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Introduction

Hybrid automata [START_REF] Henzinger | The theory of hybrid automata[END_REF] are a powerful formalism for modeling systems that combine discrete and continuous features, in particular those depending on physical processes that involve undiscretized time. Linear hybrid automata are a restricted form of hybrid automata that are amenable to automated analysis of some of their properties, while not sacrificing too much expressive power, which remains sufficient for modeling precisely enough a large range of systems.

This work addresses the general problem of analyzing reachability properties of linear hybrid automata, by computing an exact representation of their set of reachable configurations. Since this set is generally infinite, both because variables of hybrid automata are unbounded and take their value over a dense domain, this computation has to be performed symbolically, representing the manipulated sets with the help of dedicated data structures. Moreover, since linear hybrid automata are Turing complete, the computation of their reachability set cannot be guaranteed to terminate in all cases. A possible workaround would be to introduce approximations, such as widening operators [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF], in order to force termination. We make a different choice and aim at an exact computation algorithm without guarantee of termination, trying to make it powerful enough for handling a relevant subclass of systems.

Computing the reachability set of a system can be achieved by forward symbolic state-space exploration: At each step, one propagates reachability information from the current set of reachable configurations in order to make it bigger. The procedure terminates upon reaching a fixed point. For hybrid automata, an exploration step corresponds to letting time elapse in the current control location, or to following a transition from one location to another. This approach is not sufficient for analyzing all interesting case studies. One reason is that some linear hybrid automata have configurations that are only reached after an unbounded number of exploration steps; a typical example is the leaking gas burner studied in [START_REF] Zhou | A calculus of durations[END_REF]. This problem is tackled by acceleration techniques, aimed at computing in finite time sets of configurations that are reached after following arbitrarily long control paths. For instance, accelerating a cyclic path, which corresponds to a loop in a program, amounts to computing in one step all the configurations that can be reached by iterating this cycle arbitrarily many times [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF].

In order to be able to perform cycle acceleration with linear hybrid automata, one first needs a symbolic representation system that is expressive enough for the sets of values produced by unbounded loop iterations, as well as a formalism for describing the data transformations labeling control paths. The main problems are then to decide whether the effect of unbounded iterations of such a path can be computed over symbolically represented sets, and to carry out this computation.

Solutions to these problems have been proposed in earlier work: Sets of reachable data values can be expressed in the first-order logic R, Z, +, ≤ , which generalizes Presburger arithmetic to mixed integer and real variables, and for which usable data structures have been developed [START_REF] Boigelot | An effective decision procedure for linear arithmetic over the integers and reals[END_REF]. The transformations undergone by variables along control paths of linear hybrid automata3 correspond to Linear Hybrid Relations (LHR), the acceleration of which is studied in [START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF].

The cycle acceleration method proposed in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] is able to handle a broad class of LHR, in particular all Multiple Counters Systems (MCS) [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF]. This subclass of LHR is relevant in practice since it has been established that accelerating arbitrary control paths of timed automata [START_REF] Alur | A theory of timed automata[END_REF], reduces to the same problem over MCS. It is actually proved in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] that acceleration of MCS makes it possible to compute symbolically the reachability set of timed automata with a guarantee of termination.

The results of [START_REF] Boigelot | The power of hybrid acceleration[END_REF] nevertheless suffer from two weaknesses. First, when this acceleration method is applied to purely integer transformations, which can be seen as a particular case of LHR, it is not able to handle all instances covered by an acceleration procedure that has been specifically developed for such transformations [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF]. Second, the method is sensitive to the coordinate system used for expressing data values. For instance, even though all MCS can be accelerated, the same property does not hold for LHR obtained after applying linear variable change operations to MCS.

The goal of this work is to broaden substantially the scope of cycle acceleration of linear hybrid relations, by developing a new approach that does not have these weaknesses. For purely integer transformations, an obvious solution would be to detect whether the considered LHR belongs to this class, and then branch to a specific acceleration algorithm. This approach would not improve the state of the art, and we propose instead a solution that is not only able to handle all integer transformations that can be accelerated by the specialized algorithm of [START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF], but also combinations of such discrete transformations with simple continuous ones. After studying the properties of this solution, we then generalize it into a method that becomes powerful enough for handling all transformations extracted from MCS, as well as their transformations by arbitrary linear variable change operations.

