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Abstract:  We present novel algorithms and software addressing four core problems in compu-
tational structural biology, namely analyzing a conformational ensemble, comparing two confor-
mational ensembles, analyzing a sampled energy landscape, and comparing two sampled energy
landscapes. Using recent developments in computational topology, graph theory, and combina-
torial optimization, we make two notable contributions. First, we a present a generic algorithm
analyzing height fields. We then use this algorithm to perform density based clustering of confor-
mations, and to analyze a sampled energy landscape in terms of basins and transitions between
them. In both cases, topological persistence is used to manage ruggedness. Second, we introduce
two algorithms to compare transition graphs. The first is the classical earth mover distance metric
which depends only on local minimum energy configurations along with their statistical weights,
while the second incorporates topological constraints inherent to conformational transitions.
Nlustrations are provided on a simplified protein model (BLN69), whose frustrated potential energy
landscape has been thoroughly studied.

The software implementing our tools is also made available, and should prove valuable wherever
conformational ensembles and energy landscapes are used.

Key-words:  Molecular conformations, energy landscapes, sampling, Morse theory, optimal
transport, optimization

* Inria ABS. Correspondance: Frederic.Cazals@inria.fr
T Inria ABS

¥ Inria Geometrica

§ Inria ABS

9 IBPC-LBT/CNRS

RESEARCH CENTRE
SOPHIA ANTIPOLIS — MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex



Ensembles de conformations, et paysages énergétiques
échantillonnés: analyse et comparaison

Résumé : Nous présentons de nouveaux algorithmes pour quatre problemes de modélisation
d’importance centrale en biologie structurale, a savoir analyser un ensemble de conformations,
comparer deux tels ensembles, analyser un paysage énergétique échantillonné, et comparer deux
tels paysages. En exploitant certains développements récents en topologie computationnelle,
théorie des graphes, et optimisation combinatoire, nous présentons deux contributions princi-
pales. D’une part, nous présentons un algorithme générique permettant d’analyser une fonction
hauteur. Cet algorithme est ensuite utilisé pour effectuer un clustering basé sur la densité d’états,
et aussi pour étudier un paysage énergétique échantillonné. Dans les deux cas, la théorie de la
persistence topologique est utilisée pour gérer la rugosité. D’autre part, nous introduisons deux
algorithmes permettant de comparer deux graphes de transition. Le premier algorithme est la
distance classique dite de transport de masse, alors que le second incorpore des contraintes de
connectivité inhérentes aux transitions observées sur un paysage énergétique.

A titre d’illustration,ces algorithmes sont appliqués & un modele de protéine simplifiée (BLNG9),
dont le paysage énergétique frustré a été échantillonné en détail.

Les logiciels implémentant nos algorithmes sont mis a disposition, et devraient s’avérer utiles
dans toutes les situations ou des ensembles de conformations et des paysages énergétiques echan-
tillonnés sont manipulés.

Mots-clés : Conformations moléculaires, paysages énergétiques, échantillonnage, théorie de
Morse, théorie du transport optimal, optimisation
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4 F. Cazals et al / ABS

1 Introduction

1.1 Analyzing Conformational Ensembles and Energy Landscapes

Energy landscapes. FEvaluating the potential energy of a molecular system at every point
in its configurational space yields the associated potential energy landscape (PEL) [Wal03].
Features of the PEL play a crucial role in understanding the system’s behavior: in particular, the
local minima correspond to (meta-)stable states, whereas a saddle connecting two local minima
defines a possible transition between the linked meta-stable states. Indeed, decomposition of
the PEL into its associated minima and saddle points can be used to model the dynamics of
the system. However, obtaining a representative view of the PEL for systems involving from
hundreds to tens of thousands of atoms is a major undertaking, as the number of minima increases
exponentially with the size of the system. Because an analytical expression of the PEL is in
general unknown, explorations are usually conducted via numerical simulations, yielding three
broad classes of questions: exploring and sampling the PEL, and exploiting such samplings in
the context of deriving thermodynamic and kinetic information.

Exploring a PEL consists of generating a collection of points in the conformational space.
We will refer to a collection as a sampling (or a sampled landscape, or simply landscape) in the
following. The goals of such explorations are essentially twofold. One is to visit basins with low
potential energy. On the other hand, one also wishes to sample transitions between basins, as
these condition the time evolution of the system [HJJ02]. Explorations may be carried out using
standard Monte Carlo (MC) or molecular dynamics (MD) simulations, in which the sampled
data consists of points on the energy surface that in general correspond to neither minima nor
saddle point configurations. Other approaches make use of numerical optimization to identify
critical points of the PEL. The aproaches are often combined; e.g., MC or MD may be followed
by energy minimization (quenching) in an attempt to map out the basins of the energy surface,
which may be followed by searches for saddle points between pairs of minima [Wal03}[SJ09]. Such
exploration is clearly a technical endeavor, and depends on the type of model used (atomic or
coarse grained), the potential energy function, the sampling protocol and associated parameters
(temperature, step size, etc). The approaches we develop below can be applied to collections
of both types: those consisting essentially of non-critical point configurations, from MD, for
example, or else those obtained from extensive mapping of the PEL in terms of optimized critical
points; e.g., minima obtained by basin hopping, which may or not be enriched with associated
saddle points.

The second class of questions concerns the use of such PEL samplings in modelling the
thermodynamic properties of a given system or systems. For exploration via standard MC or
MD simulations, samples are usually assumed to belong to a thermodynamic ensemble, such
that relevant ensemble averages can be approximated directly from sample averages [RZMCI1],
SJ09, PBCI0]. On the other hand, given a sampling consisting of a collection of energy minima,
the harmonic superposition approximation (HSA) allows one to estimate basin occupancies and
then to sketch the corresponding free energy landscape (FEL) specified by the PEL at a given
temperature (e.g., [Wal03]). In both cases, questions arise concerning the appropriateness of
the samplings for the desired purpose. While conventional MC is subject to such concerns
as the relevance of the moveset in allowing for satisfactory exploration of the configurational
space, MD simulations prompt questions concerning their ergodicity, which involves knowledge
of the timescales required for local or global equilibration. Such questions may be addressed by
quantitatively analyzing samplings and comparing results obtained using qualitatively different
approaches, for example, MD and basin hopping.

Inria
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When saddle points are also known, transition state theory may be used to compute kinetic
properties and the time evolution of the system [Wal03],[SJ09]. Here the question of timescales
applies explicitly. The connectivity of the minima and saddle points are critical to such cal-
culations and must be properly determined in order to apply stochastic models [BPT0]. At the
same time, one also desires quantitative approaches to possibly reduce the complexity of multiple
minima systems while remaining faithful to the phenomena under study.

Each of these classes of problems deals with large sets of conformations, in the context of
the overall potential energy or free energy landscape. For convenience we also refer to these
collections as “ensembles”, while distinguishing them from an ensemble in the thermodynamic
sense as required. From a methodological standpoint, we consequently address four related
topics, namely structural analysis of a conformational ensemble, comparing two conformational
ensembles, analyzing a sampled energy landscape, and comparing two sampled energy landscapes.
These four methodological challenges are the focus of this paper.

Contributions. We present a suite of approaches to analyzing and comparing sampled energy
landscapes, and more generally conformational ensembles, and make the corresponding software
available. These methods are coherent in the sense that they exploit a handful of construc-
tions arising recently in computational geometry (nearest neighbor algorithms in metric spaces),
computational topology (persistence theory), graph theory (shortest path algorithms), and op-
timization (a variant of the so-called earth mover distance). More specifically, our contributions
are:

e Analysis of a conformational ensemble. In addition to various approaches aiming at as-
sessing their structural diversity, we provide a novel hierarchical clustering method for
conformational ensembles. The method assigns clusters to selected local maxima of the
density estimated from the sampling, which are selected as the most significant ones using
topological persistence. Associated software: program sbl-conf-ensemble-analysis.exe.

o Comparison of two conformational ensembles. We exploit recent development of search
structures in metric spaces to compute distances of the Hausdorff type between conforma-
tional ensembles.

Associated software: program sbl-conf-ensemble-comparison.exe.

o Analysis of a sampled energy landscape. We present a method to denoise a rugged landscape
using topological persistence (persistence diagrams). We use the same algorithm to identify
connections between basins, without resorting to optimization methods to find numerical
approximations of saddle points. Finally, we propose novel analyses of transition graphs,
notably statistics on paths between selected minima (known as landmarks).

Associated software: program sbl-landscape—analysis.exe.

o Comparison of two sampled energy landscapes. We provide two novel methods to compare
two sampled landscapes once each landscape has been converted into a vertex-weighted
transition graph, namely a graph connecting basins, the weight of a vertex in such a graph
being an estimate of the size of the basin represented by this vertex. Such comparisons are of
interest in various settings, e.g., to assess the coherence of two force fields for a given system
(atomic, coarse grained), to compare two related systems (e.g. a wild type and mutant
protein), or simply to compare simulations launched with different initial conditions.
Associated software: program sbl-landscape-comparison.exe.

As mentioned in the previous section, these tools are generic and can be applied in a variety
of settings, notably when the sampled conformations consist entirely of representatives of critical
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6 F. Cazals et al / ABS

points (local minima and saddles), or not (“plain” samples). Practically, we put these tools
into action in two scenarios involving a simplified protein model, namely modelling the PEL of
BLNG9 and assessing its exploration. While the first scenario is solely concerned with critical
points, the second is carried out with plain samples.

1.2 Concepts and Terminology

We consider a macromolecular system m involving s atoms, the ith-atom being denoted m[i]. The
conformational space of the system is denoted C, and its dimension d. The distance between two
conformations is denoted d¢(+, ) — we shall in general use the least root mean square deviation
(IRMSD).

A conformation or sample refers to a conformation of the system. The potential energy of
a conformation ¢ is denoted V(c). If the gradient of the potential energy vanishes at c, the
conformation is called a critical point. Practically, we shall deal with two types of critical points:
local minima, and index one saddles (saddles for short). If ¢ is not a critical point, quenching
¢ consists of (numerically) following the negative gradient —VV until a local minimum ¢(c) is
found. In this case, there exists an integral curve of the gradient vector field —VV joining ¢ to
q(c), and one says that ¢ flows to g(c).

A conformational ensemble, also called sampling C is a set of n conformations, that is
C = {c1,...,cn}. The associated set of quenched conformations is denoted C,, that is C, =
{q(c1),...,q(cn)}. If Cartesian coordinates are used, the conformations in C' can also be aligned
on a reference conformation, say c;. Aligning the i-th conformation onto c¢; results in the rep-
resentation of that conformation denoted ¢;, and the set of such conformations is denoted C.
Once a one-to-one correspondence between the atoms of ¢; and ¢; has been set, aligning ¢; onto
c1 requires computing the rigid motion yielding the least Root Mean Square Deviation between
c1 and ¢;.

A nearest neighbor graph (NNG) of conformations is a graph whose vertices are conformations,
with edges joining selected pairs. That is, a NNG connects conformations in the configuration
space C of the system studied. We use NNG in two guises. First, we build a NNG by connecting
a sample to its k nearest neighbors. Second, we build a NNG by connecting a sample to all
samples of the ensemble within a given distance r. Practically, the distance used is the IRMSD.

A height function is a mapping from the conformational space C to the real numbers, and a
conformational space equipped with such a function is called a landscape. Given a fixed elevation
h, the portion of the landscape located below (resp. above) the elevation h is called a sub level
set (resp. super level set). Naturally, the landscape obtained when the height function is the
potential energy is called the potential energy landscape (PEL). A lifted sample is a sample
equipped with a real number, called its height. When this number represents the potential
energy, a collection of such samples is called a sampled energy landscape. Using the connectivity
of a NNG to connect lifted samples results in a lifted NNG. For example, if the height is the
potential energy, the lifted NNG defines a network on the PEL.

Of special interest on a landscape are the local minima and the transition paths connecting
them. In the smooth setting, a transition between two local minima corresponds to the existence
of an integral curve joining the saddle to the minimum. More specifically, in Morse theory, these
curves define the so-called unstable manifold of the saddle. Generically, two such curves are found
for each saddle — note however that they may end up in the same local minimum, a situation
we refer to as a bump transition (Fig. . We encode such transitions in a transition graph (TG),
namely a graph whose nodes are minima and saddles, with one edge between the minimum

Inria
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my and the saddle o if there exists a direct transition path (m1, o, mg) with mo another local
minimum. We also define a compressed transition graph as a TG where the two edges emanating
from a saddle are merged. That is, such a graph contains only minima and contains an edge
between two of them iff these minima are connected through a saddle in the TG. As we shall
see, such compressed graphs are useful for the comparison of landscapes.

2 Algorithms

2.1 Pre-requisites
2.1.1 Nearest Neighbor Graphs

Rationale. We shall derive various parameters on conformational ensembles and sampled land-
scapes from proximity relationships between conformations, that is, from nearest neighbor graphs

(NNG).

