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Abstract: We present novel algorithms and software addressing four core problems in compu-
tational structural biology, namely analyzing a conformational ensemble, comparing two confor-
mational ensembles, analyzing a sampled energy landscape, and comparing two sampled energy
landscapes. Using recent developments in computational topology, graph theory, and combina-
torial optimization, we make two notable contributions. First, we a present a generic algorithm
analyzing height fields. We then use this algorithm to perform density based clustering of confor-
mations, and to analyze a sampled energy landscape in terms of basins and transitions between
them. In both cases, topological persistence is used to manage ruggedness. Second, we introduce
two algorithms to compare transition graphs. The first is the classical earth mover distance metric
which depends only on local minimum energy configurations along with their statistical weights,
while the second incorporates topological constraints inherent to conformational transitions.
Illustrations are provided on a simplified protein model (BLN69), whose frustrated potential energy
landscape has been thoroughly studied.
The software implementing our tools is also made available, and should prove valuable wherever
conformational ensembles and energy landscapes are used.
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Ensembles de conformations, et paysages énergétiques
échantillonnés: analyse et comparaison

Résumé : Nous présentons de nouveaux algorithmes pour quatre problèmes de modélisation
d’importance centrale en biologie structurale, à savoir analyser un ensemble de conformations,
comparer deux tels ensembles, analyser un paysage énergétique échantillonné, et comparer deux
tels paysages. En exploitant certains développements récents en topologie computationnelle,
théorie des graphes, et optimisation combinatoire, nous présentons deux contributions princi-
pales. D’une part, nous présentons un algorithme générique permettant d’analyser une fonction
hauteur. Cet algorithme est ensuite utilisé pour effectuer un clustering basé sur la densité d’états,
et aussi pour étudier un paysage énergétique échantillonné. Dans les deux cas, la théorie de la
persistence topologique est utilisée pour gérer la rugosité. D’autre part, nous introduisons deux
algorithmes permettant de comparer deux graphes de transition. Le premier algorithme est la
distance classique dite de transport de masse, alors que le second incorpore des contraintes de
connectivité inhérentes aux transitions observées sur un paysage énergétique.

A titre d’illustration,ces algorithmes sont appliqués à un modèle de protéine simplifiée (BLN69),
dont le paysage énergétique frustré a été échantillonné en détail.

Les logiciels implémentant nos algorithmes sont mis à disposition, et devraient s’avérer utiles
dans toutes les situations où des ensembles de conformations et des paysages énergétiques echan-
tillonnés sont manipulés.

Mots-clés : Conformations moléculaires, paysages énergétiques, échantillonnage, théorie de
Morse, théorie du transport optimal, optimisation
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Conformational Ensembles and Sampled Energy Landscapes 5

1 Introduction

1.1 Analyzing conformational ensembles and energy landscapes

colorblack

1.1.1 Energy landscapes

Evaluating the potential energy of a molecular system at every point in its configurational space
yields the associated potential energy landscape (PEL), from which thermodynamic and kinetic
properties of the associated free energy landscape (FEL) can be derived [Wal03]. Features of
the PEL play a crucial role in understanding the system’s behavior: in particular, the local min-
ima correspond to (meta-)stable states, whereas a saddle connecting two local minima defines
a possible transition between the linked meta-stable states. Indeed, decomposition of the PEL
into its associated minima and saddle points can be used to model the dynamics of the system.
However, obtaining a representative view of the PEL for systems involving from hundreds to tens
of thousands of atoms is a major undertaking, as the number of minima increases exponentially
with the size of the system. Because an analytical expression of the PEL is in general unknown,
explorations are usually conducted via numerical simulations, yielding two broad classes of ques-
tions: exploring and sampling the PEL, and exploiting such samplings in the context of deriving
thermodynamic and kinetic information.

1.1.2 Exploring landscapes

Exploring a PEL consists of generating a collection of points in the conformational space. We will
refer to a collection as a sampling (or a sampled landscape, or simply landscape) in the following.
The goals of such explorations are essentially twofold. On the one hand, one wishes to visit basins
with low potential energy. On the other hand, one also wishes to sample transitions between
basins, as these condition the time evolution of the system. Explorations may in principle be
carried out using standard Metropolis algorithm (Monte Carlo, MC) or molecular dynamics (MD)
simulations, in both of which cases the sampled data consists of points on the energy surface that
in general correspond to neither minima nor saddle point configurations. Such methodologies,
standardly applied in the canonical ensemble, are most useful for systems without significant
excursions away from the global minimum; otherwise they are susceptible to being trapped in
local minima, being unlikely to traverse high energy barriers. In the following we present a brief,
necessarily incomplete overview of some of the prototypical sampling algorithms applied to the
more general problem of global exploration of rugged PELs associated with high-dimensional
systems.

colorblackWe first examine strategies derived from the Metropolis algorithm. For systems
with a continuous configuration space, a key Monte Carlo based strategy performing a random
walk in the space of local minima is basin hopping [LS87]. In short, once a Monte Carlo sampling
strategy/move set has been chosen, the method consists of taking a random step away from
the current configuration and minimizing the energy, and then accepting/rejecting the local
minimum obtained based on the Metropolis criterion. We note in passing that the aforementioned
minimization step, when carried out deterministically, consists in following an integral curve
leading to a local minimum. This operation, also called quenching, is key to revealing the basins
visited and the barriers crossed [EK87, TB95]. colorblackCombining basin hopping with the
choice of random configurations confined below a lid yields the threshold algorithm [SPJ96], a
refinement of the lid algorithm, a method targeting systems for which neighbors of particular
configuration can be exhaustively enumerated [SSSA93, SvdPS99]. In a related vein, since many
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6 F. Cazals et al / ABS

paths from a high-lying point may lead to quite different local minima, stochastic quenches
have also been used [WSM99]. Hierarchical optimization strategies have also been developed, in
particular to handle systems with quasi-independent sub-systems. In that case, conformations
of lowest energy may be obtained by identifying and combining nearly-rigid blocks from known
local minima. This idea is exploited in [Kri02], where candidate conformations are generated by
mixing coordinates of known minima.

One may also mention strategies avoiding revisiting known regions, a scheme known as tabu
search in optimization. For robot motion planning, methods aiming at fostering the exploration
of unexplored space have been designed using rapidly-exploring random trees [LKJ01]. Com-
bining these ideas with the Metropolis test yields the transition rapidly growing random trees
method [JCPC11]. While such ”history-dependent potential” approaches are thus commonly
used to enhance exploration of the PEL, the meta-dynamics method combines them with collec-
tive coordinates (see below) to sample the FEL [LP02].

Exploration of systems characterized by rugged PELs may also be achieved using enhanced
MD or MC exploration. An early development was simulated annealing [KV83], in which an
initally high-temperature MC simulation is slowly cooled (on a prescribed schedule) in order to
explore lower and lower energy minima. Generalized ensemble approaches, initially developed
in the Monte Carlo context[BN92] (reviewed in [MO09]), rely on non-Boltzmann weighting to
achieve a random walk in, e.g., potential energy or temperature space, the latter approach
referred to as the expanded ensemble or simulated tempering [LMSVV92]. These approaches,
while in principle allowing the system to surmount any energy barrier, shift the burden towards
determining appropriate weight factors; however, once this is achieved, canonical (Boltzmann)
sampling over a wide range of temperatures can be obtained from a single simulation. The
generalized ensemble concept has been implemented in standard and Langevin MD [HOE96]. A
related approach, requiring no a priori knowledge of the weight factors, is the widely used replica-
exchange molecular dynamics (REMD) [SO99] in which configurations from a set of independent,
neighboring-temperature canonical simulations– launched in parallel over as wide a temperature
range as possible– are exchanged at a specified frequency following a Metropolis-like criterion.
MD approaches have also been combined with simulated annealing to better explore rough PELs,
notably using REMD starting with a restrained set of replicas at high temperature[KZ09].

As shown by the previous descriptions, exploring a landscape is clearly a technical endeavor,
and depends on the type of model used (discrete or continuous system, atomic or coarse grained,
etc), the potential energy function, the sampling protocol and associated parameters (temper-
ature, step size, etc). The approaches we develop below can be applied to collections of both
types: those consisting essentially of non-critical point configurations, from MD, for example,
or else those obtained from extensive mapping of the PEL in terms of optimized critical points;
e.g., minima obtained by basin hopping, which may or not be enriched with associated saddle
points.

1.1.3 Modeling thermodynamic and kinetic properties

Qualitative insight into the system’s dynamics can be obtained directly from the sampling using
connectivity information. Of particular interest in this context are tree based representations
encoding the connectivity of basins of the PEL. In the context of landscape exploration, the
disconnectivity graph (DG) was introduced to model diffusion processes using a random walk
on the tree connecting the basins [HS88], and to portray the shape and the connectivity of the
landscape [BK97, Heu97]. In particular, typical DG were proposed to explain the performances
of fast structure seekers [WMW98, DWB05, Ber10]. A disconnectivity graph being a tree (or a
forest of trees), more precise statistics on the transition graph connecting local minima across

Inria
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saddles were considered (degree distribution, graph diameter, path lengths). In particular, it has
been shown that selected systems exhibit small world properties [DM05].

Quantitative thermodynamic and kinetic analysis are typically undertaken in two ways.

Dimensionality-reduction based approaches. Sampling of a given system generated by
MC or MD is generally assumed to define a thermodynamic ensemble, and can be either un-
dertaken or analyzed in terms of a small number of collective coordinates defined to capture the
essential dynamics of a system. Integrating over the remaining degrees of freedom allows the
definition of a free-energy profile, in which case the collective coordinate may be interpreted as
an order parameter or reaction coordinate leading from one state of the system to another. Such
coordinates are often designed to reflect large-amplitude, correlated movements in the system.

Remarkably, large amplitude - low frequency motions have been investigated at about the
same time using three highly related mathematical tools, namely principal components analysis
(PCA), multi dimensional scaling (MDS), and least square affine approximation. We briefly
review these. Since atomic motions inherently encode correlations between atomic displacements,
the covariance matrix of atomic positions is expected to play a key role [ALB93]. Diagonalizing
this matrix yields the principal components analysis (PCA) of the data, namely the (mutually
pairwise orthogonal) directions maximizing the variance [TPK02, KHM+05]. Alternatively, the
essential dynamics may be captured by finding a set of directions minimizing in the least square
sense to the projections of conformations onto the corresponding affine space [GBHK97], a process
actually also using the aforementioned principal directions. Finally, we note that PCA has a dual,
known as Multidimensional Scaling (MDS), a quadratic optimization problem aiming at finding a
low dimensional embedding best approximating the Gram matrix (the matrix of inner products)
of conformations. The resulting low dimensional embedding[AA92, TB95] is identical to that
provided by PCA, as is easily seen from a singular value decomposition of the covariance matrix
and of the Gram matrix [LV07].

A limitation of PCA and MDS is that they are are linear methods. The nonlinear variant
of MDS, called ISOMAP [dSLT00], has also been used [DMS+06]. This strategy uses geodesic
distances computed from a nearest neighbor graph rather than distances in the ambient space,
whence its non linear nature [LV07]. However, despite improved results from this approach,
letting pairwise distances drive the dimensionality reduction process overlooks the relative acces-
sibility of the states linked. This motivated the introduction of dimensionality-reduction methods
based on diffusion maps [RZMC11], which are especially relevant since such distances can also
be derived for a system at equilibrium from the Fokker-Planck equation [NLCK06].

State based approaches. An alternative approach to studying dynamics consists of using
state models. On the one hand, thermodynamic properties can be computed in terms of contri-
butions from different local minima, e.g. using the harmonic superposition approximation (HSA)
[WB06]. Adding knowledge of the stationary points connecting (usually grouped) minima allows
the use of, e.g., transition-state theory to estimate kinetics for transitions in the configuration
space of the system under study [CW08]. Thermodynamics and kinetic properties can be modeled
directly using Markov state models [PBB10]. Such methods aim at modeling kinetically relevant
states together with the transition rates between them. Once a matrix of transition rates between
the states of interest has been built, transition state theory can be used to model the dynamics
using the Master equation [BBK95, Kam92]. In this context, a pre-requisite consists of filling
the transition matrix. For relatively simple systems, the coarse grain model may be obtained
by clustering conformations upon projecting them in a lower dimensional space, using one of
the aforementioned methods [NAKH14]. For more complex systems, databases of local minima
and saddle points may be used [Wal02]. A database of critical points may have to be coarse
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8 F. Cazals et al / ABS

grained to assemble the microstates into macrostates, the inner relaxation within a macrostate
being faster than the interaction with the surrounding macrostates [SPJ96, KSH98, PBB10].
Practically, an exhaustive computation of critical points may be circumvented using discrete
path sampling [Wal02, DB09]. Using these techniques, a dynamical diagnosis can then be posed
for typical disconnectivity graphs, thus bridging the gap between topography and dynamics
[DWB05]. In materials sciences, such approaches have recently been proposed with the goal of
designing optimal temperature schedules aiming at accessing a specified region of a landscape
[HS13].

1.1.4 Contributions

While sampling and modeling thermodynamic and kinetic properties of a molecular system,
questions arise concerning the appropriateness of the samplings for the desired purpose. While
conventional MC is subject to such concerns as the relevance of the moveset in allowing for sat-
isfactory exploration of the configurational space, MD simulations prompt questions concerning
their ergodicity, which involves knowledge of the timescales required for local or global equili-
bration. Such questions may be addressed by quantitatively analyzing samplings and comparing
results obtained using qualitatively different approaches, for example, MD and basin hopping.

Each of these classes of problems deals with large sets of conformations, in the context of
the overall potential energy or free energy landscape. For convenience we also refer to these
collections as “ensembles”, while distinguishing them from an ensemble in the thermodynamic
sense as required. From a methodological standpoint, we consequently address four related
topics, namely structural analysis of a conformational ensemble, comparing two conformational
ensembles, analyzing a sampled energy landscape, and comparing two sampled energy landscapes.
These four methodological challenges are the focus of this paper.

We present a suite of approaches to analyzing and comparing sampled energy landscapes, and
more generally conformational ensembles, and make the corresponding software available in the
Structural Bioinformatics Library (http://sbl.inria.fr/). These methods are coherent in the
sense that they exploit a handful of constructions arising recently in computational geometry
(nearest neighbor algorithms in metric spaces), computational topology (persistence theory),
graph theory (shortest path algorithms), and optimization (a variant of the so-called earth mover
distance). More specifically, our contributions are:

• Analysis of a conformational ensemble. In addition to various approaches aiming at as-
sessing their structural diversity, we provide a novel hierarchical clustering method for
conformational ensembles. The method assigns clusters to selected local maxima of the
density estimated from the sampling, which are selected as the most significant ones using
topological persistence.
Associated software: program sbl-conf-ensemble-analysis.exe.

