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38041 Grenoble, France. e-mails: constantin.morarescu@univ-lorraine.fr,

samuel.martin@univ-lorraine.fr, antoine.girard@imag.fr



Abstract

The paper focuses on consensus in heterogeneous networks containing both linear and

linear impulsive dynamics. This model applies for networks that are formed by several

clusters. Most agents can only update their state in a continuous way using inner-

cluster agent states. On top of this, few agents also have the peculiarity to update their

states in a discrete way by reseting it using states from agents outside their clusters.

The motivation of this behavior is that communication constraints hamper continuous

inter-clusters interactions. Under appropriate assumptions we prove that all subsystems

asymptotically agree and we provide an upper-bound of the convergence speed. We

illustrate the behavior with an academic example containing five agents grouped in two

clusters.



0.1 Introduction

The problem of consensus or synchronization is motivated by different applications

as communication networks, power and transport grids, decentralized computing net-

works, and social networks. Many of the existing works model the network as a graph

with nodes and edges representing the systems and their interconnections, respectively.

The connectivity of the network, persistence of links and interactions reciprocity influ-

ence the convergence speed [1, 2] and the achievement of consensus wether the dynam-

ics is linear [3, 4, 5, 6, 7], or nonlinear [8, 9, 10]. For this reason, most of the studies

assume connectivity over bounded or unbounded time intervals. However, there also

exist analysis and control designs for network connectivity preservation [11, 12, 13] as

well as studies of networks that loose connectivity property [14, 15].

Our point of view is that real networks are formed by several clusters inside which

the interactions take place often and can be seen as continuous while, due to commu-

nication constraints (harsh environment, energy optimization or opinion preferences

for instance), the inter-clusters interactions are rare, thus discrete. This leads us to

a network dynamics that is expressed in term of reset systems (see [16, 17, 18] for

details). In [19] the authors assumed that each cluster has a leader and all the leaders

nearly-periodically reset their state by taking into account the state of their neighboring

leaders. However, generally we can have several agents in the same cluster that interact

in discrete manner with agents in other clusters and, more importantly, we cannot syn-

chronize the inter-clusters interactions in a decentralized way. Therefore, in this paper

we address the more general and realistic problem of decentralized synchronization in

heterogeneous networks containing both linear and linear impulsive dynamics

The rest of the paper is organized as follows. In Section 0.2 we introduce the

concepts necessary for the problem formulation. Section 0.3 contains the work as-

sumptions on the network structure and system dynamics. We also provide there, a

prerequisite property of the exponential of a Laplacian matrix. The main results con-

cerning the convergence analysis are presented in Section 0.4. Before conclusions we

illustrate numerically the behavior of the network under consideration.

Notation. The following standard notation will be used throughout the paper. The

sets of nonnegative integers, real and nonnegative real numbers are denoted by N, R
and R+, respectively. For a vector x we denote by ‖x‖ its Euclidian norm. The trans-

pose of a matrix A is denoted by A⊤. Given the matrices A,B ∈ R
n×n, notation

A ≥ B (A > B) means that A − B has all its entries (strictly) positive. By Ik we

denote the k× k identity matrix. 1k and 0k are the column vectors of size k having all

the components equal 1 and 0, respectively. We also use x(t−k ) = lim
t→tk,t<tk

x(t).

0.2 Problem formulation

We consider a network of n agents described by the digraph (i.e. directed graph) G =
(V, E) where the vertex set V represents the set of agents and the edge set E ⊂ V × V
represents the interactions.

Definition 1 A directed path of length p in a given digraph G = (V, E) is a union of

directed edges
⋃p

k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p− 1}.

The node j is connected with node i in a digraph G = (V, E) if there exists at least a

directed path in G from i to j (i.e. i1 = i and jp = j).

A strongly connected digraph is such that any two distinct nodes are connected. A
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strongly connected component of a digraph is a maximal subset such that any of its

two distinct nodes are connected.

We say node i is a parent of node j in the digraph G = (V, E) if (i, j) ∈ E . A directed

tree is a directed subgraph in which there exists a single node without parents called

root while all the others have exactly one parent. The length of a directed tree is the

length of its longest path. A directed spanning tree of a digraph is a directed tree that

contains all the nodes of the graph.