Algorithms. In computing a NNG, the demanding operation consists of retrieving the relevant
nearest neighbors of a conformation (the k nearest neighbors or the samples within distance
r). While this operation can always be performed by a linear scan over the ensemble, various
data structures aiming at pruning the search exist [Sam06]. When the distance used between
conformations is the plain Euclidean distance, spatial partitions can be used, so as to limit
the search for the neighbors of a point to cells of the partition located nearby the point. One
prominent such data structure is the spatial partition used in the approximate nearest neighbors
algorithm [AMNT98|. The situation is however more involved for searching neighbors in a general
metric space, i.e. when the distance function used does not come with an embedding of the
samples in a Euclidean space. This situation is precisely that faced when using the IRMSD.
Fortunately, efficient algorithms also exist in this case, and we use prozimity forests [OD13].

2.1.2 Topological Analysis of Height Functions

Rationale. Consider a landscape. We present a method to analyze a lifted NNG on such
a landscape, borrowing concepts and tools from Morse theory [Mil63, [FK97] and persistence
theory [EHIO0]. Our incentives are twofold. When the height function is an estimated density of
states, the method yields a clustering algorithm generalizing that presented in [HPD™01] (section
. In that case, the clustering algorithm requires scanning the landscape downward with a
horizontal plane, so as to discover when connected components of super level sets appear and
merge. On the other hand, when the height function is the potential energy, the method is
used to study the basins of a sampled PEL, in a manner related to disconnectivity graph (DG)
[BK9T, [Wal03] (section . Studying merges between energy basins then requires scanning
the landscape upwards with a horizontal plane, so as to discover when connected components of
sub level sets appear and merge [PBC10].

In fact, all three methods, namely ours and those from [HPD™01] and [PBCI0] exploit the
same construction from Morse theory [Mil63], which consists ofjh studying the evolution of sub
(or super-) level sets of a height function, discretized using a nearest neighbor graph. But
our approach goes beyond the previous two in two ways. First, we handle ruggedness using
topological persistence, which allows in particular handling full disconnectivity graphs, a difficulty
mentioned in [PBCI0]. Second, our method is general enough to exploit all the information
available, including the knowledge of exact local minima obtained by quenching, as we shall see
in section
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8 F. Cazals et al / ABS

Persistence diagrams for super level sets. Local maxima of a height function are specific points,
two properties of which are of crucial importance in the following development. The first property
is the decomposition of a landscape into attraction basins induced by the maxima of a landscape.
Indeed, the basin of a maximum is the locii of points of the landscape flowing to that maximum
when following the gradient of the height function. To state the second property, recall the well
known fact from Morse theory [Mil63], which states that the topology of super level sets changes
precisely at critical points of the height function. For example, when sweeping the landscape
downward with an horizontal plane, a connected component of super level sets is created when
the plane hits a new maximum, and two such components merge when the plane hits a critical
point of index d — 1.

Practically, a difficulty with rugged landscapes is to deal with a large number of non significant
maxima. We explain how to focus on the most prominent ones, borrowing the terminology from
geography.

In topography, the prominence of a local maximum is the closest distance to the nearest local
maximum with higher elevation, while its culminance is the elevation drop to the saddle leading
to a higher local maximum. (Note that the culminance is related to the barrier height used
in biophysics.) Using these notions, the persistence diagram (PD) of super level sets is the 2D
plot with one point for each local maximum (excepting the global one), defined as follows: the
abscissa of the point is the elevation of the maximum, while its ordinate is the elevation of the
saddle defining its culminance.

The following remarks are in order:

e By construction, the highest peak is not paired with any saddle. That is, if the height field
has m local maxima, its PD contains m — 1 points.

e A point of the PD is actually defined a pairing of maxima and saddles. Mathematically,
these points are critical points of the height field: the maximum is an index d c.p. (its
Hessian has d negative eigenvalues), while the saddle is an index d —1 c.p. (its Hessian has
d — 1 negative eigenvalues).

e All points of the PD are below the diagonal y = z, and the distance from a point to the
diagonal is a measure of the stability of the corresponding local maximum. For example,
if the mountain range contains p well identified peaks and ¢ tiny/spurious peaks, the PD
contains ¢ points near the diagonal, and p points far away from the diagonal. It can also
be shown that PD are stable when the underlying landscape incurs changes [CSEH05).

e Consider a case where a PD has two sets of clearly separated points, one set near the
diagonal (non persistent max), and one set far away. If the former are not significant,
their basins can be assigned to significant maxima. Intuitively, this operation consists of
performing merges between these basins, using the adjacency encoded in the saddles joining
them.

Persistence diagrams for sub-level sets. The analysis presented above for local maxima and super
level sets applies directly for local minima and sub level sets, yielding a persistence diagram whose
points code local minima of the height field. The main changes are the following ones:

e By construction, the lowest local minimum is not paired with any saddle. That is, if the
height field has m local minima, its PD contains m — 1 points.

e A point of the PD is actually defined a pairing of minima and saddles. Mathematically,
these points are critical points of the height field: the minimum is an index 0 c.p. (its

Inria



Conformational Ensembles and Sampled Energy Landscapes 9

Hessian has zero negative eigenvalues), while the saddle is an index one c.p. (its Hessian
has one negative eigenvalue).

e All points of the PD are above the diagonal y = z, and the distance from a point to the
diagonal is a measure of the stability of the corresponding local minimum.

e A PD can also be simplified by re-assigning the basins of non significant minima. That is,
if the point of the PD are clearly separated, those near the diagonal can be removed by
merging each such basin into the deeper basin it is connected to [CadOS11l [CCS11]. Note
that this simplification removes the least persistent basins first, as opposed to merging
the saddles in a given energy slice. Note also that this simplification cancels one (saddle,
minimum) pair at a time.

This notion is illustrated on Fig. [I| for a 2D elevation function used in optimization benchmarks,
known as the Himmelblau function. On this example, the clear separation of the points of the
PD of noisy Himmelblau call for its simplification. Upon performing the aforementioned merges,
one is left with a PD identical to that of the noiseless function, i.e. involving three points only.

Algorithm. Consider a discrete set of lifted points on a landscape, and assume that we wish to
analyze its minima and sub level sets — the method is valid mutatis mutandis for maxima. The
algorithm, which borrows upon [CadOSI1] and [CCSI1I], (i) identifies samples playing the role
of minima and saddles and computes the pairings defining the persistence diagram, (ii) assign
basins to minima by performing a discrete quench, and (iii) offers the possibility to cancel non
significant minima (the samples associated with basins canceled get transferred into the basins
of minima which survive.

Denote {(c;, hi)} the lifted samples processed, with h; the elevation of ¢;. Also assume that a
lifted NNG connecting the samples has been built, and that the negative gradient of the height
function has been estimated at each sample, e.g. by selecting the edge c;c; maximizing the ratio
(hi = hj)/de(ci, cj).

Using this graph, we process samples by increasing height. More precisely, a new sample
below all its neighbors in the NNG defines a local minimum. If a sample is not a local minimum,
we perform a discrete quench using the NNG, that is, we iteratively follow the estimated gradient
to end up at a local minimum, and assign it to the basin of that minimum. Once the discrete
quench has been done, we check whether this sample ¢; has a neighbor ¢; in the NNG located
at a lower elevation, and flowing to a different local minimum. If so, the sample ¢; termed a
transition or a pseudo-saddle, and the pair (¢(c;),¢;) defines a point of the persistence diagram.
Note that ¢; is termed a pseudo-saddle since it may actually be far from the real saddle while
located in the neighborhood of its stable manifold (Fig. [2)). Despite this limitation and since
we are only dealing with conformations provided by sampling methods, as opposed to numerical
methods tracking saddle points [HJJ02], we will call such samples saddles.

The reader is referred to [CadOS11] for further details, and to [CCS11] for the update of
the transition graph based on the cancellations performed. This algorithm, called Tomato for
Topological Mode Analysis in the sequel, is used in section [2:2.3] for clustering and in section [2:4.2]
to build DG.

2.2 Conformational Ensembles: Analysis

In the sequel, we provide various statistics to assess the diversity of a conformational ensemble
generated by a sampling algorithm.

RR n° 8610



10 F. Cazals et al / ABS

2.2.1 Sampling Diversity

Rationale. Currently we use two measures for the sampling diversity, in order to assess the
extent to which a molecule deforms within an ensemble C, The first is the standard method

for estimating the root-mean squared atom fluctuations (RMSF'). Denoting ¢[k] the average
position of the k-th atom in the aligned samples C'. The RMSF for atom k is defined as

RMSFk:\/Tll >
1=1,...,n

&l — |

The second measure is the bounding box (in Cartesian coordinates) of the ensemble C' of aligned
structures.

Algorithms. Computing these measures requires performing a registration of each conforma-
tion into a unique coordinate system. Using the first conformation c; as reference, one can
transform every other conformation by applying to it the rigid transform defining the IRMSD
between ¢; and c;.

2.2.2 Sampling Sparsity via Spanning Trees

Rationale. A conformational ensemble may contain clusters, i.e. groups of conformations such
that pairwise distances within a cluster are smaller than distances between conformations across
clusters. We investigate such properties using graphs.

Assume that a connected NNG G has been built over the samples, and denote V[G] (resp.
E[G]) its vertex set (resp. its edge set). Assume that to each edge e = (¢;,¢;) € E[G] is
attached the quantity de(c;,c;). Using G, we compute a minimum spanning tree MST(G). If
the conformational ensemble contains n conformations, this tree involves n — 1 edges. For an
edge e = (¢;, ¢;) of this graph, the edge length is the distance between the conformations ¢; and
¢;, that is de(c;, ¢j). Denoting E the edge set of the MST, we then report the following statistical
summary for G:

géigdc(ci,cj),mgg}lgan dc(ci,cj),rgleaé( de(ci,cj). (1)
To capture the significance of this summary, consider the situation where the ensemble has a
cluster structure. In that case, most of the edges are short ones , only those connecting clusters
being long ones, which reads plainly from the statistical summary.

Algorithms. Extracting the MST out of a connected graph is a classical problem in computer
science. We use Prim’s algorithm, which iteratively attaches one node not connected yet, namely
that using the shortest edge available which does not create a cycle.

2.2.3 Persistence Based Clustering

Rationale. When an ensemble features clusters, as e.g. seen from the statistical summary
from the edge lengths found in a MST, the next step consists of finding these clusters. Upon
estimating the sample density at each sample from the ensemble, a three stage strategy consists
of associating one cluster to each local maximum of this density [Che95, [HPD™01], and to filter
out spurious (i.e. small) ones. We now briefly review these three steps.

The first step is the density estimation step. Assume that a NNG has been built, and that
each sample is linked to a number of nearest neighbors. Intuitively, the density about a sample is
inversely proportional to the distances to the nearest neighbors. Formally, denoting k the number

Inria



Conformational Ensembles and Sampled Energy Landscapes 11

of nearest neighbors and V; the volume of the unit ball in R?, the local density at sample ¢; can
be estimated as [BCCS™11]:

. 1 E?L j2/d d/2
M=y (Zfil(dc(c, n? (c)))2> (2)

For the second step, consider the lifted NNG obtained by endowing each sample with the
previous estimated density. Since each cluster is associated with a local maximum, we resort to
the Tomato algorithm from section 2.1 to identify the samples which are local maxima, and to
assign the remaining samples to their attraction basins.

Finally, the third step consists of filtering out the spurious local maxima using topological
persistence, as also explained in section 2.1}

Remark 1 Due to the high dimensionality of configuration spaces of molecular systems, the
estimate of Eq. @ is typically small. For such cases, PD are best plotted in log-log scale.

2.3 Conformational Ensembles: Comparisons

Having presented methods to assess one conformational ensemble, we now address the problem
of comparing two such ensembles.

2.3.1 Hausdorff Distance between Ensembles

Rationale. A standard problem in designing sampling algorithms consists of assessing the
ability of an algorithm to detect local minima of interest, or points nearby such minima.

To perform such an assessment, consider two sets of conformations, a reference set R (typically
local minima), and an ensemble C' produced by a sampling algorithm. To assess the coverage of
the set R by C, we compute for every sample r € R its nearest neighbor in C":

Vre R:d(r,C) = n’éiéldc(r, c). (3)

We then report the following triple:
min,crd(r, R), median,c rd(r, R), max,crd(r, R). 4)

Note that the third entry in Eq. is the so-called one-sided Hausdorff distance between R and
C — the sample from R which is the most isolated from C.

Algorithms. To find the nearest neighbors of a sample, we use the data structures described

in section 2.1.11

2.4 Energy Landscapes and Transition Graphs: Analysis
2.4.1 Disconnectivity Graphs from Critical Points

Rationale. A powerful representation of energy landscapes is in terms of disconnectivity graphs.
As discussed in section [2.1] persistence diagrams provide a quantitative alternative that also
allows simplifications. Both representations involve local minima and saddles connecting them,
and are typically computed from a database of such critical points. When such a database is
available, a transition graph can be defined readily.
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Algorithms. The persistence diagram of the sub-level sets of the landscape is computed from
the transition graph as explained in section 2.1.2] In particular, this PD gives the persistences
of all local minima.

