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In this article we consider the nonlinear system involving the p-

u ≥ 0, v ≥ 0 for which we prove symmetry, asymptotic behavior and non degeneracy properties. Next we prove a De Giorgi Type result in dimension 2 under some additional growth and monotonicity assumptions.

Introduction

In this article we extend some of the results obtained in [START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF] in the case of the Laplacian, to the p-Laplacian case. More precisely we consider the system in R N : div(|∇u| p-2 ∇u) = (p -1)u p-1 v p div(|∇v| p-2 ∇v) = (p -1)v p-1 u p , (

where u and v are supposed to be non negative.

In the case p = 2 this problem comes from a phase separation model. As an example the Gross Pitaevskii model, [START_REF] Chang | Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates[END_REF] can be described by the non linear elliptic system 1

       -∆u + αu 3 + Λv 2 u = λ 1,Λ u in Ω -∆v + βv 3 + Λu 2 v = λ 2,Λ v in Ω u > 0, v > 0, in Ω, u = v = 0 on ∂Ω Ω u 2 = Ω v 2 = 1 (1.2)
where Ω is a smooth bounded domain in R N and α, β are positive parameters, Λ will become large. Assuming that sup(λ 1,Λ , λ 2,Λ ) ≤ C for some constant independent of Λ, formally and up to subsequences, (u Λ , v Λ ) converges to some pair (u, v) which satisfies uv = 0 and the equations

-∆u + αu 3 = λ 1,Λ u in Ω u = {x, u(x) > 0} -∆v + βv 3 = λ 2,Λ v in Ω v = {x, v(x) > 0} (1.3)
Several papers treat the convergence of (u Λ , v Λ ) away the interface γ = {x, u(x) = 0 = v(x)}, see for example [START_REF] Wei | Asymptotic behavior of solutions of planar elliptic systems with strong competition[END_REF] and [START_REF] Conti | Asymptotic estimates for the spacial segregation of competitive systems[END_REF] , [START_REF] Noris | Uniform Holder bounds for nonlinear Schrodinger systems with strong competition[END_REF] for the uniform equicontinuity of (u Λ , v Λ ). Near the interface, the profile of bounded solutions of the blow up equation for (1.2) is a system, which is completely classified in the one dimensional case, [START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF], [START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF]. This system is the following

   U ′′ = U V 2 in R V ′′ = V U 2 in R, U > 0, V > 0.
In [START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF], the authors expect that the same system occurs in the N dimensional case, say

   ∆U = U V 2 in R ∆V = V U 2 in R, U > 0, V > 0.
Furthermore they conjecture that for any dimension N ≤ 8, the system is in fact one dimensional. They obtain this result under some additional assumption on the growth of the solution, in dimension 2. The assumption N ≤ 8 is motivated by the case of scalar equations for which it is known that the scalar equation is not necessary one dimensional when N ≥ 9, [START_REF] Del Pino | On De Giorgi's conjecture in dimension N ≥ 9[END_REF]. The condition on the growth in the two dimensional case is satisfied in particular if the solution of the system is at most linear at infinity, as it is in the case N = 1. When N > 2, this is not sufficient, and up to now, even in the case N = 2, this asymptotic behaviour is not proved.

In [START_REF] Farina | Some Symmetry results for entire solutions of an elliptic system arising in phase transition[END_REF] A. Farina improves the result by establishing that for N = 2, as soon as u and v have at most algebraic increasing behavior and satisfy the half monotonicity condition ∂ N u > 0 or ∂ N v < 0 for some direction e N , then the solution is one dimensional. In [START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation Accepted in[END_REF], Farina and Soave replace the half monotonicity by the condition lim x N →±∞ u(x ′ , x N )-v(x ′ , x N ) = ±∞, uniformly with respect to x ′ , conserving the assumption of algebraic growth.

Let us cite some variants on the De Giorgi result :

-In [START_REF] Wang | On the De Giorgi type conjecture for an elliptic system modeling phase separation[END_REF], K. Wang proves the one dimensional property by replacing the monotonicity condition by the fact that (u, v) is a local minimizer, and assuming in addition the at most linear growth.

-In [START_REF] Fazly | De Giorgi type results for elliptic systems[END_REF] and [START_REF] Dipierro | Geometric inequalities and symmetry results for elliptic systems discrete and continuous Discrete and continuous dynamical systems[END_REF] the authors consider the case of m components in place of two, and a right hand side which is the gradient of H, which satisfies a condition of orientability. Under some condition on the growth of the solutions, they prove a De Giorgi Result, which covers the case N = 2 under the assumptions of [START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF].

The present paper is motivated by the asymptotic study of the problem

       -div(|∇u| p-2 ∇u) + αu p+1 + Λv p u p-1 = λ 1,Λ u p-1 in Ω -div(|∇v| p-2 ∇v) + βv p+1 + Λu p v p-1 = λ 2,Λ v p-1 in Ω u > 0, v > 0 in Ω, u = v = 0 on ∂Ω Ω u p = Ω v p = 1 (1.4)
where Ω is a smooth bounded domain in R N and α, β are positive parameters, Λ will become large. Such a pair of solutions is a critical point for the functional

E Λ (u, v) = 1 p Ω (|∇u| p + |∇v| p ) + α p+2 Ω |u| p+2 + β p+2 Ω |v| p+2 + Λ p Ω |u| p |v| p under the constraint Ω |u| p = Ω |v| p = 1.
Assume that there exists some constant C independent on Λ with sup

Λ (λ 1,Λ , λ 2,Λ ) ≤ C,
for Λ large. As Λ goes to infinity, and up to subsequence (u Λ , v Λ ) tends formally to some pair (u, v) which satisfies uv = 0 and

-div(∇u| p-2 ∇u) + αu p+1 = λ 1,Λ u p-1 in Ω u -div(|∇v| p-2 ∇v) + βv p+1 = λ 2,Λ v p-1 in Ω v (1.5)
where

Ω u = {x, u(x) > 0}, Ω v = {x, v(x) > 0}.
It is not our purpose here to follow this way. We are interested in the one dimensional case and especially in the behavior of the limit pair of solutions (u, v) near the interface γ = {x ∈ Ω, u(x) = v(x) = 0}.

When N = 1 and Ω =]a, b[ one has the result :

Theorem 1.1. Assume that Ω =]a, b[, and that (u Λ , v Λ ) solves (1.4). There exists x Λ ∈ Ω such that u Λ (x Λ ) = m Λ = v Λ (x Λ ) goes to zero, and x Λ tends to some point x ∈]a, b[.Furthermore if ũΛ = 1 m Λ u Λ (m Λ y + x Λ ) , ṽΛ = 1 m Λ v Λ (m Λ y + x Λ ) and y ∈] a-x Λ m λ , b-x Λ m Λ [, (ũ Λ , ṽΛ ) converges locally uniformly to some pair (U, V ) which satisfies    (|U ′ | p-2 U ′ ) ′ = (p -1)V p U p-1 (|V ′ | p-2 V ′ ) ′ = (p -1)U p V p-1 on R U (0) = V (0) = 1. U, V > 0. (1.6)
Furthermore there exists some positive constant T ∞ such that

|U ′ | p + |V ′ | p -U p V p = T ∞ .
Next we are interested in the existence and in the properties of the solutions of (1.6). The existence of a non trivial solution is given in Theorem 3.1. In a second time, using the sliding method, [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF], we prove the following : Theorem 1.2. Let (U V ) be a non negative solution of

(|U ′ | p-2 U ′ ) ′ = (p -1)V p U p-1 , (|V ′ | p-2 V ′ ) ′ = (p -1)U p V p-1 on R.
(1.7)

Then up to exchanging U and V , 1) Up to translation V (y) = U (-y).