Preliminaries

Algebra Basics

A linear constraint over variables x ∈ R n , with n ≥ 0, is a constraint of the form a.x#b, with a ∈ Q n , b ∈ Q and # ∈ {<, ≤, =, ≥, >}. This constraint is strict if # ∈ {<, >}, and non-strict otherwise. It is an inequality constraint if # ∈ {<, ≤, ≥, >}, and an equality constraint otherwise. A constraint a.x#b is said to be saturated by a value v ∈ R n if this value satisfies a.v = b.
The set of points x ∈ R n that satisfy a given finite conjunction of equality constraints forms an affine space. An affine space S ⊆ R n can be expressed in the form S = A R m + b, where 0 ≤ m ≤ n, A ∈ Q n×m is a matrix with rank m, and b ∈ Q n . The value m then corresponds to the dimension of S. The affine space of smallest dimension that contains a given set is unique, and known as the affine hull of this set.

The set of solutions of a finite conjunction of linear constraints forms a convex polyhedron, the dimension of which is defined as the dimension of its affine hull. Within R n , a convex polyhedron of dimension n can be represented by a finite canonical conjunction of constraints, i.e., a set of constraints that is uniquely determined by the polyhedron. For each constraint in this set, there exists at least one point that saturates this constraint, and that satisfies all the other ones without saturating them. Convex polyhedra of dimension m < n can be expressed as A Π + b, where A ∈ Q n×m , b ∈ Q n , and Π ⊆ R m is a polyhedron of dimension m that is represented canonically. In order to simplify notations, we sometimes denote a set {v} as v, and write

S 1 + S 2 to mean {v 1 + v 2 | v 1 ∈ S 1 ∧ v 2 ∈ S 2 }.

Linear Hybrid Relations

A Linear Hybrid Automaton (LHA) is composed of a finite control graph extended with a given number n of variables x 1 , x 2 , . . . , x n that take their values in R. These variables can be grouped into a vector x whose domain is R n . We refer the reader to [START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF][START_REF] Henzinger | The theory of hybrid automata[END_REF] for further details and formal definitions. An example is given in Figure 2.

A configuration of a LHA is a pair (ℓ, v) where ℓ is a control location and v assigns a value to each variable. The current configuration can change in two ways. The first one (time step) is to let time elapse, in which case the control location remains constant, and the variable values evolve according to the invariant and evolution law of this location. Those are expressed as linear constraints over respectively the variable values, and their first time derivative. The second mechanism (transition step) is to follow a transition, which moves the control location and applies a discrete transformation to the variable values. This transformation is defined by linear constraints involving the initial and final values of the variables, taken across the transition.

The semantics of LHA is defined as follows. A configuration c 2 is reachable from a configuration c 1 if there exists a finite sequence of time and transition steps that leads from c 1 to c 2 . A reachable configuration is one that is reachable from a designated initial set.

It has been shown in [START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF] that every finite control path of a LHA induces a transformation over its variables that can be characterized as follows.

Definition 1. A Linear Hybrid Relation (LHR) is a relation θ = (x, x ′ ) ∈ R n × R n P x x ′ q ,
where P ∈ Z m×2n , q ∈ Z m , ∈ {<, ≤} m , and m ≥ 0.

We write θ = (P, q, ) to denote a relation of this form. Given a path in a LHA moving from a location ℓ to a location ℓ ′ , one can compute P and q such that two values v, v ′ ∈ R n satisfy the LHR (P, q, ) iff (ℓ ′ , v ′ ) is reachable from (ℓ, v) by following the time and transition steps corresponding to this path.

In this work, for the sake of simplicity, we assume that all inequality constraints that appear in LHR are non-strict, i.e., that stands for ≤ m , and that LHR are characterized by their pair (P, q). All results in this paper can straightforwardly be extended to the more general setting of mixed strict and non-strict constraints.

Let θ be a LHR. Following [START_REF] Boigelot | The power of hybrid acceleration[END_REF], we call a constraint of this LHR static if it involves only either x or x ′ . For a set S ⊆ R n , its image θ(S) by θ is given by {x ′ ∈ R n | ∃x ∈ S : (x, x ′ ) ∈ θ}. This can alternatively be expressed as

θ(S) = (θ ∩ (S × R n ))| [n+1,2n]
, where U | I denotes the projection of the elements of U onto the vector components belonging to I. Given two LHR θ 1 and θ 2 , their

composition θ 2 • θ 1 is the LHR θ such that θ(S) = θ 2 (θ 1 (S)) for all sets S. Note that we have θ 2 • θ 1 = ((θ 1 × R n ) ∩ (R n × θ 2 ))| [1,n]∪[2n+1,3n] .
Finally, for every k, the result of composing k -1 times a LHR θ with itself is denoted θ k , with θ 0 corresponding to the identity relation.

Representation of Convex Polyhedra

In the following sections, we study the effect and repeated effect of LHR on sets. The image θ(v) of a point v ∈ R n by a LHR θ is the set of points v ′ such that (v, v ′ ) satisfies the linear constraints of θ, that is, a convex polyhedron. We now study some topological properties of such polyhedra.