• Comparison of two conformational ensembles. We exploit recent development of search
structures in metric spaces to compute distances of the Hausdorff type between conforma-
tional ensembles.
Associated software: program sbl-conf-ensemble-comparison.exe.

• Analysis of a sampled energy landscape. We present a method colorblackto denoise a land-
scape using topological persistence (persistence diagrams), that is, to infer the distribution
of barrier heights and smooth out the small ones when a clear-cut separation is observed
– a property usually referred to as geometric frustration. We use the same algorithm to

Inria
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identify connections between basins, without resorting to optimization methods to find nu-
merical approximations of saddle points. Finally, we propose novel analyses of transition
graphs, notably statistics on paths between selected minima (known as landmarks).
Associated software: program sbl-energy-landscape-analysis.exe.

• Comparison of two sampled energy landscapes. We provide two novel methods to compare
two sampled landscapes once each landscape has been converted into a vertex-weighted
transition graph, namely a graph connecting basins, the weight of a vertex in such a graph
being an estimate of the size of the basin represented by this vertex. Such comparisons are of
interest in various settings, e.g., to assess the coherence of two force fields for a given system
(atomic, coarse grained), to compare two related systems (e.g. a wild type and mutant
protein), or simply to compare simulations launched with different initial conditions.
Associated software: program sbl-energy-landscape-comparison.exe.

As just mentioned, these tools are generic and can be applied in a variety of settings, notably
when the sampled conformations consist entirely of representatives of critical points (local minima
and saddles), or not (“plain” samples). colorblackPractically, we put these tools into action on a
simplified BLN protein model consisting of pseudo amino-acids of three types (hydrophobic (B),
hydrophilic (L) and neutral (N)), each represented by a bead [HT90]. Selected such models, with
appropriate sequences, are known to fold into a structure with a hydrophobic core, mimicking
real proteins to a certain extent. Using this model, we use our methods to model the PEL of
BLN69, and to assess its exploration. Note that the first scenario for this application is solely
concerned with critical points, the second is carried out with plain samples.

1.2 Concepts and terminology

We consider a macromolecular system m involving s atoms, the ith-atom being denoted m[i].
The conformational space of the system is denoted C, and its dimension d. The distance between
two conformations is denoted dC(·, ·). We shall in general use the least root mean square deviation
(lRMSD), colorblacknamely the square root of the average squared distance deviation in atom
positions, minimized over rigid motions of the system. A conformation or sample refers to a
conformation of the system. We note in passing that two conformations may be separated by
relatively small distances, yet separated by large or even insurmountable barriers.

The potential energy of a conformation c is denoted V (c). If the gradient of the potential
energy vanishes at c, the conformation is called a critical point. Practically, we shall deal with
two types of critical points: local minima, and index one saddles (saddles for short). If c is not
a critical point, quenching c consists of (numerically) following the negative gradient −∇V until
a local minimum q(c) is found. In this case, there exists an integral curve of the gradient vector
field −∇V joining c to q(c), and one says that c flows to q(c).

A conformational ensemble, also called sampling C is a set of n conformations, that is
C = {c1, . . . , cn}. The associated set of quenched conformations is denoted Cq, that is Cq =
{q(c1), . . . , q(cn)}. If Cartesian coordinates are used, the conformations in C can also be aligned
on a reference conformation, say c1. Aligning the i-th conformation onto c1 results in the rep-
resentation of that conformation denoted c̃i, and the set of such conformations is denoted C̃.
Once a one-to-one correspondence between the atoms of ci and c1 has been set, aligning ci onto
c1 requires computing the rigid motion yielding the least root mean square deviation between c1
and ci.

A nearest neighbor graph (NNG) of conformations is a graph whose vertices are conformations,
with edges joining selected pairs. That is, a NNG connects conformations in the configuration

RR n° 8610



10 F. Cazals et al / ABS

space C of the system studied. We use NNG in two guises. First, we build a NNG by connecting
a sample to its k nearest neighbors. Second, we build a NNG by connecting a sample to all
samples of the ensemble within a given distance r. Practically, the distance used is the lRMSD.

A height function is a mapping from the conformational space C to the real numbers, and a
conformational space equipped with such a function is called a landscape. Given a fixed elevation
h, the portion of the landscape located below (resp. above) the elevation h is called a sublevel
set (resp. super level set). Naturally, the landscape obtained when the height function is the
potential energy is called the potential energy landscape (PEL). A lifted sample is a sample
equipped with a real number, called its height. When this number represents the potential
energy, a collection of such samples is called a sampled energy landscape. Using the connectivity
of a NNG to connect lifted samples results in a lifted NNG. For example, if the height is the
potential energy, the lifted NNG defines a network on the PEL.

Of special interest on a landscape are the local minima and the transition paths connecting
them. In the smooth setting, a transition between two local minima corresponds to the existence
of an integral curve joining the saddle to the minimum. More specifically, in Morse theory, these
curves define the so-called unstable manifold of the saddle. Generically, two such curves are found
for each saddle — note however that they may end up in the same local minimum, a situation
we refer to as a bump transition (Fig. 4). We encode such transitions in a transition graph (TG),
namely a graph whose nodes are minima and saddles, with one edge between the minimum
m1 and the saddle σ if there exists a direct transition path (m1, σ,m2) with m2 another local
minimum. We also define a compressed transition graph as a TG where the two edges emanating
from a saddle are merged. That is, such a graph contains only minima and contains an edge
between two of them if and only if these minima are connected through a saddle in the TG. As
we shall see, such compressed graphs are useful for the comparison of landscapes.

2 Algorithms

2.1 Pre-requisites

2.1.1 Nearest-neighbor graphs

Rationale. We shall derive various parameters on conformational ensembles and sampled land-
scapes from proximity relationships between conformations, that is, from nearest neighbor graphs
(NNG).

Algorithms. In computing a NNG, the demanding operation consists of retrieving the relevant
nearest neighbors of a conformation (the k nearest neighbors or the samples within distance
r). While this operation can always be performed by a linear scan over the ensemble, various
data structures aiming at pruning the search exist [Sam06]. When the distance used between
conformations is the plain Euclidean distance, spatial partitions can be used, so as to limit
the search for the neighbors of a point to cells of the partition located nearby the point. One
prominent such data structure is the spatial partition used in the approximate nearest neighbors
algorithm [AMN+98]. The situation is however more involved for searching neighbors in a general
metric space, i.e. when the distance function used does not come with an embedding of the
samples in a Euclidean space. This situation is precisely that faced when using the lRMSD.
Fortunately, efficient algorithms also exist in this case, and we use proximity forests [OD13].
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2.1.2 Topological analysis of height functions

Rationale. Consider a landscape. We present a method to analyze a lifted NNG on such
a landscape, borrowing concepts and tools from Morse theory [Mil63, FK97] and persistence
theory [EH10]. Our incentives are twofold. When the height function is an estimated density of
states, the method yields a clustering algorithm generalizing that presented in [HPD+01] (section
2.2.3). In that case, the clustering algorithm requires scanning the landscape downward with a
horizontal plane, so as to discover when connected components of super level sets appear and
merge. On the other hand, when the height function is the potential energy, the method is
used to study the basins of a sampled PEL, in a manner related to disconnectivity graph (DG)
[BK97, Wal03] (section 2.4.2). Studying merges between energy basins then requires scanning
the landscape upwards with a horizontal plane, so as to discover when connected components of
sublevel sets appear and merge [PBC10].

In fact, all three methods, namely ours and those from [HPD+01] and [PBC10] exploit the
same construction from Morse theory [Mil63], which consists of studying the evolution of sub
(or super-) level sets of a height function, discretized using a nearest neighbor graph. But our
approach goes beyond the previous two in two ways. First, we handle multiple scales in the
barrier height distribution using topological persistence, which allows in particular handling full
disconnectivity graphs, a difficulty mentioned in [PBC10]. Second, our method is general enough
to exploit all the information available, including the knowledge of exact local minima obtained
by quenching, as we shall see in section 2.4.2.

Persistence diagrams for super level sets. Local maxima of a height function are specific points,
two properties of which are of crucial importance in the following development. The first property
is the decomposition of a landscape into attraction basins induced by the maxima of a landscape.
Indeed, the basin of a maximum is the loci of points of the landscape flowing to that maximum
when following the gradient of the height function. To state the second property, recall the well
known fact from Morse theory [Mil63], which states that the topology of super level sets changes
precisely at critical points of the height function. For example, when sweeping the landscape
downward with an horizontal plane, a connected component of super level sets is created when
the plane hits a new maximum, and two such components merge when the plane hits a critical
point of index d− 1.

Practically, a difficulty consists of dealing with large numbers of local maxima, possibly non
significant ones. We explain how to focus on the most prominent ones, borrowing the terminology
from geography.

In topography, the prominence of a local maximum is the closest distance to the nearest
local maximum with higher elevation, while its culminance is the least elevation drop to a saddle
leading to a higher local maximum. (Note that the culminance is related to the barrier height
used in biophysics.) Using these notions, the persistence diagram (PD) of super level sets is the
2D plot with one point for each local maximum (excepting the global one), defined as follows:
the abscissa of the point is the elevation of the maximum, while its ordinate is the elevation of
the saddle defining its culminance.

The following remarks are in order:

• By construction, the highest peak is not paired with any saddle. That is, if the height field
has m local maxima, its PD contains m− 1 points.

• A point of the PD corresponds to a pairing involving one maximum and one saddle. Math-
ematically, these points are critical points of the height field: the maximum is an index d
c.p. (its Hessian has d negative eigenvalues), while the saddle is an index d − 1 c.p. (its
Hessian has d− 1 negative eigenvalues).
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• All points of the PD are below the diagonal y = x, and the distance from a point to the
diagonal is a measure of the stability of the corresponding local maximum. For example, if
the mountain range contains p well identified peaks, and q tiny/spurious peaks, then, the
PD contains q points near the diagonal, and p points far away from the diagonal. It can
also be shown that PD are stable when the underlying landscape incurs changes [CSEH05].

• Consider a case where a PD has two sets of clearly separated points, one set near the
diagonal (non persistent max), and one set far away. If the former are not significant,
their basins can be assigned to significant maxima. Intuitively, this operation consists of
performing merges between these basins, using the adjacency encoded in the saddles joining
them.

Persistence diagrams for sub-level sets. The analysis presented above for local maxima and super
level sets applies directly for local minima and sublevel sets, yielding a persistence diagram whose
points code local minima of the height field. The main changes are the following ones:

• By construction, the lowest local minimum is not paired with any saddle. That is, if the
height field has m local minima, its PD contains m− 1 points.

• A point of the PD corresponds to a pairing involving one local minimum and one saddle.
Mathematically, these points are critical points of the height field: the minimum is an index
0 c.p. (its Hessian has zero negative eigenvalues), while the saddle is an index one c.p. (its
Hessian has one negative eigenvalue).

• All points of the PD are above the diagonal y = x, and the distance from a point to the
diagonal is a measure of the stability of the corresponding local minimum.

• A PD can also be simplified by re-assigning the basins of non significant minima. That
is, if the point of the PD are clearly separated, those near the diagonal can be removed
by merging each such basin into the deeper basin it is connected to. Note that this sim-
plification removes the least persistent basins first, as opposed to merging the saddles in a
given energy slice. Note also that this simplification cancels one (saddle, minimum) pair
at a time.

This notion is illustrated on Fig. 1 for a 2D elevation function used in optimization benchmarks,
known as the Himmelblau function. On this example, the clear separation of the points of the
PD of noisy Himmelblau call for its simplification. Upon performing the aforementioned merges,
one is left with a PD identical to that of the noiseless function, i.e. involving three points only.

colorblackPractically, exploiting a PD typically requires two parameters: a maximum energy
of interest Emax, and a persistence threshold ∆E. Upon setting these values, the PD ends up
partitioned into five regions defined by three lines, so that a local minimum m gets qualified with
respect to three criteria (Fig. 2):

• Selected/rejected: m is selected provided that its birth date occurs before Emax.

• Persistent/canceled: m is persistent if its persistence is larger than a user defined threshold
∆E.

• Filtered/un-filtered: the basin of m is filtered if the death date of m is larger than the
threshold Emax.

The possible combinations, also illustrated on Fig. 2, are:
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• m ∈ R1: rejected. Such a local minimum is rejected, since its energy is larger than Emax.

• m ∈ R2: selected / canceled / un-filtered. Such a local minimum is selected, yet canceled
by persistence. Because m dies before Emax, all conformations found in its basin shall be
part of another basin.

• m ∈ R3: selected / canceled / filtered. A local minimum which is selected, yet canceled by
persistence. However, because m dies after Emax, only the portion of its basin below Emax

shall be found in another basin.

• m ∈ R4: selected / persistent / un-filtered. Such a local minimum is selected, and is not
canceled by persistence. Because m dies before Emax, all the samples found in its basin are
considered.

• m ∈ R5: selected / persistent / filtered. This combination is similar to the previous case,
except that samples whose energy higher than Emax are discarded. Note that the cluster
associated with the global minimum belongs to this region even though it is not found on
the PD, as the global minimum never dies.

Algorithm. colorblackWe now sketch algorithm PLeSE, for Persistent Level Set Extraction.
Consider a discrete set of lifted points on a landscape, and assume that we wish to analyze its
minima and sublevel sets — the method is valid mutatis mutandis for maxima. The algorithm,
which borrows upon [CGOS13] and [CCS11], (i) identifies samples playing the role of minima
and saddles and computes the pairings defining the persistence diagram, (ii) assigns basins to
minima by performing a discrete quench, and (iii) offers the possibility to cancel non significant
minima (the samples associated with basins canceled get transferred into the basins of minima
which survive.

Denote {(ci, hi)} the lifted samples processed, with hi the elevation of ci. Also assume that a
lifted NNG connecting the samples has been built, and that the negative gradient of the height
function has been estimated at each sample, e.g. by selecting the edge cicj maximizing the ratio
(hi − hj)/dC(ci, cj).

Using this graph, we process samples by increasing height. colorblackDefine the lower star
of a sample as the subset of its neighbors in the NNG, with a smaller elevation. A sample
whose lower star is empty defines a local minimum. If a sample is not a local minimum, we
perform a discrete quench using the NNG, that is, we iteratively follow the estimated gradient
to end up at a local minimum, and assign it to the basin of that minimum. colorblackOnce
the discrete quench has been done, we check whether this sample ci has a neighbor cj in its
lower star, flowing to a different local minimum. If so, the sample ci termed a transition or
a pseudo-saddle, and the pair (q(ci), ci) defines a point of the persistence diagram. Note that
ci is termed a pseudo-saddle since it may actually be far from the real saddle while located in
the neighborhood of its stable manifold (Fig. 3). Despite this limitation and since we are only
dealing with conformations provided by sampling methods, as opposed to numerical methods
tracking saddle points [GHJJ02], we will call such samples saddles.