2)

U ′ > 0 everywhere, U ′ (+∞) = (T ∞ ) 1 
p , and there exist some positive constants, m, M , k, K, c, C such that near -∞, me

-Kx 2 ≤ U (x) ≤ M e -kx 2 , c|x|U (x) ≤ U ′ (x) ≤ C|x|U (x).
Similar estimates hold for V exchanging -∞ and +∞.

3) Suppose that (φ, ψ) is a bounded solution of the linearized system

(|U ′ | p-2 φ ′ ) ′ = (p -1)U p-2 V p φ + pV p-1 U p-1 ψ, (|V ′ | p-2 ψ ′ ) ′ = (p -1)V p-2 U p ψ + pU p-1 V p-1 φ in R, then there exists some constant c such that (φ, ψ) = c(U ′ , V ′ ).
In a last section we present the analogous of the De Giorgi result in [START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF] in the 2 dimensional case : Theorem 1.3. Suppose that N = 2 and that (u, v) is a non negative solution of (1.1). Suppose that u ,1 > 0 and v ,1 < 0, and that there exists some constant C such that for any R large enough

1 R 2+p B 2R \B R (|u| p + |v| p ) ≤ C.
Then the solution is "one dimensional", i. e. there exists (U, V ) a solution of (1.7) and some a ∈ R 2 such that a • e 1 = 0 such that

u(x) = U (a • x), v(x) = V (a • x).
This result is not new. It is contained in [START_REF] Dipierro | Geometric inequalities and symmetry results for elliptic systems discrete and continuous Discrete and continuous dynamical systems[END_REF], under more general conditions both on the right hand side and on the operator which generalizes the p-Laplacian. But we present here a short proof which does not need to introduce nor stability, nor geometrical properties.

As it is done in [START_REF] Fazly | De Giorgi type results for elliptic systems[END_REF], it is probable that the results in section 4 can be extended to the case of a right hand side ∇H(u), where the function H satisfies orientability conditions as defined in [START_REF] Fazly | De Giorgi type results for elliptic systems[END_REF].

One question of interest is the following : As we mentioned above, in [START_REF] Farina | Some Symmetry results for entire solutions of an elliptic system arising in phase transition[END_REF], and [START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation Accepted in[END_REF] the authors suppose that the solution has at most algebraic growth. Can we have the same result in the p-Laplacian case? The answer is not immediate, since the proof of Farina et al relies on some properties of the Almgren frequency function, which do not extend to the p-Laplacian case .

Another interesting direction is the following : Suppose that one replaces the Laplacian system by a Fully Nonlinear system. Of course for Pucci's operators the one dimensional system is reduced, up to constant, to the Laplacian case. But, in dimension N ≥ 2, due to the non differentiability of the Pucci's operators, the definition of stable solutions must be precised. In the same order of ideas, one can imagine to treat the case of Fully Nonlinear degenerate or singular systems, based on the model of the p-Laplacian type treated here, but not under divergence form, as the following

|∇u| α F (D 2 u) = u α+1 v α+2 |∇v| α F (D 2 v) = v α+1 u α+2 in R N
where α is some number > -1 and F is fully non linear elliptic. The reader may consult [START_REF] Birindelli | Eigenvalue, maximum Principle and Regularity for Fully non linear operators[END_REF] for properties of such operators and a convenient definition of viscosity solutions.

It would be far too long to cite all the papers written about the case of one equation. Let us cite for the p-Laplacian case the recent paper of A. Farina and Valdinoci [START_REF] Farina | 1D Symetry for solutions of semi linear and quasilinear elliptic equations Transaction Of the Am[END_REF], the very complete paper of Savin et al. [START_REF] Savin | Flat level set regularity of p Laplace phase transitions[END_REF]. For variations on the subject on De Giorgi's conjecture in the case of a single equation, the reader may consult [START_REF] Giorgi | Convergence problems for functionals and operators[END_REF], [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF], [START_REF] Farina | Bernstein and De Giorgi type problems : new results via a geometric approach[END_REF], [START_REF] Barlow | The Liouville property and a conjecture of De Giorgi[END_REF], [START_REF] Berestycki | One dimensional symmetry of bounded entire solutions of some elliptic equations Duke Math[END_REF], [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF], [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF], [START_REF] Savin | Regularity of flat level sets in phase transitions[END_REF], [START_REF] Birindelli | One-dimensional symmetry for solutions of Allen Cahn fully nonlinear equations[END_REF].

The paper is organized as follows : In Section 2, we consider the one dimensional system defining (u Λ , v Λ ) and prove Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2. Some of the technical details of this section are proved in the appendix of [START_REF] Demengel | Qualitative properties of a nonlinear system involving the p-Laplacian operator[END_REF]. In section 4 we prove Theorem 1.3.
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2 The original problem : Proof of theorem 1.1

In all that section we will frequently use subsequences in place of sequences, without mentioning it. Let us consider for α, β and Λ, λ 1,Λ , λ 2,Λ some given positive constants, (u Λ , v Λ ) which solves

   -|u ′ Λ | p-2 u ′′ Λ + αu p+1 Λ + Λv p Λ u p-1 Λ = λ 1,Λ u p-1 Λ -|v ′ Λ | p-2 v ′′ Λ + βu p+1 Λ + Λv p-1 Λ u p Λ = λ 2,Λ v p-1 Λ in ]a, b[ u Λ , v Λ > 0, u Λ (a) = u Λ (b) = v Λ (a) = v Λ (b) = 0, b a |u Λ | p = b a |v Λ | p = 1. (2.1) Such (u Λ , v Λ ) is then a (non negative) solution of the minimizing eigenvalue problem inf |{u|p=|v|p=1,(u,v)∈W 1,p (]a,b[)} E Λ (u, v),
where

E Λ (u, v) = 1 p b a |u ′ | p + 1 p b a |v ′ | p + α b a |u| p+2 p + 2 + β b a |v| p+2 p + 2 + Λ p b a |u| p |v| p . Assume that max Λ (λ 1,Λ , λ 2,λ ) ≤ C, Due to the first equation in (2.1) multiplied by u Λ , integrated over ]a, b[, one gets b a |u ′ Λ | p + α b a u p+2 Λ + Λ b a u p Λ v p Λ = λ 1,Λ . (2.2) Doing the same for v Λ , one gets that (u Λ , v Λ ) is bounded in W 1,p (]a, b[) 2 . Furthermore Lemma 2.1. There exist T Λ , C 1 and C 2 independent on Λ, such that |u ′ Λ | p p + |v ′ Λ | p p -Λ u p Λ v p Λ p -α u p+2 Λ p + 2 -β v p+2 Λ p + 2 + λ 1,Λ u p Λ p + λ 2,Λ v p Λ p = T Λ p (2.3) and 0 < C 1 ≤ T Λ ≤ C 2 < ∞ Proof
Multiply the first equation in (2.1) by u ′ Λ , the second one by v ′ Λ , and add the two equations, we obtain that

-( |u ′ Λ | p p ) ′ -( |v ′ Λ | p p ) ′ + α (u p+2 Λ ) ′ p + 2 + β (v p+2 Λ ) ′ p + 2 + Λ (v p Λ u p Λ ) ′ p = λ 1,Λ (u p Λ ) ′ p + λ 2,Λ (v p Λ ) ′ p .
Hence there exists some constant

T Λ such that (2.3) is satisfied. Integrating on [a, b] the equation defining T Λ , one gets b a |u ′ Λ | p p + b a |v ′ Λ | p p -Λ b a u p Λ v p Λ p -α b a u p+2 Λ p + 2 -β b a v p+2 Λ p + 2 +λ 1,Λ +λ 2,Λ = T Λ (b -a) p .
On the other hand, using (2.2) for u Λ and its analogous for v λ , one has

b a |u ′ Λ | p + b a |v ′ Λ | p + α b a u p+2 Λ + β b a v p+2 Λ + 2Λ b a u p Λ v p Λ = λ 1,Λ + λ 2,Λ .
Combining the two equations one gets

T Λ (b-a) = 2 b a |u ′ Λ | p +2 b a |v ′ Λ | p + 2α p + 2 b a u p+2 Λ + 2β p + 2 b a v p+2 Λ +Λ b a u p Λ v p Λ ,
and using Poincaré's inequality

b a |u ′ Λ | p ≥ C b a |u Λ | p ≥ C, one obtains that T Λ ≥ C > 0.
On the other hand since (u Λ ) and (v Λ ) are bounded in W 1,p (]a, b[) and since λ 1,Λ and λ 2,Λ are bounded, one gets that T Λ is bounded from above.