2.4.2 Disconnectivity Graphs from a Conformational Ensemble

Rationale. Consider now the case where a plain sampling has been obtained, together with
the local minimum associated with each sample (obtained by quenching) [SW82l [NP0O6]. Let us
also assume that the transitions themselves have not been computed. In the sequel, we therefore
provide a variation on algorithm Tomato computing a DG and the associated PD from samples
and the associated local minima only. Note in particular that this algorithm does not involve
any transition path sampling algorithm.

Algorithms. Assume that one is given a conformational ensemble C' together with the cor-
responding quenched points C;. We build a NNG on the conformations C' U C, as explained
in section and in addition endow each sample ¢; with an edge to ¢(c;). Note that this
connection directly links each sample to its local minimum, thus avoiding having to perform the
discrete quench operation using estimated gradients as explained in section[2.1.2} In running the
algorithm Tomato on this graph, selected samples are detected as transitions. More precisely,
algorithm Tomato identifies pairs of samples (¢;, ¢;), such that (i) ¢; and ¢; are neighbors in the
NNG, and (ii) ¢(¢;) # ¢(cj). When such a pair of samples is found, we record the path from
g(c;) to g(c;) through the samples ¢; and ¢;. The collection of all such paths defines a transition
graph between the vertices from the set C.

The following remarks are in order:

e The saddles detected may not be close to the real saddles (i.e., critical points of index one
of the PEL), but they nevertheless indicate transitions between two basins associated with

q(c;) and q(c;) (Fig. [2)).

e Since the Tomato algorithm also detects local minima, it is tempting to apply the previous
method to the set C directly, i.e. without using the local minima in C,. However, Tomato
identifies a point as a minimum if its connected neighbors are all at higher energies. If two
(or more) such minima are in the same basin of the PEL, all but one are spurious. This
situation arises frequently in high-dimensional spaces due to sparse sampling.

2.4.3 Transition Graphs: Topology and Betti Numbers

Rationale. The exploration of a complex energy landscape typically requires several runs of an
exploration algorithm, with different starting points and parameters. This strategy results in a
database of local minima and transitions between them. Connecting these critical points results
in a transition graph, which may be connected or not. We report topological and geometric
information characterizing this graph.

Topological information. For a given graph, the number of connected components and the num-
ber of cycles in this graph are known as the first and second Betti numbers [EHI0], and are
respectively denoted 5y and ;. We report them for the transition graph, and we also compute
statistics on a per connected component basis.

The presence of cycles in a transition graph is especially interesting, since such cycles corre-
spond to different paths connecting the same local minima. Cycles involving two edges are also
of interest, as they may arise in two situations. The first corresponds to the situation in which
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a loop around a saddle is anchored in a single local minimum (Fig. [3). The second is due to
post-sampling processing techniques that may be used to group minima. For instance, in the
BLN model, enantiomeric left and right handed helices may be considered as identical in certain
contexts; identifying them as such results in the creation of a cycle.

Geometric information. The simplest geometric information embodied in a transition graph is
the length of its edges, and can be assessed with the statistical summary of Eq. .

In particular, the presence of long edges hints at challenging landscapes: even when the d¢
between all pairs of local minima is small, one may have to follow a long valley to reach a saddle
connecting two minima.

Algorithms. Computing the first and second Betti number of a graph respectively require
running a traversal of the graph and a union-find algorithm [EHI0) [CLRSon].

2.4.4 Transition Graphs: Paths

Rationale. Consider a transition graph, and assume that selected minima called landmarks
have been singled out. For example, one may select the lowest local minima or the most persistent
ones (section [2.1)).

For a given landmark, the distribution of distance from that landmark to its connected saddles
provides an estimate on the size of the basin of that landmark [Doy02]. Also, a large value for
the smallest such distance provides information on the distance to be traveled to escape from
the basin of that minimum. Similarly, the relative position of all landmarks is assessed by the
statistical summary of all pairwise distances.

Algorithms. Computing the distances between landmarks can be done using a variant of
Dijkstra’s shortest path algorithm, where one walks on the graph provided, but records and
relaxes distances between landmarks only [CLRSon].

2.4.5 Transition Graphs: Embeddings

Rationale. To thoroughly explore an energy landscape, one usually launches a series of explo-
rations with different starting points. These explorations typically produce new local minima
which are stored in a database, and transition path sampling algorithms can be used to connect
them. To launch subsequent explorations, it is useful to visualize the relative positions of the
(significant) minima discovered.

Algorithms. Assume that one has selected a set of p local minima, say the p lowest ones. To
embed them in 2D or 3D space in order to visualize their relative positions, we use dimensionality
reduction algorithms such as Multi-dimensional scaling (MDS) [LV07]. We do so in two guises.
In the first setting, we compute the symmetric matrix of all pairwise distances between all pairs
of minima, using the metric d¢ from the conformational space. Then, MDS is called to produce
a 2D or 3D embedding best respecting these distances. However, the distance de ignores the
topography of the landscape. In the second setting, we therefore replace it by the distance of
the shortest path computed on a TG connecting local minima and saddles. More precisely, a
path connecting two local minima consists of a sequence of connections minimum - saddle and
saddle - minimum. We add up the length (computing using the distance d¢) of all such edges,
and select the minimum length obtained. We call this distance the cumulative edge distance deeq.
Note that computing these lengths is done with the variant of Dijsktra’s algorithm mentioned in
the previous section.
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2.5 Energy Landscapes and Transition Graphs: Comparison

PEL and vertex weighted TG. The problem of comparing two PEL arises in various context,
e.g. to evaluate the (lack of) coherence between two force fields, to compare the properties of
two similar molecules or clusters, or to check whether two runs of an exploration method visited
the same regions of the conformational space. To clarify things, by comparing PEL, we actually
refer to the problem of comparing two vertex weighted compressed transition graphs, namely a
graph connecting local minima across index one saddles, each vertex being in addition endowed
with the probability of its basin (see section for compressed transition graphs). In general,
obtaining such a graph for the full landscape is beyond reach. Instead, one deals with a graph
associated with a database of critical points, or inferred from a conformational ensemble. In both
cases, the graph processed is a subgraph of the vertex weighted compressed transition graph of
the whole landscape. For the sake of conciseness, we still refer to the problem of comparing two
such graphs as a PEL comparison.

In designing PEL comparisons, two categories of criteria are of interest. The first one deals
with features of the basins, namely the exact local minimum associated with each basin, and the
probability of that basin. The second deals with transitions between significant basins.

In the following we provide two comparison methods: the first one deals with features of the
basins only, while the second one additionally exploits the information on transitions.

2.5.1 Earth Mover Distance

Rationale. Consider the basin B of a local minimum. Abusing notations, the footprint of the
basin in the conformational space C is also denoted B. Denoting kg is the Boltzmann constant
and Z the partition function, the probability of the basin is given by integrating the Boltzmann
factor over the basin region, namely:

w(B) = %/Bexp _k‘;(;) de. (5)

If minima are found by optimization (e.g., basin hopping), the w(B) can be estimated using
the eigenvalues of the Hessian (curvature) matrix evaluated at those points [Wal03]. If, on
the other hand, the samples are obtained from a thermodynamic ensemble, as is typically the
case for molecular dynamics and Monte Carlo procedures, Boltzmann weighting is automatically
satisfied; the basin weight can correspondingly be estimated from the number of points falling
in the basin region

w(B) =", (6)

Consider now two landscapes, called the source landscape PEL and the demand landscape
PEL, for the sake of exposure, respectively involving ns; and ng basins. We assume that the
weights of their basins have been computed, and that one is also given a metric de to compare
two conformations.

To compare the two landscapes, we use the earth mover distance [RTGO0], which is a partic-
ular case of mass transportation [Vil03]. Intuitively, the technique fills basins in the target (aka
demand) landscape using mass from basins of the source landscape. A basin from PEL, can be
split into several parts, and equivalently, a basin from PELy; can be filled form several basins
from PEL; (Fig. [4). Denote f;; the mass from B; € PEL; moved into B; € PEL,. The cost of
moving f;; units of mass depends linearly on the distances between the minima m,; associated
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with B; and m; associated with B;. A transport plan from PEL to PELg is defined by triples
(my, my, fi;), with f;; > 0. Note that there are at most n, X ng such triples.

Finding the optimal i.e. least cost transport plan amounts to solving the following linear
program:

Min Zi:l,...,ns,jzl,...,nd fij x dc(mi,my)

d .
LP Dict,n Jig = w; Viel, ..., ng, o
Dt fid S w® Viel,... n,
fij 20 Viel,...,n,Vji€l,... ,ng

The first equation is the linear functional to be minimized, while the remaining ones define linear
constraints. In particular, the second one expresses the fact that every basin from PEL,; need
to be filled, while the third one indicates that a basin from PEL, cannot provide more than it
contains.

Algorithms. Consider a sampling C' and the corresponding quenched samples C,. To compute
the weight of a basin associated to a local minimum m € Cj, we use the assignment of the samples
from C' into the basins of local minima as done by algorithm Tomato (section . The weight
of a basin is then obtained using Eqs. and @

Once the weights of basins have been computed, solving the linear program of Eq. @ has
polynomial complexity [Kar84]. Practically, various solvers can be used, e.g. the one from the
Computational Geometry Algorithms Library [cga], 1p_solve EL the CPLEX solver from IBM EL
etc. In the following, the algorithm solving the linear program of Eq. @ is called EMD.

2.5.2 Earth Mover Distance with Connectivity Constraints

Rationale. The previous comparison ignores transitions between local minima. To take these
connections into account, we modify the method by imposing connectivity constraints to trans-
port plans. To see whether a transport plan is valid, pick any connected subgraph S from PEL,
— that is S connects selected local minima in PEL,. Let D be the set of vertices from PEL4
such that for each vertex d; in D, there is at least one edge emanating from a vertex s; of the
subgraph S with f;; > 0. The transport plan is called valid iff the subgraph D is also connected.
Intuitively, this constraint reads as follows: any connected set of basins from PEL; can only
send mass to a connected set of basins from PEL, (Fig. . In doing so, one compares the two
landscapes while preserving connectivity constraints between basins.

It should be noticed that the connectivity preservation may prevent from fully satisfy the
demand. For this reason, we introduce the total flow as follows:

Flow(PEL,, PELy) = > _ fi;. (8)

Algorithms. Finding transport plans respecting connectivity constraints turns out to be a
hard combinatorial problem. The problem is not in APX, which means that if P # NP holds,
then, no polynomial algorithm with constant approximation factor exist. However, a greedy
algorithm denoted EMD-CC, providing admissible solutions, has been reported in [CM14].

Thttp://sourceforge.net/projects/lpsolve/
?http://www-304.1ibm.com/ibm/university/academic/pub/page/ban_ilog_programming
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Remark 2 It can be shown that the Farth Mover Distance as defined by Eq. @ yields a metric,
provided that de is itself a metric, and that the sum of weights for the source and the demand
graphs are equal [RTGO0O]. On the other hand, the EMD with connectivity constraints fails
to satisfy the triangle inequality [CM1J)J. Also, the EMD with connectivity constraints is not
symmetric, which we assess with the ratio

min(EMD-CC(A, B), EMD-CC(A, B))

" = max(EMD-CC(A, B), EMD-CO(A, B))’ Y

The lack of symmetry can be fized, however, by taking any symmetric function of the two values

EMD-CC(A, B) and EMD-CC(B, A), as done e.g. for the Hausdorff distance.

3 Results

In this section, we present the system used and use the tools presented above to investigate two
scenarios, namely modeling a landscape, and comparing samplings.

3.1 System used: BLN Models and Datasets

BLN69 model. We use a 69 residue BLN model protein [BEHGO03], whose landscape has been
extensively sampled [Wal03, [OW.J11]. The BLN model represents each protein residue as one of
3 types of beads, namely hydrophobic(B), hydrophilic(L) and neutral(N). The potential energy
for the model is recalled in the supplemental section In comparing two BLNG69 structures,
we extend the least root mean square deviation (IRMSD) by an additional test accomodating
chirality of the polymeric structure [OJW12]. That is, when comparing two conformations c¢;
and c;, two distances are computed, between ¢; and c¢;, and between ¢; and the enantiomer of
c;; if the latter is smaller, the coordinates of the enantiomer are substituted for the originals.

The BLN69 model has a frustrated potential energy surface, with several deep basins close
in energy to the global minimum (V' = —105.19 in reduced energy units) but separated from it
by high barriers. Of the top ten lowest energy structures, four lie close to the global minimum,
differing only by changes in the turn regions, whereas six are found with different arrangements of
the S-strands and are separated from the others by high energy barriers, whence the frustration.