This algorithm is used in section 2.2.3 for clustering and in section 2.4.2 to build DG.

Remark 1 colorblackThe previous algorithm can be implemented in two ways, depending on
whether or not one wishes to run a single query (setting the thresholds Emax and ∆E once for
all), or multiple queries (one varies the two thresholds).
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In the former case, the one-pass algorithm developed in the context of clustering suffices
[CGOS13]. This algorithm works on samples (conformations), and performs the assignment of
samples to basins and the persistence based simplification on the fly.

In the latter case, one should use the simplification algorithm proposed in [CCS11]. Once the
samples have been assigned to basins, the algorithm simplifies the transition graph in a recursive
manner, so that sequence of increasing ∆E thresholds can be accommodated. Furthermore, for
a given simplification threshold, multiple sublevel set queries can be carried out, with a single
query performing the selection of relevant sample from the critical points rather than from the
samples themselves, for the basins whose death date is less than the prescribed threshold Emax.
Phrased differently, the algorithm from [CCS11] is well suited to handle landscapes involving a
large number of critical points and/or conformations. For example, the one dealt with in section
3 contains hundreds of thousands.

Remark 2 colorblackA method for regrouping states separated by free energy barriers below a
specified threshold was presented in [CW08, Section 2.2]. Assume that one knows how to compute
the free energy of two groups of local minima (e.g., using harmonic superposition), as well as that
of the inter-group transition state ensemble. The method consists of iteratively performing binary
merge if the forward and backward free energy barriers are less than a user specified threshold.

The recursive simplification scheme of the transition graph sketched above and detailed in
[CCS11] is different in two respects. First, in [CCS11], the ordering in which simplifications are
done is imposed by the height of barriers taken in increasing order – as opposed to performing
simplifications bottom-up as in [CW08, Section 2.2]. Note that in both cases, the simplification
halts when a prescribed barrier height is reached. Second, in [CCS11], the simplification criterion
is asymmetric since while processing a saddle, only the smallest height drop plays a role. This
is related to the fact that in Morse theory, the focus is on sublevel sets of the function studied.
Instead, forward and backward barriers are used in [CW08, Section 2.2].

Remark 3 colorblackTechnically, Morse theory and Morse homology are concerned with smooth
function defined on manifolds, that is, singularities are excluded. Practically, such singularities
could be present – for example a Lennard-Jones potential is singular at the origin. However, as
we deal with finite energy samples, we build discrete structures compatible with the hypotheses
required to apply Morse theory. In particular, since we deal with 0 and 1 homology (i.e. con-
nected components associated with basins, and cycles defined by transitions), we only require the
boundary operator of a one-dimensional cell complex, which is merely a graph in our case.

2.2 Conformational ensembles: analysis

In the sequel, we provide various statistics to assess the diversity of a conformational ensemble
generated by a sampling algorithm.

2.2.1 Sampling diversity

Rationale. Currently we use two measures for the sampling diversity, in order to assess the
extent to which a molecule deforms within an ensemble C. The first is the standard method
for estimating the root-mean squared atom fluctuations (RMSF ). Denoting c̃[k] the average
position of the k-th atom in the aligned samples C̃. The RMSF for atom k is defined as

RMSFk =

√
1

n

∑
i=1,...,n

∥∥∥c̃i[k] − c̃[k]
∥∥∥2 .
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The second measure is the bounding box (in Cartesian coordinates) of the ensemble C̃ of aligned
structures.

Algorithms. Computing these measures requires performing a registration of each conforma-
tion into a unique coordinate system. Using the first conformation c1 as reference, one can
transform every other conformation by applying to it the rigid transform defining the lRMSD
between ci and c1.

2.2.2 Sampling sparsity via spanning trees

Rationale. A conformational ensemble may contain clusters, i.e. groups of conformations such
that pairwise distances within a cluster are smaller than distances between conformations across
clusters. We investigate such properties using graphs.

Assume that a connected NNG G has been built over the samples, and denote V [G] (resp.
E[G]) its vertex set (resp. its edge set). Assume that to each edge e = {ci, cj} ∈ E[G] is
attached the quantity dC(ci, cj). we compute a minimum spanning tree MST(G) of G. If the
conformational ensemble contains n conformations, this tree involves n − 1 edges. For an edge
e = {ci, cj} of this graph, the edge length is the distance between the conformations ci and cj ,
that is dC(ci, cj). Denoting E the edge set of the MST, and e = {ci, cj} a particular edge, we
then report the following statistical summary for G:

min
e∈E

dC(ci, cj),median
e∈E

dC(ci, cj),max
e∈E

dC(ci, cj). (1)

To capture the significance of this summary, consider the situation where the ensemble has a
cluster structure. In that case, most of the edges are short ones, only those connecting clusters
being long ones, which reads plainly from the statistical summary.

Algorithms. Extracting the MST out of a connected graph is a classical problem in computer
science. We use Prim’s algorithm, which iteratively attaches one node not connected yet, namely
that using the shortest edge available which does not create a cycle.

2.2.3 Persistence based clustering

Rationale. When an ensemble features clusters, as e.g. seen from the statistical summary
from the edge lengths found in a MST, the next step consists of finding these clusters. Upon
estimating the sample density at each sample from the ensemble, a three stage strategy consists
of associating one cluster to each local maximum of this density [Che95, HPD+01], and to filter
out spurious (i.e. small) ones. We now briefly review these three steps.

The first step is the density estimation step. Assume that a NNG has been built, so that each
sample is linked to a number of its nearest neighbors, say its k nearest neighbors. Intuitively,
the density about a sample is inversely proportional to the distances to the nearest neighbors.
Formally, denoting k the number of nearest neighbors and Vd the volume of the unit ball in Rd,
the local density at sample ci can be estimated as [BCCS+11]:

f̂n(c) =
1

n Vd

( ∑kn
j=1 j

2/d∑kn
j=1(dC(c, nj(c)))2

)d/2
(2)

For the second step, consider the lifted NNG obtained by endowing each sample with the
previous estimated density. Since each cluster is associated with a local maximum, we resort to
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the PLeSE algorithm from section 2.1 to identify the samples which are local maxima, and to
assign the remaining samples to their attraction basins.

Finally, the third step consists of filtering out the spurious local maxima using topological
persistence, as also explained in section 2.1.

Remark 4 Due to the high dimensionality of configuration spaces of molecular systems, the
estimate of Eq. (2) is typically small. For such cases, PD are best plotted in log-log scale.

2.3 Conformational ensembles: comparisons

Having presented methods to assess one conformational ensemble, we now address the problem
of comparing two such ensembles.

2.3.1 Hausdorff distance between ensembles

Rationale. A standard problem in designing sampling algorithms consists of assessing the
ability of an algorithm to detect local minima of interest, or points nearby such minima.

To perform such an assessment, consider two sets of conformations, a reference set R (typically
local minima), and an ensemble C produced by a sampling algorithm. To assess the coverage of
the set R by C, we compute for every sample r ∈ R its nearest neighbor in C:

∀r ∈ R : d(r, C) = min
c∈C

dC(r, c). (3)

We then report the following triple:

minr∈Rd(r,R),medianr∈Rd(r,R),maxr∈Rd(r,R). (4)

Note that the third entry in Eq. (4) is the so-called one-sided Hausdorff distance between R and
C – the sample from R which is the most isolated from C.

Algorithms. To find the nearest neighbors of a sample, we use the data structures described
in section 2.1.1.

colorblack

2.3.2 Minimum spanning forests

Rationale. The Hausdorff distance being a max min type criterion, we also consider a different
criterion, involving at least one distance for each conformation from C and R.

We do so by computing a minimal spanning forest of a weighted complete bipartite graph
induced by the two sets C and R. More precisely, the nodes represent the conformations and there
is an edge between every node representing a conformation c ∈ C and every node representing a
conformation r ∈ R. The weight of an edge is the distance dC(r, c). The problem then consists
of computing a minimum weight subset of edges such that every node of the bipartite graph is
incident to at least one edge of this subset. This means that every conformation is associated
with at least another one. More precisely, considering the aforementioned spanning forest as
directed, each conformation is constrained to have exactly one outgoing edge, connecting it to
the nearest conformation.
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Algorithms. It is easily shown that an optimal subset of edges induces a forest; i.e., a subgraph
without cycles. A simple algorithm consists of choosing, for every node, the incident edge with the
smallest weight. This strategy corresponds to the first step of Bor̊uvka’s algorithm for computing
a minimum spanning tree in a graph [NMN01]. (See also http://en.wikipedia.org/wiki/Bor%

C5%AFvka%27s_algorithm.) Note that if the weights are not all different, a correction step is
necessary in order to avoid cycles.

2.4 Energy landscapes and transition graphs: analysis

2.4.1 Transition graphs and disconnectivity graphs from critical points

Rationale. When a database of connected critical points (local minima and index one saddles)
is available, a transition graph is readily built. A powerful representation of the energy landscape
encoded in the transition graph is in terms of disconnectivity graph. As discussed in section 2.1,
persistence diagrams provide a quantitative alternative that also allows simplifications.

Algorithms. The persistence diagram of the sub-level sets of the landscape is computed from
the transition graph as explained in section 2.1.2. In particular, this PD gives the persistences
of all local minima.

2.4.2 Transition graphs and disconnectivity graphs from a conformational ensemble

Rationale. Consider now the case where a plain sampling has been obtained, together with
the local minimum associated with each sample (obtained by quenching) [SW82, NP06]. Let us
also assume that the transitions themselves have not been computed. In the sequel, we therefore
provide a variation on algorithm PLeSE, using samples and the associated local minima only, and
computing a transition graph as well as the associate DG and PD. Note in particular that this
algorithm does not involve any transition path sampling algorithm.

Algorithms. Assume that one is given a conformational ensemble C together with the cor-
responding quenched points Cq. We build a NNG on the conformations C ∪ Cq as explained
in section 2.1.1, and in addition endow each sample ci with an edge to q(ci). Note that this
connection directly links each sample to its local minimum, thus avoiding having to perform the
discrete quench operation using estimated gradients as explained in section 2.1.2. In running
the algorithm PLeSE on this graph, selected samples are detected as transitions. colorblackMore
precisely, algorithm PLeSE identifies pairs of samples (ci, cj), such that (i) cj belongs to the lower
star of ci (recall that samples are processed by increasing height), and (ii) q(ci) 6= q(cj). We
also say that these samples witness a bifurcation. When such a pair of samples is found, we
record the path from q(ci) to q(cj) through the samples ci and cj . The collection of all such
paths defines a transition graph between the vertices from the set Cq.

Remark 5 The following remarks are in order: colorblack

• The bifurcations, as defined above, may involve more than two local minima. This is e.g.
the case if a sample has in its lower star two or more samples flowing to distinct minima.
This situation may occur in different settings: (i) in case of coarse sampling, the connected
samples are located in the basins of several minima, (ii) the samples are located in the
neighborhood of a critical point of index > 1, or (iii) they are located in the neighborhood
of a degenerate critical point (a so-called monkey saddle). Note that our algorithm, purely
based on sampling, does not distinguish between these situations.
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• The saddles detected may not be close to the real saddles (i.e., critical points of index one
of the PEL), but they nevertheless indicate transitions between two basins associated with
q(ci) and q(cj) (Fig. 3).

• Since the PLeSE algorithm also detects local minima, it is tempting to apply the previous
method to the set C directly, i.e. without using the local minima in Cq. However, PLeSE
identifies a point as a minimum if its connected neighbors are all at higher energies. If two
(or more) such minima are in the same basin of the PEL, all but one are spurious. This
situation arises frequently in high-dimensional spaces due to sparse sampling.

Remark 6 colorblackThe previous analysis can be used to detect entropic bottlenecks. To see
how, consider the situation where two marginally rugged plains denoted A and B are connected
through a limited region S of configuration space of similar energy and rugosity – which corre-
sponds to an entropic bottleneck.

For such a task, persistence can be used to quantify the ruggedness of samples lying in a
given region A ∪ S ∪B, and isolate this region from the rest of the sampling. (Note that such a
region is a connected component of a sublevel set of the PEL, for an appropriate energy value.)
A graph cut technique (e.g., based on spectral clustering) may then be applied to find a balanced
cut isolating A and B across S.

2.4.3 Disconnectivity graphs: morphology

The generic situation expected in a DG is that of a binary merge, namely a saddle is linked to two
local minima. (Degenerate situations may occur, though: for example, a monkey saddle is linked
to three local minima.) That is a generic DG is a binary tree: each internal node representing a
saddle is associated with at most two children, and each leaf represents a local minimum.

The morphology of a complete binary tree can vary between that of a path (in which one
child of each internal node is a leaf and the other is an internal node) and that of a perfectly
balanced tree (in which each internal node has two children i.e. subtrees of the same size). To
assess the structure of such trees, we use the so-called external path length (EPL) [Mah92].
Defining the depth of a node as the number of edges required to reach it from the root, the EPL
is the sum of depths of the leaves of the tree. If n is the number of internal nodes (index one
saddles in our case), the EPL when the tree is a path is

(
n
2

)
+ 2n, which we will write using the

shorthand EPLpath, while that of a perfectly balanced tree is n log2 n. colorblackSince the latter,
symmetrical tree is not a realistic reference, we use instead the EPL of a random binary search
tree [Mah92], which is asymptotically equivalent to EPLrand. ∼ 2n lnn.

2.4.4 Transition graphs: topology and Betti Numbers

Rationale. The exploration of a complex energy landscape typically requires several runs of an
exploration algorithm, with different starting points and parameters. This strategy results in a
database of local minima and transitions between them. Connecting these critical points results
in a transition graph, which may be connected or not. We report topological and geometric
information characterizing this graph.

Topological information. For a given graph, the number of connected components and the num-
ber of cycles in this graph are known as the first and second Betti numbers [EH10], and are
respectively denoted β0 and β1. We report them for the transition graph, and we also compute
statistics on a per connected component basis.

The presence of cycles in a transition graph is especially interesting, since such cycles corre-
spond to different paths connecting the same local minima. Cycles involving two edges are also
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of interest, as they may arise in two situations. The first corresponds to the situation in which
a loop around a saddle is anchored in a single local minimum (Fig. 4). The second is due to
post-sampling processing techniques that may be used to group minima. For instance, in the
BLN model, enantiomeric left and right handed helices may be considered as identical in certain
contexts; identifying them as such results in the creation of a cycle.

Geometric information. The simplest geometric information embodied in a transition graph is
the length of its edges, and can be assessed with the statistical summary of Eq. (1).