Furthermore using the equation defining T Λ , and the fact that u Λ and v Λ vanish on the end points, one gets that

u ′ Λ (a) , u ′ Λ (b), v ′ Λ (a), v ′ Λ (b)
are bounded independently on Λ. Integrating the first equation in (2.1) between a and x one gets

|u ′ Λ | p-2 u ′ Λ (x) p -1 - |u ′ Λ | p-2 u ′ Λ (a) p -1 = α x a u p+1 Λ + Λ x a v p Λ u p-1 Λ + λ 1,Λ x a u p-1 Λ using this on {x = b}, one gets Λ b a u p-1 Λ v p Λ ≤ C,

and by the positivity that |u

′ Λ | p-2 u ′ Λ (x) -|u ′ Λ | p-2 u ′ Λ (a) ≤ C.
Doing the same between x and b one obtains that |u ′ Λ | ≤ C for some constant independent on Λ. In the same manner,

|v ′ Λ | ≤ C. Theorem 2.2. Assume that (u Λ , v Λ ) solves the system (2.1) in ]a, b[. There exists x Λ such that m Λ = u(x Λ ) = v Λ (x Λ ) → 0 as Λ goes to infinity, and x Λ → x ∞ ∈]a, b[. Furthermore m 2p Λ Λ → C o > 0 and Λ 1 2p min(x Λ -a, b -x Λ ) → +∞.
Proof of Theorem 2.2 By the previous estimates (u Λ ) and (v Λ ) are relatively compact in C([a, b]). In particular up to subsequence, (u Λ ) and (v Λ ) are uniformly convergent. Let (u ∞ , v ∞ ) be the limit of such subsequence. By the identity

b a |u ∞ | p = b a |v ∞ | p ,
and by the uniform convergence , there exists x ∞ and x Λ which tends to

x ∞ , such that m Λ = u Λ (x Λ ) = v Λ (x Λ ) and x ∞ ∈ {u ∞ (x) = v ∞ (x)} = γ.
To prove that lim sup Λm 2p Λ < ∞, we argue by contradiction and define ũΛ =

1 m Λ u( y m Λ Λ 1 p + x Λ ), ṽΛ = 1 m Λ v( y m Λ Λ 1 p + x Λ ) where y ∈] -x Λ + am Λ Λ 1 p , -x Λ + bm Λ Λ 1 p [, interval which tends to R. Then (ũ Λ , ṽΛ ) satisfy the equation |ũ ′ Λ | p p + |ṽ ′ Λ | p p - ũp Λ ṽp Λ p -α ũp+2 Λ (p + 2)m p-2 Λ Λ -β ṽp+2 Λ (p + 2)m p-2 Λ + λ 1,Λ ũp Λ pm p Λ Λ + λ 2,Λ ṽp Λ pm p Λ Λ = T Λ pm 2p Λ Λ . (2.4)
Using the fact that (u ′ Λ ) is bounded independently on Λ, by the mean value's theorem

|ũ Λ (y) - 1 m Λ u(x Λ )| ≤ 1 m 2 Λ Λ 1 p |u ′ Λ | ∞
and we have analogous estimates for ṽΛ , so using u Λ (x Λ ) = m Λ = v Λ (x Λ ) one obtains that ũΛ goes to 1 uniformly, ṽΛ goes to 1, finally passing to the limit in the equation (2.3) one gets that

- 1 p = 0,
a contradiction. We have obtained that Λm 2p Λ is bounded. To end the proof, suppose by contradiction that Λm 2p Λ → 0 for a subsequence and let ũΛ (y) = 1 m Λ u Λ (m Λ y + x Λ ), then ũΛ and ṽΛ satisfy the identity

|ũ ′ Λ | p p + |ṽ ′ Λ | p p - m 2p Λ Λũ p Λ ṽp Λ p - α (p + 2) m p+2 Λ ũp+2 Λ - β (p + 2) m p+2 Λ ṽp+2 Λ + λ 1,Λ m p Λ ũp Λ p + λ 2,Λ m p Λ ṽp Λ p = T Λ p . Furthermore |ũ Λ (y) -1 m Λ u Λ (x Λ )| ≤
C|y| by the mean values theorem, which implies that ũΛ is uniformly bounded. Since |ũ ′ Λ | ∞ is bounded independently on Λ, the dominated convergence theorem implies that (up to subsequence) ũ′ Λ converges strongly in L p , in particular |ũ ′ Λ | p-2 ũ′ Λ converges in the distributional sense, and so, also does its derivative. By passing to the limit in (2.1), one obtains that (ũ Λ , ṽΛ ) tends locally uniformly to (u

∞ , v ∞ ) which satisfies |u ′ ∞ | p-2 u ′′ ∞ = 0 and |v ′ ∞ | p-2 v ′′ ∞ = 0, hence u ′ ∞ = const, v ′ ∞ = const.
Since u ∞ and v ∞ are bounded, these constant are zero, which yields a contradiction with the identity

|u ′ ∞ | p p + |v ′ ∞ | p p = T ∞ p ,
remarking that T ∞ := lim T λ = 0, by the estimates on T Λ proved before. We have obtained that m 2p Λ Λ is bounded from above by some constant > 0. We finally prove that Λ 1 2p min(x Λa, bx Λ ) → +∞. Suppose for example and by contradiction that up to a subsequence Λ

1 2p (x Λ -a) → C 1 . Define ũΛ (y) = Λ 1 2p u( y Λ 1 2p + x Λ ). Then (ũ Λ , ṽΛ ) satisfies |ũ ′ Λ | p-2 ũ′′ Λ - αũ p+1 Λ Λ p+2 2p -ṽp Λ ũp-1 Λ + λ 1,Λ ũp-1 Λ Λ 1 2 = 0, |ṽ ′ Λ | p-2 ṽ′′ Λ - βṽ p+1 Λ Λ p+2 2p -ũp Λ ṽp-1 Λ + λ 2,Λ ṽp-1 Λ Λ 1 2 = 0.
We also get from the energy estimate (2.3)

|ũ ′ Λ | p p + |ṽ ′ Λ | p p - ũp Λ ṽp Λ p - αũ p+2 Λ (p + 2)Λ p+2 2p - βṽ p+2 Λ (p + 2)Λ p+2 2p + λ 1,Λ ũp Λ 1 2 + λ 2,Λ ṽp Λ 1 2 = T Λ p .
Remark as before that when Λ goes to infinity, (ũ Λ , ṽΛ ) tends locally uniformly to some (U, V ) , which satisfies

|U ′ | p-2 U ′′ = V p U p-1 |V ′ | p-2 V ′′ = U p V p-1 and U (-C 1 ) = V (-C 1 ) = 0. Note that if (b -x Λ )Λ 1 2p → C 2 < ∞ one has U (C 2 ) =
0 and then U ′′ ≥ 0 and U ≥ 0 implies U ≡ 0. We then assume that C 2 = +∞. Using Fatou's lemma one gets