Following the discussion in Section 2.1, we consider w.l.o.g. a convex polyhedron Π ⊆ R n of dimension n, defined by its canonical set of inequality constraints. As explained in [START_REF] Boigelot | Automata-based symbolic representations of polyhedra[END_REF][START_REF] Degbomont | Implicit Real-Vector Automata[END_REF], such a polyhedron induces a finite equivalence relation ∼ Π on the points of R n : One has v ∼ Π v ′ iff these two points saturate identical subsets of constraints of Π. The equivalence classes of ∼ Π correspond to the geometrical components of Π. For each geometrical component C, its affine hull aff(C) matches the constraints of Π saturated by C, and its dimension is defined as the one of this affine hull. The geometrical components of Π are linked together by an incidence partial order

≺ Π : One has C 1 ≺ Π C 2 iff aff(C 1 ) ⊂ aff(C 2 ), i.e., iff the constraints saturated in C 1 are a superset of those saturated in C 2 .
Those properties lead to a data structure for representing symbolically convex polyhedra: A Convex Polyhedron Decision Diagram (CPDD) representing a polyhedron Π is a directed acyclic graph in which:

-The nodes correspond to the geometrical components of Π, and are labeled by the constraints of Π that they saturate, written as equalities (in other words, by the affine hull of their geometrical component).

-If Π admits a unique minimal component with respect to the incidence order ≺ Π , then the node q 0 associated to this component is marked as initial.

Otherwise, the initial node q 0 is an additional special node in which all constraints are considered to be saturated (yielding an empty affine hull). -The edges follow the incidence relation, removing those that are redundant by transitivity. An edge from q 1 to q 2 is labeled by the constraints that are saturated in q 1 and not in q 2 , written as strict inequalities.

An example of CPDD is given in Figure 1. This data structure actually provides a simple procedure for locating the geometrical component of Π to which a given point v ∈ R n belongs: Starting from the initial node, one follows edges labeled by inequality constraints that are satisfied by v. The procedure ends upon reaching a node labeled by equality constraints satisfied by v, which then represents the component to which v belongs. If several paths can be followed from a given node, one of them can be chosen arbitrarily without the need for backtracking.

This procedure illustrates an essential property of convex polyhedra: The points contained in a geometrical component are exactly those that saturate the constraints associated to this component, and that do not saturate the other constraints. This property will be exploited in order to establish a key result in Section 4.

It is worth mentioning that CPDD nodes do not correspond to all possible combinations of saturated linear constraints, but only to those that are associated to geometrical components. For instance, the CPDD depicted in Figure 1 x2

(1, 2) (2, 1) x1 Π :    x1 ≥ 1 x1 + x2 ≥ 3 x1 -x2 ≤ 1 x1 -x2 < 1 x1 -x2 < 1 x1 -x2 < 1 x1 > 1 x1 -x2 = 1 x1 > 1 x1 + x2 > 3 x1 + x2 > 3 x1 > 1 x1 + x2 > 3 F x1 + x2 = 3 x1 -x2 = 1 x1 = 1 x1 + x2 = 3 x1 = 1 x1 + x2 = 3 T Fig. 1. Example of Convex Polyhedron Decision Diagram.
does not have a node corresponding to the set of constraints {x 1 ≥ 1, x 1x 2 ≤ 1}, since these constraints cannot be saturated while simultaneously satisfying

x 1 + x 2 ≥ 3.
Algorithms are available for building and manipulating polyhedra represented by CPDD, in particular for computing their canonical form (which is unique up to isomorphism), as well as their intersection and projection. This data structure has been generalized to non-convex polyhedra in [START_REF] Boigelot | Automata-based symbolic representations of polyhedra[END_REF][START_REF] Degbomont | Implicit Real-Vector Automata[END_REF].

Cycle Acceleration

The cycle acceleration problem consists in checking, within a symbolic representation system, whether the image of any representable set by unbounded iterations of a given data transformation is representable as well. In such a case, this transformation is said to be iterable [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF]. One also needs an algorithm for computing symbolically the image of represented sets by iterable transformations. This decision does not have to be precise: a sufficient criterion can be used provided that it handles practically relevant transformations.

In the next section, we recall two iterability criteria, one developed for linear transformations over integer variables and one for linear hybrid relations, and show that they can be combined into a criterion that has a broader scope.

Affine Hybrid Transformations

Discrete and Hybrid Periodic Transformations

Over the domain Z n , it has been established that transformations of the form x → Ax + b, with A ∈ Z n×n and b ∈ Z n , are iterable within Presburger arithmetic, i.e., the first-order theory Z, +, < , iff there exists p ∈ N >0 such that A 2p = A p . This criterion can be decided using only integer arithmetic, and a suitable value of p can be computed whenever one exists [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF].