Earlier work by [OW.JI1] resulted in a database of 458,082 minima and 378,913 index 1
critical points (saddles) which was furnished to us by the authors, and from which we define:

e BLNG9-all: the full database of critical points, obtaining using a combination of basin
hopping and path sampling runs.

e BLNG69-E_1gp: the subset BLNG69-all featuring all local minima whose energy is less than
100 energy units.

e BLN69-top10: the 10 lowest minima from BLNG9-all.

We note in passing that when referring to local minima of the BLN69 model, we use the indices
of critical points from BLN69-all.
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Generation of conformational ensembles. We also generated conformational ensembles
using the transition rapidly exploring growing random tree (T-RRT) algorithm, which has been
shown to be efficient at sampling energy landscapes [JCPCI1]. We also subsequently quenched
these samples. The incentive for using T-RRT, which refines the rapidly growing random trees
exploration method [KLO0|, is that it uses an extension strategy known as the Voronoi bias,
which avoids regions already visited by those that are yet unexplored. More precisely, T-RRT
builds a tree exploring the conformational space. At each step, one tree node gets extended,
each node being chosen with a probability equal to the volume of its Voronoi cell in the Voronoi
diagram of the ensemble generated so far. The stepsize and temperature are adjusted throughout
in order to facilitate sampling higher energy regions.

Using this algorithm, we launched an exploration generating 10* samples for each local
minimum from the dataset BLNG69-topl0 resulting in ten corresponding samplings denoted
TRRT-topl0-1, -2, etc.. The parameters used in each run were the extension stepsize § = 0.5 in
euclidean distance, the initial reduced temperature T;,;; = 2, and the temperature multiplication
factor A = 1.001. The stepsize § was chosen based on the observation of the size of the bounding
box of BLN69-all. These values were chosen empirically to favor access to lower lying regions of
the PEL, and reflect the fact that T-RRT itself is not a quench-based method.

When building the NNG from the conformational ensemble, we used the IRMSD distance,
with the chirality check discussed above to identify enantiomers of the BLN molecule that were
closer in terms of IRMSD.

Finally, to compute the weight of basins associated to such samplings, we used Eq. @ even
though T-RRT method itself employs non-thermodynamic sampling in exploring higher-energy
regions of the PEL. To challenge the comparison algorithms, we also created a second dataset
as follows: for each run of TRRT-topl0, we retained the local minima, but assigned a uniform
mass to each basin (i.e. a basin of a landscape with p local minima gets a mass of 1/p.) The ten
corresponding datasets are denoted TRRT-top10-U-1, -2, etc, with U for uniform.

3.2 Modeling a Landscape

Topology of transition graphs. We first analyze the overall structure of the transition graph
encoded in the database BLN69-all. On this graph, whose nodes are the critical points (minima
and saddles), the numbers of connected components (c.c.) and cycles are respectively Sy =
137993 and (; = 58824. However, one prominent c.c. involves 163892 vertices and features
B1 = 58042 cycles. In the following, we focus on the analysis of this giant component. On
this giant component, one observes 589 bump transitions (out of 969 in the whole dataset)
(Fig. 13). One also finds minima with up to 6 bump transitions. In principle, the presence
of possibly multiple bump transitions would hamper sequential exploration algorithms such as
BH by reducing the possibility for escape away from such basins; for the same barrier crossing
probability a larger step would be required to flow into a different minimum.

Binary and k-ary DG. The complete DG associated with the dataset BLN69-all shown in Fig.
[B]is a binary tree; that is, each node is associated with at most two children. This differs from DG
representations most often used in energy landscape studies, which group several transitions from
a given energy slice into a single node to increase visibility, resulting in a k-ary tree. Zooming
in on the region of the complete DG near the global minimum reveals its binary structure (Fig.
[6] left-hand side).

The morphology of a binary tree can vary between that of a path (in which one child of each
internal node is a leaf and the other is an internal node) and that of a perfectly balanced tree (in
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which each internal node has two children of the same size). To assess the structure of our tree,
we use the so-called external path length (EPL) [Mah92]. Defining the depth of a node as the
number of edges required to reach it from the root, the EPL is the sum of depths of the leaves
of the tree. If n is the number of internal nodes (index one saddles in our case), the EPL when
the tree is a path is (Z) =+ 2n, which we will write using the shorthand EPLyq;p, while the EPL is
asymptotically equivalent to 2nlnn, denoted here EPLy,;., when the tree is perfectly balanced
[Mah92]. For the largest connected component of Fig. @ one obtains EPL/EPL,q:, = 0.28, but
EPL/EPLpy;. = 963.46. This clearly shows that the binary tree associated with BLNG9-all is
essentially a path. This feature is likely related to the strategy used to find local minima and
index one saddles connecting them in the original work on the exploration of the BLN landscape
[Wal03| [OW.J11].

This path-like tree structure also accounts for the unbalanced shape observed in Fig. [0}
Indeed, the classical DG drawing algorithm consists of sorting the children of a node using either
the number of leaves in the sub-trees or their lowest energy. For a binary tree reducing to a path,
as we have here, the largest subtree always ends up on the same side (left or right). For a k-ary
tree, the same procedure typically results in a more symmetric shape.

Persistence of local minima. We next analyze the persistence of local minima in BLNG9-
all, using the approach explained in section m (Fig. . Since minima from BLN69-top10
correspond to an energy E < —104, we restrict the PD to this set (Fig. E(Inset)). This plot
shows a clear gap isolating 10 minima (9 points of the diagram plus the global minimum, which
never appears, as explained in Methods). Remarkably, out of the 10 most persistent minima,
one finds 6 conformations from BLN69-top10 plus 4 new ones, whose IRMSD to local minima
from BLN69-topl0 is circa O.5A(supplemental Table . This observation shows the advantage
of PD in identifying out the most stable local minima.

As can be seen from (Fig. |§| (right-hand side), due to graphical limitations, plotting all the
data simultaneously is not particularly useful for interpreting global dynamics of the system.
The use of a persistence threshold greatly facilitates interpretation of the complete DG for the
frustrated BLN system. For instance, as shown above, the persistence analysis (Fig. [7]) shows
that many basins are well separated from one another with persistences of up to 70 energy units.
Drawing the complete DG using a persistence threshold of 15 e spotlights these deep, meta-stable
basins or states (Fig. |8 and E[) As opposed to grouping by transition state energies in fixed
increments, as is done in typically reported DG’s, such denoising by persistence analysis can be
used to simplify the graphical construction without losing the precision in the representation of
the transition energies.

We also note in passing that upon simplifying the whole DG with persistence (from Fig. |§|
to Fig. , its path-like structure becomes even more dominant, since the ratio EPL/EPLy,qp,
jumps from 0.28 to 0.99.

We may also examine the structure of the EL in the region of the global minimum by focusing
on the sub-level set of the landscape located below —95 energy units. This sub-level set, which
we shall denote M, consists of 45408 local minima structured in 9562 c.c.. The particular c.c.
containing the global minimum, denoted My, involves 22214 local minima. Observing that the
median persistence of the top 10 local minima (BLN69-top10) is 6.14¢ (Supplemental Table [5)),
we simplified M, and thus M, using this value as a persistence threshold. In doing so, the
number of remaining local minima reduces to 19: the global minimum plus 4 persistent minima
from BLN69-top10 plus 14 other persistent basins from M,. The latter minima are not in the
topl0, yet are more persistent than four local minima from BLN69-top10.
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Transitions. To capture global properties of the transition graph, we first turn to the structure
of attraction basins of the local minima in the set BLN69-E_1g¢. In particular, we analyze the
star of each local minimum, that is, the direct connexions to surrounding saddles (Table |3).
Interestingly, selected transitions are characterized by a long distance and a low energy (see
e.g. the third column for the minimum of index 1). Clearly, such situations are difficulties for
exploration algorithms, which need to cover a long distance to a saddle before reaching another
basin.

We complement the previous analysis with parameters of the transition graph upon marking
the 10 lowest local minima as landmarks, making use of the approaches presented in section
Statistics on the transition paths are compiled in the supplemental Table . One observes that
a path joining two minima involves up to 5 intermediate minima, or equivalently 10 edges in the
graph. It is also seen that there exist paths that are short in terms of nodes, but long distance-
wise: for example, the two minima (1,311) are separated by one saddle, yet the associated
cumulative edge distance is d..q — 1.18. These facts illustrate the difficulty faced by sampling
algorithms, which may have to discover a long transition path to cross a single saddle — possibly
high in energy. Another point of view is provided by the distribution of lengths of edges of a
minimum spanning tree spanning the critical points (supplemental Table . For the datasets
BLN69-F_1pp and BLN69-all, a significant gap is observed between the median and the maximum
edge lengths in the MST. This gap clearly shows that subsets of the ensemble are quite separated.

Finally, it is also seen that 5 local minima (6, 8, 142, 311, 33250) are connected to the global
minimum by a single saddle. When the d..q distance between these conformations is small, this
explains why sampling algorithms consistently report these five minima during an exploration
run (data not shown).

Comparing the distances IRMSD and d..q via the ratio IRMSD/d..q also proves of interest
to identify pairs which are close in the IRMSD sense but far away according the cumulative edge
distance. For example, the pair (1974, 7305) yields a ratio of 0.32 and (311, 7305) a ratio of 0.37,
while the path between (1, 142) is more direct, with a ratio of 0.92.

Sketching the landscape using non linear dimensionality reduction. To visualize the
relative positions of the lowest local minima of the BLN landscape, as explained in section [2.4.5
we apply MDS to the distance matrices between all pairs from BLN69-top10 (Fig. . Both
2D projections have a similar global structure. However, as observed above, pairs nearby in the
IRMSD sense may be far apart when considering the cumulative edge distance d..q — e.g. the
pairs (1974, 7305) and (311, 7305).

3.3 Comparing samplings

Setup. We apply our PEL comparison algorithms on the dataset TRRT-top10. To generate
the vertex weighted transition graphs (section , we proceed in two stages. First, we apply
topological persistence to merge the non significant basins into larger ones (section [2.1.2)). Prac-
tically, this process gets rid of basins with persistence less than 750 energy units. Then, the
version of algorithm Tomato for PEL was run (section , resulting in the assignment of each
sample to its basin (whence the basin weights) and a list of connections between basins.

Detailed information for each run, namely the DG, the associated persistence diagram, to-
gether with the distribution of masses, can be found in the supplemental section Two facts
are worth noticing. First, the basin weights within each dataset TRRT-top10 are unevenly dis-
tributed, since the local minimum from which the T-RRT run was started dominates the sampling,
a fact related not only to intrinsic concerns about exploration efficiency but more fundamentally

RR n° 8610



20 F. Cazals et al / ABS

to frustration of the landscape itself. This indeed was the motivation for creating the “challenge”
dataset TRRT-top10-U, which is the same as TRRT-topl0 except that basin weights have been
attributed that correspond to a more uniform sampling of the conformational space. Second,
the transitions found involve samples with relatively high energies with respect to those of the
lowest minima, a fact owing to the hybrid nature of the sampling, which consists of non critical
points together with the associated quenched local minima, namely the ensemble C' U C; from
section [2:4.2] This, however, is not an issue in comparing PEL samplings, since the saddles are
used simply to connect basins; the saddle heights themselves are unused.

We performed all pairwise comparisons of the 10 PEL samplings TRRT-top10-1-10 and
TRRT-topl10-U, computing for each pair (A, B) three transport costs, namely EMD(A, B), in
which critical-point connectivity constraints are not preserved, and EMD-CC(A, B), in which
they are, but also EMD-CC(B, A), as EMD-CC is not symmetric.

Connectivity constraints and demand satisfaction. As algorithm EMD is oblivious to
critical point connectivity, we first focus on how well the connectivity is preserved. We do this
by computing the percentage of vertices and edges of the input graph inducing, through the flow,
a connected subgraph of the demand graph. On the 45 instances of the dataset TRRT-top10, the
statistical summaries (min, median, max) of these vertex and edge percentages are respectively of
(41%, 88%, 100%), and (24%, 79%, 100%) (supplemental section, Tables[6|and[7)). For the dataset
TRRT-topl0-U, the summaries become (0%, 63%, 100%) and (1%, 36%, 1%) (supplemental
Tables |11 and Table [12)). Thus, transport plans obtained by solutions of the linear program do
disrupt connectivity constraints, especially for difficult cases.

For algorithm EMD-CC, the connectivity is preserved by construction, but this may prevent
full satisfaction of the demand, which motivated the definition of the total flow (Eq. [§). For
the dataset TRRT-top10, a worst-case of total flow of 99.23% is observed (supplemental section,
Table , showing that constraints do not provide a serious hindrance to satisfy the demand.
Moreover, algorithm EMD-CC does not exhibit significant asymmetry on these instances, since the
ratio of Eq. @ lies in the interval [0.93,1], with a median of 1. Nevertheless, the remarkable
behavior of algorithm EMD-CC partly owes to the nature of the instances, for, as observed above,
a frustrated landscape results in one basin taking most of the mass. Therefore, the transport
plan associated with two landscapes is dictated by the flow from the dominant minimum of the
first landscape to the dominant minimum of the second landscape. In other words, the transport
cost is essentially the distance between these two minima.