∞ -C 1 V p U p-1 ≤ lim inf (b-x Λ )Λ 1 2p (a-x Λ )Λ 1 2p ṽp Λ ũp-1 Λ = Λ b a v p Λ u p-1 Λ ≤ C
as stated in the proof of Lemma 2.1. Since U ′ is increasing and U ≥ 0, if U is not identically zero, there exists

C ′ 1 ≥ C 1 , such that U ′ (C 1 ) > 0, and U = 0 on [-C 1 , -C ′ 1 ] then U (x) ≥ U (-C ′ 1 ) + U ′ (-C ′ 1 )(x -C ′ 1 ) = U ′ (-C ′ 1 ) + (x -C ′ 1 
). In the same manner there exists

C ′′ 1 ≥ C 1 , such that V (x) ≥ V (-C ′′ 1 ) + V ′ (-C ′′ 1 )(x -C ′′ 1 ).
We have obtained that near +∞, U p-1 V p ≥ Cx 2p-1 , which contradicts the fact that U p-1 V p is integrable on ] -C 1 , +∞[. Finally U = V = 0, a contradiction with the identity defining T ∞ , when passing to the limit. We have obtained that Λ

1 2p min(x Λ -a, b -x Λ ) → +∞.
This ends the proof of Theorem 1.1.

3 Qualitative properties of the p-system in the one dimensional case : Proof of Theorem 1.2

In this section we want to prove the existence of non trivial solutions to the limit system (1.7). Note that the previous existence result is obtained under the assumption (λ 1,Λ , λ 2,Λ ) ≤ C. Theorem 1.2 is a consequence of several theorems and propositions :

Theorem 3.1. There exists an entire solution for (1.7) such that U (x) = V (-x).

Proof

We argue as in [START_REF] Berestycki | On phase-separation models: asymptotics and qualitative properties[END_REF], up to technical arguments due to the non linearity of the p-Laplacian, and due to the singularity (p < 2) or the degeneracy (p > 2).

Let us consider for R large the variational problem inf

(U,V )∈Xp(R) { 1 p R -R |U ′ | p + 1 p R -R |V ′ | p + 1 p R -R |U | p |V | p }.
where

X p (R) = {(U, V ) ∈ H 1 (] -R, R[), U (x) = V (-x), U (-R) = 0, U (R) = R}.
This problem admits a unique solution (U R , V R ).

We prove that U R is non negative. Indeed one has

|U ′ R | p-2 U ′′ R = |U R | p-2 U R |V R | p ,
and a symmetric equation for V R . Multiplying by U - R and integrating by parts, using the fact that U R (-R) and U R (R) are nonnegative, one gets that U - R = 0 and then U R ≥ 0. The same is valid for V R .

By the strong maximum principle of Vasquez [START_REF] Vasquez | A strong maximum principle for some quasilinear elliptic equations[END_REF],

U R > 0 on ] -R, R[, U ′ R (-R) > 0 and since |U ′ R | p-2 U ′ R is increasing, U ′ R > 0 everywhere, finally U ′′ R ≥ 0. Analogously V ′ R < 0, then U R -V R vanishes only on zero. U R -V R > 0 on ]0, R] implies that |U ′ R | p-2 U ′′ R -|V ′ R | p-2 V ′′ R = U p-1 R V p-1 R (V R -U R ) ≤ 0 on [0, R]. First case p ≥ 2. Using V ′ R (x) = -U ′ R (-x), one has for x > 0, |V ′ R |(x) = U ′ R (-x) < U ′ R (x) and then |U ′ R | p-2 U ′′ R ≤ |U ′ R | p-2 V ′′ R . Since U ′ R > 0, this implies that U ′′ R -V ′′ R ≤ 0. From this one gets that U R ≥ V R + x for x > 0, Indeed on 0, U R (0) = V R (0) ≥ V R (0) + 0, and U R (R) = R ≥ V R (R) + R = R, in particular U R (x) > x for x > 0.
We have obtained that

|V ′ R | p-2 V ′′ R ≥ (x + ) p V p-1 R
since V ′′ R ≥ 0 everywhere, in particular on R -. Let V be the solution, ( given by Lemma (4.3) in [START_REF] Demengel | Qualitative properties of a nonlinear system involving the p-Laplacian operator[END_REF]) , of

| V ′ | p-2 V ′′ = x p | V | p-2 V , on R + , which is positive and satisfies V ′ (0) = -2. Let us extend V on R -by the linear function -2x + V (0). Since V hence defined is C 2 and is a solution of | V ′ | p-2 V ′′ = (x + ) p | V | p-2 Ṽ on both R + and R -, one gets that it is a solution on ] -R, R[. For R large enough, V R (-R) = R ≤ -2(-R) + V (0) = V (-R), while V R (R) = 0 ≤ Ṽ (R) since Ṽ is positive.
Using the comparison principle, since V and V R are respectively solution and sub-solution of the same equation, one gets that V R ≤ V on [-R, R]. Using Harnack's inequality, [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF] one gets that (U R , V R ) tends to a non trivial solution (since U R ≥ x + ) , (U, V ) which satisfies (1.7) and V (x) = U (-x). Second case p < 2:

We begin to prove that

U ′ R (x) ≥ 1 1+2 1 p-1 for x > 0. Note that for x > 0 (U ′ R ) p-1 ≤ |V ′ R | p-2 V ′ R (x) + 2(U ′ R (0)) p-1 which implies that U ′ R (x) ≤ 2 1 p-1 U ′ R (0). Hence U R (R) = R ≤ U R (0)+2 1 p-1 RU ′ R (0) On the other hand when x ∈ R - U ′ R (x) ≤ U ′ R (0) which implies by the mean value's theorem that U R (0) ≤ U R (-R) + U ′ R (0)R. We have obtained that U ′ R (0) ≥ 1 1 + 2 1 p-1
as soon as R is large enough. We derive from this that on R

+ , |V ′ R | p-2 V ′′ R ≥ 1 1+2 1 p-1 p (x + ) p V p-1 R .
We now consider the solution V of

| V ′ | p-2 V ′′ = 1 1+2 1 p-1 p x p V p-1 on R + ,
V > 0 given by Proposition 4.4 in [START_REF] Demengel | Qualitative properties of a nonlinear system involving the p-Laplacian operator[END_REF] which satisfies V ′ (0) = -2, extended by -2x + V (0) on R -.

One obtains as in the case p ≥ 2 that V R ≤ V and by Harnack's inequality, [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF], one gets that (U R , V R ) tends locally uniformly to a non trivial solution (U, V ) which satisfies (1.7), and U (x) = V (-x). Lemma 3.2. Suppose that (U, V ) satifies (1.7). Then either U ′ > 0 and V ′ < 0 or U ′ < 0 and V ′ > 0. Furthermore there exists some constant C such that

|U ′ | + |V ′ | ≤ C.

Proof

Clearly the identity

|U ′ | p + |V ′ | p -U p V p = T ∞ (3.1) 
holds for some finite constant T ∞ . Since U ′′ ≥ 0, either U ′ > 0 or U ′ < 0 or there exists x 1 such that U ′ (x) > 0 for x > x 1 and conversely for x < x 1 , and analogous facts hold for V ′ . Suppose that U ′ and V ′ have the same sign somewhere, then if this sign is positif, by the increasing behavior of U ′ and V ′ , it is true also for x large .