Transformations θ that satisfy this criterion have an ultimately periodic behavior: For every v ∈ Z n , the sequence θ p (v), θ 2p (v), θ 3p (v), . . . is such that θ (k+1)p (v) = θ kp (v) + δ for all k > 0, where δ ∈ Z n is a constant increment vector. It is also known that adding a linear guard P x ≤ q, with P ∈ Z m×n , q ∈ Z m and m ≥ 0, to an iterable transformation produces one that is iterable as well.

Hybrid transformations can also show a periodic behavior. It has been proved in [START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF] that LHR θ over R n in which all constraints have the form p.(x ′x) ≤ q, with p ∈ Z n and q ∈ Z have this property: For every v ∈ R n , the sequence θ(v), θ 2 (v), θ 3 (v), . . . is such that θ k+1 (v) = θ k (v) + ∆ for all k > 0, where ∆ ⊆ R n is an increment that now takes the form of a constant convex polyhedron.

A natural idea is therefore to study hybrid transformations that have a periodic behavior, but with a period that may be greater than one. The following definition generalizes linear integer transformations to the hybrid case.

Definition 2. An Affine Hybrid Transformation (AHT) is a LHR θ ⊆ R n × R n such that for every x ∈ R n , θ(x) = Ax + Π,
where A ∈ Q n×n , and Π ⊆ R n is a convex polyhedron.

The iterability criterion obtained for linear integer transformations straightforwardly extends to AHT. Theorem 3. Let θ be an AHT x → Ax + Π, with A ∈ Q n×n . If A is such that A 2p = A p for some p ∈ N >0 , then θ is iterable within R, Z, +, ≤ . Moreover, adding static constraints to an iterable AHT that satisfies this property produces a LHR that is iterable as well.

Proof sketch. For every v ∈ R n and k > 1, one has

θ kp (v) = A kp v + kp-1 i=0 A i Π. If A 2p = A p , this simplifies into θ kp (v) = A p v+ 2p-1 i=0 A i Π +(k-2) 2p-1 i=p A i Π.
Using the mechanisms introduced in [START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF], this leads to a formula of R, Z, +, ≤ defining θ k (v) for all k ≥ 0 in terms of v and k.

⊓ ⊔

In order to be able to exploit the acceleration of AHT during symbolic statespace exploration of linear hybrid automata, two problems need to be solved:

-Given a LHR expressed as a conjunction of linear constraints, deciding whether it is equivalent to an AHT and, in the positive case, computing the corresponding matrix A. -Deciding whether a matrix A ∈ Q n×n is such that A 2p = A p for some p ∈ N >0 , and computing such a value p.

The former problem is addressed in Section 3.2. The latter can be solved by adapting a result from [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF]:

Theorem 4. A matrix A ∈ Q n×n is such that A 2p = A p
for some p ∈ N >0 if and only if A p is diagonalizable and has eigenvalues that belong to {0, 1}. There exists an algorithm for deciding this criterion and computing a suitable value of p, using only integer arithmetic.

Proof sketch. This result is established in [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF] for matrices with integer components, the idea being to check whether they admit a characteristic polynomial that can be decomposed into a product of cyclotomic polynomials. The method proposed in [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF] for performing this operation also applies to rational matrices. ⊓ ⊔

Detecting Affine Hybrid Transformations

We now address the problems of deciding whether a LHR is affine, that is, whether θ = (P, q) is equivalent to some AHT x → Ax + Π, and of computing the corresponding matrix A and convex polyhedron Π.

When θ is affine, the image of a set S ⊆ R n is obtained by first applying to each point in S a transformation x → Ax, where A ∈ Q n×n is identical for each point, and then adding a constant convex polyhedron Π to the result.

Let us assume that this polyhedron has at least one vertex, i.e., a geometrical component of dimension 0. We can actually make this assumption without loss of generality, since it follows from [START_REF] Boigelot | The power of hybrid acceleration[END_REF] that if an affine transformation θ does not satisfy this property, then its acceleration can be reduced to that of a LHR of smaller dimension.

The image by θ of an arbitrary point x ∈ R n is the polyhedron Ax+Π, which corresponds to Π translated by the vector Ax. Consider a particular vertex v i of this polyhedron, in other words, a point that is the only one to saturate some given subset of its constraints. The vertex v i is the translation of a vertex b i of Π by the vector Ax, that is, v i = Ax + b i . The same reasoning applied to other vertices will yield the same matrix A.

Recall that the constraints defining θ are expressed over the variables x and x ′ , the value of which is respectively considered before and after applying the transformation. A transformation of the form x → Ax + b i thus corresponds to the saturated form x ′ = Ax + b i of some constraints of θ. Since this set of saturated constraints is satisfiable, an important observation is that it must correspond to a geometrical component of the convex polyhedron Θ ⊆ R 2n defined by the constraints of θ. In other words, there must exist in this polyhedron a geometrical component C i that has an affine hull equal to x ′ = Ax + b i .

