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October 21, 2014
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Abstract

In this paper we give tractable necessary and sufficient condition for the global expo-

nential stability of a linear impulsive system. The reset rule considered in the paper

is quasi-periodic and the stability analysis is based on a standard tool in set theory

that is Minkowski functional. Firstly, we reformulate the problem in term of discrete-

time parametric uncertain system with the state matrix belonging to a compact but

non-convex set. Secondly, we provide a tractable algorithm for testing the stability and

computing the associated polyhedral Lyapunov function when the system is stable. The

main result is an algorithm whose computational effort is analogous to that of classical

algorithms for contractive polytopes computation for discrete-time parametric uncer-

tain systems with the state matrix belonging to a polytopic set.

This is just a report meant to briefly present our results. For a full version of this

work, containing proofs, discussions and numerical implementations please contact the

authors.



0.1 Introduction

In order to overcome performance limitations of classical controllers Clegg introduced

an integrator with state reset (see [1]). This idea received an increasing attention and

recent works have been dedicated to stability and performances of reset control systems

[2, 3]. These systems are a class of hybrid systems since they are subject to both

continuous-time and discrete-time dynamics. A particular class of reset systems is the

continuous-time linear systems whose state undergoes finite jumps at some discrete-

time instants [4, 5], also referred to as impulsive systems. The rule defining the jump

instants is often time-depending (see [6] and the reference therein) and is motivated by

the analysis of sampled-data systems ([7]) as well as periodic triggered stabilization

([8, 9]).

The present paper deals with the stability analysis of linear impulsive systems by

means of set theoretic techniques. As in [6], we consider that two consecutive reset

instants are separated by an uncertain time. Instead of searching ellipsoidal Lyapunov

functions that give sufficient condition for stability, we are searching polyhedral ones

leading (as explained later) to necessary and sufficient stability conditions. The stabil-

ity analysis is based on a standard tool in set theory that is Minkowski functional. Our

concern is also to design an algorithm that is able to decide in finite time if a linear im-

pulsive system is globally exponentially stable (GES) or not. In the former case it will

also compute in finite time the polyhedral Lyapunov function guaranteeing the stability

of the system.

Firstly, we reformulate the problem in term of discrete-time parametric uncertain

system with the state matrix belonging to a compact but non-convex set. Secondly,

we provide a tractable algorithm for testing the stability and computing the associated

polyhedral Lyapunov function when the system is stable. The result is an algorithm

whose computational effort is analogous to that of the standard algorithm for comput-

ing contractive polytopes for discrete-time polytopic parametric uncertain systems.

Notation. The set of real numbers is denoted by R while N stands for the set

of positive integer numbers. We denote Nn , {i ∈ N, i ≤ n}. For any function x

defined on R we denote x(t+) , lim
τ 7→t,τ>t

x(τ) if the limit exists. A C-set is a convex

and compact set containing the origin in its interior. For any real λ and any set S

we define λS , {λx | x ∈ S}. The unitary ball in Rn with respect to norm ‖ · ‖p is

Bn
p , {x ∈ Rn : ‖x‖p ≤ 1}, its analogous in the space of matrices is defined in the

following.

0.2 Set-theory for nearly-periodic reset systems

Given the interval ∆ = [τm,τM] with 0 < τm < τM ∈ R, we define the set of admissible

reset sequences as

Θ(∆) =
{

{tk}k∈N : tk+1 = tk +δk, δk ∈ ∆, ∀k ∈ N
}

. (1)

The aim of this paper is to give tractable necessary and sufficient conditions for the

stability of the following linear reset system







ẋ(t) = Acx(t), ∀t ∈ R+−T ,
x(t+) = Arx(t), ∀t ∈ T ,
x(0) = x0 ∈ Rn,

(2)



where x ∈ Rn is the state of the system and T ∈ Θ(∆), see [6]. By definition

tk+1 − tk ∈ [τm, τM], ∀k ∈ N

so we avoid Zeno phenomenon (τm > 0) but an infinite number of reset instants occurs