In particular

U (+∞) = V (+∞) = +∞. The case p ≥ 2 Let ϕ = U + V . For x large enough, |ϕ ′ | p-2 = (|U ′ | + |V ′ |) p-2 ≥ c(|U ′ | p-2 + |V ′ | p-2 ) and then |ϕ ′ | p-2 ϕ ′′ ≥ c(|U ′ | p-2 + |V ′ | p-2 )(U ′′ + V ′′ ) ≥ c(|U ′ | p-2 U ′′ + |V ′ | p-2 V ′′ ) ≥ 2 p-1 (V p + U p ) ≥ (U + V ) p
as soon as x is large enough since U and V go to infinity.

Then |ϕ ′ | p-2 ϕ ′′ ≥ ϕ p , for x large enough.

In the following, c will denote some positive constant depending only on p which can vary from one line to another.

Multiplying by ϕ ′ > 0, one gets that d dx (|ϕ ′ | p ) ≥ c d dx (ϕ p+1 ). Then (ϕ ′ ) p ≥ c(ϕ p+1 -1), and since ϕ tends to infinity, for x large enough, (ϕ ′ ) p (x) ≥ cϕ p+1 (x). This implies ϕ ′ ≥ cϕ p+1 p , and then for x large enough, d dx (-ϕ -1 p ) ≥ c, which would imply that ϕ becomes negative for x large enough, a contradiction.

The case p < 2 Let ϕ = ((U ′ ) p-1 + (V ′ ) p-1 ) 1 p-1 , note that ϕ p-1 = (U ′ ) p-1 + (V ′ ) p-1 , that ϕ ≥ U ′ + V ′ and ϕ p ≤ 2 p p-1 -1 (U ′ + V ′ ) p . One has (ϕ p-1 ) ′ = d dx ((U ′ ) p-1 + (V ′ ) p-1 ) = (p -1)(U p-1 V p + V p-1 U p ) ≥ (V + U ) p ,
for x large, by the behavior at infinity of U and V .

Multiplying by

U ′ + V ′ > 0 one obtains that d dx (ϕ p-1 ) (U ′ + V ′ ) ≥ 1 p + 1 d dx ((V + U ) p+1 ).
On the other hand, by the positivity of d dx (ϕ p-1 ), and

U ′ + V ′ one has d dx (ϕ p-1 )(U ′ + V ′ ) ≤ p -1 p d dx (ϕ p )
hence integrating and using the fact that U + V goes to infinity when x goes to +∞, one gets that there exists some constant c p such that for x large enough

(U ′ + V ′ ) p ≥ c p ϕ p ≥ c p (U + V ) p+1
We end as in the case p ≥ 2 and get a contradiction. If the sign of U ′ and V ′ are both negative somewhere they are both negative for x < -x 1 . By considering the invariance of the equation by changing x in -x, and reasoning as above one gets a contradiction.

We have obtained that up to exchanging U and V , U ′ > 0 and V ′ < 0. Suppose that U ′ → +∞ somewhere, then it occurs at +∞ since U ′ is increasing, in particular U goes to +∞ at +∞, and using (3.1) so does U V .

Then (V ′ |V ′ | p-2 ) ′ = (p -1)(U V ) p-1 U → +∞, which implies that V ′ goes to +∞ at +∞, a contradiction with V ′ < 0. We have obtained that U ′ is bounded. If V ′ → -∞ somewhere, it occurs at -∞, then V goes to +∞ at -∞ , by (3.1) U V goes to +∞ at -∞ and |U ′ | p-2 U ′′ = (U V ) p-1 V → +∞ at -∞, hence U ′ becomes < 0 for x large negative, a contradiction.
We have obtained that

|U ′ | + |V ′ | ≤ C.
Proposition 3.3. Let (U, V ) be a solution such that U ′ > 0 and V ′ < 0. Then V p U p-1 → 0, U p V p-1 → 0 at ±∞. Furthermore the following hold :

U (-∞) = 0, U ′ (-∞) = 0, U ′ (+∞) = (T ∞ ) 1 p , (3.2) 
V (+∞) = 0, V ′ (+∞) = 0, V ′ (-∞) = -(T ∞ ) 1 p (3.3) Proof Since d dx (|U ′ | p-2 U ′ ) ≥ 0, and d dx (|V ′ | p-2 V ′ ) ≥ 0, U ′
and V ′ have a limit at infinity. Furthermore V ′ ≤ 0 and is increasing so it converges at +∞. Its limit must be zero since if not for x large enough, V ′ ≤ -m < 0 and V would become negative for x large.

By Lemma 1.2, U ′ is bounded. Furthermore it has a positive finite limit at +infinity, hence U goes to +infinity, more precisely U behaves like an increasing linear function. By ( 3.1) U p V p has a non negative limit at +infinity, consequently [START_REF] Demengel | Qualitative properties of a nonlinear system involving the p-Laplacian operator[END_REF] one gets that V ≤ W on [x o , ∞[ and then lim x→+∞ U V = 0 as well as lim x→+∞ U p V p-1 = 0. Since V ′ → 0 at infinity, (3.1) implies that |U ′ | p (+∞) = T ∞ . In particular T ∞ > 0.

U p-1 V p = 1 U (U p V p ) → 0. Furthermore for x > x o and x o large, |V ′ | p-2 V ′′ -V p-1 ≥ 0. Let us consider W = V (x o )e -x+xo which satisfies |W ′ | p-2 W ′′ -W p-1 ≤ 0. Using lemma 4.1 in the appendix of
A symmetric result holds near -∞ exchanging U and V .

Lemma 3.4. Let U and V be as in Proposition 3.3. There exist some positive constants m, M, k, K which depend on T ∞ , such that

me -Kx 2 ≤ U (x) ≤ M e -kx 2
and some positive constants c, C such that c|x|U (x) ≤ U ′ (x) ≤ C|x|U (x), for x large negative, and analogous estimates for V near +∞. Furthermore U has two asymptotic lines {y = 0} at -∞ and {y = (T ∞ )

1 p x+ b 1 } for some b 1 ∈ R, at +∞. Similarly V has asymptotic lines 0 at +∞ and y = -(T ∞ ) 1 p x + b 2 for some b 2 at -∞.
Remark 3.5. The constant k and K can be explicitely determined in function of T ∞ .

Proof :

Let k be such that V (x) ≥ 2k|x| near -∞, define W (x) = Ce -k|x| 2 which satisfies |W ′ | p-2 W ′′ ≤ V p W p-1 for x large enough negative, where the constant has been chosen in order that W (-M ) = U (-M ), and M is conveniently large. By Lemma 4.1 in [START_REF] Demengel | Qualitative properties of a nonlinear system involving the p-Laplacian operator[END_REF], using the fact that W ′ and U ′ are bounded, one gets that U ≤ W .

The lower bound can be obtained by considering some

K such that near -∞ V (x) ≤ K|x|. Consider W (x) = Ce -Kx 2 where C is chosen so that W (-M ) = U (-M ) and M is large. |W ′ | p-2 W ′′ ≥ V p W p-1
as soon as x is large enough negative. From this one derives that W ≤ U .

We prove the assertions concerning U and U ′ . We begin to establish that U ′ ≥ U for x large negative. Indeed let us observe that for x large negative |U ′ | p-2 (x)U ′′ (x) ≥ U p-1 (x) and then multiplying by U ′ and integrating, using

U (-∞) = U ′ (-∞) = 0, one obtains (U ′ ) p (x) ≥ U p (x) for x large negative.
To prove a better estimate, observe that by the behavior of V at -∞, for

x large negative |U ′ | p-2 U ′′ (x) ≥ C|x| p U p-1 (x).
We multiply by U ′ and prove that x). Using the fact that near -∞, U ′ and |x|U tend to zero, one gets that (U ′ ) p (x) -C|x| p U p (x) ≥ 0, always for x large negative.