Since we have considered the vertices of Π, which are its geometrical components of smallest dimension, the components C i with this property must correspond to the minimal non-empty components of Θ. We thus have the following result.

Theorem 5. There exists a procedure for deciding whether a LHR θ ⊆ R n × R n is an Affine Hybrid Transformation. Proof sketch. A simple strategy for deciding whether θ is affine consists in inspecting the minimal non-empty geometrical components in a symbolic representation of Θ. The following procedure can be used:

1. Build a CPDD representing Θ. 2. Select one of its minimal non-empty components. 3. Extract a matrix A from the affine hull of this component. 4. Compute Π = θ(0). 5. Check whether θ is equivalent to x → Ax + Π, by comparing Θ with the polyhedra induced by the corresponding sets of constraints.

If the polyhedron Π satisfies our initial hypothesis of having at least one vertex, then performing Step 3 simply amounts to checking that the considered affine hull is defined by constraints of the form x ′ = Ax + b i , and then syntactically extracting A from these constraints. Otherwise, if Π does not have vertices, this operation can still be performed but after first applying to the affine hull constraints the rank and subspace reductions of [START_REF] Boigelot | The power of hybrid acceleration[END_REF]. Those correspond intuitively to applying a linear coordinate transformation that results in constraints expressed in terms of the smallest possible number of independent variables. More precisely, the rank reductions amount to performing the following operations. First, the set of constraints is rewritten in the form P 2 x ′ = P 1 x + q, where P 1 , P 2 ∈ Z m×n , q ∈ Z m and m ≥ 0. If the rank r of P 1 is less than n, then a linear variable change operation is applied in order to express the transformation in terms of only r distinct variables. The same procedure is also carried out if the rank of P 2 is less than n. In addition, subspace reductions are applied when the set of constraints P 2 x ′ = P 1 x + q implies static constraints on either x or x ′ . The reduction consists in performing a linear variable change operation onto the largest number of distinct variables that are not statically constrained. ⊓ ⊔ This procedure is illustrated in Section 5.1. In practice, since it follows from Theorem 3 that static constraints do not hamper iterability, a good strategy is to remove them before checking whether a LHR is affine. Finally, note that the acceleration method for AHT discussed in this section is able to successfully process all linear integer transformations that are handled by [START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Spaces[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF].

Generalized Affine Transformations

Principles

Affine hybrid transformations θ have the property that we can compute from their set of constraints a value p ∈ N >0 such that θ p has an ultimately periodic behavior. In other words, iterating θ reduces to iterating θ p , which is feasible within additive arithmetic. We call such a value p a period of θ.

In Section 3, we have shown that such a period p can be obtained by inspecting matrices extracted from the minimal geometrical components of the polyhedron Θ ⊆ R 2n induced by the constraints of θ. If θ is affine, then these matrices happen to be identical for all components, which represents the fact that they are similarly affected by θ p , in the sense that they share the same periodic behavior.

This sufficient condition for iterability is not at all necessary: If the geometrical components of Θ correspond to matrices A 1 , A 2 , . . . that are not identical, but yield values p 1 , p 2 , . . . such that A 2pi i = A pi i for all i, then all those components share an ultimately periodic behavior of period p = lcm(p 1 , p 2 , . . .). A possible acceleration procedure thus consists in computing such a value p by inspecting the geometrical components of Θ, computing p as the least common multiple of their detected periodicities p i , and then checking whether θ p reduces to a periodic transformation that is iterable within R, Z, +, ≤ . This inspection does not necessarily have to be carried out for all geometrical components: The iterability of θ p can be checked whenever a candidate value for p has been obtained. If the analysis of a geometrical component fails to produce a periodicity p i , the procedure can nevertheless continue with the other components.

This approach shares similarities with the solution proposed in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] for accelerating Multiple Counters Systems (MCS) [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF], which are a subclass of LHR in which all constraints are of the form z i #z j + c, with z i , z j ∈ {x 1 , . . . , x n , x ′ 1 , . . . , x ′ n }, # ∈ {<, ≤, =, ≥, >}, and c ∈ Z. This solution proceeds by building directed weighted graphs that represent the set of constraints of a MCS θ, and then measuring the weights p 1 , p 2 , . . . of the simple cycles in these graphs. The value p = lcm(p 1 , p 2 , . . .) provides a (non necessarily optimal) candidate for the periodicity of θ. It is shown in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] that this technique is able to accelerate every MCS.