(τM < ∞). The state at time t ∈ (tk, tk+1], for a given initial state x0 and a reset sequence

T ∈ Θ(∆) is given by

x(t) = eAc(t−tk)Arx(tk), ∀t ∈ (tk, tk+1] (3)

thus, the dynamics between two successive resets is given by the following discrete

dynamics

x(tk+1) = eAc(tk+1−tk)Arx(tk) = eAc(δk)Arx(tk), (4)

where δk = tk+1 − tk ∈ ∆. Thus, denoting A(∆) = {eAcδ Ar : δ ∈ ∆}, the problem of

stability of the linear impulsive system (2) rewrites in terms of stability of the following

discrete-time parametric uncertain system

{

x+ = A(δ )x,
x(0) = x0 ∈ Rn,

(5)

where A(δ ) ∈ A(∆). Let us recall the definition of GES for the system (5).

Definition 1 The system (5) is GES if there exist positive scalars c ∈ R and λ ∈ [0,1)
such that

‖x(k)‖ ≤ cλ k‖x0‖ (6)

for every x0 ∈ Rn and k ∈ N.

It is noteworthy that systems (2) is GES if and only if (5) is GES. Notice that the set

A(∆) is not convex in general but it is compact, while the set in which the parameter δ

lies, i.e. the interval ∆, is trivially convex and compact. Then, using the classical result

from invariance and set-induced Lyapunov functions for linear (uncertain) discrete-

time systems, see for instance [10, 11, 12], a necessary and sufficient condition for

GES can be given, as follows.

Theorem 2 ([10, 11]) There exists a Lyapunov function for a linear parametric uncer-

tain system if and only if there exists a polyhedral Lyapunov function for the system.

The theorem above is less conservative than Theorem 1 in [6], since it gives not

only sufficient but also necessary condition for GES. It claims that the search of the

candidate Lyapunov function can be limited to the family of functions which are in-

duced by polytopes.

Remark 3 It is noteworthy that the functions considered in Theorem 2 are convex,

positive definite and homogeneous as in [6] (the fact that they are homogenous of

order one and not of order two does not induce any loss of generality). Nevertheless,

polyhedral Lyapunov functions are determined by a finite number of generators (the

facets of the polytope they are induced by), then they form a set of functions strictly

contained in the one considered in [6]. Therefore, the condition in Theorem 2 is less

conservative and leads to necessary and sufficient conditions for stability which are

computationally affordable, as shown in the sequel.



We also recall another result, concerning set theory and its application to the prob-

lem of stability of linear uncertain systems. Given a C-set Ω ⊆ Rn, consider the fol-

lowing sequence of sets

{

Ω0 = Ω,
Ωk+1 = Qλ (Ωk,A(∆))∩Ω,

(7)

where

Qλ (S,A ) = {x ∈ Rn : Ax ∈ λS, ∀A ∈ A }=
⋂

A∈A

A−1(λS). (8)

with S ⊆ Rn and A ⊆ Rn×n.

Lemma 4 Given λ ∈ Rn, Ω,Γ ⊆ Rn and A ,B ⊆ Rn×n then

a) A ⊆ B ⇒ Qλ (Ω,A )⊇ Qλ (Ω,B).

b) Ω ⊆ Γ ⇒ Qλ (Ω,A )⊆ Qλ (Γ,A ).

c) If Ω is convex, then Qλ (Ω,A ) = Qλ (Ω,co(A )).

d) If the Ω and A are polytopes, i.e.

Ω = {x ∈ Rn : Hx ≤ b},
A = {A ∈ Rn×n : A = ∑

i∈Na

αiAi, αi ≥ 0, ∑
i∈Na

αi = 1},

then Qλ (Ω,A ) is a polytope too.

Proof: The proof requires just some careful but straightforward mathematical ma-

nipulations which are not presented here. A journal version containing detailed proof

is in preparation.