-x -∞ |t| p U p-1 (t)U ′ (t)dt ≥ C|x| p U p (-x), for x large positive. Indeed -x -∞ |t| p U p-1 (t)U ′ (t)dt = [|t| p U p p | -x -∞ + -x -∞ |t| p-1 U p (t)dt ≥ |x| p U p p (-
In the same manner by the behaviour of V at -∞ there exists C such that |U ′ | p-2 (x)U ′′ (x) ≤ C|x| p U p-1 (x) for x large negative. Once more we multiply by U ′ and use here

-x -∞ |t| p U p-1 (t)U ′ (t)dt = [|t| p U p p | -x -∞ + -x -∞ |t| p-1 U p (t)dt ≤ |x| p U p p (-x) + 1 |x| -x -∞ |t| p U p-1 (t)U ′ (t)dt.
From this as soon as |x| > 2, x > 0,

-x -∞ |t| p U p-1 (t)U ′ (t)dt ≤ 2|x| p U p p (-x).
We have obtained the estimate on the right U ′ (x) ≤ C|x|U (x).

To deduce from this the asymptotics of U and V , we use the previous estimates on U for V near +∞. So we have |V ′ | ≥ C|x|e -kx 2 and then by ( 3.1)

one derives that (U ′ ) p -T ∞ ≥ -C|x| p e -pkx 2 , hence U ′ (x) -T 1 p ∞ ≥ -C|x| p e -kpx 2 which implies by integrating that U (x) -T Since U is convex, (U ′ -T 1 p
∞ ) is increasing and since it tends to 0 at infinity, it is negative, hence U -T

1 p ∞ x is decreasing. Finally U -T 1 p ∞ x is decreasing and bounded from below, hence defining b 1 = lim x→+∞ (U -T 1 p ∞ x), one has (U -T 1 p ∞ x) ≥ b 1 . Of course a symmetric result holds for V . Proposition 3.6. Let (U, V ) be a solution of (1.7), with U (0) = V (0) = 1. Then V (y) = U (-y).
We assume that U ′ > 0, hence we are in the hypothesis of the previous propositions. We can assume that b 1 ≥ b 2 , since if not one can replace (U (x), V (x)) by (V (-x), U (-x)) which exchanges b 1 and b 2 . We use the sliding method of Beresticky and Nirenberg, [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF].

Let

I λ = {x, x > λ} and U λ (x) = U (2λ -x), V λ (x) = V (2λ -x) Let w 1 = U -V λ , w 2 = U λ -V .
We prove in what follows that for λ large enough and x ∈ I λ , w 1 (x) > 0 as well as w 2 (x) > 0. From the asymptotic behaviour of U and V , and since

U is convex, U (x) ≥ T 1 p ∞ x + b 1 ,
and by the asymptotic behavior of V there exists K such that V (x) ≤ -T

1 p ∞ x -+ K, this implies that w 1 (x) ≥ T 1 p ∞ (x + (2λ -x) -) + b 1 -K for x ∈ I λ . So by taking λ such that λT 1 p ∞ > K -b 1 one gets that if x ∈]λ, 2λ[, w 1 (x) ≥ T 1 p ∞ (λ + 0) + b 1 -K > 0 and for x > 2λ, w 1 (x) ≥ T 1 p ∞ (x + x -2λ) + b 1 -K ≥ 2λT 1 p ∞ + b 1 -K > 0.
We now derive from this that w 2 is also > 0 in the same I λ for large values of λ. Indeed, we have

|U ′ λ | p-2 U ′′ λ -|V ′ | p-2 V ′′ = U p (U p-1 λ -V p-1 ) + U p-1 λ (V p λ -U p ).
Multiplying this by w - 2 , integrating between λ and x and using

(U λ -V )(λ) = (U -V )(λ) = w 1 (λ) > 0 one gets - x λ (|U ′ λ | p-2 U ′ λ -|V ′ | p-2 V ′ )(w - 2 ) ′ + [ 1 p -1 (|U ′ λ | p-2 U ′ λ -|V ′ | p-2 V ′ )(w - 2 ))] x λ = x λ U p (U p-1 λ -V p-1 )w - 2 + x λ U p-1 λ (V p λ -U p )w - 2 ≤ 0 Using - x λ (|U ′ λ | p-2 U ′′ λ -|V ′ | p-2 V ′′ )(w - 2 ) ′ ≥ 0, w - 2 ( 
λ) = 0 and w 2 (∞) = 0, as well as the fact that U ′ and V ′ are bounded, letting x go to infinity, one gets that w - 2 = 0 and then w 2 > 0 for x ∈ I λ and λ large enough. We now define λ ⋆ = inf{λ > 0, w µ 1 (x) > 0 in I µ , for all µ > λ}. By the previous observations w µ 2 > 0 in I µ for all µ > λ ⋆ . Since U (0) = V (0) = 1, one has if λ < 0, by the increasing behaviour of U -V , (U -V )(λ) < 0, which implies that λ ⋆ ≥ 0. We want to prove that λ ⋆ = 0.

Let us observe that by continuity w λ ⋆ 1 ≥ 0 and w λ ⋆ 2 ≥ 0 on I λ ⋆ . By the strong maximum principle w λ ⋆ 1 > 0 and w λ ⋆ 2 > 0 in I λ ⋆ . By the asymptotic behaviour, there exists B 1 such that for x < B 1 < 0, V (x) + T

1 p ∞ x -b 2 < b 1 -b 2 4
Take A = sup(2λ ⋆ -B 1 , λ ⋆ ) then for x > A, and for 0 < λ < λ ⋆ ,

V (2λ -x) + T 1 p ∞ (2λ -x) -b 2 < b 1 -b 2 2 , hence for x > A and λ ∈]0, λ ⋆ [, w λ 1 (x) -T 1 p ∞ 2λ ≥ b 1 -b 2 2 . We now observe that inf [λ ⋆ ,A] w λ ⋆ 1 = m > 0, indeed w λ ⋆ 1 (λ ⋆ ) = U (λ ⋆ ) - V (λ ⋆ ) > U (0) -V (0) since U ′ > 0, V ′ < 0, U (0) = V (0) and λ ⋆ > 0. By the continuity of w λ ⋆ 1 one can choose η > 0 such that inf [λ,A] w λ ⋆ 1 ≥ 3m 4 for |λ -λ ⋆ | ≤ η. By the uniform continuity of V in a compact set, one can also impose to η < λ ⋆ that for |λ -λ ⋆ | < η, for all x ∈ [λ ⋆ -η, A], one has |V (2λ ⋆ -x) -V (2λ -x)| ≤ m
4 and then for x > λ > λ ⋆η and x < A, U (x) -V (2λx) ≥ m 2 . Finally inf [λ,A] w λ 1 > 0 for λ ⋆η < λ < λ ⋆ , and then w λ 1 > 0 on a neighborhood on the left of λ ⋆ . This contradicts the definition of λ ⋆ . We have obtained λ ⋆ = 0 and then U (x) ≥ V (-x) for x ≥ 0.

Since we have seen before that w 0 1 ≥ 0 implies w 0 2 ≥ 0, U (-x) ≥ V (x) for x > 0. We have obtained that U (x) ≥ V (-x) for x ∈ R.

Since U (0) = V (0), U (x)-V (-x) reaches its minimum at zero. This implies that (w 0 1 ) ′ (0) = U ′ (0) + V ′ (0) = 0. By the strong comparison principle one gets that U (x) = V (-x). We have obtained in the same time that b 1 = b 2 .