In the sequel, we consider that the vertex set V is partitioned in m clusters C1, . . . , Cm
such that Ci ∩ Cj = ∅, ∀i 6= j and

⋃m
i=1 Ci = V . Let us also introduce the graph

G′ = (V, E ′) containing only the edges of G that connect agents belonging to the same

cluster. That is

E ′ = {(i, j) ∈ E | ∃k ∈ {1, . . . ,m} such that i, j ∈ Ck}.

The state of each agent evolves continuously by taking into account the states of other

agents belonging to the same cluster. Doing so, the agents approach local agreements

which can be different from one cluster to another. In order to reach the consensus in

the entire network every inter-clusters connection is activated at some discrete instants.

When the inter-clusters link (j, i) ∈ E \ E ′ is activated, the state of agent i is reset to

a weighted average of the states of i and j. If several links arriving at i are activated

simultaneously, all the source states of these edges are considered in the weighted

average. For the sake of simplicity we define the clusters as follows:

Ci = {mi−1 + 1, . . . ,mi}, ∀i ∈ {1, . . . ,m} (1)

where m0 = 0, mm = n and the cardinality of Ci is given by

|Ci| , ni = mi −mi−1, ∀i ≥ 1.

In order to keep the presentation simple each agent will have a scalar state denoted by

xi. We also introduce the vectors x = (x1, . . . , xn)
⊤ ∈ R

n collecting the states of

all the agents and xCi
= (xmi−1+1, . . . , xmi

)⊤ ∈ R
ni , i ∈ {1, . . . ,m} collecting the

states of the agents belonging to cluster i, respectively.

We are ready now to introduce the linear reset system describing the overall network

dynamics:






ẋ(t) = −Lx(t), ∀t ∈ R+ \ T
x(tk) = P (tk)x(t

−
k ) ∀k ∈ N

x(0) = x0

(2)

where x0 ∈ R
n, (tk)k is the countable, diverging, increasing sequence of reset instants

denoted by T , L ∈ R
n×n is a generalized Laplacian matrix associated to the graph G′

and P (tk) ∈ R
n×n is a stochastic matrix associated to the graph G(tk) = (L, E(tk))

where E(tk) 6= ∅ is the set of inter-clusters links activated at time tk. We highlight

that two consecutive reset instants can be arbitrarily close. The entries of L and P (tk)
satisfy the following relations:



















Li,j = 0, if (j, i) /∈ E ′

Li,j < 0, if (j, i) ∈ E ′, i 6= j

Li,i = −
∑

j 6=i

Li,j , ∀i ∈ {1, . . . , n}
, (3)
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Pi,j(tk) = 0, if (j, i) /∈ E(tk)

Pi,i(tk) > 0, ∀i ∈ {1, . . . , n}

Pi,j(tk) > 0, if (j, i) ∈ E(tk), i 6= j
n
∑

j=1

Pi,j(tk) = 1, ∀i ∈ {1, . . . , n}

. (4)

According to (4), if Pi,j(tk) = 0, ∀j 6= i then Pi,i = 1, meaning that no jump occurs

on the state of the agent i at time tk. The values Li,j and Pi,j(tk) represent the weight

of the state of the agent j in the updating process of the state of agent i when using the

continuous and discrete dynamics, respectively. The matrices L and P (tk) describe the

level of influence of each agent inside its cluster and outside it, respectively.

It is worth noting that L has the following block diagonal structure

L =







L1

. . .

Lm






, Li ∈ R

ni (5)

with Li1ni
= 0ni

and P (tk)1m = 1m.

0.3 Preliminaries

0.3.1 Framework assumptions

In order to prove that the reset algorithm (2) guarantees asymptotic consensus for ev-

ery initial condition x0 we have to impose some standard assumptions. The first one

concerns a minimal connectivity property of the whole network and of each cluster.

Assumption 1 (Network structure) The graph G = (V, E) is such that

• each cluster Ci contains a spanning tree formed with links belonging to E ′,

• eventually re-ordering the clusters, the following holds: for all i ≥ 2 there exist

j < i, lj ∈ Cj and ri a root of Ci such that (lj , ri) ∈ E .

The previous assumption is satisfied if G is strongly connected. It also holds if there

exists a tree between roots of all the clusters. We note that Assumption 1 implies 0 is

simple eigenvalue of each Li, ∀i ∈ {1, . . . ,m} (see [4]).

Next hypothesis of this work is standard in the literature (see [20]) and it ensures a

minimal influence of the states implicated in the reset process of the agents.