In particular, the presence of long edges hints at challenging landscapes: even when the dC
between all pairs of local minima is small, one may have to follow a long valley to reach a saddle
connecting two minima.

Algorithms. Computing the first and second Betti number of a graph respectively require
running a traversal of the graph and a union-find algorithm [EH10, CLRSon].

2.4.5 Transition graphs: paths

Rationale. Consider a transition graph, and assume that selected minima called landmarks
have been singled out. For example, one may select the lowest local minima or the most persistent
ones (section 2.1).

For a given landmark, the distribution of distance from that landmark to its connected saddles
provides an estimate on the size of the basin of that landmark [DM05]. Also, a large value for
the smallest such distance provides information on the distance to be traveled to escape from
the basin of that minimum. Similarly, the relative position of all landmarks is assessed by the
statistical summary of all pairwise distances.

Algorithms. Computing the distances between landmarks can be done using a variant of
Dijkstra’s shortest path algorithm, where one walks on the graph provided, but records and
relaxes distances between landmarks only [CLRSon].

2.4.6 Transition graphs: embeddings

Rationale. To thoroughly explore an energy landscape, one usually launches a series of explo-
rations with different starting points. These explorations typically produce new local minima
which are stored in a database, and transition path sampling algorithms can be used to connect
them. To launch subsequent explorations, it is useful to visualize the relative positions of the
(significant) minima discovered.

Algorithms. Assume that one has selected a set of p local minima, say the p lowest ones. To
embed them in 2D or 3D space in order to visualize their relative positions, we use dimensionality
reduction algorithms such as Multi-dimensional scaling (MDS) [LV07]. We do so in two guises.
In the first setting, we compute the symmetric matrix of all pairwise distances between all pairs
of minima, using the metric dC from the conformational space. Then, MDS is called to produce
a 2D or 3D embedding best respecting these distances. However, the distance dC ignores the
topography of the landscape. In the second setting, we therefore replace it by the distance of
the shortest path computed on a TG connecting local minima and saddles. More precisely, a
path connecting two local minima consists of a sequence of connections minimum - saddle and
saddle - minimum. We add up the length (computing using the distance dC) of all such edges,
and select the minimum length obtained. We call this distance the cumulative edge distance dced.
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Note that computing these lengths is done with the variant of Dijsktra’s algorithm mentioned in
the previous section.

2.5 Energy landscapes and transition graphs: comparison

PEL and vertex weighted TG. colorblackThe importance of recognizing archetypal energy
landscapes has long been acknowledged [WMW98], in particular in the context of assessing the
dynamics of the systems studied [DWB05]. More generally, the problem of comparing two PEL
arises in various context, e.g. to evaluate the (lack of) coherence between two force fields, to
compare the properties of two similar molecules or clusters, or to check whether two runs of an
exploration method visited the same regions of the conformational space. To clarify things, by
comparing PEL, we actually refer to the problem of comparing two vertex weighted compressed
transition graphs, namely a graph connecting local minima across index one saddles, each vertex
being in addition endowed with the probability of its basin (see section 1.2 for compressed
transition graphs). In general, obtaining such a graph for the full landscape is beyond reach.
Instead, one deals with a graph associated with a database of critical points, or inferred from a
conformational ensemble. In both cases, the graph processed is a subgraph of the vertex weighted
compressed transition graph of the whole landscape. For the sake of conciseness, we still refer to
the problem of comparing two such graphs as a PEL comparison.

In designing PEL comparisons, two categories of criteria are of interest. The first one deals
with features of the basins, namely the exact local minimum associated with each basin, and the
probability of that basin. The second deals with transitions between significant basins.

In the following we provide two comparison methods: the first one deals with features of the
basins only, while the second one additionally exploits the information on transitions.

2.5.1 Earth mover distance

Rationale. Consider the basin B of a local minimum. Abusing notations, the footprint of the
basin in the conformational space C is also denoted B. Denoting kB is the Boltzmann constant
and Z the partition function, the probability of the basin is given by integrating the Boltzmann
factor over the basin region, namely:

w(B) =
1

Z

∫
B

exp
−V (c)

kBT
dc. (5)

If minima are found by optimization (e.g., basin hopping), the w(B) can be estimated using
the eigenvalues of the Hessian (curvature) matrix evaluated at those points [Wal03]. If, on
the other hand, the samples are obtained from a thermodynamic ensemble, as is typically the
case for molecular dynamics and Monte Carlo procedures, Boltzmann weighting is automatically
satisfied; the basin weight can correspondingly be estimated from the number of points falling
in the basin region

w(B) =
nB
n
. (6)

Consider now two landscapes, called the source landscape PELs and the demand landscape
PELd for the sake of exposure, respectively involving ns and nd basins. colorblackThe minimum
associated with the ith source basin Bi is denoted si, and that associated with the jth destination
basin Bj is denoted dj . We also assume that the weights of the basins have been computed.

Denoting these w
(s)
i and w

(d)
j for a source and demand basin respectively, we define the sum of
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weights Ws =
∑
i w

(s)
i and Wd =

∑
j w

(d)
j . Finally, we also assume that a metric dC is available to

compare two conformations, so that the distance between the two aforementioned local minima
is dC(si, dj).

To compare the two landscapes, we use the earth mover distance [RTG00], which is a partic-
ular case of mass transportation [Vil03]. Intuitively, the technique fills basins in the target (aka
demand) landscape using mass from basins of the source landscape. A basin from PELs can be
split into several parts, and equivalently, a basin from PELd can be filled from several basins
from PELs (Fig. 5). Denote fij the mass from Bi ∈ PELs moved into Bj ∈ PELd. The cost
of moving fij units of mass depends linearly on the distances between the minima si associated
with Bi and dj associated with Bj . A transport plan from PELs to PELd is defined by triples
(si, dj , fij), with fij > 0. Note that there are at most ns × nd such triples.

Finding the optimal i.e. least cost transport plan amounts to solving the following linear
program (LP):

LP


Min

∑
i=1,...,ns,j=1,...,nd

fij × dC(si, dj)∑
i=1,...,ns

fij = w
(d)
j ∀j ∈ 1, . . . , nd,∑

j=1,...,nd
fij ≤ w(s)

i ∀i ∈ 1, . . . , ns,

fij ≥ 0 ∀i ∈ 1, . . . , ns,∀j ∈ 1, . . . , nd.

(7)

The first equation is the linear functional to be minimized, while the remaining ones define linear
constraints. In particular, the second one expresses the fact that every basin from PELd need
to be filled, while the third one indicates that a basin from PELs cannot provide more than it
contains. colorblack(To simplify matters, we have assumed that Ws ≥ Wd. Handling the case
Ws < Wd poses no difficulty, and the reader is referred to [RTG00].)

Based on this linear program, we introduce the total number of edges, the total flow, the total
cost, and their ratio, known as the earth mover distance [RTG00]:

MEMD =
∑
i,j|fij>0 1,

FEMD =
∑
i,j fij ,

CEMD =
∑
i,j fijdC(si, dj),

dEMD = CEMD/FEMD.

(8)

Algorithms. Consider a sampling C and the corresponding quenched samples Cq. To compute
the weight of a basin associated to a local minimum m ∈ Cq, we use the assignment of the samples
from C into the basins of local minima as done by algorithm PLeSE (section 2.4.2). The weight
of a basin is then obtained using Eqs. (5) and (6).

Once the weights of basins have been computed, solving the linear program of Eq. (7) has
polynomial complexity [Kar84]. Practically, various solvers can be used, e.g. the one from the
Computational Geometry Algorithms Library [cga], lp solve 1, the CPLEX solver from IBM 2,
etc. In the following, the algorithm solving the linear program of Eq. (7) is called Alg-EMD-LP.

2.5.2 Earth mover distance with connectivity constraints

Rationale. The previous comparison ignores transitions between local minima. To take these
connections into account, we modify the method by imposing connectivity constraints to trans-
port plans. To see whether a transport plan is valid, pick any connected subgraph S from PELs

1http://sourceforge.net/projects/lpsolve/
2http://www-304.ibm.com/ibm/university/academic/pub/page/ban_ilog_programming
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— that is S connects selected local minima in PELs. Let D be the set of vertices from PELd
such that for each vertex dj in D, there is at least one edge emanating from a vertex si of the
subgraph S with fij > 0. The transport plan is called valid iff the subgraph D is also connected.
Intuitively, this constraint reads as follows: any connected set of basins from PELs can only
send mass to a connected set of basins from PELd (Fig. 6). In doing so, one compares the two
landscapes while preserving connectivity constraints between basins.

It should be noticed that the connectivity preservation may prevent from fully satisfy the
demand.

Algorithms. Finding transport plans respecting connectivity constraints turns out to be a hard
combinatorial problem. The problem is not in APX, which means that if P 6= NP holds, then,
no polynomial algorithm with constant approximation factor exist. However, a greedy algorithm
providing admissible solutions respecting connectivity constraints, denoted Alg-EMD-CCC-G for
earth mover distance with cost and connectivity constraints, has been reported in [CM16]. col-
orblackUsing this algorithm, in a manner analogous to Eq. (8), we define the total number of
edges, the total flow, the total cost, and their ratio:

MAlg-EMD-CCC-G =
∑
i,j|fij>0 1,

FAlg-EMD-CCC-G =
∑
i,j fij ,

CAlg-EMD-CCC-G =
∑
i,j fijdC(si, dj),

dAlg-EMD-CCC-G = CAlg-EMD-CCC-G/FAlg-EMD-CCC-G.

(9)

Remark 7 It can be shown that the Earth Mover Distance as defined by Eq. (7) yields a metric,
provided that dC is itself a metric, and that the sum of weights for the source and the demand
graphs are equal [RTG00]. On the other hand, the EMD with connectivity constraints fails to
satisfy the triangle inequality [CM16]. colorblackThe EMD with connectivity constraints is not
symmetric either, but is easily made so in taking a symmetric function of the one sided quantities.
To assess this lack of symmetry, we introduce the following ratios, respectively geared towards
the flow and the cost:

colorblack


rFsym =

min(FAlg-EMD-CCC-G(A,B), FAlg-EMD-CCC-G(B,A))
max(FAlg-EMD-CCC-G(A,B), FAlg-EMD-CCC-G(B,A))

,

rCsym =
min(CAlg-EMD-CCC-G(A,B), CAlg-EMD-CCC-G(B,A))
max(CAlg-EMD-CCC-G(A,B), CAlg-EMD-CCC-G(B,A))

.

(10)

3 Results

In this section, we present the test system used, and apply the tools presented above to investigate
two scenarios, namely modeling a landscape, and comparing samplings.

3.1 System used: BLN models and datasets

BLN69 model. We use a 69 residue BLN model protein [BFHG03], whose landscape has been
extensively sampled [Wal03, OWJ11]. The BLN model represents each protein residue as one of
3 types of beads, namely hydrophobic(B), hydrophilic(L) and neutral(N). The potential energy
for the model is recalled in the supplemental section 6.1. In comparing two BLN69 structures,
we extend the least root mean square deviation (lRMSD) by an additional test accomodating
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chirality of the polymeric structure [OJW12]. That is, when comparing two conformations ci
and cj , two distances are computed, between ci and cj , and between ci and the enantiomer of
cj ; if the latter is smaller, the coordinates of the enantiomer are substituted for the originals.

The fast folding of proteins is usually interpreted in terms of minimal frustration [BW87,
BOSW95, OLSW97], and frustration models have been developed both at the local level [TBSW13]
and at the whole PEL level [DWB05]. The BLN69 model has a frustrated potential energy sur-
face, with several deep basins close in energy to the global minimum (V = −105.19 in reduced
energy units) but separated from it by high barriers. Of the top ten lowest energy structures,
four lie close to the global minimum, differing only by changes in the turn regions, whereas six
are found with different arrangements of the β-strands and are separated from the others by high
energy barriers, whence the frustration.

Earlier work by [OWJ11] resulted in a database of 458,082 minima and 378,913 index 1
critical points (saddles) which was furnished to us by the authors, and from which we define:

• BLN69-all: the full database of critical points, obtaining using a combination of basin
hopping and path sampling runs.

• BLN69-E−100: the subset BLN69-all featuring all local minima whose energy is less than
100 energy units.

• BLN69-top10: the 10 lowest minima from BLN69-all.

We note in passing that when referring to local minima of the BLN69 model, we use the indices
of critical points from BLN69-all.

Generation of conformational ensembles. We also generated conformational ensembles
using the transition rapidly exploring growing random tree (T-RRT) algorithm, which has been
shown to be efficient at sampling energy landscapes [JCPC11]. We also subsequently quenched
these samples. The incentive for using T-RRT, which refines the rapidly growing random trees
exploration method [KL00], is that it uses an extension strategy known as the Voronoi bias,
which avoids regions already visited by those that are yet unexplored. More precisely, T-RRT
builds a tree exploring the conformational space. At each step, one tree node gets extended,
each node being chosen with a probability equal to the volume of its Voronoi cell in the Voronoi
diagram of the ensemble generated so far. The stepsize and temperature are adjusted throughout
in order to facilitate sampling higher energy regions.

Using this algorithm, we launched an exploration generating 104 samples for each local
minimum from the dataset BLN69-top10 resulting in ten corresponding samplings denoted
TRRT-top10-1, -2, etc.. The parameters used in each run were the extension stepsize δ = 0.5 in
euclidean distance, the initial reduced temperature Tinit = 2, and the temperature multiplication
factor λ = 1.001. The stepsize δ was chosen based on the observation of the size of the bounding
box of BLN69-all. These values were chosen empirically to favor access to lower lying regions of
the PEL, and reflect the fact that T-RRT itself is not a quench-based method.

When building the NNG from the conformational ensemble, we used the lRMSD distance,
with the chirality check discussed above to identify enantiomers of the BLN molecule that were
closer in terms of lRMSD.

Finally, to compute the weight of basins associated to such samplings, we used Eq. (6) even
though T-RRT method itself employs non-thermodynamic sampling in exploring higher-energy
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regions of the PEL. To challenge the comparison algorithms, we also created a second dataset as
follows: for each run of TRRT-top10, we retained the local minima, but assigned a uniform mass
to each basin. (That is, a basin of a landscape with p local minima gets a mass of 1/p.) The ten
corresponding datasets are denoted TRRT-top10-U-1, -2, etc, with U indicating uniform.

3.2 Modeling a landscape

Topology of transition graphs. We first analyze the overall structure of the transition graph
encoded in the database BLN69-all. On this graph, whose nodes are the critical points (minima
and saddles), the numbers of connected components (c.c.) and cycles are respectively β0 =
138010 and β1 = 58821. However, one prominent c.c. involves 163480 vertices and features
β1 = 58039 cycles. In the following, we focus on the analysis of this giant component. On
this giant component, one observes 590 bump transitions (out of 970 in the whole dataset)
(Fig. 4). One also finds minima with up to 6 bump transitions. In principle, the presence
of possibly multiple bump transitions would hamper sequential exploration algorithms such as
basin hopping by reducing the possibility for escape away from such basins3; for the same barrier
crossing probability a larger step would be required to flow into a different minimum.