Part 3) in Theorem 1.2 is contained in the Proposition 3.7. Suppose that φ, ψ are bounded solutions of

(|U ′ | p-2 φ ′ ) ′ = (p -1)U p-2 V p φ + pU p-1 V p-1 ψ (|V ′ | p-2 ψ ′ ) ′ = (p -1)V p-2 U p φ + pU p-1 V p-1 φ.
Then there exists some constant c such that (φ, ψ) = c(U ′ , V ′ ).

Proof

For personal convenience we use small letters (u, v) in place of (U, V ).

We do not distinguish the case p > 2 or p < 2 for the moment. Let φ, ψ be defined as φ = u ′ φ, ψ = v ′ ψ. One has

(|u ′ | p-2 φ ′ ) ′ = (|u ′ | p-2 u ′′ ) ′ φ + p|u ′ | p-2 u ′′ φ′ + |u ′ | p-2 u ′ φ′′ = pu p-1 v p φ′ + pv p-1 u p-1 v ′ φ + (p -1)u p-2 v p u ′ φ + |u ′ | p-2 u ′ φ′′ .
On the other hand using the equation satisfied by φ one gets

p|u ′ | p-2 u ′′ φ′ + |u ′ | p-2 u ′ φ′′ = pu p-1 v p-1 v ′ ( ψ -φ).
In the same manner for v

p|v ′ | p-2 v ′′ ψ′ + |v ′ | p-2 v ′ ψ′′ = pu p-1 v p-1 u ′ ( φ -ψ).
Multiplying the first equation by u ′ φ and the second one by v ′ ψ , one gets

p|u ′ | p-2 u ′ u ′′ φ φ′ + |u ′ | p φ φ′′ + p|v ′ | p-2 v ′ v ′′ ψ ψ′ + |v ′ | p ψ ψ′′ = -p(uv) p-1 u ′ v ′ ( ψ -φ) 2 .
Let us now observe that

p|u ′ | p-2 u ′ u ′′ φ φ′ + |u ′ | p φ φ′′ = (|u ′ | p φ φ′ ) ′ -|u ′ | p ( φ′ ) 2 .
Claim : |u ′ | p φ φ′ and |v ′ | p ψ′ ψ go to zero at +∞ and -∞ This claim will end the proof since then we will have

0 = [(|u ′ | p φ φ′ ) + (|v ′ | p φ ψ′ )] ∞ -∞ = R |u ′ | p ( φ′ ) 2 + |v ′ | p ( ψ′ ) 2 -p R (uv) p-1 u ′ v ′ ( ψ -φ) 2 ≥ 0 since u ′ v ′ < 0.
This will imply φ′ = ψ′ = 0 and φ = ψ.

In the sequel we prove the claim for u and φ. The result for v and ψ can be done by obvious symmetric arguments.

Proof of the claim for u and φ 

|u ′ | p φ φ′ = |u ′ | p-2 (u ′ φ)(u ′ φ′ ) = |u ′ | p-2 φu ′ φ ′ u ′ - φu ′′ (u ′ ) 2 = |u ′ | p-2 φφ ′ -φ 2 |u ′ | p-2 u ′′ u ′ = |u ′ | p-2 φφ ′ -φ 2 u p-1 v p u ′ . Indeed -xo -x u p-3 (t)u ′ (t)|t| p-1 dt = [ u p-2 |t| p-1 p -2 ] -xo -x + p -1 p -2 -xo -x u p-2 (t)|t| p-2 dt ≥ u p-2 (-x)|x| p-1 2 -p -C 1 - p -1 (2 -p)c|x| 2 -xo -x u p-3 (t)u ′ (t)|t| p-1 dt which implies that |u ′ | p-2 φ ′ (-x) ≤ C 1 -C 2 |x| p-1 u p-2 (-x) for x large enough negative and then in particular φ ′ (-x) ≤ -C 3 |x| 2-p |x| p-1 = -C 3 |x|, with C 3 > 0. This contradicts φ bounded. In the same manner if φ ≤ -m < 0 one gets |u ′ | p-2 φ ′ (-x o ) -|u ′ | p-2 φ ′ (-x) ≤ -c|x| p-1 u p-2 (-x) which implies φ ′ (-x) ≥ C 3 |x|,
| p-2 φ ′ ≥ C > 0. Then φ(-x) ≥ -x -∞ C(u ′ ) 2-p (t)dt ≥ C -x -∞ |t| 1-p u 1-p (t)u ′ (t)dt. Observe that -x -∞ |t| 1-p u 1-p (t)u ′ (t)dt ≥ c|x| 1-p u 2-p (-x). Indeed -x -∞ |t| 1-p u 1-p u ′ (t)dt = 1 2 -p -x -∞ |t| 1-p d dt (u 2-p )dt = 1 2 -p [|t| 1-p u 2-p ] -x -∞ + 1 -p 2 -p -x -∞ (-t) -p |u| 2-p (t)dt ≥ 1 2 -p |x| 1-p u 2-p (-x) - p -1 (2 -p)c|x| 2 -x -∞ |t| 1-p u 1-p u ′ (t)dt.
This ends the proof by taking |x| large enough, x < 0. We have obtained that φ(-x) ≥ C|x| 1-p u 2-p (-x) for x large enough positive and replacing in the equation satisfied by φ one gets

|u ′ | p-2 φ ′ (-x o ) -|u ′ | p-2 φ ′ (-x) ≥ C -xo -x |t| 1-p |t| p dt = C|x| 2 .
From this one derives that (|u ′ | p-2 φ ′ )(-x) ≤ -Cx 2 , a contradiction with the assumption.

The case where |u ′ | p-2 φ(-x) ≤ -C < 0 for x large enough positive can be recovered by changing φ in -φ, noting the fact that the previous computations do note use the sign of ψ. We denote ϕ = u ,N > 0 and ψ = v ,N < 0. Using the same arguments as in [START_REF] Farina | Bernstein and De Giorgi type problems : new results via a geometric approach[END_REF], lemma 2.2, one has div(B(∇u)(∇ϕ)) = (p -1)u p-2 v p ϕ + pu p-1 u p-1 ψ on R N div(B(∇v)(∇ψ)) = (p -1)v p-2 u p ψ + pv p-1 u p-1 ϕ on R N .

We now define for any direction ζ, w 1 = Letting R go to infinity one obtains ∇w 1 = ∇w 2 = 0 and also that w 1 = w 2 hence w 1 = C = w 2 . Choose ζ such that ∇u(0) • ζ = 0, then since ϕ > 0 C = 0. Let a be some unitary vector orthogonal to ζ, then u(x) = U (a • x), v(x) = V (a • x) and (U, V ) is a solution of the one dimensional system.