Assumption 2 (Minimal influence) There exists a positive constant α such that, for

all reset times tk, if Pi,j(tk) 6= 0, i, j ∈ {1, . . . , n} then Pi,j(tk) ≥ α.

In order to emphasize that agents belonging to the cluster Ci reset their state at time

tk ∈ T we use extraction function φi defined such that tφi(h), h ∈ N is the h-th time

an agent in cluster Ci resets its state, i.e.

φi(h+ 1) = min{k > φi(h)|∃u ∈ Ci, v ∈ V \ Ci, Pu,v(tk) > 0}.

where tφi(0) = 0, ∀i ∈ {1, . . . ,m} . We do not disregard the situation when agents

from different clusters reset their state simultaneously. Therefore, we may have φi(k) =
φj(h) for i 6= j and k, h ∈ N.

As we shall see in the sequel, Assumption 2 is analogous to a dwell time condition

for the continuous dynamics.
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Assumption 3 (Dwell time) There exists a positive constant δ such that

tφi(k+1) − tφi(k) ≥ δ, ∀i ∈ {1, . . . ,m}.

In other words, there exists a lower bound for the period between the consecutive

reset instants on the state of agents belonging to the same cluster. This bound guaran-

tees that, between two consecutive reset instants of one cluster, the maximal distance

between the states of the cluster is reduced.

Remark 1 A simple manner to ensure Assumption 3 in a decentralized way is the fol-

lowing. We suppose that each cluster possesses only one agent with the ability to inter-

act outside its cluster and this agent activates its inter-clusters interactions respecting

the dwell time condition.

It is important to mention that dynamics (2) leads to the collective state trajectory

{

x(t) = e−L(t−tk)P (tk)x(t
−
k ), ∀k ∈ N, ∀t ∈ [tk, tk+1)

x(0) = x0
(6)

but a jump occurs in xCi
only at the time tφi(k) involving edges with the sink in cluster

i. This can be formalized as







xCi
(t) = e−Li(t−tφi(k))PCi

(tφi(k))x(t
−
φi(k)

),

∀k ∈ N, ∀t ∈ [tφi(k), tφi(k+1))
x(0) = x0

(7)

where PCi
(tφi(k)) contains only the rows of P (tφi(k)) corresponding to the cluster Ci

(i.e. the rows mi−1 + 1, . . . ,mi of P (tφi(k))).
Next assumption ensures the presence of resets frequently enough and, as will be

shown, force the local agreements of different clusters to converge one toward another.

Assumption 4 There exists a positive constant δmax > δ satisfying the following:

• ∀(i, j) ∈ E \ E ′ there exists tk ≤ δmax such that (i, j) ∈ E(tk)

• if (i, j) ∈ E(tk) there exists T ∈ [tk + δ, tk + δmax] such that (i, j) ∈ E(T ).

Remark 2 Notice that Assumption 4 implies that for all cluster i and for all k ∈ N,

tφi(k+1) − tφi(k) ≤ δmax.

Assumption 4 can be easily imposed in a decentralized way since it concerns the inter-

clusters links one by one in a decoupled manner.

0.3.2 Matrix prerequisite properties

In this subsection we provide an instrumental result concerning the matrices defining

the state-trajectory associated with the dynamics (2). First, we recall that a weighted

adjacency matrix A associated with a graph Ḡ = (V̄, Ē) is a matrix with non-negative

entries satisfying Ai,j > 0 ⇔ (i, j) ∈ Ē . The corresponding degree matrix D is

diagonal and Di,i =

n
∑

j=1

Ai,j . The weighted Laplacian matrix associated with Ḡ is

simply defined as L̄ = D −A.
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Proposition 2 Let Ḡ be a directed graph with n vertices containing a spanning tree

with the root ℓ. Let A be a weighted adjacency matrix associated with Ḡ and D, L̄
the corresponding degree and weighted Laplacian matrices. Then e−L̄t is a stochastic

matrix for all t ≥ 0 and

∀δ > 0 ∃ᾱ > 0, δM > δ such that
{

(e−L̄t)i,ℓ > ᾱ,

(e−L̄t)i,i > ᾱ
, ∀i ∈ {1, . . . , n}

(8)

for all t ∈ [δ, δM ].