In Section 4.2, we establish a connection between the acceleration technique presented in this paper and the one proposed for MCS in [START_REF] Boigelot | The power of hybrid acceleration[END_REF], by showing that the periodicities that are captured by the graph analysis method can also be detected by the inspection of geometrical components. As a consequence, our technique is complete over MCS. Compared with the method of [START_REF] Boigelot | The power of hybrid acceleration[END_REF], it has the important advantage of being closed under linear variable change operations, since those do not affect the properties of geometrical components of polyhedra. Furthermore, our approach is not limited to handling MCS, unlike the acceleration method developed in [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF].

After a candidate periodicity value p has been obtained by inspecting the geometrical components of Θ, it remains to check whether the transformation θ p has a periodic behavior that can be captured within R, Z, +, ≤ . This problem is addressed in Section 4.3.

Multiple Counters Systems

Let us briefly describe the method introduced in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] for computing the periodicity of a MCS θ. As discussed in Section 2.2, for the sake of clarity, we consider that all inequality constraints are non-strict.

The first step is to build a finite directed graph G θ , in which the nodes correspond to the variables x 1 , x 2 , . . . , x n , and the edges (x i , (c, d), x j ) are labeled with a cost c ∈ Z and a depth d ∈ {-1, 0, 1}. This graph represents the constraints of θ:

-A constraint x j ≤ x i +c or x ′ j ≤ x ′ i +c is represented by an edge (x i , (c, 0), x j ). -A constraint x ′ j ≤ x i + c is represented by an edge (x i , (c, 1), x j ). -A constraint x ′ j ≥ x i + c is represented by an edge (x j , (-c, -1), x i ).
The paths of G θ correspond to combinations of constraints of θ. The cost and depth of such a path σ are defined as the sum of the individual cost and depth of the edges that compose it. For every k > 0, a path σ of depth k in G θ represents a constraint x ′ j ≤ x i + c of the transformation θ k , where x i and x j are respectively the origin and destination nodes of σ, c is the cost of σ, and the intermediate depths reached at each node visited by σ remain in the interval [0, k]. In the same way, the paths of G θ of depth -k or 0 also correspond to constraints of θ k .

The main result of [START_REF] Boigelot | The power of hybrid acceleration[END_REF] is to show that, in order to obtain all constraints of θ k , it is sufficient to consider the paths of G θ of suitable depth that contain only unbounded occurrences of a single simple cycle. A periodicity p of θ, i.e., a value such that θ p reduces to a periodic transformation, is then obtained by computing the least common multiple of the depths of the simple cycles of G θ . This periodicity may not be the smallest one for θ, but this is not problematic.

We are now going to establish that such a periodicity p can also be computed by the procedure outlined in Section 4.1. This property is a consequence of the following result. Theorem 6. Let k > 0, and σ be a simple cycle of G θ of depth ±k and cost c,

representing a constraint x ′ i ≤ x i + c or x ′ i ≥ x i -c of θ k .
If this constraint can be saturated4 by values of x and x ′ that satisfy (x, x ′ ) ∈ θ k , then there exists a geometrical component of Θ producing a matrix A ∈ Q n×n such that A 2k = A k . Proof sketch. Let S be the set of constraints of θ that are represented by the edges of G θ composing σ. Since the constraint represented by σ can be saturated, there exist values v, v ′ ∈ R n that can respectively be assigned to x and x ′ in order to saturate all constraints in S.

The values v and v ′ may also saturate other constraints of θ. Let S ′ denote the set of constraints of θ that are necessarily saturated when S is saturated, i.e., that are saturated by every v and v ′ that saturate S. The set S ′ contains only constraints that are either saturated for all v, v ′ ∈ R n , or correspond to one or several simple cycles of G θ . In the latter case, it can be established that each of these cycles shares the same depth ±k as σ.

One can thus find values v and v ′ that saturate all constraints in S ∪ S ′ , and do not saturate the other constraints of θ. From the discussion in Section 2.3, it follows that the point (v, v ′ ) ∈ R 2n belongs to a geometrical component of Θ with an affine hull that exactly corresponds to the solutions of S ∪ S ′ .

The matrix A produced by this component using the procedure described in Section 3.2 has the following property. Let X ⊆ {x 1 , . . . , x n } denote the set of all variables visited by the simple cycles of G θ that correspond to the constraints in S ∪ S ′ . Recall that these simple cycles are all of depth ±k. It follows that the transformation x → A k x preserves the values of the variables in X and assigns the value 0 to the other variables. One thus has A 2k = A k . ⊓ ⊔

In [START_REF] Boigelot | The power of hybrid acceleration[END_REF], a candidate value for the periodicity p of θ is obtained by computing the least common multiple of the depths p i of all simple cycles in G θ . Theorem 6 shows that each such value p i will also be computed by the procedure discussed in Section 4.1, provided that the underlying cycle represents a constraint that is not redundant. The reciprocal property does not hold: Some geometrical components of Θ may correspond to a set of saturated constraints of θ that does not form a cycle. The inspection of such components may produce matrices A that do not yield a periodicity p i , or yield a spurious one. This is not problematic, since a transformation θ such that θ p has a periodic behavior is also periodic when it is raised to a power equal to an integer multiple of p.