Definition 5 For any λ ∈ [0,1) we say the set S is λ -contractive w.r.t. dynamics (5) if

and only if

A(δ )x ∈ λS, ∀x ∈ S, δ ∈ ∆.

As proven in [13], the maximal λ -contractive set w.r.t. dynamics (5), which is

contained in Ω, is given by

Ωλ =
⋂

k∈N

Ωk, (9)

where Ωk are defined by (7). We note that, due to the linearity of (5), Ωλ is compact

and convex as far as Ω is a C-set. However, Ωλ is not always a C-set since, for some

values of λ , it can be reduced to the origin. In the following we denote λ ∗ the infimum

in [0,1) for which Ωλ ∗ is a C-set.

Theorem 6 (Theorem 3.2 in [13]) For λ ∈ [0, 1) let us assume that Ωλ defined by (7)

and (9) is a C-set. Then, for every µ ∈ (λ ,1] there exists j such that Ωk is µ-contractive

for all k ≥ j.

Remark 7 From Theorem 6, it follows that, for any µ > λ ∗ we can obtain a µ-

contractive C-set w.r.t. dynamics (5) by iterating (7) a finite number of times with

λ ∈ [λ ∗,µ).



Therefore, the iteration (7) together with an appropriate stop condition, represents

one version of the basic algorithm for obtaining a λ -contractive set w.r.t. (5). Moreover,

the algorithm terminates in a finite number of steps provided λ is adequately chosen.

Definition 8 Given a C-set S ⊆ Rn, its Minkowski functional ΨS : Rn → R is defined

as

ΨS(x) = min
α≥0

{α ∈ R : x ∈ αS}. (10)

Proposition 9 The linear parametric uncertain system (5) is GES if and only if for

every C-set Ω there exists λ ∈ [0, 1) such that for all µ ∈ (λ ,1) there is k = k(λ ,µ)∈N
such that

Ωk ⊆ Qµ(Ωk,A(∆)), (11)

with Ωk as in (7). Moreover, ΨΩk
(x) is a global exponential Lyapunov function for (5).

Proof: The result comes directly from Theorem 6 and the fact that the condition

(11) is equivalent to µ-contractivity of the set Ωk (see [11, 12]). Indeed, (11) is equiv-

alent to the fact that for all x ∈ Ωk, x belongs also to Qµ(Ωk,A(∆)) which means, by

definition (8), that A(δ )x ∈ µΩk for every δ ∈ ∆, definition of µ-contractivity of Ωk.

Alternative, but analogous, formulations of the stop conditions are given in lit-

erature, see [12]. Thus, summarizing, classical literature results on invariance and

set-induced Lyapunov functions permit to assert that the class of positive definite poly-

hedral Lyapunov functions, that is, the Minkowski functions of polytopic C-sets, forms

a universal class of Lyapunov functions for assessing GES for parametric uncertain

linear systems. Moreover, algorithms exist such that contractive sets (and then also

the related set-induced Lyapunov function) can be obtained after a finite number of

iterations for exponentially stable parametric uncertain systems.

Problem 10 Given an exponentially stable uncertain system (5), an initial polytopic

C-set and a λ such that a C-set λ -contractive exists, does the recursion (7) with stop

condition (11) provide a λ -contractive polytope?

The answer depends on the assumptions on A(∆). It has been proven that if A(∆) is

a polytope, then the algorithm provides λ -contractive polytopes [13, 12]. Such results

follow directly from the fact that Qλ (·,A(∆)) maps polytopes into polytopes provided

that A(∆) is a polytope in Rn×n. Nevertheless, supposing that A(∆) is just a compact

set, such property is no more ensured in general.

Example 11 Consider the discrete-time linear uncertain system (5) with A(δ )=αR(δ )
where R(δ ) is the rotation matrix, i.e.