Remark 3 Proposition 2 shows that Assumption 3 (Dwell time) is the corresponding

of Assumption 2 (Minimal influence) for the continuous dynamics defined by Li.

Remark 4 For a given δ, Proposition 2 states that for all i ∈ {1, . . . ,m} it exists

αi such that (e−Lit, αi) satisfies (8).Nevertheless, since we have a finite number of

matrices Li, we can consider a unique value α = minαi satisfying Assumption 2 on

one hand and (e−Lit, α) satisfies (8).

0.4 Convergence analysis

This part contains the main results of the paper concerning fully decentralized reset

rules. In this section, Assumption 3 (Dwell time) is required but overlapping of the

intervals (tφi(k), tφi(k+1)) and (tφj(h), tφj(h+1)) are allowed. This means, tk+1 − tk
can be arbitrarily small and the existing results in the literature are not applicable.

Under such assumption we will show that all agents eventually converge toward the

same consensus state at exponential speed (Theorem 7). Prior stating the main result

we provide the necessary intermediate ingredients.

For all time t ∈ R+, we define the global diameter of the group as

∆(t) = x̄(t)−
¯
x(t)

with

x̄(t) = max
i∈{1,...,n}

xi(t) and
¯
x(t) = min

i∈{1,...,n}
xi(t).

Our goal in the sequel is to show that ∆(t) approaches 0 when t increases. This requires

some intermediate results presented as Lemmas in the sequel. All of them are written

in terms of minimum
¯
x(t) but they can be easily transformed in terms of maximum

x̄(t).
Summary

• In Lemma 3 we prove that: if an agent resets its state by taking into account a

state bigger than the minimum, then its state after reset will be bigger than the

minimum. So, one ensures that, after a reset at time tφi(k), the state of one root

of cluster Ci will not be arbitrarily close to the minimum
¯
x(t).

• In Lemma 4 we prove that during the continuous dynamics the root of a cluster

will pull all the states of the corresponding cluster far from the minimum value.

Before the next reset concerning this cluster, none of its state will be arbitrarily

close to the minimum
¯
x(t).
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• In Lemma 5 we combine Lemma 3 and Lemma 4 in order to show that along a

path of clusters the states cannot be arbitrarily close to the minimum
¯
x(t).

• Finally, in Theorem 7 we use the Lemmata to prove the geometric decreasing of

the diameter ∆(t).

Lemma 3 (Reset) Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let tφi(k) > t be some reset

instant. Assume that there are some ℓ ∈ V , some bound X ∈ R+, some j ∈ Ci and

some bound α ∈ [0, 1] such that

xℓ(t
−
φi(k)

)−
¯
x(t) ≥ X and Pj,ℓ(tφi(k)) ≥ α.

Then, we have

xj(tφi(k))− ¯
x(t) ≥ αX.

Lemma 4 (Continuous dynamics) Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let k ∈ N

such that tφi(k) > t and introduce the matrix R = e−Li(tφi(k+1)−tφi(k)). Assume that

for the root ℓ of one spanning tree of the cluster Ci there exist some bounds Y ∈ R+

and α ∈ [0, 1] such that

xℓ(tφi(k))− ¯
x(t) ≥ Y and ∀j ∈ Ci, Rj,ℓ ≥ α.

Then, we have

min
j∈Ci

xj(t
−
φi(k+1))− ¯

x(t) ≥ αY.

Before giving the next result let us introduce some notation that will simplify the

presentation. We say (C1, . . . , Cq) is a path of clusters if for all k ∈ {1, . . . , q − 1}
there exists at least a directed link (ik, jk) such that ik ∈ Ck and jk ∈ Ck+1. Let us

consider a generic path of clusters (C1, . . . , Cq) such that for every k ∈ {1, . . . , q− 1},

there is ℓ in cluster Ck and r a root of Ck+1 for which (ℓ, r) ∈ E . Let t ≥ 0 be fixed.

We define a sequence of integers (k1, . . . , kq) such that:

• tφ1(k1) is the first reset instant after t of a root of a spanning tree of cluster C1, if

a root reseting its state exists in C1. This may not be the case since C1 may not

be influenced by the other clusters (according to Assumption 1), then tφ1(k1) = t
and tφ1(k1+1) = t+ δ.

• For all h ∈ {2, . . . , q}, we define tφh(kh+1) the first instant after tφh(kh) when a

root of a spanning tree of Ch resets its state.