Checking Periodicity

We now investigate the possibility of validating a candidate periodicity p ∈ N >0 for a LHR θ, i.e., checking whether θ p has a periodic behavior that can be accelerated. Note that, for every j ∈ [0, p -1] and k ≥ 0, one has θ j+kp = (θ p ) k • θ j , hence accelerating θ reduces to accelerating θ p . Let θ ′ be the LHR defined by the periodic constraints of θ p , i.e., those of the form p.(x ′x)#q, with p ∈ Z n , q ∈ Z, and # ∈ {≤, =, ≥}. Following [START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF], one can obtain a formula of R, Z, +, ≤ representing the relation x ′ ∈ (θ ′ ) k (x) for all k ≥ 0 in terms of the variables x, x ′ , and k. The problem is thus to check whether the acceleration of θ (or, equivalently, θ p ) can be reduced to the acceleration of θ ′ .

We first consider the case of a MCS θ for which we have obtained a period p by applying either the method introduced in Section 4.1, or the one given in [START_REF] Boigelot | The power of hybrid acceleration[END_REF]. For any k ≥ 0, we know that the constraints of θ kp are represented by paths of depth 0, k or -k in the graph G θ p . It has been shown in [START_REF] Boigelot | The power of hybrid acceleration[END_REF] that it is sufficient to consider the paths of this graph that are either acyclic, or contain repetitions of only a single cycle of length 1. Such cycles correspond to periodic constraints, which are captured in θ ′ .

The transformation θ p therefore satisfies two properties. The first one states that there exists m > 0 such that m ≤ n, and every composition of m constraints of θ p that results in a constraint of θ mp necessarily includes at least one periodic constraint from θ ′ . Formally, this condition can be expressed as

θ mp = i+j=m-1 θ ip • θ ′ • θ jp . (1) 
The second property states that, in compositions of constraints of θ p , periodic constraints do not need to be repeated at more than one place. Formally, we have

∀i < m : θ ′ • θ ip • θ ′ ⊇ (θ ′ ) 2 • θ ip ∩ θ ip • (θ ′ ) 2 .
(2)

In the case of MCS, Conditions 1 and 2 are always satisfied. For more general LHR θ, they can be used as a sufficient criterion for validating a candidate value p for the periodicity of θ. This is illustrated in Section 5.1 below. In practical applications, these conditions can be decided by operations over CPDD representations of the transformations, as discussed in Section 2.3.

The last step is to show that a LHR θ that satisfies Conditions 1 and 2 can be accelerated. These conditions imply that for all k ≥ m, we have

θ kp = i+j=m-1 θ ip • (θ ′ ) k-i-j • θ jp .
Since θ ′ can be accelerated, this expression can be turned into a formula of R, Z, +, ≤ representing the relation x ′ ∈ (θ ′ ) k (x) in terms of x, x ′ , and k.

Examples

Periodic LHR

Let us illustrate the approach proposed in this paper on the LHR θ ⊆ R 2 × R 2 defined by the set of constraints θ :

   x ′ 2 + x 1 ≤ -1 x ′ 2 -x ′ 1 + x 2 ≤ -1 2x ′ 2 -x ′ 1 + x 1 + x 2 ≥ -4.
First step: extracting a candidate periodic matrix A from θ. The convex polyhedron Θ ⊆ R 4 induced by these constraints admits three minimal nonempty geometrical components, with the corresponding affine hulls

α 1 : x ′ 2 + x 1 = -1 x ′ 2 -x ′ 1 + x 2 = -1, α 2 : x ′ 2 + x 1 = -1 2x ′ 2 -x ′ 1 + x 1 + x 2 = -4, and 
α 3 : x ′ 2 -x ′ 1 + x 2 = -1 2x ′ 2 -x ′ 1 + x 1 + x 2 = -4.
The affine hull α 1 can equivalently be represented by the following constraints, from which we deduce the matrix A below:

x ′ 1 = -x 1 + x 2 x ′ 2 = -x 1 -1 A = -1 1 -1 0
Note that the affine hulls α 2 and α 3 produce the same matrix A, which hints at the property that θ is affine.

Using the algorithm mentioned in Theorem 4, one obtains that this matrix is such that A 6 = A 3 (actually, it satisfies the stronger property A 3 = I 2 , where I 2 denotes the identity matrix of size 2), which gives a candidate periodicity p = 3.