Binary and k-ary DG. The complete DG associated with the dataset BLN69-all shown in
Fig. 7 is a binary tree (section 2.4.3). This differs from DG representations most often used in
energy landscape studies, which group several transitions from a given energy slice into a single
node to increase visibility, resulting in a k-ary tree[pel]. Zooming in on the region of the complete
DG near the global minimum reveals its binary structure (Fig. 7, left-hand side).

We analyze the morphology of this binary tree using the external path length (section
2.4.3). For the largest connected component of Fig. 7, one obtains EPL/EPLpath = 0.28,
but EPL/EPLrand. = 963.46. This clearly shows that the binary tree associated with BLN69-all
is essentially a path. This feature is likely related to the strategy used to find local minima and
index one saddles connecting them in the original work on the exploration of the BLN landscape
[Wal03, OWJ11].

This path-like tree structure also accounts for the unbalanced shape observed in Fig. 7.
Indeed, the classical DG drawing algorithm consists of sorting the children of a node using either
the number of leaves in the sub-trees or their lowest energy. For a binary tree reducing to a path,
as we have here, the largest subtree always ends up on the same side (left or right). For a k-ary
tree, the same procedure typically results in a more symmetric shape.

Persistence of local minima. We next analyze the persistence of local minima in BLN69-
all, using the approach explained in section 2.4.1 (Fig. 8). Since minima from BLN69-top10
correspond to an energy E < −104, we restrict the PD to this set (Fig. 8(Inset)). This plot
shows a clear gap isolating 10 minima (9 points of the diagram plus the global minimum, which
never appears, as explained in Methods). Remarkably, out of the 10 most persistent minima,
one finds 6 conformations from BLN69-top10 plus 4 new ones, whose lRMSD to local minima
from BLN69-top10 is circa 0.5Å(supplemental Table 2). This observation shows the advantage
of PD in identifying out the most stable local minima.

As can be seen from Fig. 7 (right-hand side), due to graphical limitations, plotting all the
data simultaneously is not particularly useful for interpreting global dynamics of the system.
The use of a persistence threshold greatly facilitates interpretation of the complete DG for the
frustrated BLN system. For instance, as shown above, the persistence analysis (Fig. 8) shows

3On the other hand, self-connexions do not make contributions to the structural dynamics.
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that many basins are well separated from one another with persistences of up to 70 energy units.
Drawing the complete DG using a persistence threshold of 15 ε spotlights these deep, meta-stable
basins or states (Fig. 9 and 10). As opposed to grouping by transition state energies in fixed
increments, as is done in typically reported DG’s, such denoising by persistence analysis can be
used to simplify the graphical construction without losing the precision in the representation of
the transition energies.

We also note in passing that upon simplifying the whole DG with persistence (from Fig. 7
to Fig. 9), its path-like structure becomes even more dominant, since the ratio EPL/EPLpath
jumps from 0.28 to 0.99.

We may also examine the structure of the landscape in the region of the global minimum by
focusing on the sub-level set of the landscape located below −95 energy units. This sub-level set,
which we shall denote M , consists of 45408 local minima structured in 9562 c.c.. The particular
c.c. containing the global minimum, denoted Mg, involves 22214 local minima. Observing that
the median persistence of the top 10 local minima (BLN69-top10) is 6.14ε (supplemental Table
5), we simplified M, and thus Mg, using this value as a persistence threshold. In doing so, the
number of remaining local minima reduces to 19: the global minimum plus 4 persistent minima
from BLN69-top10 plus 14 other persistent basins from Mg. The latter minima are not in the
top10, yet are more persistent than four local minima from BLN69-top10.

Transitions. To capture global properties of the transition graph, we first turn to the structure
of attraction basins of the local minima in the set BLN69-E−100. In particular, we analyze the
star of each local minimum, that is, the direct connexions to surrounding saddles (supplemental
Table 3). Interestingly, selected transitions are characterized by a long distance and a low energy
(see e.g. the 5th column for the minimum of index 1). Clearly, such situations are difficulties for
exploration algorithms, which need to cover a long distance to a saddle before reaching another
basin.

We complement the previous analysis with parameters of the transition graph upon marking
the 10 lowest local minima as landmarks, making use of the approaches presented in section
2.4.5. Statistics on the transition paths are compiled in the supplemental Table 4. One observes
that a path joining two minima involves up to 5 intermediate minima, or equivalently 10 edges
in the graph. It is also seen that there exist paths that are short in terms of nodes, but long
distance-wise: for example, the two minima of indices 1 and 311 are separated by one saddle,
yet the associated cumulative edge distance is dced = 1.182. These facts illustrate the difficulty
faced by sampling algorithms, which may have to discover a long transition path to cross a single
saddle — possibly high in energy. Another point of view is provided by the distribution of lengths
of edges of a minimum spanning tree spanning the critical points (supplemental Table 1). For
the datasets BLN69-E−100 and BLN69-all, a significant gap is observed between the median and
the maximum edge lengths in the MST. This gap clearly shows that subsets of the ensemble are
quite separated.

Finally, it is also seen that 5 local minima (6, 8, 142, 311, 33250) dare connected to the global
minimum by a single saddle. When distance dced between these conformations is small, this
explains why sampling algorithms consistently report these five minima during an exploration
run (data not shown).

Comparing the distances lRMSD and dced via the ratio lRMSD/dced also proves of interest
to identify pairs which are close in the lRMSD sense but far away according to the cumulative
edge distance. For example, the pair (1974, 7305) yields a ratio of 0.32 and (311, 7305) a ratio
of 0.37, while the path between (1, 142) is more direct, with a ratio of 0.92.
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Sketching the landscape using non linear dimensionality reduction. To visualize the
relative positions of the lowest local minima of the BLN landscape, as explained in section 2.4.6,
we apply MDS to the distance matrices between all pairs from BLN69-top10 (Fig. 11). Both
2D projections have a similar global structure. However, as observed above, pairs nearby in the
lRMSD sense may be far apart when considering the cumulative edge distance dced — e.g. the
pairs (1974, 7305) and (311, 7305).

3.3 Comparing samplings

Setup. We apply our PEL comparison algorithms on the dataset TRRT-top10. To generate
the vertex weighted transition graphs (section 2.5), we proceed in two stages. First, we apply
topological persistence to merge the non significant basins into larger ones (section 2.1.2). Prac-
tically, this process gets rid of basins with persistence less than 750 energy units. Then, the
version of algorithm PLeSE for PEL was run (section 2.4.2), resulting in the assignment of each
sample to its basin (whence the basin weights) and a list of connections between basins.

Detailed information for each run, namely the DG, the associated persistence diagram, to-
gether with the distribution of masses, can be found in the supplemental section 7.2. Two facts
are worth noticing. First, the basin weights within each dataset TRRT-top10 are unevenly dis-
tributed, since the local minimum from which the T-RRT run was started dominates the sampling,
a fact related not only to intrinsic concerns about exploration efficiency but more fundamentally
to frustration of the landscape itself. This indeed was the motivation for creating the “challenge”
dataset TRRT-top10-U, which is the same as TRRT-top10 except that basin weights have been
attributed that correspond to a more uniform sampling of the conformational space. Second,
the transitions found involve samples with relatively high energies with respect to those of the
lowest minima, a fact owing to the hybrid nature of the sampling, which consists of non critical
points together with the associated quenched local minima, namely the ensemble C ∪ Cq from
section 2.4.2. This, however, is not an issue in comparing PEL samplings, since the saddles are
used simply to connect basins; the saddle heights themselves are unused.

We performed all pairwise comparisons of the 10 PEL samplings TRRT-top10-1-10 and
TRRT-top10-U, computing for each pair (A,B) three transport plans, namely: that associated
with the linear program, and the two associated with the earth mover distance with connectivity
constraints – since Alg-EMD-CCC-G is not symmetric.

Algorithm Alg-EMD-LP and connectivity constraints. As algorithm Alg-EMD-LP is oblivi-
ous to critical point connectivity, we first focus on how well the connectivity is preserved. We do
this by computing the fraction of vertices and edges of the input graph inducing, through the flow,
a connected subgraph of the demand graph. On the 45 instances of the dataset TRRT-top10, the
statistical summaries (min, median, max) of these vertex and edge fractions are respectively of
(0.1, 0.62, 1.), and (0.03, 0.89, 1.) (supplemental Tables 6 and 7). For the dataset TRRT-top10-U,
the summaries become (0., 0.63, 0.97) and (0.01, 0.4, 1.) (supplemental Tables 8 and 9). Thus,
transport plans obtained by solutions of the linear program do disrupt connectivity constraints,
especially for difficult cases.

Algorithm Alg-EMD-CCC-G and demand satisfaction. For algorithm Alg-EMD-CCC-G, the
connectivity is preserved by construction, but this may prevent full satisfaction of the demand,
which motivated the definition of the total flow Eq. (9).
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Consider first the demand satisfaction, assessed by the ratio %F = FAlg-EMD-CCC-G/Wd.
(Recall that Wd stands for the sum of the weights of the basins of the demand graph.) For
the dataset TRRT-top10, a worst-case value of 99.86% is observed (supplemental Table 10),
showing that constraints do not provide a serious hindrance to satisfy the demand. Consider
now the ratio rFsym as defined in Eq. (10). It turns out that algorithm Alg-EMD-CCC-G does
not exhibit significant asymmetry on these instances, since the previous ratio lies in the interval
[0.94, 1], with a median of 0.99. colorblackNevertheless, the remarkable behavior of algorithm
Alg-EMD-CCC-G partly owes to the nature of the instances, for, as observed above, a frustrated
landscape results in one basin taking most of the mass. Therefore, the transport plan associated
with two landscapes is dictated by the flow from the dominant minimum of the first landscape to
the dominant minimum of the second landscape. In other words, the transport cost is essentially
the distance between these two minima.

The situation deteriorates for the dataset TRRT-top10-U (supplemental Table 11). First,
the symmetry ratio rFsym takes values in the interval [0.07, 0.96], with a median of 0.48. Also,
satisfying the demand gets more difficult, and one finds both easy and hard instances: across all
pairs, min max(%F (A,B),%F (B,A)) is as low as 5.87%, while max min(%F (A,B),%F (B,A))
is as high as 71.43%. The former pair defines a difficult case – the transportation problem is
difficult both ways, while the latter is a simple one – the transportation problem is easy both
ways.

Transport costs. In general, connectivity constraints could also deteriorate the transport cost
computed by algorithm Alg-EMD-CCC-G. For the dataset TRRT-top10 (supplemental Tables 12
and 13), the pairwise correlations among CEMD(A,B), CAlg-EMD-CCC-G(A,B) and CAlg-EMD-CCC-G(B,A)
are at least equal to 0.999 (supplemental Fig. 22). As discussed above, this owes to the structure
of the graphs modeling the sampling.

Again, the situation changes for the dataset TRRT-top10-U (supplemental Tables 14, 15).
On the one hand, the costs become asymmetric, the symmetry ratio rCsym of Eq. (10) spanning
the interval [0.00, 0.95] with a median of 0.43 – as opposed to [0.99, 1.] with a median of 1.. On
the other hand, the correlation with the cost of linear transport plans is lost (Pearson correlation
coefficients down to 0.25, 0.09, and 0.06; supplemental Fig. 23).

On the hardness of comparing landscapes. As evidenced by the previous analysis, the
comparison of landscapes is a difficult problem for which one may favor the satisfaction of the
demand (using Alg-EMD-LP) at the detriment of the connectivity constraints, or vice-versa. The
intrinsic hardness of the problem, as explained in section 2.5.2, makes the presence of such cases
inevitable.

3.3.1 BLN69: Summary of novel insights

colorblackAnalyzing the database of critical points for BLN69 and the connectivity information
encoded therein, as well as portions of the landscape revealed by different exploration methods,
reveals several novel insights.

The topological persistence analysis allows a global view of the entirety of the PEL data for
the BLN69 model protein system (Fig. 8) that is not feasible with an unfiltered discontinuity
graph (e.g., Fig. 7). In such complex cases discontinuity graphs are often applied to “manually”
culled or regrouped subsets of the database in order to produce interpretable diagrams. In
contrast, the full persistence diagram immediately shows the presence of high barriers (here up
to 70 energy units) separating even relatively low-energy structures, emphasizing the frustrated
nature of the BLN69 system and allowing a preliminary identification of kinetic traps, which
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further presumably underlie the variability in success rates for attaining global minima in this
system seen for different exploration methods.

Relatedly, topological persistence also provides a robust way of systematically reporting only
those basins interconnected by barriers of a prescribed height, or whose local minima lie in a
specific energy slice. In particular, we show that for the typical figures considered, 14 such local
minima distinguish themselves based on persistence criteria– while previous work tended to focus
on the 10 lowest-energy ones.

The embedding of critical points performed by the ISOMAP algorithm also reveals clusters of
critical points in the sample database. The presence of such structuration in the database of
samples can be used to shed light on the ability of exploration methods to uncover important
local minima.

Calculating the internal path-length statistic for the overall basin connectivity in the BLN69
protein model, as encoded in the disconnectivity graph of the landscape, reveals a rather unbal-
anced structure. Intuitively, this suggests an underlying funnel nature to the PEL despite the
high degree of frustration in this system.

Finally, in using the earth-mover’s distance to compare samplings obtained for the BLN69
protein model, with its more than 200 degrees of freedom, we saw that despite high complexity
the algorithm is effective in handling comparisons of landscapes with hundreds of minima.

4 Conclusion

This paper revisits classical concepts and present new ones for the analysis and comparison
of conformational ensembles and sampled landscapes. From a methodological standpoint, two
classes of novel tools are of particular interest.

The first class is concerned with persistence based algorithms providing a coherent framework
to handle landscapes presenting multiple scales in the barrier height distribution. When the
landscape processed is the potential energy of the system, these algorithms allow automatically
selecting minima with specified values in terms of energy and saddle height. When the processed
landscape encodes the density of states, the same algorithms yield a clustering method whose
output hints at the number of stable states.

The second class is concerned with methods aiming at comparing sampled landscapes. The
comparison may be restricted to the persistent basins and their volumes, or may also incorporate
connexions between the basins. The possibility of comparing sampled landscapes should prove
invaluable in investigating the coherence of two force fields, in distinguishing comparable but
distinct macromolecular systems, or simply in comparing simulations launched with different
initial conditions.