• For all h ∈ {1, . . . , q−1} we define tφh+1(kh+1) as the first reset instant of a root

of a spanning tree of cluster Ch+1 after time tφh(kh+1).

Thus,

t < tφ1(k1) < tφ1(k1+1) < tφ2(k2) < tφ2(k2+1) <

. . . < tφq(kq) < tφq(kq+1).
(9)

It is noteworthy that

tφh+1(kh+1) − tφh(kh+1) ≤ tφh+1(kh+1) − tφh+1(kh+1−1) ≤ δmax. (10)

Let also introduce µ = ip

(

δmax

δ

)

where ip(y) denotes the biggest integer smaller

than y.
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Remark 5 We have at most µ resets of a root of cluster Ch between tφh(kh+1) and

tφh+1(kh+1).

In the sequel, iteratively applying Lemmas 3 and 4 we show that ∆(tφq(kq+1))
geometrically decreases. For the next result we assume that a root r of one tree in C1
satisfies

xr(tφ1(k1))− ¯
x(t−

φ1(k1)
) ≥ ∆(tφ1(k1))/2.

If it is not the case, we instead consider the system where all the states have been

reversed : xi := −xi and apply the same reasoning. In other words we relate the

reasoning to the maximum instead of the minimum. In the sequel, we use
¯
xCh

(t) ,

mini∈Ch
xi(t).

Lemma 5 (Path of clusters) For all h ∈ {1, . . . , q}, we have

¯
xCh

(t−
φh(kh+1))− ¯

x(t−
φ1(k1)

) ≥
α(µ+2)(h−1)+1∆(tφ1(k1))

2
.

Due to Assumption 1 we can reorder the clusters such that there exists a tree satis-

fying the following:

• its root is contained in C1;

• for all i ≥ 2 there exist j < i, ℓj ∈ Cj and ri a root of Ci such that (ℓj , ri) ∈ E .

Proposition 6 There exists some non-negative integer k ≤ 2m − 1 such that for all

t ∈ R+,

¯
x(kδmax + t−

φ1(k1)
)−

¯
x(t−

φ1(k1)
) ≥

α(µ+2)(m−1)+1∆(tφ1(k1))

2
. (11)

Once Proposition 6 is given, the exponential decay of the network diameter comes

easily.

Theorem 7 There exists some positive decay rate β ∈ [0, 1) such that for all t ∈ R+,

∆(2mδmax + t) ≤ β∆(t)

0.5 Numerical examples

In the following we consider a network of five agents grouped in two clusters. The

network structure satisfies Assumption 1 and is described by the following Laplacian

matrix:

L =













3 0 −3 0 0
−1 1 0 0 0
−2 0 2 0 0
0 0 0 0 0
0 0 0 −1 1













which has a block diagonal structure corresponding to the two clusters. Each cluster

contains only one node able to interact with agents outside its own cluster (node 1 in

the first cluster and node 4 in the second cluster). The weights of the inter-clusters

interactions are chosen as follows
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P =













0.7 0 0 0.3 0
0 1 0 0 0
0 0 1 0 0

0.25 0 0 0.75 0
0 0 0 0 1













,

such that Assumption 2 holds. We point out that at reset times tk either only one or

both nodes 1 and 4 reset their state. Therefore, the matrices P (tk) are either equal

P or obtained by replacing the first or forth line of P by (1, 0, 0, 0, 0) or (0, 0, 0, 1, 0),
respectively. Assumptions 3 and 4 are guaranteed by the choice of δ = 4 and δmax = 8.

In Figure 1 we firstly emphasize the agreement of all five agents. A zoom-in allows

to point out that each impulsive agent resets its state in its own rhythm and it may

happen that one of them resets twice between the reset times of the other.
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Figure 1: Up: Consensus of the five agents grouped in 2 clusters. Down: Zoom in

pointing out that the resets are not synchronized.

0.6 Conclusions

In this paper we have studied the consensus in heterogeneous networks containing both

linear and linear impulsive dynamics. Under appropriate assumptions we have proven

that all subsystems agree and we have upper-bounded the convergence speed. It is

noteworthy that, since the reset instants are not synchronized, we cannot apply the

existing results concerning the consensus of linear discrete dynamics in networks with

dynamically changing interaction topologies. A small size network has been used to

numerically illustrate the state trajectory of the network.
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