The situation deteriorates for the dataset TRRT-topl0-U. First, the symmetry ratio of
Eq. (9) takes values in the interval [0.05,1], with a median of 0.44. Also, satisfying the
demand gets more difficult, and one finds both easy and hard instances: across all pairs,
min max(Flow(A, B),Flow(B, A)) is as low as 5.87, while max min(Flow(A, B),Flow(B, A)) is
as high as 71.43. The former pair defines a difficult case — the transportation problem is difficult
both ways, while the latter is a simple one — the transportation problem is easy both ways.

Transport costs. In general, connectivity constraints could also deteriorate the transport cost
computed by algorithm EMD-CC. For the dataset TRRT-topl0 (supplemental Tables (8| and @, the
pairwise correlations among EMD(A, B), EMD-CC(A, B) and EMD-CC(B, A) are equal to 0.999
(supplemental Fig. . As discussed above, this owes to the structure of the graphs modeling
the sampling.

Again, the situation changes for the dataset TRRT-topl0-U (supplemental Tables
. On the one hand, the costs become asymmetric, the symmetry ratio of Eq. @ spanning
the interval [0.05, 1] — as opposed to [0.93,1]. On the other hand, the correlation with the cost
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of linear transport plans is lost (Pearson correlation coefficients down to 0.44, 0.09, and 0.06;
supplemental Fig. .

On the hardness of comparing landscapes. As evidenced by the previous analysis, the
comparison of landscapes is a difficult problem for which one may favor the satisfaction of the
demand (using EMD) at the detriment of the connectivity constraints, or vice-versa. The intrinsic
hardness of the problem, as explained in section makes the presence of such cases inevitable.

4 Conclusion

This paper revisits classical concepts and present new ones for the analysis and comparison
of conformational ensembles and sampled landscapes. From a methodological standpoint, two
classes of novel tools are of particular interest.

The first class is concerned with persistence based algorithms providing a coherent framework
to handle rugged landscapes. When the landscape processed is the potential energy of the system,
these algorithms allow automatically selecting minima with specified values in terms of energy and
saddle height. When the processed landscape encodes the density of states, the same algorithms
yield a clustering method whose output hints at the number of stable states.

The second class is concerned with methods aiming at comparing sampled landscapes. The
comparison may be restricted to the persistent basins and their volumes, or may also incorporate
connexions between the basins. The possibility of comparing sampled landscapes should prove
invaluable in investigating the coherence of two force fields, in distinguishing comparable but
distinct macromolecular systems, or simply in comparing simulations launched with different
initial conditions.

The software corresponding to these novel tools is made available in two guises. First, exe-
cutables are provided for various operating systems (Linux, MacOS). Second and possibly most
importantly, the C++ will be released within the Structural Bioinformatics Library during the
first trimester of 2015.
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5 Artwork

Figure 1 Height field analysis of the Himmelblau function f(z,y) = (z2+y—11)2+ (z+
y? — 7). The function has four local minima, four index one saddles, and one local maximum.
The left and right columns respectively represent the function as defined in the previous equation,
and to a noisy version obtained by adding Gaussian noise (noisy Himmelblau). (Top row) Plots
of the function. The inset on the right side indicates the noise. (Middle row) Disconnectivity
graphs. While that of Himmelblau features three saddles corresponding to the merges between
the four basin, that of noisy Himmelblau contains more events due its ruggedness. (Bottom
row) Persistence diagram of sub-level sets. That of Himmelblau has three points, corresponding
to the three saddles — note that the basin of the global minimum does not appear on the PD since
it does not merge with a deeper basin. That of noisy Himmelblau contains two sets of points:
those near the diagonal correspond to small wiggles on the landscape, while the remaining three
are in one-to-one correspondence with those of the left diagram.
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Figure 2 Identifying the connexion between the basins of two local minima by

quenching two samples ¢; and ¢;. (Top) A simple 2D landscape Sample ¢; is quenched

to 050) while ¢; is quenched to a§0). The samples ¢; and ¢; sit across the (white) ridge separating

the basins of their respective minima. (Bottom) General case Portrayed is a generic sketch of

the flow lines associated with the negative gradient vector field of the potential energy —VV (see

e.g. the Morse homology theorem in [BH04]). Sample ¢; is quenched to 01(0) while ¢; is quenched

to o'j(o). The two samples define a line segment intersecting transversely the stable manifold in
the index one critical point az(; ) which is d— 1 dimensional since the index (number of negative
eigenvalues) of the critical point is d — 1. The unstable manifold of O‘i(;)
(0) 0)

%

is one-dimensional, and

yields the connections with the two local minima o, ’ and O'J(-

0.(0) loc. minimum

o : critical point of Morse index i

[

® oV index 1 saddle
© 5@ index 2 saddle
[

o loc. maximum

quenching c;

quenching ¢;
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Figure 3 A loop around a saddle s anchored in a single local minimum m — a.k.a
bump transition. Note that the dotted path is located behind the bump.

Figure 4 Comparing energy landscapes. Each landscape is partitioned into the basins
associated to its local minima. Comparing two landscapes is phrased as a mass transportation
problem on the bipartite graph defined by the two sets of minima. Note that sets of connected
basins from the top landscape are mapped to connected basins of the bottom landscape.

51 @ > 0 d;
® d
o d3
52 @ > @ dy
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Figure 5 The solution of the linear program may not satisfy connectivity constraints.
A transport plan between a source and a demand graph each consisting of a linear chain of four
vertices. The vertices of the edge (s1, s2) of the source graph export towards the vertices d; and
d3 of the demand graph. The subgraph of the demand graph induced by these vertices is not
connected — there is no edge linking d; to ds.

S51@ —m——— ‘dl

S0 @ ® d>
S3 @ @ d;
51 @ ®d

Figure 6 Disconnectivity graph associated with the dataset BLN69-all (see also Fig.
7). The inset is an arbitrary zoom on the tree containing the global minimum for £ < —103.
There are four minima from BLN69-topl0 that are in the inset (in-circled).
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Figure 7 Persistence of the basins in BLN69-all. The main plot features the 458,082
minima, while the inset zooms on the region corresponding to the forty minima in BLN69-all
with energy E < —104 units. The 10 most persistent minima (9 points of the diagram, plus the
global minimum) contained in the ellipsis correspond to 6 conformations from BLN69-top10 and
to 4 new ones. See also the supplemental Table
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Figure 8 Frustration of BLN69 revealed by topological simplification using persis-
tence. Illustrated is the DG of Fig. @(right), simplified with a persistence threshold of 15 ¢,
which reveals the frustration of BLNG9
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Figure 9 The DG of Fig. [§| plotted after clustering saddles within energy slices of
height 0.5¢. Note that both DG have been plotted by the same algorithm, so that the visual
difference stems from the binary versus k-ary structure of the trees.
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Figure 10 2D sketch of the energy landscape representing BLN69-top10 using Multi
Dimensional Scaling (MDS) on a matrix of pairwise cumulative distances. (Top)
The distance used is the IRMSD . (Bottom) The distance used is the cumulative edge distance
defined in section [2.4.5], the landmarks being the 10 lowest local minima.
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6 Supplemental: Methods

6.1 BLN

The potential energy of the BLN69 model is given by:

1 N-1 1 N-2
V == §Kr ; (Rz,l-‘rl Re) + 2K9 ; (97 09)

N-3
+e Z [Ai(1 + cos ¢;) + Bi(1 + cos 3¢;)]

3

N-2 N
ag ag
ey > Cijllm— ) —Dijp— ).
2y 1,7

i j=it2

Note that the first three terms are bonded terms, while the fourth is the non bonded term (LJ
potential). Parameter definitions and values are as specified in ref [Wal03].

7 Supplemental: Results

7.1 Modeling a Landscape

Table 1 Sampling diversity assessment based on the statistical summary (min, me-
dian, max) of edges of a minimum spanning tree spanning a conformational ensem-
ble. The statistics reported are those of Eq. , the distance used being the IRMSD .

min median max
BLN69-top10 | 0.0981464  0.360528 0.625568
BLN69-E_199 | 0.00046106 0.118135 5.3118
BLNG9-all 0.0206142  0.254532  2.42746

Table 2 Novel persistent local minima from Fig. Inset), and the nearest neighbors
from the BLIN69-top10 dataset

index pers min | index nn in BLN69-top10 | IRMSD
6872 311 0.482
2507 311 0.36
31779 11134 0.463
77992 311 0.482
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Table 3 Local Analysis of the star of minima from the BLN69-E_1y, that lie at energy
less —104. The star of a given minimum consists of all the saddles directed connected to it in
The IRMSD between the minimum and the saddle together with the energy

BLN69-E_1¢p.
increase AF were recorded, whence a pair for each saddle.

Sorting these pairs by increasing

IRMSD yields the columns 3-5. Sorting these pairs by increasing AF yields the columns 6-8.

Index | # TS || Min dist Median dist | Max dist Min Ag Median A | Max Ag

1 340 (0.0659, 1.17) (0.32, 17.3) (1.82, 17) (0.842, 0.0681) (13.5, 0.22) (54.3, 1.58)
6 153 (0.0658, 1.16) (0.307, 13.4) | (3.53, 19.4) (0.896, 0.0677) (11.9, 0.586) | (28.7, 0.312)
8 166 (0.0443, 0.348) (0.297, 9.27) | (1.85, 28.8) (0.348, 0.0443) (11.8, 0.289) | (28.8, 1.85)
86 97 (0.0455, 0.416) (0.298, 7.18) | (2.93, 19.4) (0.416, 0.0455) (10.7, 0.396) | (23.6, 0.705)
142 185 (0.0492, 0.667) (0.303, 20.4) | (1.37, 14.8) (0.667, 0.0492) (12.9, 0.836) | (30.5, 1.06)
195 263 (0.0647, 0.896) (0.341, 11.9) | (2.65, 22.2) (0.896, 0.0647) (14.2, 0.358) | (55, 1.72)
311 75 (0.0665, 1.12) (0.273, 3.62) | (1.64, 27.8) (1.12, 0.0665) (10.3, 0.457) | (27.8, 1.64)
383 44 (0.0493, 0.679) (0.274, 15.2) | (1.3, 25) (0.679, 0.0493) (10.5, 0.547) | (25, 1.3)
644 138 (0.0435, 0.334) (0.312, 12) (1.41, 28.5) (0.334, 0.0435) (11, 0.222) (46.7, 1.1)
1245 | 81 (0.0452, 0.734) (0.506, 21.8) | (1.78, 30.1) (0.105, 0.0469) (13.1, 0.9) (30.1, 1.78)
1255 | 78 (0.066, 1.17) (0.262, 26.4) | (1.82, 39) (0.831, 0.067) (11.5, 0.306) | (39, 1.82)
1404 | 69 (0.0763, 2.09) (0.268, 14.7) | (2.05, 17.6) (0.376, 0.104) (9.78, 0.435) | (28.4, 0.278)
1630 | 147 (0.044, 0.36) (0.294, 15.9) | (1.53, 21.2) (0.36, 0.044) (13.7, 0.339) | (48.5, 0.984)
1922 | 98 (0.049, 0.655) (0.282, 6.16) | (1.4, 18.5) (0.655, 0.049) (11.1, 0.334) | (27.4, 1.18)
1963 | 88 (0.0573, 0.163) (0.257, 12.7) | (1.05, 13.1) (0.163, 0.0573) (11.9, 0.345) | (25.2, 0.762)
1974 | 215 (0.0644, 0.862) (0.321, 20.3) | (2.92, 19) (0.799, 0.091) (14.6, 0.729) | (34.2, 0.268)
2010 | 99 (0.0722, 2.57) (0.306, 6.87) | (0.957, 19.7) || (0.345, 0.0996) (9.86, 0.573) | (28.3, 0.282)
2240 | 89 (0.0456, 0.593) (0.277, 14.9) | (2.93, 19.1) (0.593, 0.0456) (13.7, 0.468) | (25.9, 1.29)
2507 | 73 (0.0684, 2.61) (0.243, 17.7) | (1.25, 14.3) (0.377, 0.103) (9.6, 0.264) (28.3, 0.264)
3618 | 86 (0.087, 1.83) (0.283, 11.1) | (1.31, 26.5) (1.71, 0.131) (11.4, 0.216) | (31.7, 0.239)
3703 | 130 (0.0636, 0.844) (0.311, 17.1) | (2.94, 19.1) (0.844, 0.0636) (14.4, 0.431) | (37.6, 2.13)
5876 | 62 (0.0451, 0.0978) | (0.548, 15.5) | (1.87, 26.6) (0.0978, 0.0451) | (12.8, 0.87) (27.2, 1.25)
6327 | 55 (0.0484, 0.118) (0.3, 7.42) (1.77, 26.4) (0.118, 0.0484) (8.52, 0.593) | (26.4, 1.77)
6872 | 93 (0.0718, 2.52) (0.279, 7.48) | (1.29, 20.9) (1.68, 0.132) (10.5, 0.329) | (23.4, 0.239)
7265 | 97 (0.0437, 0.0881) | (0.493, 19.2) | (1.91, 28.1) (0.0881, 0.0437) | (12.9, 0.954) | (28.9, 1.76)
7271 | 75 (0.0618, 0.743) (0.287, 13.6) | (1.58, 18.8) (0.322, 0.0771) (10.4, 0.408) | (30.5, 0.339)
7300 | 90 (0.0621, 0.769) (0.28, 7.25) (1.77, 18.3) (0.309, 0.0753) (9.67, 0.637) | (32.7, 1.52)
7305 | 93 (0.0454, 0.752) (0.289, 5.92) | (1.08, 18.4) (0.29, 0.0744) (10.3, 0.398) | (21.9, 0.276)
7489 | 75 (0.052, 0.899) (0.255, 20.1) | (1.62, 18.4) (0.273, 0.0719) (10.7, 0.228) | (27.7, 0.377)
9846 | 256 (0.0667, 0.865) (0.332, 15.1) | (1.95, 34.8) (0.865, 0.0667) (15.4, 0.27) (37.6, 1.67)
11134 | 221 (0.0644, 0.86) (0.326, 20.6) | (2.93, 18.8) (0.86, 0.0644) (14.3, 0.491) | (31.5, 1.73)
11434 | 164 (0.0461, 0.403) (0.288, 13.9) | (2.94, 18.8) (0.403, 0.0461) (14.3, 0.327) | (27.3, 0.208)
11545 | 158 (0.0471, 0.627) (0.294, 17.6) | (1.69, 17.3) (0.627, 0.0471) (14.2, 0.285) | (25.8, 0.829)
12760 | 183 (0.064, 0.833) (0.309, 9.9) (2.95, 28.8) (0.833, 0.064) (14.9, 0.169) | (32.7, 2.06)
31779 | 105 (0.0688, 0.836) (0.242, 12.2) | (1.96, 47.6) (0.836, 0.0688) (11.1, 0.282) | (47.6, 1.96)
33250 | 131 (0.0652, 1.15) (0.286, 13.8) | (1.38, 14.8) (0.868, 0.0678) (13.1, 0.459) | (29.7, 0.439)
33308 | 57 (0.0481, 0.42) (0.273, 19.8) | (1.38, 14.8) (0.42, 0.0481) (11.6, 0.177) | (23.6, 0.505)
34174 | 68 (0.0527, 0.103) (0.292, 13.7) | (1.62, 47.9) (0.103, 0.0527) (12.7, 0.258) | (47.9, 1.62)
34676 | 92 (0.05, 0.702) (0.266, 7.56) | (1.38, 14.9) (0.702, 0.05) (11.1, 0.235) | (23.6, 0.801)
77992 | 72 (0.0645, 1.15) (0.26, 7.55) (1.08, 21.3) (1.15, 0.0645) (11.3, 0.22) (28.7, 0.288)
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Table 4 Distances between minima from BLN69-top10. The third column (dceq) refers
to the cumulative edge distance computed on the transition graph, as defined in section [2.4.5]
The fourth column (#edges) is the number of edges found on the shortest path joining the two
minima in the transition graph: a value of 2p two means that the path goes through p saddles
to connect the two minima of interest.