The software corresponding to these novel tools is made available in two guises. First, exe-
cutables are provided for various operating systems (Linux, MacOS). Second and possibly most
importantly, the C++ will be released within the Structural Bioinformatics Library during the
first trimester of 2015.
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5 Artwork

Figure 1 Height field analysis of the Himmelblau function f(x, y) = (x2 +y−11)2 +(x+
y2 − 7)2. The function has four local minima, four index one saddles, and one local maximum.
The left and right columns respectively represent the function as defined in the previous equation,
and to a noisy version obtained by adding Gaussian noise (noisy Himmelblau). (Top row) Plots
of the function. The inset on the right side indicates the noise. (Middle row) Disconnectivity
graphs. While that of Himmelblau features three saddles corresponding to the merges between
the four basin, that of noisy Himmelblau contains more events. (Bottom row) Persistence
diagram of sub-level sets. That of Himmelblau has three points, corresponding to three pairs
(minimum, saddle). Note that the basin of the global minimum does not appear on the PD since
it does not merge with a deeper basin. That of noisy Himmelblau contains two sets of points:
those near the diagonal correspond to small wiggles on the landscape, while the remaining three
are in one-to-one correspondence with those of the left diagram.
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Figure 2 colorblackExploiting a persistence diagram: selecting samples belonging to
a basin born before a prescribed energy Emax and with a persistence higher than
a threshold ∆E. The thresholds Emax and ∆E yield a partition of the PD consisting of five
regions R1, . . . , R5. See text for details.
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Figure 3 Identifying the connexion between the basins of two local minima by
quenching two samples ci and cj. (Top) A simple 2D landscape Sample ci is quenched

to σ
(0)
i while cj is quenched to σ

(0)
j . The samples ci and cj sit across the (white) ridge separating

the basins of their respective minima. (Bottom) General case Portrayed is a generic sketch of
the flow lines associated with the negative gradient vector field of the potential energy −∇V (see

e.g. the Morse homology theorem in [BH04]). Sample ci is quenched to σ
(0)
i while cj is quenched

to σ
(0)
j . The two samples define a line segment intersecting transversely the stable manifold in

the index one critical point σ
(1)
ij — which is d−1 dimensional since the index (number of negative

eigenvalues) of the critical point is d− 1. The unstable manifold of σ
(1)
ij is one-dimensional, and

yields the connections with the two local minima σ
(0)
i and σ

(0)
j .
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Figure 4 A loop around a saddle s anchored in a single local minimum m — a.k.a
bump transition. Note that the dotted path is located behind the bump.

s

m

Figure 5 Comparing two energy landscapes PELs and PELd. The landscape PELs
is partitioned into the basins associated to its local minima (two of them on this example),
and likewise for PELd (four local minima). Comparing the landscapes is phrased as a mass
transportation problem on the bipartite graph defined by the two sets of minima. Note that
sets of connected basins from the top landscape are mapped to connected basins of the bottom
landscape.
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Figure 6 The solution of the linear program may not satisfy connectivity constraints.
A transport plan between a source and a demand graph each consisting of a linear chain of four
vertices. The vertices of the edge {s1, s2} of the source graph export towards the vertices d1 and
d3 of the demand graph. The subgraph of the demand graph induced by these vertices is not
connected – there is no edge linking d1 to d3.

s1

s2

s3

s4

d1

d2

d3

d4

Figure 7 Disconnectivity graph associated with the dataset BLN69-all (see also Fig.
8). The inset is an arbitrary zoom on the tree containing the global minimum for E < −103.
There are four minima from BLN69-top10 that are in the inset (in-circled).
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Figure 8 Persistence of the basins in BLN69-all. The main plot features the 458,082
minima, while the inset zooms on the region corresponding to the forty minima in BLN69-all
with energy E < −104 units. The 10 most persistent minima (9 points of the diagram, plus the
global minimum) contained in the ellipsis correspond to 6 conformations from BLN69-top10 and
to 4 new ones. See also the supplemental Table 2.
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Figure 9 Frustration of BLN69 revealed by topological simplification using persis-
tence. Illustrated is the DG of Fig. 7(right), simplified with a persistence threshold of 15 ε,
which reveals the frustration of BLN69

Figure 10 The DG of Fig. 9 plotted after clustering saddles within energy slices of
height 0.5ε. Note that both DG have been plotted by the same algorithm, so that the visual
difference stems from the binary versus k-ary structure of the trees.
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Figure 11 2D sketch of the energy landscape representing BLN69-top10 using multi
dimensional scaling (MDS) on a matrix of pairwise cumulative distances. (Top) The
distance used is the lRMSD . (Bottom) The distance used is the cumulative edge distance
defined in section 2.4.6, the landmarks being the 10 lowest local minima.
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6 Supplemental: Methods

6.1 BLN

The potential energy of the BLN69 model is given by:

V =
1

2
Kr

N−1∑
i

(Ri,i+1 −Re)
2 +

1

2
Kθ

N−2∑
i

(θi − θe)2

+ε

N−3∑
i

[Ai(1 + cosφi) +Bi(1 + cos 3φi)]

+4ε

N−2∑
i

N∑
j=i+2

Ci,j [(
σ

Ri,j
)12 −Di,j(

σ

Ri,j
)6].

Note that the first three terms are bonded terms, while the fourth is the non bonded term (LJ
potential). Parameter definitions and values are as specified in [Wal03].

7 Supplemental: Results

7.1 Modeling a Landscape

Table 1 Sampling diversity assessment based on the statistical summary (min, me-
dian, max) of edges of a minimum spanning tree spanning a conformational ensem-
ble. The statistics reported are those of Eq. (1), the distance used being the lRMSD .

min median max
BLN69-top10 0.0981464 0.360528 0.625568
BLN69-E−100 0.00046106 0.118135 5.3118
BLN69-all 0.0206142 0.254532 2.42746

Table 2 Novel persistent local minima from Fig. 8(Inset), and the nearest neighbors
from the BLN69-top10 dataset

index pers min index nn in BLN69-top10 lRMSD
6872 311 0.482
2507 311 0.36
31779 11134 0.463
77992 311 0.482
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Table 3 Local Analysis of the star of minima from the BLN69-E−100 that lie at energy
less −104. The star of a given minimum consists of all the saddles directly connected to it in
BLN69-E−100. The lRMSD between the minimum and the saddle together with the energy
increase ∆E were recorded, whence a pair for each saddle. Sorting these pairs by increasing
lRMSD yields the columns 3–5. Sorting these pairs by increasing ∆E yields the columns 6–8.

Index num. TS Min dist Median dist Max dist Min ∆E Median ∆E Max ∆E

1 340 (0.0659, 1.17) (0.32, 17.3) (1.82, 17) (0.842, 0.0681) (13.5, 0.22) (54.3, 1.58)
6 153 (0.0658, 1.16) (0.307, 13.4) (3.53, 19.4) (0.896, 0.0677) (11.9, 0.586) (28.7, 0.312)
8 166 (0.0443, 0.348) (0.297, 9.27) (1.85, 28.8) (0.348, 0.0443) (11.8, 0.289) (28.8, 1.85)
86 97 (0.0455, 0.416) (0.298, 7.18) (2.93, 19.4) (0.416, 0.0455) (10.7, 0.396) (23.6, 0.705)
142 185 (0.0492, 0.667) (0.303, 20.4) (1.37, 14.8) (0.667, 0.0492) (12.9, 0.836) (30.5, 1.06)
195 263 (0.0647, 0.896) (0.341, 11.9) (2.65, 22.2) (0.896, 0.0647) (14.2, 0.358) (55, 1.72)
311 75 (0.0665, 1.12) (0.273, 3.62) (1.64, 27.8) (1.12, 0.0665) (10.3, 0.457) (27.8, 1.64)
383 44 (0.0493, 0.679) (0.274, 15.2) (1.3, 25) (0.679, 0.0493) (10.5, 0.547) (25, 1.3)
644 138 (0.0435, 0.334) (0.312, 12) (1.41, 28.5) (0.334, 0.0435) (11, 0.222) (46.7, 1.1)
1245 81 (0.0452, 0.734) (0.506, 21.8) (1.78, 30.1) (0.105, 0.0469) (13.1, 0.9) (30.1, 1.78)
1255 78 (0.066, 1.17) (0.262, 26.4) (1.82, 39) (0.831, 0.067) (11.5, 0.306) (39, 1.82)
1404 69 (0.0763, 2.09) (0.268, 14.7) (2.05, 17.6) (0.376, 0.104) (9.78, 0.435) (28.4, 0.278)
1630 147 (0.044, 0.36) (0.294, 15.9) (1.53, 21.2) (0.36, 0.044) (13.7, 0.339) (48.5, 0.984)
1922 98 (0.049, 0.655) (0.282, 6.16) (1.4, 18.5) (0.655, 0.049) (11.1, 0.334) (27.4, 1.18)
1963 88 (0.0573, 0.163) (0.257, 12.7) (1.05, 13.1) (0.163, 0.0573) (11.9, 0.345) (25.2, 0.762)
1974 215 (0.0644, 0.862) (0.321, 20.3) (2.92, 19) (0.799, 0.091) (14.6, 0.729) (34.2, 0.268)
2010 99 (0.0722, 2.57) (0.306, 6.87) (0.957, 19.7) (0.345, 0.0996) (9.86, 0.573) (28.3, 0.282)
2240 89 (0.0456, 0.593) (0.277, 14.9) (2.93, 19.1) (0.593, 0.0456) (13.7, 0.468) (25.9, 1.29)
2507 73 (0.0684, 2.61) (0.243, 17.7) (1.25, 14.3) (0.377, 0.103) (9.6, 0.264) (28.3, 0.264)
3618 86 (0.087, 1.83) (0.283, 11.1) (1.31, 26.5) (1.71, 0.131) (11.4, 0.216) (31.7, 0.239)
3703 130 (0.0636, 0.844) (0.311, 17.1) (2.94, 19.1) (0.844, 0.0636) (14.4, 0.431) (37.6, 2.13)
5876 62 (0.0451, 0.0978) (0.548, 15.5) (1.87, 26.6) (0.0978, 0.0451) (12.8, 0.87) (27.2, 1.25)
6327 55 (0.0484, 0.118) (0.3, 7.42) (1.77, 26.4) (0.118, 0.0484) (8.52, 0.593) (26.4, 1.77)
6872 93 (0.0718, 2.52) (0.279, 7.48) (1.29, 20.9) (1.68, 0.132) (10.5, 0.329) (23.4, 0.239)
7265 97 (0.0437, 0.0881) (0.493, 19.2) (1.91, 28.1) (0.0881, 0.0437) (12.9, 0.954) (28.9, 1.76)
7271 75 (0.0618, 0.743) (0.287, 13.6) (1.58, 18.8) (0.322, 0.0771) (10.4, 0.408) (30.5, 0.339)
7300 90 (0.0621, 0.769) (0.28, 7.25) (1.77, 18.3) (0.309, 0.0753) (9.67, 0.637) (32.7, 1.52)
7305 93 (0.0454, 0.752) (0.289, 5.92) (1.08, 18.4) (0.29, 0.0744) (10.3, 0.398) (21.9, 0.276)
7489 75 (0.052, 0.899) (0.255, 20.1) (1.62, 18.4) (0.273, 0.0719) (10.7, 0.228) (27.7, 0.377)
9846 256 (0.0667, 0.865) (0.332, 15.1) (1.95, 34.8) (0.865, 0.0667) (15.4, 0.27) (37.6, 1.67)
11134 221 (0.0644, 0.86) (0.326, 20.6) (2.93, 18.8) (0.86, 0.0644) (14.3, 0.491) (31.5, 1.73)
11434 164 (0.0461, 0.403) (0.288, 13.9) (2.94, 18.8) (0.403, 0.0461) (14.3, 0.327) (27.3, 0.208)
11545 158 (0.0471, 0.627) (0.294, 17.6) (1.69, 17.3) (0.627, 0.0471) (14.2, 0.285) (25.8, 0.829)
12760 183 (0.064, 0.833) (0.309, 9.9) (2.95, 28.8) (0.833, 0.064) (14.9, 0.169) (32.7, 2.06)
31779 105 (0.0688, 0.836) (0.242, 12.2) (1.96, 47.6) (0.836, 0.0688) (11.1, 0.282) (47.6, 1.96)
33250 131 (0.0652, 1.15) (0.286, 13.8) (1.38, 14.8) (0.868, 0.0678) (13.1, 0.459) (29.7, 0.439)
33308 57 (0.0481, 0.42) (0.273, 19.8) (1.38, 14.8) (0.42, 0.0481) (11.6, 0.177) (23.6, 0.505)
34174 68 (0.0527, 0.103) (0.292, 13.7) (1.62, 47.9) (0.103, 0.0527) (12.7, 0.258) (47.9, 1.62)
34676 92 (0.05, 0.702) (0.266, 7.56) (1.38, 14.9) (0.702, 0.05) (11.1, 0.235) (23.6, 0.801)
77992 72 (0.0645, 1.15) (0.26, 7.55) (1.08, 21.3) (1.15, 0.0645) (11.3, 0.22) (28.7, 0.288)
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Table 4 Distances between minima from BLN69-top10. The third column (dced) refers to
the cumulative edge distance computed on the transition graph, as defined in section 2.4.6. The
fourth column (num. edges) is the number of edges found on the shortest path joining the two
minima in the transition graph: a value of 2p two means that the path goes through p saddles
to connect the two minima of interest.

index m1 index m2 dced path: num. edges lRMSD lRMSD/dced
1 6 0.195 2 0.163 0.835
1 8 0.112 2 0.098 0.875
1 142 0.115 2 0.106 0.921
1 311 1.182 2 0.515 0.435
1 1973 1.492 6 0.676 0.453
1 7305 1.425 6 0.655 0.459
1 11134 1.199 4 0.698 0.582
1 12760 1.399 6 0.712 0.508
1 33250 0.697 2 0.360 0.521
6 7 0.307 4 0.191 0.623
6 142 0.310 4 0.194 0.625
6 311 1.272 6 0.547 0.428
6 1974 1.332 6 0.676 0.507
6 7305 1.620 8 0.670 0.413
6 11134 1.395 6 0.715 0.512
6 12760 1.594 8 0.713 0.448
6 33250 0.893 4 0.409 0.459
8 142 0.227 4 0.146 0.643
8 311 1.294 8 0.519 0.401
8 1974 1.522 8 0.671 0.440
8 7305 1.414 6 0.641 0.453
8 11134 1.308 6 0.695 0.531
8 12760 1.504 8 0.707 0.470
8 33250 0.810213 4 0.372 0.459
142 311 1.29774 4 0.519 0.402
142 1974 1.52341 10 0.684 0.450
142 7305 1.54053 8 0.667 0.433
142 11134 1.31497 6 0.708 0.540
142 12760 1.51454 8 0.721 0.477
142 33250 0.812982 4 0.372 0.459
311 1974 1.58991 10 0.633 0.400
311 7305 1.57245 8 0.587 0.373
311 11134 1.52672 8 0.700 0.557
311 12760 1.69276 10 0.709 0.419
311 33250 1.29726 6 0.553 0.428
1974 7305 1.74716 8 0.672 0.386
1974 11134 1.01362 4 0.364 0.360
1974 12760 1.22234 6 0.396 0.324
1974 33250 1.37802 6 0.687 0.501
7305 11134 1.49398 6 0.625 0.419
7305 12760 1.69967 8 0.640 0.376
7305 33250 2.12317 8 0.727 0.342
11134 12760 0.208721 2 0.181 0.905
11134 33250 1.52891 6 0.727 0.478
12760 33250 1.55398 6 0.745 0.479
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Table 5 Persistences of local minima from BLN69-top10.

