)M (x) = 0 m 2 M 2 (x)D(D + 2)G(x) = 0.
Since we are not looking for vanishing solutions, this system actually decouples:

D(D + 1)M (x) = 0 (38a) D(D + 2)G(x) = 0. (38b) 
And those are very easy to solve with the following initial conditions:

M (µ 2 ) = G(µ 2 ) = 1 (39a) q 2 dM (q 2 ) dq 2 | q 2 =µ 2 = δ (39b) q 2 dG(q 2 ) dq 2 | q 2 =µ 2 = γ. (39c) 
Then one ends up with:

M (q 2 ) = 1 + δ - δµ 2 q 2 (40a) G(q 2 ) = 1 + γ 2 - γ 2 
µ 4 q 4 (40b) 
This solution being obviously for every scale of reference µ.

Solution of the supersymmetric model

Now, let us look for a solution to the Schwinger-Dyson equation (18). First, we switch to dimensionless variables, and define the new parameters and functions:

z = x µ 2 (41a) m2 = m 2 µ 2 1 √ 2a (41b) G(z) = 1 √ 2a zG(µ 2 z). (41c) 
Then the equation ( 18) becomes 2 G(z) + m2 G′′ (z) = 1.

Let us notice than m is still constant with respect to z since we take µ 2 being fixed. Then the above equation can easily be integrated to:

G′ (z) 2 = ln G(z) + m2 + cste.
Now, let us use the parameter p = G′ (z). We can write G(z) as a function of p:

G(z) = m2 + 1 √ 2a exp(p 2 -p 2 0 ) -m2 (43) 
with p 0 := G′ (1) and where we have used the initial condition G(1) = 1 √ 2a ⇔ G(µ 2 ) = 1. We can then determine the parametric solution by studying:

α = z 2( G + m2 ) . ( 44 
)
Indeed, using the definition of p and the equation ( 43) we obtain a differential equation for α

α = 1 2p - 1 2p dα dp . ( 45 
)
Developing the solution at infinity gives the asymptotic expansion:

α(p) ≃ 1 2p + 1 2p +∞ n=1 (2n -1)!! (2p 2 ) n . (46) 
Now, using the definition (44) of α and the one of the anomalous dimension γ = q 2 dG(q 2 ) dq 2 | q 2 =µ 2 , we get the relations:

α(p 0 ) = a 2 1 m 2 µ 2 + 1 (47a) p 0 = 1 √ 2a (1 + γ). (47b) 
Such relations were also found in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. The second of the above relations comes from

p 0 := 1 √ 2a d dz (zG)| z=1 .
Then, we easily get the parametric solution by noticing that the expansion (46) is the one of:

α(p) = 1 2 √ πe -p 2 ℜ[erfi(p)] = 1 2 √ πe -p 2 erfi(p) + i √ πe -p 2 = i 2 √ πe -p 2 erfc(ip)
With erfc the complementary error function and erfi the imaginary error function. In the following, we will simply write Erfi(p) := ℜ[erfi(p)] to emphasize that it is a real function. Hence we have:

α(p) = 1 2 √ πe -p 2 Erfi(p). (48) 
Now, we have everything to write the parametric solution to the equation ( 18). First, we need to write z as a function of p (since we will write G as a function of p). Using its definition and the form (43) of G we get

1 = 2 exp(p 2 -p 2 0 ) m + 1 √ 2a dp dz .
As in the non-supersymmetric case, using the equation ( 42) and the definition (44) of α we obtained dp dz = α z . Hence, using the above formula (48), we end up with

z = √ πErfi(p) m + 1 √ 2a exp(-p 2 0 ).
This could be written on a much simpler form by using the relation (47a) together with (48). Then one obtains for q 2 the form written below, in the complete solution. Finally, writing G(q

2 ) = √ 2a 1 2α - m2 z
we get the parametric solution to the Schwinger-Dyson equation of our massive supersymmetric model:

G(q 2 ) = 2a π e p 2 Erfi(p) - m 2 µ 2
Erfi(p 0 ) Erfi(p) (49a)

q 2 = µ 2 Erfi(p) Erfi(p 0 ) . (49b) 
To our knowledge, this is the second (the first being in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]) known exact solution of a Schwinger-Dyson equation, and the first for a theory with a mass term.

Conclusion

Using kinematic renormalization, we have been able to write down the renormalized Schwinger-Dyson equations of the massive Yukawa model, and of a massive linear version of a Wess-Zumino model. The non-supersymmetric model has been studied both in ultraviolet (UV) and infrared (IR) limit. In the UV limit, the equation fulfilled by the wavefunction is the same as the one solved in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. We could then use the result of this paper to determine the mass function of the Yukawa model. For the IR limit, two cases had to be separated, called soft and deep IR. In the soft case, an explicit solution to the Schwinger-Dyson equation has been found at a given impulsion of reference. For the deep IR case, an explicit solution has been found as well, but for every impulsion of reference.

For the supersymmetric massive model, supersymmetry could be used twice to simplify the problem: it provides a non-renormalization theorem and allows to take all the wavefunctions to be equal. We end up with a single differential equation instead of a system of coupled differential equations. Then, using a series of transformations, a parametric solution has been found without taking any limit. It is, as far as we know, the first exact solution of a Schwinger-Dyson equation (since the system reduces to only one equation) with a mass term. Therefore, we hope to have proven that the method of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF] is worth further investigations.

There are many tracks that one might follow to go beyond our analysis. The most natural question to ask is whether one could find the perturbations to the solutions of the Yukawa model in the UV and IR limit. Although this is not a trivial task due to the complexity of some of our functions, it could still be tackled. When doing so, very interesting questions of convergence of the solutions arise, that are currently under investigation.

Another approach to solve the Schwinger-Dyson equations of the massive Yukawa theory beyond the UV and IR limit could be the use of the technology of special functions. Important progresses have been made (and are made) to use them for evaluating Feynman integrals. One can look at [START_REF] Panzer | Feyman integrals via hyperlogarithms[END_REF] for a nice survey of the field. Since those functions obey some functional equations, we could study Schwinger-Dyson equations in their light.

A maybe simpler task would be to numerically compare the UV and IR solutions of the Yukawa model and try to fit them into a solution covering the full range of possible values of the external impulsion. Instead of looking for perturbations of the solutions found in parts 3 and 4, one could look for pertubations of the equations solved in those parts. Indeed the solutions are rather complicated and not well-suited for numerical investigations. Therefore it would be much more convenient to deal with modified equations to unravel the behaviour of the massive Yukawa model beyond the UV and IR limits.

Moreover, on the supersymmetric side, a numerical study of the anomalous dimension of our supersymmetric model had been made in [START_REF] Bellon | Higher loop renormalization of a supersymmetric field theory[END_REF] (with m = 0) using a Padé-Borel resummation method. It would be very interesting to compare this study to our in order to gain a better understanding of the effect of the mass on the solution.

Even for non-linear Schwinger-Dyson equation, it as been shown in [START_REF] Bellon | Study of a Schwinger-Dyson Equation in the Borel Plane[END_REF] that the asymptotic behaviour of the solution of the Schwinger-Dyson equation (in this case written for the anomalous dimension) is given by a term which is the linear part of the full non-linear Schwinger-Dyson equation. Thus our results could be used in more physical cases, at least to reach informations about the asymptotic behaviour of the solution seen as a series of the coupling constant of the theory.

i.e. of order of unit, which is still much lower than the ratio m

/q 2 .
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