index ml | index m2 | deeq path: #edges | IRMSD | IRMSD/d cq
1 6 0.195 2 0.163 0.835
1 8 0.112 2 0.098 0.875
1 142 0.115 2 0.106 0.921
1 311 1.182 2 0.515 0.435
1 1973 1.492 6 0.676 0.453
1 7305 1.425 6 0.655 0.459
1 11134 1.199 4 0.698 0.582
1 12760 1.399 6 0.712 0.508
1 33250 0.697 2 0.360 0.521
6 7 0.307 4 0.191 0.623
6 142 0.310 4 0.194 0.625
6 311 1.272 6 0.547 0.428
6 1974 1.332 6 0.676 0.507
6 7305 1.620 8 0.670 0.413
6 11134 1.395 6 0.715 0.512
6 12760 1.594 8 0.713 0.448
6 33250 0.893 4 0.409 0.459
8 142 0.227 4 0.146 0.643
8 311 1.294 8 0.519 0.401
8 1974 1.522 8 0.671 0.440
8 7305 1.414 6 0.641 0.453
8 11134 1.308 6 0.695 0.531
8 12760 1.504 8 0.707 0.470
8 33250 0.810213 | 4 0.372 0.459
142 311 1.29774 | 4 0.519 0.402
142 1974 1.52341 10 0.684 0.450
142 7305 1.54053 | 8 0.667 0.433
142 11134 1.31497 | 6 0.708 0.540
142 12760 1.51454 | 8 0.721 0.477
142 33250 0.812982 | 4 0.372 0.459
311 1974 1.58991 10 0.633 0.400
311 7305 1.57245 | 8 0.587 0.373
311 11134 1.52672 8 0.700 0.557
311 12760 1.69276 10 0.709 0.419
311 33250 1.29726 | 6 0.553 0.428
1974 7305 1.74716 | 8 0.672 0.386
1974 11134 1.01362 4 0.364 0.360
1974 12760 1.22234 | 6 0.396 0.324
1974 33250 1.37802 | 6 0.687 0.501
7305 11134 1.49398 | 6 0.625 0.419
7305 12760 1.69967 | 8 0.640 0.376
7305 33250 2.12317 | 8 0.727 0.342
11134 12760 0.208721 | 2 0.181 0.905
RR n° 861 11134 33250 1.52891 6 0.727 0.478
12760 33250 1.55398 | 6 0.745 0.479
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Table 5 Persistences of local minima from BLN69-top10.

index m | persistence
1 inf
6 1.55
8 0.35
142 0.67
311 7.29
1974 7.42
7305 6.14
11134 7.15
12760 1.73
33250 7.11

7.2 Monitoring a Sampling Process

Figure 11 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 7305. The vertex weighted transition
graph contains 90 vertices and 155 edges; it has 1 connected component and 66 cycles.
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Figure 12 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 8. The vertex weighted transition graph
contains 27 vertices and 32 edges; it has 1 connected component and 6 cycles.
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Figure 13 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 12760. The vertex weighted transition
graph contains 439 vertices and 1672 edges; it has 1 connected component and 1234 cycles.
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Figure 14 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 1974. The vertex weighted transition
graph contains 46 vertices and 74 edges; it has 1 connected component and 29 cycles.
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Figure 15 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 1. The vertex weighted transition graph
contains 21 vertices and 27 edges; it has 1 connected component and 7 cycles.
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Figure 16 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 311. The vertex weighted transition
graph contains 15 vertices and 18 edges; it has 1 connected component and 4 cycles.
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Figure 17 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 6. The vertex weighted transition graph

contains 33 vertices and 67 edges; it has 1 connected component and 35 cycles.
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Figure 18 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 142. The vertex weighted transition
graph contains 17 vertices and 22 edges; it has 1 connected component and 6 cycles.
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Figure 19 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 33250. The vertex weighted transition
graph contains 67 vertices and 251 edges; it has 1 connected component and 185 cycles.
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Figure 20 Disconnectivity tree, persistence diagram, and histogram of masses for
the T-RRT run started near the local minimum of 11134. The vertex weighted transition
graph contains 168 vertices and 362 edges; it has 1 connected component and 195 cycles.
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Table 6 Algorithm EMD: percentage of vertices of the source graph inducing a con-
nected graph on the demand graph. The row (resp. column) index is that of the source
(resp. demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250

1 1.00 | 0.81 | 0.71 | 0.86 | 0.81 | 0.57 | 0.71 | 0.62 0.67 0.76

6 1.00 | 1.00 | 0.91 | 0.97 | 1.00 | 0.82 | 0.64 | 0.55 0.52 0.55

8 0.93 | 0.81 | 1.00 | 0.96 | 0.93 | 0.78 | 0.59 | 0.63 0.63 0.74
142 | 0.82 | 0.76 | 0.82 | 1.00 | 0.88 | 0.53 | 0.53 | 0.41 0.47 0.71
311 | 0.87 | 0.80 | 0.60 | 0.87 | 1.00 | 0.47 | 0.47 | 0.60 0.47 0.53
1974 | 0.89 | 091 | 0.83 | 0.93 | 0.98 | 1.00 | 0.93 | 0.91 0.93 0.85
7305 | 0.89 | 0.88 | 0.90 | 0.94 | 0.96 | 0.98 | 1.00 | 0.86 0.91 0.93
11134 | 0.99 | 0.96 | 0.98 | 0.98 | 0.97 | 0.98 | 0.92 | 1.00 0.82 0.93
12760 | 0.98 | 0.97 | 0.97 | 0.99 | 0.99 | 1.00 | 0.98 | 0.92 1.00 0.96
33250 | 0.87 | 0.85 | 0.85 | 0.93 | 0.96 | 0.88 | 0.88 | 0.78 0.75 1.00
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Table 7 Algorithm EMD: percentage of edges of the source graph inducing a connected
graph on the demand graph. The row (resp. column) index is that of the source (resp.
demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250
1 1.00 | 0.83 | 0.83 | 0.83 | 0.79 | 0.79 | 0.83 | 0.83 0.83 0.83

6 0.88 | 1.00 | 0.85 | 0.83 | 0.95 | 0.95 | 0.72 | 0.63 0.63 0.62

8 0.97 | 0.83 | 1.00 | 0.93 | 0.97 | 0.90 | 0.87 | 0.87 0.87 0.90
142 | 094 | 0.89 | 0.94 | 1.00 | 1.00 | 0.94 | 0.94 | 0.89 0.89 0.89
311 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 1.00
1974 | 0.66 | 0.65 | 0.55 | 0.69 | 0.85 | 1.00 | 0.64 | 0.59 0.61 0.57
7305 | 0.77 | 0.59 | 0.66 | 0.81 | 0.92 | 0.84 | 1.00 | 0.51 0.54 0.65
11134 | 0.98 | 0.86 | 0.89 | 0.94 | 0.94 | 0.91 | 0.74 | 1.00 0.42 0.79
12760 | 0.98 | 0.96 | 0.96 | 0.98 | 0.99 | 0.99 | 0.95 | 0.76 1.00 0.92
33250 | 0.71 | 0.29 | 0.55 | 0.67 | 0.84 | 0.66 | 0.26 | 0.24 0.24 1.00

Table 8 Transport cost for algorithm EMD for runs of T-RRT started near the 10 lowest
local minima. The row (resp. column) index is that of the source (resp. demand) local
minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250
1 0.00 | 0.16 | 0.10 | 0.11 | 0.52 | 0.68 | 0.66 | 0.71 0.77 0.37

6 0.16 | 0.00 | 0.19 | 0.19 | 0.55 | 0.68 | 0.67 | 0.73 0.78 0.42

8 0.10 | 0.19 | 0.00 | 0.15 | 0.52 | 0.67 | 0.65 | 0.71 0.76 0.38
142 | 0.11 | 0.19 | 0.15 | 0.00 | 0.52 | 0.68 | 0.67 | 0.72 0.78 0.38
311 | 0.52 | 0.55 | 0.52 | 0.52 | 0.00 | 0.63 | 0.60 | 0.71 0.77 0.56
1974 | 0.68 | 0.68 | 0.67 | 0.68 | 0.63 | 0.00 | 0.68 | 0.39 0.45 0.69
7305 | 0.66 | 0.67 | 0.65 | 0.67 | 0.60 | 0.68 | 0.00 | 0.64 0.68 0.73
11134 | 0.71 | 0.73 | 0.71 | 0.72 | 0.71 | 0.39 | 0.64 | 0.00 0.09 0.74
12760 | 0.77 | 0.78 | 0.76 | 0.78 | 0.77 | 0.45 | 0.68 | 0.09 0.00 0.79
33250 | 0.37 | 0.42 | 0.38 | 0.38 | 0.56 | 0.69 | 0.73 | 0.74 0.79 0.00
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Table 9 Transport cost for algorithm EMD-CC for runs of T-RRT started near the 10
lowest local minima. The row (resp. column) index is that of the source (resp. demand) local
minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250

1 0.00 | 0.16 | 0.10 | 0.11 | 0.52 | 0.68 | 0.66 | 0.71 0.77 0.37

6 0.16 | 0.00 | 0.19 | 0.19 | 0.55 | 0.67 | 0.67 | 0.72 0.77 0.41

8 0.10 | 0.19 | 0.00 | 0.15 | 0.52 | 0.67 | 0.64 | 0.70 0.75 0.38
142 | 0.11 | 0.19 | 0.15 | 0.00 | 0.52 | 0.68 | 0.67 | 0.73 0.78 0.38
311 | 0.52 | 0.55 | 0.52 | 0.52 | 0.00 | 0.63 | 0.59 | 0.71 0.77 0.56
1974 | 0.68 | 0.68 | 0.67 | 0.68 | 0.63 | 0.00 | 0.68 | 0.38 0.45 0.69
7305 | 0.66 | 0.67 | 0.64 | 0.68 | 0.60 | 0.68 | 0.00 | 0.63 0.68 0.73
11134 | 0.72 | 0.73 | 0.71 | 0.73 | 0.72 | 0.39 | 0.64 | 0.00 0.09 0.74
12760 | 0.77 | 0.78 | 0.77 | 0.78 | 0.77 | 0.45 | 0.69 | 0.10 0.00 0.80
33250 | 0.37 | 0.41 | 0.38 | 0.38 | 0.56 | 0.69 | 0.73 | 0.73 0.78 0.00

Table 10 Algorithm EMD-CC: percentage of the demand satisfaction. The row (resp.
column) index is that of the source (resp. demand) local minimum.