Remark 4 . 2 .Theorem 4 . 3 .Remark 4 . 4 .B

 424344 B(u) is a non negative symetric bilinear form. Indeed it is clear if p ≥ 2 and if p < 2, using Cauchy Schwarz inequality,|(p -2)|∇u| p-4 (∇u • p) 2 | ≤ (2p)|∇u| p-2 | p| 2 .We now have the partial De Giorgi type result : Suppose that N = 2, that p ≥ 2, that u ,N > 0 and v ,N < 0 and that there exists some constant C such that for any large R,1 R 2+p B 2R \B R (|u| p + |v| p ) ≤ C, (4.2)then the solution is one dimensional, i.e. there exists a ∈ R 2 , |a| = 1, and (U, V ) a one dimensional solution withu(x) = U (a • x), v(x) = V (a • x)The condition ( 4.2) in Theorem 4.3 is in particular satisfied when u and v are at most linear increasing at ±∞.Proof Let χ R be some function in D(B(0, 2R)) χ R = 1 on B(0, R), 0 ≤ χ R ≤ 1 and |∇χ R | ≤ C R .Testing the equation against χ p R u, and using Young's inequality one getsB 2R χ p R |∇u| p ≤ C B 2R \B R |∇χ R | p u p ≤ C R p B 2R \B R |u| p . 4R \B 2R (|u| p + |v| p ) ≤ C.
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 2222223 ∇w 1 = ϕ∇u ,ζu ,ζ ∇ϕ ψ 2 ∇w 2 = ψ∇v ,ζv ,ζ ∇ψApply B(∇u) to the first equation and B(∇v) to the second one , and take the divergence, one gets div(ϕ 2 B(∇u)∇w 1 ) = pu p-1 v p-1 ϕψ(w 2w 1 ) (A) div(ψ 2 B(∇v)∇w 2 ) = pu p-1 v p-1 ϕψ(w 1w 2 ). (B)Let η be any function in D(B(0, 2R)), η = 1 on B(0, R), 0 ≤ η ≤ 1 and |∇η| ≤ C R . We multiply (A) by w 1 η 2 and (B) by w 2 η 2 , integrate and sum the two equations, remark that -pu p-1 v p-1 ϕψ(w 2w 1 ) 2 ≥ 0, one getsϕ 2 (B(∇u)∇w 1 , ∇(w 1 η 2 ))ψ 2 (B(∇v)∇w 2 , ∇(w 2 η 2 )) ≥ 0Using the fact that B(∇u) is a positive operator one gets thatη 2 (B(∇u)∇w 1 , ∇w 1 ) + η 2 (B(∇v)∇w 2 , ∇w 2 ) ≤ C ϕ 2 w 2 1 (B(∇u)∇η, ∇η) + ϕ 2 w 2 2 (B(∇v)∇η, ∇η) ≤ C (|∇u| p + |∇v| p )|∇η| (0,2R) (|∇u| p + |∇v| p ) ≤ Cby the previous estimates. We end the proof as in Theorem 1.2 in[START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF] : we use for any r, Br(0) |∇u| p + |∇v| p ≤ Cr 2 , we introduce -B(0, R) 0 if not.Let y(x) = |∇u| p +|∇v| p . Note that d dr B(0,r) y(λ)dλ = d dr ( ρ cos θ, ρ sin θ)ρdρdθ = r 2π 0 y(r cos θ, r sin θ)dθ. ThenB(0,R 2 )\B(0,R) |z| -2 y(z)dz = R Cr 2 dr ≤ C + C log R.From the previous estimates, we deriveB(0,R) (B(∇u)∇w 1 , ∇w 1 )ϕ 2 + B(0,R) (B(∇v)∇w 2 , ∇w 2 )ψ 2 ≤ C (log R) 2 B(0,R 2 )\B(0,R) |z| -2 (|∇u| p + |∇v| p )(z)dz ≤ C (log R) 2 + 2 C log R .

  this still contradicts φ bounded. So we are in the hypothesis that φ tends to zero and |u ′

p ∞ x ≥ -C for x large positive.

We consider separately the cases +∞ and -∞. The case +∞. By the results in Lemmata 3.2 and 3.4, u ′ is minorated by some positive constant and v goes exponentially towards zero, hence the term φ 2 u p-1 v p u ′ on the right goes to zero.

On the other hand |u ′ | p-2 φ ′ tends to zero. Indeed, its derivative is integrable for x large by the asymptotic behavior of u and v, and the fact that φ and ψ are bounded. So it has a limit. Suppose that the limit is l = 0, then

The case -∞.

We are led to distinguish the case p ≥ 2 and p < 2

The case p ≥ 2.

Let us recall that there exist some positive constants M , k, c such that near -∞, u ≤ M e -kx 2 , and u ′ ≥ c|x|u for x large enough negative. In particular since v is linear at infinity

goes to zero at -∞. Furthermore |u ′ | p-2 φ ′ has a limit at -∞ by the equation, if this limit was = 0, this would imply that φ ′ goes to ±∞ and would contradict φ bounded. From this one obtains that |u ′ | p φ φ′ tends to zero at -∞.

The case p < 2 This case is much more involved and requires several steps.

Step 1 : There exists t p which goes to -∞ such that (|u

Suppose for a while that there does not exist t p which goes to -∞ such that (|u ′ | p-2 φ ′ )(t p ) → 0. Then there exists C > 0 such that for all t large negative either (|u

One assumes that we are in the first case and will give later the arguments in the other case. Then φ ′ > 0 near -∞, hence φ has a finite limit since φ is bounded. We begin to prove that φ tends to zero at -∞. Suppose φ does not tend to zero, then there exists m > 0 such that either φ > m or φ ≤ -m for x large negative. In the first case for some constant c > 0 which can vary from one line to another, (|u

since the last term in the first equation satisfied by φ , say pu p-1 v p-1 ψ tends to zero. Integrating between -x and -x o large negative, one gets for

We have obtained that there exists t p which goes to -∞, such that (|u ′ | p-2 φ ′ )(t p ) → 0.

Step 2: (u ′ ) p-2 φφ ′ and u p-1 φ 2 v p u ′ both tend to zero at -∞. We multiply the equation satisfied by φ, by φ and integrate between t p+1 and t p , where t p is some subsequence decreasing to -∞, given by step 1. One obtains

and since u p-1 v p-1 φψ is absolutely integrable by the estimates on u and v one gets with the positivity of (p -1)u p-2 v p φ 2 + |u ′ | p-2 (φ ′ ) 2 and summing on p that u p-2 v p φ 2 and |u ′ | p-2 (φ ′ ) 2 are integrable. Finally for all s and t going to -∞ [|u ′ | p-2 φφ ′ ] t s tends to zero, hence |u ′ | p-2 φφ ′ has a limit, and since it possesses a subsequence which tends to zero, this limit is zero.

We now prove that φ 2 u p-1 v p u ′ has a finite limit. For this it is enough to prove that its derivative is integrable at -∞.

Each of the first three terms above can be majorized near -∞ by Cu p-2 v p φ 2 and then are integrable near -∞.

we use Cauchy Schwarz's inequality as follows

We deduce that since φ 2 u p-2 v p is integrable near -∞ , so is φ 2 u p-1 v p u ′ since its derivative is integrable, it tends to zero.

Of course we would obtain symmetric properties for ψ and v near +∞. This ends the proof. [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] The higher dimensions: Proof of Theorem 1.

3

In [START_REF] Dipierro | Geometric inequalities and symmetry results for elliptic systems discrete and continuous Discrete and continuous dynamical systems[END_REF] the author considers a more general operator than the p-Laplacian, and more general right hand side. She obtains the one dimensionality of the solution by assuming a growth property of the solution which is reduced here to

and either that uv < 0 and the solution is stable, or ∂ N u > 0 and ∂ N v < 0 for some component e N and uv > 0.

We propose here a simpler proof for the partial result in Theorem 4.3, i.e. in the case where ∂ N u > 0, ∂ N v < 0 and u > 0, v > 0.

So, the equation considered is now

where u and v are positive.

Remark 4.1. Note that if u ≥ 0 , v ≥ 0, and if u is not identically zero, u > 0. Indeed, from the properties of the p-Laplace operator, u and v are both locally bounded. Then for any compact set K in R N , there exists C K such that v ≤ C K . Then -div(|∇u| p-2 ∇u) + C p K (p -1)u p-1 ≥ 0 and the strong maximum principle of Vasquez, [START_REF] Vasquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] implies the positivity of u. The same is true for v.

We define B(u) = |∇u| p-2 Id + (p -2)|∇u| p-4 (∇u ⊗ ∇u), or equivalently for any ( p, q) ∈ (R N ) 2 , (B(u)p, q) = |∇u| p-2 ( p, q) + (p -2)|∇u| p-4 (∇u • p)(∇u • q).