Index Persistence
1 inf
6 1.55
8 0.35
142 0.67
311 7.29
1974 7.42
7305 6.14
11134 7.15
12760 1.73
33250 7.11

7.2 Monitoring a Sampling Process

7.2.1 Energy Landscape Analysis

Figure 12 Disconnectivity tree, persistence diagram, and histogram of masses for the
T-RRT run started near the local minimum of 1(gmin). The vertex weighted transition
graph contains 21 vertices and 24 edges; it has 1 connected component and 4 cycles.
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Figure 13 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 6 . The vertex weighted transition
graph contains 33 vertices and 60 edges; it has 1 connected component and 28 cycles.
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Figure 14 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 8 . The vertex weighted transition
graph contains 27 vertices and 30 edges; it has 1 connected component and 4 cycles.
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Figure 15 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 142 . The vertex weighted transition
graph contains 17 vertices and 18 edges; it has 1 connected component and 2 cycles.
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Figure 16 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 311 . The vertex weighted transition
graph contains 15 vertices and 14 edges; it has 1 connected component and 0 cycles.
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Figure 17 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 1974 . The vertex weighted transition
graph contains 46 vertices and 77 edges; it has 1 connected component and 32 cycles.
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Figure 18 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 7305 . The vertex weighted transition
graph contains 90 vertices and 156 edges; it has 1 connected component and 67 cycles.
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Figure 19 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 11134 . The vertex weighted transition
graph contains 168 vertices and 360 edges; it has 1 connected component and 193 cycles.
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Figure 20 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 12760 . The vertex weighted transition
graph contains 439 vertices and 1700 edges; it has 1 connected component and 1262 cycles.
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Figure 21 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 33250 . The vertex weighted transition
graph contains 67 vertices and 247 edges; it has 1 connected component and 181 cycles.
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7.2.2 EMD: Connectivity Constraints

Table 6 Algorithm Alg-EMD-LP, dataset TRRT-top10: fraction of vertices of the source
graph inducing a connected graph on the demand graph. The row (resp. column) index
is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 1.00 0.64 0.87 0.60 0.86 0.16 0.19 0.10 0.10 0.35

6 1.00 1.00 0.95 1.00 0.92 0.28 0.15 0.21 0.15 0.31
8 0.90 0.71 1.00 1.00 0.93 0.15 0.22 0.26 0.19 0.35

142 0.92 0.75 0.64 1.00 0.57 0.25 0.29 0.24 0.18 0.29
311 0.33 0.55 0.25 0.29 1.00 0.27 0.20 0.40 0.13 0.40
1974 0.93 0.65 0.53 0.71 1.00 1.00 0.27 0.20 0.22 0.36
7305 0.89 0.83 0.60 0.95 0.95 0.80 1.00 0.62 0.21 0.92
11134 1.00 0.93 0.89 0.96 1.00 0.88 0.87 1.00 0.17 0.86
12760 1.00 0.98 0.99 0.96 1.00 0.97 0.89 0.77 1.00 0.90
33250 0.84 0.68 0.81 0.67 0.94 0.74 0.42 0.54 0.21 1.00
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Table 7 Algorithm Alg-EMD-LP, dataset TRRT-top10: fraction of edges of the source
graph inducing a connected graph on the demand graph. The row (resp. column) index
is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 1.00 1.00 0.82 1.00 1.00 0.82 0.83 0.83 0.83 0.83

6 1.00 1.00 0.97 0.92 1.00 0.64 0.63 0.63 0.63 0.63
8 0.96 0.89 1.00 1.00 1.00 0.90 0.87 0.87 0.87 0.90

142 0.92 0.92 1.00 1.00 1.00 0.94 0.94 0.89 0.89 0.89
311 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1974 1.00 0.70 0.94 0.88 1.00 1.00 0.60 0.58 0.58 0.69
7305 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.60 0.59 1.00
11134 1.00 1.00 1.00 0.97 1.00 1.00 0.97 1.00 0.03 0.98
12760 1.00 0.99 1.00 1.00 1.00 1.00 0.98 0.90 1.00 0.95
33250 0.96 0.92 0.93 0.95 1.00 0.96 0.47 0.30 0.27 1.00

Table 8 Algorithm Alg-EMD-LP, dataset TRRT-top10-U: fraction of vertices of the
source graph inducing a connected graph on the demand graph. The row (resp. column)
index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 1.00 0.14 0.10 0.52 0.52 0.10 0.05 0.05 0.05 0.05

6 0.58 1.00 0.67 0.64 0.70 0.06 0.06 0.03 0.03 0.06
8 0.63 0.15 1.00 0.67 0.59 0.07 0.04 0.04 0.00 0.07

142 0.18 0.24 0.18 1.00 0.65 0.06 0.06 0.06 0.12 0.06
311 0.13 0.07 0.07 0.13 1.00 0.07 0.07 0.07 0.07 0.07
1974 0.72 0.57 0.54 0.78 0.83 1.00 0.09 0.02 0.02 0.11
7305 0.83 0.72 0.80 0.87 0.96 0.60 1.00 0.06 0.01 0.54
11134 0.93 0.86 0.87 0.92 0.93 0.79 0.55 1.00 0.01 0.69
12760 0.96 0.95 0.95 0.97 0.97 0.92 0.82 0.69 1.00 0.87
33250 0.78 0.70 0.75 0.79 0.85 0.58 0.15 0.03 0.01 1.00

Table 9 Algorithm Alg-EMD-LP, dataset TRRT-top10-U: fraction of edges of the
source graph inducing a connected graph on the demand graph. The row (resp. column)
index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 1.00 0.83 0.83 0.08 0.83 0.83 0.83 0.83 0.79 0.83

6 0.63 1.00 0.58 0.60 0.22 0.10 0.22 0.12 0.08 0.12
8 0.90 0.90 1.00 0.20 0.90 0.87 0.87 0.87 0.20 0.07

142 0.06 0.89 0.17 1.00 0.94 0.11 0.11 0.89 0.72 0.06
311 1.00 0.07 1.00 1.00 1.00 0.07 0.07 1.00 0.64 1.00
1974 0.60 0.10 0.62 0.16 0.12 1.00 0.58 0.58 0.45 0.04
7305 0.65 0.12 0.63 0.17 0.18 0.63 1.00 0.01 0.01 0.59
11134 0.57 0.20 0.57 0.54 0.56 0.49 0.04 1.00 0.43 0.49
12760 0.42 0.17 0.37 0.41 0.42 0.31 0.04 0.27 1.00 0.35
33250 0.40 0.16 0.15 0.13 0.40 0.06 0.27 0.27 0.23 1.00
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7.2.3 EMD: Demand Satisfaction

Table 10 Algorithm Alg-EMD-CCC-G, dataset TRRT-top10: percentage of the demand
satisfaction. The row (resp. column) index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 100.00 100.00 100.00 99.90 99.92 100.00 100.00 99.98 99.89 100.00

6 99.72 100.00 99.79 99.66 99.64 100.00 100.00 99.98 99.88 100.00
8 99.91 100.00 100.00 99.86 99.85 100.00 100.00 100.00 99.89 100.00

142 100.00 100.00 100.00 100.00 99.96 100.00 100.00 99.99 99.89 100.00
311 100.00 100.00 100.00 100.00 100.00 100.00 99.99 99.99 99.87 99.95
1974 99.51 99.62 99.39 99.29 99.43 100.00 100.00 100.00 99.99 100.00
7305 98.55 98.83 98.62 98.49 98.47 99.04 100.00 100.00 100.00 99.41
11134 95.70 95.97 95.76 95.64 95.62 96.17 97.10 100.00 100.00 96.53
12760 93.77 94.03 93.83 93.71 93.69 94.23 95.14 97.98 100.00 94.57
33250 99.14 99.41 99.21 99.08 99.06 99.63 100.00 100.00 99.86 100.00

Table 11 Algorithm Alg-EMD-CCC-G, dataset TRRT-top10-U: percentage of the de-
mand satisfaction. The row (resp. column) index is that of the source (resp. demand) local
minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 100.00 72.29 71.43 14.29 69.52 66.05 40.32 40.48 18.91 56.65

6 66.67 100.00 55.89 62.92 59.39 58.63 45.15 29.38 18.00 63.18
8 75.66 80.81 100.00 79.52 84.44 67.87 48.52 44.91 19.13 66.28

142 10.64 65.60 61.44 100.00 70.98 55.88 31.44 36.17 17.96 54.78
311 76.19 64.85 55.56 88.24 100.00 15.36 33.33 31.07 17.15 56.42
1974 19.98 65.42 63.61 71.87 64.20 100.00 48.45 32.69 21.00 55.13
7305 19.21 24.34 11.48 83.59 14.44 77.78 100.00 51.07 1.57 67.94
11134 19.05 6.55 7.74 11.90 13.69 70.68 3.41 100.00 47.69 68.83
12760 21.62 8.66 10.02 14.35 61.41 59.80 5.87 51.48 100.00 56.35
33250 50.04 25.60 11.94 11.94 13.43 7.46 47.91 32.19 19.54 100.00
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7.2.4 Transport Costs

Table 12 Algorithm Alg-EMD-LP, dataset TRRT-top10: transport costs. The row (resp.
column) index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 0.00 0.16 0.10 0.11 0.51 0.67 0.65 0.68 0.69 0.36

6 0.16 0.00 0.19 0.19 0.54 0.67 0.66 0.69 0.70 0.41
8 0.10 0.19 0.00 0.15 0.52 0.67 0.63 0.67 0.69 0.38

142 0.11 0.19 0.15 0.00 0.52 0.68 0.66 0.69 0.70 0.38
311 0.51 0.54 0.52 0.52 0.00 0.63 0.58 0.68 0.69 0.55
1974 0.67 0.67 0.67 0.68 0.63 0.00 0.67 0.36 0.39 0.69
7305 0.65 0.66 0.63 0.66 0.58 0.66 0.00 0.61 0.62 0.72
11134 0.67 0.69 0.67 0.68 0.67 0.36 0.60 0.00 0.05 0.70
12760 0.67 0.69 0.67 0.68 0.67 0.37 0.60 0.05 0.00 0.70
33250 0.36 0.41 0.37 0.37 0.55 0.68 0.72 0.70 0.72 0.00

Table 13 Algorithm Alg-EMD-CCC-G, dataset TRRT-top10: transport costs. The row
(resp. column) index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 0.00 0.16 0.10 0.11 0.51 0.67 0.65 0.68 0.69 0.36

6 0.16 0.00 0.19 0.19 0.54 0.67 0.66 0.69 0.70 0.41
8 0.10 0.19 0.00 0.15 0.52 0.67 0.63 0.67 0.69 0.38

142 0.11 0.19 0.15 0.00 0.52 0.68 0.66 0.69 0.70 0.38
311 0.51 0.54 0.52 0.52 0.00 0.63 0.58 0.68 0.69 0.55
1974 0.67 0.67 0.67 0.68 0.63 0.00 0.67 0.36 0.39 0.69
7305 0.65 0.66 0.63 0.66 0.58 0.67 0.00 0.61 0.62 0.72
11134 0.68 0.69 0.67 0.69 0.68 0.36 0.61 0.00 0.06 0.70
12760 0.69 0.71 0.69 0.70 0.69 0.39 0.62 0.06 0.00 0.72
33250 0.36 0.41 0.38 0.38 0.55 0.69 0.72 0.70 0.72 0.00

Table 14 Algorithm Alg-EMD-LP, dataset TRRT-top10-U: transport costs. The row
(resp. column) index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 0.00 0.27 0.22 0.23 0.55 0.87 1.19 1.30 1.61 1.47

6 0.27 0.00 0.27 0.28 0.58 0.87 1.19 1.29 1.59 1.45
8 0.22 0.27 0.00 0.26 0.55 0.86 1.18 1.28 1.60 1.46

142 0.23 0.28 0.26 0.00 0.54 0.87 1.19 1.30 1.61 1.47
311 0.55 0.58 0.55 0.54 0.00 0.85 1.19 1.24 1.58 1.44
1974 0.87 0.87 0.86 0.87 0.85 0.00 1.10 1.13 1.39 1.39
7305 1.19 1.19 1.18 1.19 1.19 1.10 0.00 1.20 1.30 1.37
11134 1.30 1.29 1.28 1.30 1.24 1.13 1.20 0.00 1.28 1.31
12760 1.61 1.59 1.60 1.61 1.58 1.39 1.30 1.28 0.00 1.43
33250 1.47 1.45 1.46 1.47 1.44 1.39 1.37 1.31 1.43 0.00
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Table 15 Algorithm Alg-EMD-CCC-G, dataset TRRT-top10-U: transport costs. The row
(resp. column) index is that of the source (resp. demand) local minimum.

1(gmin) 6 8 142 311 1974 7305 11134 12760 33250
1(gmin) 0.00 0.17 0.14 0.01 0.37 0.54 0.43 0.47 0.22 0.78

6 0.16 0.00 0.13 0.16 0.33 0.47 0.48 0.33 0.21 0.87
8 0.15 0.20 0.00 0.19 0.46 0.55 0.52 0.52 0.22 0.92

142 0.00 0.15 0.13 0.00 0.37 0.45 0.32 0.42 0.21 0.76
311 0.42 0.37 0.29 0.47 0.00 0.11 0.33 0.34 0.19 0.76
1974 0.14 0.54 0.52 0.60 0.51 0.00 0.49 0.34 0.23 0.72
7305 0.17 0.23 0.09 0.99 0.12 0.85 0.00 0.61 0.01 0.92
11134 0.20 0.06 0.07 0.12 0.13 0.79 0.03 0.00 0.60 0.90
12760 0.26 0.10 0.12 0.17 0.89 0.80 0.06 0.63 0.00 0.78
33250 0.68 0.31 0.13 0.13 0.15 0.08 0.65 0.40 0.25 0.00

Figure 22 Correlation between the transport costs delivered by Alg-EMD-LP and
Alg-EMD-CCC-G (both ways), on runs of T-RRT started near the 10 lowest local minima.
The Pearson coefficients is at least equal to 0.999 for the three pairs.
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Figure 23 Correlation between the transport costs delivered by Alg-EMD-LP and
Alg-EMD-CCC-G (both ways), on runs of T-RRT started near the 10 lowest local minima,
with uniform masses (see text for details). The Pearson coefficients are respectively equal
to 0.25, 0.09 and 0.06 for the three pairs.
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8 Supplemental: Software

Our code is developed in generic C++ within the Structural Bioinformatics Library4 based upon
the Computational Geometry Algorithms Library [cga]. In the following, we describe the file
formats used by the applications, and proceed with a concise presentation of each of them.