1 8 142 311 1974 7305 | 11134 | 12760 | 33250

1 100.00 | 99.81 | 99.82 | 99.79 | 99.85 | 99.81 | 99.80 | 99.82 | 99.83 | 99.73

6 99.75 | 100.00 | 99.73 | 99.83 | 99.99 | 99.63 | 99.38 | 99.40 | 99.36 | 99.29

8 99.89 | 99.77 | 100.00 | 99.87 | 99.95 | 99.68 | 99.29 | 99.35 | 99.28 | 99.59
142 99.88 | 99.89 | 99.87 | 100.00 | 99.87 | 99.84 | 99.83 | 99.95 | 99.80 | 99.62
311 99.88 | 99.96 | 99.88 | 99.87 | 100.00 | 99.88 | 99.88 | 99.89 | 99.87 | 99.92
1974 | 99.89 | 99.75 | 99.73 | 99.74 | 99.96 | 100.00 | 99.71 | 99.67 | 99.75 | 99.77
7305 | 100.00 | 99.77 | 99.50 | 99.99 | 100.00 | 99.90 | 100.00 | 99.31 | 99.49 | 99.61
11134 | 100.00 | 100.00 | 99.97 | 100.00 | 100.00 | 100.00 | 99.79 | 100.00 | 98.91 | 99.89
12760 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.38 | 100.00 | 99.99
33250 | 99.87 | 99.40 | 99.54 | 99.83 | 100.00 | 99.71 | 99.34 | 99.20 | 99.23 | 100.00
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Table 11 Algorithm EMD with uniform masses: percentage of vertices of the source
graph inducing a connected graph on the demand graph. The row (resp. column) index
is that of the source (resp. demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250
1 1.00 | 0.14 | 0.10 | 0.52 | 0.52 | 0.10 | 0.05 | 0.05 0.05 0.05

6 0.58 | 1.00 | 0.67 | 0.64 | 0.70 | 0.06 | 0.06 | 0.03 0.03 0.06

8 0.63 | 0.15 | 1.00 | 0.67 | 0.59 | 0.07 | 0.04 | 0.04 0.00 0.07
142 | 0.18 | 0.24 | 0.18 | 1.00 | 0.65 | 0.06 | 0.06 | 0.06 0.12 0.06
311 | 0.13 | 0.07 | 0.07 | 0.13 | 1.00 | 0.07 | 0.07 | 0.07 0.07 0.07
1974 | 0.72 | 0.57 | 0.54 | 0.78 | 0.83 | 1.00 | 0.09 | 0.02 0.02 0.11
7305 | 0.83 | 0.72 | 0.80 | 0.87 | 1.00 | 0.60 | 1.00 | 0.06 0.01 0.54
11134 | 1.00 | 0.86 | 0.88 | 0.92 | 0.93 | 0.79 | 0.55 | 1.00 0.01 0.72
12760 | 0.96 | 0.95 | 0.96 | 0.97 | 0.97 | 0.92 | 0.82 | 0.70 1.00 0.88
33250 | 0.78 | 0.70 | 0.75 | 0.79 | 0.85 | 0.58 | 0.15 | 0.03 0.01 1.00

Table 12 Algorithm EMD with uniform masses: percentage of edges of the source
graph inducing a connected graph on the demand graph. The row (resp. column) index
is that of the source (resp. demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250
1 1.00 | 0.83 | 0.83 | 0.08 | 0.83 | 0.83 | 0.83 | 0.83 0.79 0.83

6 0.63 | 1.00 | 0.58 | 0.60 | 0.22 | 0.10 | 0.22 | 0.12 0.08 0.12

8 0.90 | 0.90 | 1.00 | 0.20 | 0.90 | 0.87 | 0.87 | 0.87 0.20 0.07
142 | 0.06 | 0.89 | 0.17 | 1.00 | 0.94 | 0.11 | 0.11 | 0.89 0.72 0.06
311 1.00 | 0.07 | 1.00 | 1.00 | 1.00 | 0.07 | 0.07 | 1.00 0.64 1.00
1974 | 0.64 | 0.12 | 0.66 | 0.18 | 0.14 | 1.00 | 0.62 | 0.62 0.49 0.04
7305 | 0.66 | 0.11 | 0.65 | 0.17 | 0.17 | 0.65 | 1.00 | 0.01 0.01 0.59
11134 | 0.57 | 0.20 | 0.57 | 0.54 | 0.56 | 0.49 | 0.04 | 1.00 0.43 0.50
12760 | 0.43 | 0.18 | 0.38 | 0.42 | 0.43 | 0.32 | 0.04 | 0.28 1.00 0.36
33250 | 0.41 | 0.18 | 0.16 | 0.14 | 0.41 | 0.06 | 0.27 | 0.27 0.23 1.00
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Table 13 Transport cost for algorithm EMD for runs of T-RRT started near the 10
lowest local minima with uniform masses. The row (resp. column) index is that of the
source (resp. demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250

1 0.00 | 0.27 | 0.22 | 0.23 | 0.55 | 0.87 | 1.19 | 1.30 1.61 1.47

6 0.27 | 0.00 | 0.27 | 0.28 | 0.58 | 0.87 | 1.19 | 1.29 1.59 1.45

8 0.22 | 0.27 | 0.00 | 0.26 | 0.55 | 0.86 | 1.18 | 1.28 1.60 1.46
142 | 0.23 | 0.28 | 0.26 | 0.00 | 0.54 | 0.87 | 1.19 | 1.30 1.61 1.47
311 | 0.55 | 0.58 | 0.55 | 0.54 | 0.00 | 0.85 | 1.19 | 1.24 1.58 1.44
1974 | 0.87 | 0.87 | 0.86 | 0.87 | 0.85 | 0.00 | 1.10 | 1.13 1.39 1.39
7305 | 1.19 | 1.19 | 1.18 | 1.19 | 1.19 | 1.10 | 0.00 | 1.20 1.30 1.37
11134 | 1.30 | 1.29 | 1.28 | 1.30 | 1.24 | 1.13 | 1.20 | 0.00 1.28 1.31
12760 | 1.61 | 1.9 | 1.60 | 1.61 | 1.58 | 1.39 | 1.30 | 1.28 0.00 1.43
33250 | 1.47 | 145 | 1.46 | 1.47 | 144 | 1.39 | 1.37 | 1.31 1.43 0.00

Table 14 Transport cost for algorithm EMD-CC for runs of T-RRT started near the 10
The row (resp. column) index is that of the

lowest local minima with uniform masses.

source (resp. demand) local minimum.

1 6 8 142 | 311 | 1974 | 7305 | 11134 | 12760 | 33250

1 0.00 | 0.17 | 0.14 | 0.01 | 0.37 | 0.50 | 0.39 | 0.47 0.22 0.78

6 0.16 | 0.00 | 0.13 | 0.16 | 0.33 | 0.43 | 0.48 | 0.33 0.21 0.87

8 0.15 | 0.20 | 0.00 | 0.19 | 0.46 | 0.52 | 0.49 | 0.52 0.22 0.92
142 | 0.00 | 0.15 | 0.13 | 0.00 | 0.37 | 0.41 | 0.28 | 0.42 0.21 0.76
311 | 042|037 | 0.29 | 047 | 0.00 | 0.11 | 0.33 | 0.34 0.19 0.76
1974 | 0.14 | 0.54 | 0.53 | 0.63 | 0.55 | 0.00 | 0.49 | 0.35 0.23 0.79
7305 | 0.17 | 0.23 | 0.09 | 0.98 | 0.12 | 0.87 | 0.00 | 0.60 0.01 0.90
11134 | 0.20 | 0.06 | 0.07 | 0.12 | 0.13 | 0.80 | 0.03 | 0.00 0.60 0.90
12760 | 0.26 | 0.10 | 0.12 | 0.17 | 0.93 | 0.77 | 0.06 | 0.62 0.00 0.80
33250 | 0.68 | 0.31 | 0.13 | 0.13 | 0.15 | 0.08 | 0.65 | 0.40 0.25 0.00

Table 15 Algorithm EMD-CC with uniform masses: percentage of the demand satis-
faction. The row (resp. column) index is that of the source (resp. demand) local minimum.

1 8 142 311 1974 7305 11134 | 12760 | 33250

1 100.00 | 72.29 | 71.43 | 14.29 | 69.52 | 61.70 | 36.98 | 40.48 | 1891 | 56.65

6 66.67 | 100.00 | 55.89 | 62.92 | 59.39 | 54.28 | 45.15 | 29.38 | 18.00 | 63.18

8 75.66 | 80.81 | 100.00 | 79.52 | 84.44 | 64.81 | 45.93 | 44.91 19.13 | 66.28
142 10.64 | 65.60 | 61.44 | 100.00 | 70.98 | 51.53 | 28.10 | 36.17 | 17.96 | 54.78
311 76.19 | 64.85 | 55.56 | 88.24 | 100.00 | 15.36 | 33.33 | 31.07 | 17.15 | 56.42
1974 | 19.98 | 65.42 | 64.25 | 74.94 | 68.55 | 100.00 | 48.55 | 33.28 | 21.10 | 59.47
7305 | 19.21 | 24.34 | 11.48 | 83.07 | 14.44 | 79.95 | 100.00 | 51.31 1.57 66.83
11134 | 19.05 6.55 7.74 11.90 | 13.69 | T71.27 3.41 100.00 | 47.69 | 68.83
12760 | 21.62 8.66 10.02 14.35 | 63.46 | 58.12 5.87 51.34 | 100.00 | 57.41
33250 | 50.04 | 25.60 | 11.94 | 11.94 | 13.43 7.46 47.53 | 32.19 | 19.54 | 100.00
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Figure 21 Correlation between the transport costs delivered by EMD and EMD-CC (both
ways), on runs of T-RRT started near the 10 lowest local minima The Pearson coefficients

are equal to 0.999 for the three pairs.
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Figure 22 Correlation between the transport costs delivered by EMD and EMD (both
ways), on runs of T-RRT started near the 10 lowest local minima, with uniform masses
(see text for details) The Pearson coefficients are respectively equal to 0.44, 0.09 and 0.06 for

the three pairs.
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8 Supplemental: Software

Our code is developed in generic C++ within the Structural Bioinformatics Libraryﬂ based upon
the Computational Geometry Algorithms Library [cga]. In the following, we describe the file
formats used by the applications, and proceed with a concise presentation of each of them.

8.1 Specifications and File Formats

Three objects are manipulated, and we present them in turn.

Conformations and conformational ensembles. We use two formats to store conforma-
tions in Cartesian coordinates. The first one is the classical PDB format. The second one is
the text Point_d format, where a line consists of an integer indicating the number n of variables,
followed by values for these n variables. Using this format, one line codes one conformation, so
that a file of such lines codes a conformational ensemble.

As an example, the conformations of a n atom molecules read as:

3nx_1y_1z_1...xnymnzn

Remark 3 The analysis presented in this paper only resort to Cartesian coordinates, whence
the aforementioned representations. However, all algorithms relying upon nearest neighbors and
nearest neighbor graphs are fully generic, and can be use in conjunction with other distances.
Users willing to use alternative representations (in particular internal coordinates) and the as-
sociate distances, will only have to instantiate our generic classes to do so.

Sampled Energy Landscape. A sampled EL is a conformational ensemble such that each
conformation is endowed with an energy. To decouple the conformations and the energies, all
energies are listed in a separate file whose n-th line corresponds to the n-th conformation in the
ensemble. (For this reason, loading an energy file can only be done once a file for conformations
has been loaded.) Here is an example such file:

-105.2
-104.8

Transition Graph. A TG is a graph whose nodes are (substitutes for) critical points, namely
local minima and index one saddles. An edge in the TG corresponds to the existence of a path
between pairs of critical points. As seen in the main text, our analysis use two types of TG:

e the vertex transition graph: both minima and transition states are encoded as vertices,
and may be decorated with information (energy, volume of the basin associated with a
minimum). An edge connects one local minimum and one transition state.

e the compressed transition graph: the minima are represented by the vertices, and addi-
tional pieces of information (transition states and their energy) are associated with edges
connecting the minima.