Second step: checking whether θ is affine. Following the procedure given in Section 3.2, we can compute a polyhedron Π such that θ is equivalent to x → Ax + Π. This yields:

Π :    x ′ 2 ≤ -1 x ′ 2 -x ′ 1 ≤ -1 2x ′ 2 -x ′ 1 ≥ -4.
From Theorem 3, we deduce that θ is iterable within R, Z, +, ≤ .

Alternative second step: checking the candidate period. Alternatively, we may avoid computing Π and directly use the technique of Section 4.3 for checking that the candidate periodicity p = 3 is valid. We obtain that θ 3 is of the form:

               -4 ≤ x ′ 1 -x 1 ≤ 4 -4 ≤ x ′ 2 -x 2 ≤ 4 -4 ≤ x ′ 1 -x ′ 2 -x 1 + x 2 ≤ 4 x ′ 1 + x ′ 2 -x 1 -x 2 ≤ 6 x ′ 1 -2x ′ 2 -x 1 + 2x 2 ≤ 6 2x ′ 1 -x ′ 2 -2x 1 + x 2 ≥ -6
, which is periodic since all its constraints are expressed over x ′ 1x 1 and x ′ 2x 2 . For all k > 1, one thus has:

θ 3k :                -4k ≤ x ′ 1 -x 1 ≤ 4k -4k ≤ x ′ 2 -x 2 ≤ 4k -4k ≤ x ′ 1 -x ′ 2 -x 1 + x 2 ≤ 4k x ′ 1 + x ′ 2 -x 1 -x 2 ≤ 6k x ′ 1 -2x ′ 2 -x 1 + 2x 2 ≤ 6k 2x ′ 1 -x ′ 2 -2x 1 + x 2 ≥ -6k.
The reflexive and transitive closure of θ 3k can be obtained by quantification over k. As a result, θ is iterable within R, Z, +, ≤ .

Linear Hybrid Automaton

As a second example, consider the linear hybrid automaton H in Figure 2. The effect of the cycle in H, starting from the leftmost location and preceding each transition by the passage of time, is described by the LHR θ H below. The variable x has been eliminated using the reductions of [START_REF] Boigelot | The power of hybrid acceleration[END_REF] since, after the first iteration, the cycle starts and ends with x = 0.

θ H =    y + t -y ′ + t ′ ≤ 1 -2y + z -t + 2y ′ -z ′ -t ′ ≤ -1 y -y ′ ≤ -10
The convex polyhedron Θ H ⊆ R 6 induced by θ H has one minimal non-empty geometrical component, obtained by saturating all the constraints of θ H . Its Using the algorithm mentioned in Theorem 4, we get a candidate period p = 2 since A 2 H = I 3 (the identity matrix of dimension 3). Following the approach of Section 4.3 confirms that θ 2 H is periodic. Hence, (θ 2 H ) * can be computed using the techniques of [START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF]. One then obtains θ * H = (θ 2 H ) * • (θ H ∪ Id ). Note that the computation of θ * H was out of scope of the techniques of [START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF], which cannot handle periodicities greater than one.

Conclusions

This paper introduces an original method for accelerating the data transformations that label control cycles of linear hybrid automata. Given such a transformation θ, the idea consists in constructing a convex polyhedron from its linear constraints, and then inspecting the geometrical components of this polyhedron in order to compute a value p such that θ p is periodic.

This method is able to accelerate all transformations that can be handled by the specialized algorithms developed in [START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF][START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF][START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF], in particular Multiple Counters Systems, to which the reachability analysis of timed automata can be reduced. Compared with those solutions, our method has the advantage of being closed under linear changes of coordinates, which naturally do not affect the geometrical features of polyhedra. Our acceleration algorithm can also potentially be applied to the octagonal transformations studied in [START_REF] Bozga | Iterating octagons[END_REF][START_REF] Bozga | Fast acceleration of ultimately periodic relations[END_REF][START_REF] Bozga | Safety problems are NP-complete for flat integer programs with octagonal loops[END_REF], and an open question is to establish whether it provides full coverage of such transformations.

We did not analyze the practical cost of our acceleration procedure, which actually depends on the implementation details of the symbolic data structure used for manipulating polyhedra, and on the heuristics employed for selecting the geometrical components to be inspected. In all our case studies, considering the minimal non-empty components for which a non-trivial matrix A can be extracted turned out to be sufficient, but we do not know whether this property holds in all cases.

10 )Fig. 2 .
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The results of[START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Hybrid acceleration using real vector automata[END_REF] actually consider the slightly smaller class of strongly linear hybrid automata but their extension to linear hybrid automata is immediate.

This saturation requirement intuitively expresses the property that the constraint is essential, i.e., that it is not implied by other constraints of θ k .
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