8.1 Specifications and File Formats

Three objects are manipulated, and we present them in turn.

Conformations and conformational ensembles. We use two formats to store conforma-
tions in Cartesian coordinates. The first one is the classical PDB format. The second one is
the text Point d format, where a line consists of an integer indicating the number n of variables,
followed by values for these n variables. Using this format, one line codes one conformation, so
that a file of such lines codes a conformational ensemble.

As an example, the conformations of a n atom molecules read as:

...

3n x_1 y_1 z_1 ... x_n y_n z_n

...

4Upon publication of the paper, the programs described thereafter will be made available from the following
web site: http://structural-bioinformatics-library.org/ / http://sbl.inria.fr
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Remark 8 The analysis presented in this paper only resort to Cartesian coordinates, whence
the aforementioned representations. However, all algorithms relying upon nearest neighbors and
nearest neighbor graphs are fully generic, and can be use in conjunction with other distances.
Users willing to use alternative representations (in particular internal coordinates) and the as-
sociate distances, will only have to instantiate our generic classes to do so.

Sampled Energy Landscape. A sampled EL is a conformational ensemble such that each
conformation is endowed with an energy. To decouple the conformations and the energies, all
energies are listed in a separate file whose n-th line corresponds to the n-th conformation in the
ensemble. (For this reason, loading an energy file can only be done once a file for conformations
has been loaded.) Here is an example such file:

-105.2

-104.8

...

Transition Graph. A TG is a graph whose nodes are (substitutes for) critical points, namely
local minima and index one saddles. An edge in the TG corresponds to the existence of a path
between pairs of critical points. As seen in the main text, our analysis use two types of TG:

• the vertex transition graph: both minima and transition states are encoded as vertices,
and may be decorated with information (energy, volume of the basin associated with a
minimum). An edge connects one local minimum and one transition state.

• the compressed transition graph: the minima are represented by the vertices, and addi-
tional pieces of information (transition states and their energy) are associated with edges
connecting the minima.

We have seen in the main text that TG can be built either from a database of critical points,
or from a conformational ensemble. Both strategies rely on various pieces of information, which
are specified as follows:

• If a DB of critical points is used, we expect the pairs of local minima linked to listed in a
text file, with indices starting at 0:

0 2

1 10

...

• To decorate local minima with additional information, one uses additional files: one (op-
tional) file for the conformations associated with the local minima; one (optional) file for the
energies of the local minima. To map these information to their respective local minima,
it is assumed that local minima have indices starting at zero.

• To decorate the edges linking pairs of local minima, one proceeds similarly, with one (op-
tional) file for transition states, and one (optional) file for their energies. To map these
pieces of information to the edges, it is assumed that the ordering of edges and that of the
associated pieces of information are coherent.

Once a TG has been constructed, it is stored as a compressed transition graph. Practically,
the Boost Graph Library and the associated Serialization mechanisms are used, producing an
XML file.
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Remark 9 To handle data generated by molecular dynamics packages, the user is referred to
packages such as mdanalysis, see [MADWB11] and https: // code. google. com/ p/ mdanalysis/ .

8.2 Applications : Executables and Calls

The analysis presented in this work are carried out by six executables:

• the analysis of conformation ensembles : sbl-conf-ensemble-analysis.exe and sbl-conf-ensemble-comparison.exe;

• the generation of transition graphs: sbl-transition-graph-builder-from-DB-of-critical-points.exe
and sbl-tg-builder.exe;

• the analysis of the transition graphs: sbl-energy-landscape-analysis.exe and sbl-energy-landscape-comparison.exe;

In the following, we provide a demo run, then the list of all options obtained when using the
option help of the corresponding application.
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8.2.1 sbl-conf-ensemble-analysis.exe

./sbl-conf-ensemble-analysis.exe -v --points-file <path/to/confs>\

--num-neighbors 10 --nng-connected 15

Various analysis on conformational ensembles: sampling diversity,

density-based clustering, comparison to reference sets of critical

points. The input consists of conformations in PDB or Point_d format.

Copyright Inria / Algorithms - Biology - Structure, 2015.

Version: 1.0.0

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics,

blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Optional Modules:

--sampling-diversity [=arg(=1)] (=0) Run Sampling Diversity Analysis

--nng-builder [=arg(=1)] (=0) Run the NNG Builder

--mst [=arg(=1)] (=0) Run Minimal Spanning Tree Analysis

--mtb [=arg(=1)] (=0) Run Morse Theory Based Analysis

Conformations loader:

--pdb-files arg File listing the PDB files of one

ensemble.

--points-file arg File listing the conformations in Point_d

format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).

-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy

not equal to 1.

Allowed values are:

-p 1 (all, default)

-p 2 (forbbiden)

-p 3 (none)

-p 4 (max)

-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default
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max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB

file (default is 1).

--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d

format in a plain text file.
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Nearest Neighbors Graph:

--num-neighbors arg Target number of neighbors for each vertex.

--distance-range arg Distance range specification.

--nng-connected arg Attempt connecting the NNG by iteratively increasing

the number of neighbors; halt if NNG is connected, or

if the prescribed num of neighbors is reached.

--nng-file arg Skip calculations by loading the NNG from a file.

Morse Theory Based Analyzer:

--persistence-threshold arg (=-1) Persistence threshold (default -1, i.e

no persistence).

--sublevelset-threshold arg (=0) Sublevelset threshold (default 0, i.e no

sublevelset).

--no-popup [=arg(=1)] (=0) Prevent the graphical display of the

persistence diagram and the

disconnectivity forest.

--show-trees arg (=0) Show only the n trees with the largest

number of leaves in the disconnecitivity

forest (default: show the whole forest).

--delta-height arg (=-1) Club the saddles in the displayed

disconnectivity forest within intervals

of the input size.

--split-basins [=arg(=1)] (=0) Report each persistent basin into a

separate plain text file (default is: a

single serialized xml file).

--MSW-filename arg Load the MSW chain complex instead of

computing it.

--normalize-gradient [=arg(=1)] (=0) Normalize the gradient on the NNG by the

distance between the vertices.
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8.2.2 sbl-conf-ensemble-comparison.exe

./sbl-conf-ensemble-analysis.exe -v --points-file <path/to/confs1>\

--points-file <path/to/confs2>

Compare two conformational ensembles using the Hausdorff distance

between the two ensembles. The input consists of conformations in

PDB or Point_d format.

Copyright Inria / Algorithms - Biology - Structure, 2015.

Version: 1.0.0

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics,

blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Optional Modules:

--Hausdorff [=arg(=1)] (=0) Hausdorff distance between two sets of conformations

--symmetric-difference [=arg(=1)] (=0)

Symmetric difference between two sets

of conformations

Conformations loader:

--pdb-files arg File listing the PDB files of one

ensemble.

--points-file arg File listing the conformations in Point_d

format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).

-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy

not equal to 1.

Allowed values are:

-p 1 (all, default)

-p 2 (forbbiden)

-p 3 (none)

-p 4 (max)

-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default
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max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB

file (default is 1).

--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d

format in a plain text file.
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Hausdorff Distance for Point Clouds:

--one-sided-hausdorff arg Compute only the one sided Hausdorff Distance

Symmetric Difference:

--identity-threshold arg (=1.0000000000000001e-05)

Threshold below which two conformations

are considered identical for the

considered distance

(e.g. least-RMSD).
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8.2.3 sbl-transition-graph-builder-from-DB-of-critical-points.exe

./sbl-transition-graph-builder-from-DB-of-critical-points.exe\

--points-file <path/to/confs1> --energies </path/to/energies1>\

--points-file <path/to/confs2> --energies </path/to/energies2>\

--transition-edges <path/to/edges> --discard-loops -v

Compute the compressed transition graph associated to a data base of

critical points. The input consists of five files: the conformations

of minima and transitions in PDB or Point_d format, the energies of

minima and transitions, and the list of pairs of minima linked by

each transition.

Copyright Inria / Algorithms - Biology - Structure, 2015.

Version: 1.0.0

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics, blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Conformations loader:

--pdb-files arg File listing the PDB files of one ensemble.

--points-file arg File listing the conformations in Point_d format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be used (char).

-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy

not equal to 1.

Allowed values are:

-p 1 (all, default)

-p 2 (forbbiden)

-p 3 (none)

-p 4 (max)

-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default

max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB

file (default is 1).

--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d
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format in a plain text file.

--energies arg File providing one energy per

conformation of an ensemble (txt file).

--transition-edges arg File listing the transitions between

minima as edges (min_i, min_j).
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Transition Graph Builder from DB of Critical Points:

--discard-loops [=arg(=1)] (=0) Discard all the transition states incident to

only one minimum.
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8.2.4 sbl-tg-builder.exe

./sbl-transition-graph-builder-from-sampled-energy-landscape.exe\

--points-file <path/to/confs> --energies </path/to/energies>\

--samples-to-local-mins-map <path/to/samples-to-local-mins>\

--points-file <path/to/local-mins> --energies </path/to/local-mins>\

--num-neighbors 10 --nng-connected 15 -v

Compute the compressed transition graph associated to a sampled energy

landscape based on nearest neighbors and watershed tranform analysis.

The input consists of conformations in PDB or Point_d format.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics,

blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Conformations loader:

--pdb-files arg File listing the PDB files of one

ensemble.

--points-file arg File listing the conformations in Point_d

format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).

-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy

not equal to 1.

Allowed values are:

-p 1 (all, default)

-p 2 (forbbiden)

-p 3 (none)

-p 4 (max)

-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default

max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB

file (default is 1).

--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d

format in a plain text file.
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Prefix to add to all output file names.

--energies arg File providing one energy per

conformation of an ensemble (txt file).

--samples-to-mins arg File listing the pairs of indices of

(sample_i, local_min_i).
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Nearest Neighbors Graph (NNG):

--num-neighbors arg Target number of neighbors for each vertex.

--distance-range arg Distance range specification.

--nng-connected arg Attempt connecting the NNG by iteratively increasing

the number of neighbors; halt if NNG is connected, or

if the prescribed num of neighbors is reached.

--nng-file arg Skip calculations by loading the NNG from a file.

Watershed Transform for Minima:

--persistence-threshold arg (=0) Persistence threshold (default 0, i.e

no persistence).

--normalized-gradient [=arg(=1)] (=0) Gradient vector field of the height

function estimated by the normalized

gradient.

--interactive [=arg(=1)] (=0) Interactive tunning of the persistence

threshold.

--no-popup [=arg(=1)] (=0) Prevent the graphical display of the

persistence diagram and the

disconnectivity forest.

--delta-height arg (=-1) Club the saddles located in the height

slice when drawing the disconnectivity

forest.

--split-basins [=arg(=1)] (=0) Report each persistent basin into a

separate plain text file (default is: a

single serialized xml file).
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8.2.5 sbl-energy-landscape-analysis.exe

./sbl-energy-landscape-analysis.exe -v --transition-graph <path/to/tg>\

--run-mode t --run-mode p

Various analysis on energy landscapes: graph topology, landmark paths,

watershed transform. The input consists of a compressed transition

graph.

Copyright Inria / Algorithms - Biology - Structure, 2015.

Version: 1.0.0

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics,

blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Optional Modules:

--topology [=arg(=1)] (=0) Run topology analysis

--landmarks [=arg(=1)] (=0) Run landmark paths analysis

--Morse [=arg(=1)] (=0) Run persistence based topographical analysis

Transition Graph Loader:

--transition-graph arg Load the compressed transition graph from a XML

archive.

Morse Theory Based Analyzer:

--persistence-threshold arg (=-1) Persistence threshold (default -1, i.e

no persistence).

--sublevelset-threshold arg (=0) Sublevelset threshold (default 0, i.e no

sublevelset).

--no-popup [=arg(=1)] (=0) Prevent the graphical display of the

persistence diagram and the

disconnectivity forest.

--keep-largest-ccs arg (=0) Keep only the n ccs with the largest

number of points (default: keep all ccs.

--club-saddles arg (=-1) Club the saddles in the displayed

disconnectivity forest within intervals

of the input size.

--draw-labels [=arg(=1)] (=0) Add labels to the leaves of the

disconnectivity forest.

--split-basins [=arg(=1)] (=0) Report each persistent basin into a
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separate plain text file (default is: a

single serialized xml file).

--MSW-filename arg Load the MSW chain complex instead of

computing it.

--normalize-gradient [=arg(=1)] (=0) Normalize the gradient on the NNG by the

distance between the vertices.
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8.2.6 sbl-energy-landscape-comparison.exe

./sbl-energy-landscape-comparison.exe -v --transition-graph <path/to/tg1>\

--transition-graph <path/to/tg2>

Compare two energy landscapes through their transition graphs using a

Earth Mover Distance algorithm. The input consists of two compressed

transition graphs.

Copyright Inria / Algorithms - Biology - Structure, 2015.

Version: 1.0.0

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

--workflow [=arg(=1)] (=0) Print the workflow of the application

without any run.

-l [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-c [ --colored-log ] [=arg(=1)] (=0) Color the log (red for module and

loader names, green for statistics,

blue for report).

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).

-o [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Transition Graph Loader:

--transition-graph arg Load the compressed transition graph from a XML

archive.

Earth Mover Distance (EMD):

--with-connectivity-constraints [=arg(=1)] (=0)

Run EMD-CC instead of EMD.

--algorithm arg (=reg) Algorithm when constrained: reg for

regular or star for star.

--edge-selection arg (=min-cost) With connectivity constraints, edge

selection: min-cost or first-found --

default is min-cost.

--recursion-mode arg (=refined) With connectivity constraints,

recursion mode: refined or coarse --

default is refined

--symmetric-mode [=arg(=1)] (=0) With connectivity constraints, compute

EMD-CC both ways (N.B: EMD is

symmetric).

--dot-flow-threshold arg (=0) Removes edges with smaller flow than

the threhold from the dot file.
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