3colorblackUpon publication of the paper, the programs described thereafter will be made available from the
following web site: http://structural-bioinformatics-library.org/
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We have seen in the main text that TG can be built either from a database of critical points,
or from a conformational ensemble. Both strategies rely on various pieces of information, which
are specified as follows:

e If a DB of critical points is used, we expect the pairs of local minima linked to listed in a
text file, with indices starting at 0:

02
1 10

e To decorate local minima with additional information, one uses additional files: one (op-
tional) file for the conformations associated with the local minima; one (optional) file for the
energies of the local minima. To map these information to their respective local minima,
it is assumed that local minima have indices starting at zero.

e To decorate the edges linking pairs of local minima, one proceeds similarly, with one (op-
tional) file for transition states, and one (optional) file for their energies. To map these
pieces of information to the edges, it is assumed that the ordering of edges and that of the
associated pieces of information are coherent.

Once a TG has been constructed, it is stored as a compressed transition graph. Practically,
the Boost Graph Library and the associated Serialization mechanisms are used, producing an
XML file.

Remark 4 To handle data generated by molecular dynamics packages, the user is referred to
packages such as mdanalysis, see [MADWBI1l] and https: // code. google. com/p/ mdanalysis/.

8.2 Applications : Executables and Calls

The analysis presented in this work are carried out by six executables:

e the analysis of conformation ensembles : sbl-conf-ensemble-analysis.exe and sbl-conf-ensemble-
comparison.exe;

e the generation of transition graphs: sbl-transition-graph-builder-from-DB-of-critical-points.exe
and sbl-transition-graph-builder-from-sampled-energy-landscape.exe;

e the analysis of the transition graphs: sbl-landscape—analysis.exe and sbl-landscape-comparison.exe;

In the following, we provide a demo run, then the list of all options obtained when using the
option help of the corresponding application.
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8.2.1 sbl-conf-ensemble-analysis.exe

./sbl-conf-ensemble-analysis.exe -v --points-file <path/to/confs>\
--num-neighbors 10 --nng-connected 15

Various analysis on conformational ensembles: sampling diversity,

density-based clustering, comparison to reference sets of critical
points. The input consists of conformations in PDB or Point_d format.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help 1 [=arg(=1)]1 (=0)

-1 [ --log 1 [=arg(=1)]1 (=0)
-v [ --verbose ] [=arg(=1)] (=0)
-d [ --directory-output ] arg (=.)

Print this help message.

Put the log in a file.

Dumps high level statistics.

Output directory containing the output
files (default is current).

-0 [ --output-prefix ] [=arg(=IMPLICIT)]

Conformations loader:
--pdb-files arg

--points-file arg

-w [ --water ] [=arg(=1)] (=0)
--hetatoms [=arg(=1)] (=0)
--hydrogens [=arg(=1)] (=0)

-a [ --alternate ] arg (=)

-p [ --occupancy-policy ] arg (=1)

-B [ --B-factor-limit ] arg (=80)
-m [ --model-number ] arg (=1)

--load-chains arg
--save-ensembles [=arg(=1)] (=0)

RR n° 8610

Prefix to add to all output file names.

File listing the PDB files of one
ensemble.

File listing the conformations in Point_d
format.

Load water molecules (default is false).
Load hetero-atoms (default is false).
Load hydrogens (default is false).
Alternate coordinates: alternative to be
used (char).

Selection policy for atoms with occupancy
not equal to 1.
Allowed values are:

-p 1 (all, default)

-p 2 (forbbiden)

-p 3 (none)

-p 4 (max)

-p 5 (min)

Threshold for temperature factors (default
max value is 80).

ID of the model to be loaded from the PDB
file (default is 1).

Subset of chains to be loaded.

Save each loaded ensemble in Point_d
format in a plain text file.
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Nearest Neighbors Graph (NNG):

--num-neighbors arg Target number of neighbors for each vertex.

--distance-range arg Distance range specification.

--nng-connected arg Attempt connecting the NNG by iteratively increasing
the number of neighbors; halt if NNG is connected, or
if the prescribed num of neighbors is reached.

--nng-file arg Skip calculations by loading the NNG from a file.

Minimal Spanning Tree:
--mst [=arg(=1)] (=0) Compute the Minimal Spanning Tree of the NNG, if any.

Watershed Transform for Maxima:
--persistence-threshold arg (=0) Persistence threshold (default O, i.e
no persistence).
--normalized-gradient [=arg(=1)] (=0) Gradient vector field of the height
function estimated by the normalized

gradient.

--interactive [=arg(=1)] (=0) Interactive tunning of the persistence
threshold.

--no-popup [=arg(=1)] (=0) Prevent the graphical display of the

persistence diagram and the
disconnectivity forest.

--delta-height arg (=-1) Club the saddles located in the height
slice when drawing the disconnectivity
forest.

--split-basins [=arg(=1)] (=0) Report each persistent basin into a

separate plain text file (default is: a
single serialized xml file).

Reference samples:
--reference-samples arg File listing refernce samples in
Point_d format.
--identity-threshold arg (=1.0000000000000001e-05)
Threshold below which two conformations
are considered identical for the
considered distance (e.g. least-RMSD).
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8.2.2 sbl-conf-ensemble-comparison.exe

./sbl-conf-ensemble-analysis.exe -v --points-file <path/to/confsi>\
--points-file <path/to/confs2>

Compare two conformational ensembles using the Hausdorff distance
between the two ensembles. The input consists of conformations in
PDB or Point_d format.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

-1 [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).
-0 [ --output-prefix ] [=arg(=IMPLICIT)]
Prefix to add to all output file names.

Conformations loader:

--pdb-files arg File listing the PDB files of one
ensemble.

--points-file arg File listing the conformations in Point_d
format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).
-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy
not equal to 1.
Allowed values are:
-p 1 (all, default)
-p 2 (forbbiden)
-p 3 (none)
-p 4 (max)
-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default
max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB
file (default is 1).
--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d
format in a plain text file.

Hausdorff Distance for Point Clouds:
—-—-one-sided-hausdorff arg Compute only the one sided Hausdorff Distance
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8.2.3 sbl-transition-graph-builder-from-DB-of-critical-points.exe

./sbl-transition-graph-builder-from-DB-of-critical-points.exe\
—--points-file <path/to/confsl> --energies </path/to/energiesi>\
—--points-file <path/to/confs2> --energies </path/to/energies2>\
-—transition-edges <path/to/edges> --discard-loops -v

Compute the compressed transition graph associated to a data base of
critical points. The input consists of five files: the conformations
of minima and transitions in PDB or Point_d format, the energies of
minima and transitions, and the list of pairs of minima linked by
each transition.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

-1 [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).
-0 [ --output-prefix ] [=arg(=IMPLICIT)]
Prefix to add to all output file names.
Conformations loader:

--pdb-files arg File listing the PDB files of one
ensemble.

--points-file arg File listing the conformations in Point_d
format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).
-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy
not equal to 1.
Allowed values are:
-p 1 (all, default)
-p 2 (forbbiden)
-p 3 (none)
-p 4 (max)
-p 5 (min)
-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default
max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB
file (default is 1).
--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d
format in a plain text file.
Energy Loader:
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--energies arg File providing one energy per conformation of an
ensemble (txt file).
Transition Edges Loader:
--transition-edges arg File listing the transitions between minima as edges
(min_i, min_j).
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Transition Graph Builder from DB of Critical Points:
--discard-loops arg Discard all the transition states incident to only one
minimum.
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8.2.4 sbl-transition-graph-builder-from-sampled-energy-landscape.exe

./sbl-transition-graph-builder-from-sampled-energy-landscape.exe\
--points-file <path/to/confs> --energies </path/to/energies>\
--samples-to-local-mins-map <path/to/samples-to-local-mins>\
—--points-file <path/to/local-mins> --energies </path/to/local-mins>\
--num-neighbors 10 --nng-connected 15 -v

Compute the compressed transition graph associated to a sampled energy
landscape based on nearest neighbors and watershed tranform analysis.
The input consists of conformations in PDB or Point_d format.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

-1 [ --log ] [=arg(=1)]1 (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).
-o [ --output-prefix ] [=arg(=IMPLICIT)]
Prefix to add to all output file names.
Conformations loader:

--pdb-files arg File listing the PDB files of one
ensemble.

--points-file arg File listing the conformations in Point_d
format.

-w [ --water ] [=arg(=1)] (=0) Load water molecules (default is false).

--hetatoms [=arg(=1)] (=0) Load hetero-atoms (default is false).

--hydrogens [=arg(=1)] (=0) Load hydrogens (default is false).

-a [ --alternate ] arg (= ) Alternate coordinates: alternative to be

used (char).
-p [ --occupancy-policy ] arg (=1) Selection policy for atoms with occupancy
not equal to 1.
Allowed values are:
-p 1 (all, default)
-p 2 (forbbiden)
-p 3 (none)
-p 4 (max)
-p 5 (min)

-B [ --B-factor-limit ] arg (=80) Threshold for temperature factors (default
max value is 80).

-m [ --model-number ] arg (=1) ID of the model to be loaded from the PDB
file (default is 1).
--load-chains arg Subset of chains to be loaded.

--save-ensembles [=arg(=1)] (=0) Save each loaded ensemble in Point_d
format in a plain text file.
Energy Loader:
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--energies arg File providing one energy per conformation of an
ensemble (txt file).
Map Sample to Local Minimum Loader:
--samples-to-local-mins-map arg File listing the pairs of indices of
(sample_i, local_min_i).
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Nearest Neighbors Graph (NNG):
--num-neighbors arg Target number
--distance-range arg
--nng-connected arg

of neighbors for each vertex.
Distance range specification.
Attempt connecting the NNG by iteratively increasing

the number of neighbors; halt if NNG is connected, or
if the prescribed num of neighbors is reached.

--nng-file arg

Watershed Transform for Minima:
--persistence-threshold arg (=0)

--normalized-gradient [=arg(=1)] (=0)

--interactive [=arg(=1)] (=0)

--no-popup [=arg(=1)] (=0)

--delta-height arg (=-1)

--split-basins [=arg(=1)] (=0)

RR n° 8610

Skip calculations by loading the NNG from a file.

Persistence threshold (default 0, i.e
no persistence).

Gradient vector field of the height
function estimated by the normalized
gradient.

Interactive tunning of the persistence
threshold.

Prevent the graphical display of the
persistence diagram and the
disconnectivity forest.

Club the saddles located in the height
slice when drawing the disconnectivity
forest.

Report each persistent basin into a
separate plain text file (default is: a
single serialized xml file).
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8.2.5 sbl-landscape—analysis.exe

./sbl-energy-landscape-analysis.exe -v --transition-graph <path/to/tg>\
--run-mode t --run-mode p

Various analysis on energy landscapes: graph topology, landmark paths,
watershed transform. The input consists of a compressed transition
graph.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.
-1 [ --log ] [=arg(=1)] (=0) Put the log in a file.
-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).
-0 [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.
--run-mode arg Analysis to perform:

t (topology)

1 (landmarks)

p (persistence)

Transition Graph Loader:
--transition-graph arg Load the compressed transition graph from a XML
archive.

Transition Graph Landmarks Paths:
--landmarks arg File listing vertices in a graph that are landmarks

Watershed Transform for Minima:
—--persistence-threshold arg (=0) Persistence threshold (default 0, i.e
no persistence).
--normalized-gradient [=arg(=1)] (=0) Gradient vector field of the height
function estimated by the normalized

gradient.

—--interactive [=arg(=1)] (=0) Interactive tunning of the persistence
threshold.

--no-popup [=arg(=1)] (=0) Prevent the graphical display of the

persistence diagram and the
disconnectivity forest.

--delta-height arg (=-1) Club the saddles located in the height
slice when drawing the disconnectivity
forest.

--split-basins [=arg(=1)] (=0) Report each persistent basin into a

separate plain text file (default is: a
single serialized xml file).
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8.2.6 sbl-landscape-comparison.exe

./sbl-energy-landscape-comparison.exe -v —--transition-graph <path/to/tgl>\
—--transition-graph <path/to/tg2>

Compare two energy landscapes through their transition graphs using a
Earth Mover Distance algorithm. The input consists of two compressed
transition graphs.

Copyright Inria / Algorithms - Biology - Structure, 2014.

General Options:

-h [ --help ] [=arg(=1)] (=0) Print this help message.

-1 [ --log ] [=arg(=1)] (=0) Put the log in a file.

-v [ --verbose ] [=arg(=1)] (=0) Dumps high level statistics.

-d [ --directory-output ] arg (=.) Output directory containing the output

files (default is current).
-0 [ --output-prefix ] [=arg(=IMPLICIT)]

Prefix to add to all output file names.

Transition Graph Loader:
--transition-graph arg Load the compressed transition graph from a XML
archive.

Earth Mover Distance (EMD):
--with-connectivity-constraints [=arg(=1)] (=0)
Run EMD-CC instead of EMD.
--symmetric-mode [=arg(=1)] (=0) Compute EMD-CC both ways (EMD is
symmetric) .
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