R(δ ) =

[

cos(δ ) −sin(δ )
sin(δ ) cos(δ )

]

, (12)

with δ ∈ ∆ = [0, π/4] and α ∈ (0,1), which ensures robust asymptotic stability. The

set A(∆) is not a polytope, neither a convex set, in R2×2. Notice, the A(δ ) is related to

a contraction and turn dynamics. Given a set Ω, the set of successor and predecessor

states of x ∈ Ω for the system (5) are

A(∆)Ω =
⋃

δ∈∆

A(δ )Ω =
⋃

δ∈∆

αR(δ )Ω = {x ∈ R2 : x = αR(δ )z, z ∈ Ω,∀δ ∈ ∆},



A(∆)−1Ω =
⋂

δ∈∆

A(δ )−1Ω =
⋂

δ∈∆

α−1R(−δ )Ω

=
⋂

δ∈∆

{x ∈ R2 : x = α−1R(−δ )z, z ∈ Ω}

=
⋂

δ∈∆

{x ∈ R2 : αR(δ )x ∈ Ω}

= {x ∈ R2 : αR(δ )x ∈ Ω,∀δ ∈ ∆}= Q1(Ω,A(∆)).

Geometrically it means that, for every Ω ⊆ Rn, the set Qλ (Ω, A(∆)) is given by the in-

tersection of α−1Ω rotated by −δ , for every δ ∈ [0, π/4]. Therefore the set Qλ (Ω,A(∆))
is not, in general, a polytope, neither for polytopic Ω. Then there is no insurance that

the λ -invariant set potentially provided by the recursion (7) is a polytope. In fact, we

have that

Ωk+1 = {x ∈ Ω0 : αR(δ )x ∈ λΩk, ∀δ ∈ ∆}= {x ∈ Ω0 : R(δ )x ∈ α−1λΩk, ∀δ ∈ ∆},

which is given by the intersection of an infinite number of sets, one for every δ ∈ ∆.

Consider, for instance the case of α = 0.9 and apply the recursion with Ω0 = B2
∞ and

λ = 0.9. We obtain, at the first step, Ω1 depicted in Figure 1 (left), non-polytopic.

Figure 1: Ω0 and Qλ (Ω,A(∆)) for α = 0.9 (left) and α = 0.5 (right).

Nevertheless, if we choose α small enough for the contraction to compensate the

rotation due to the uncertainty, then a λ -contractive polytope is obtained at the first

step. Figure 1 at right represents Ω0 and Qλ (Ω,A(∆)) for α = 0.5. It is obvious that

Ω1 = Ω0 and that it is a λ -contractive polytope.

Our main objective is to provide a variation of the classical recursive algorithm for

contractive sets computation, such that a polytopic contractive set, and then a polyhe-

dral set-induced Lyapunov functions, can be obtained in finite time. Moreover, such

algorithm should have a computional complexity analogous to the classical one. The

algorithm is afterward adapted to the case of study of nearly-periodic reset systems.

0.3 Minkowski functional formalism

In this section we present more details on the Minkowski functional, which is main

tool used in the sequel to obtain necessary and sufficient condition for GES of (5). Due



to space limitations we do not provide the proofs of the instrumental lemmas in this

section. A journal version containing detailed proof is in preparation.

Definition 12 Given a C-set Ω ⊆ Rn, define:

• Minkowski functional of a compact set S ⊆ Rn×n:

ΨΩ(S) = max
x∈S

ΨΩ(x),

• Minkowski functional of a matrix A ∈ Rn×n, as induced by the functional for a

vector:

ΨΩ(A) = max
x∈Ω

ΨΩ(Ax).

• Minkowski functional of compact sets of matrices A ⊆ Rn×n, as induced by the

functional for a matrix:

ΨΩ(A ) = max
A∈A

ΨΩ(A).

Notice: if Ω is a symmetric C-set, then ΨΩ(x) is a vector norm ([14, 12]).

Definition 13 The (Hausdorff) distance induced by the Minkowski functional of the

C-set Γ ⊆ Rn in the space of matrices Rn×n is defined

dΓ(A ,B), inf{α ≥ 0 : A ⊆ B+αBn×n
Γ , B ⊆ A +αBn×n

Γ }

where
Bn×n

Γ , {A ∈ Rn×n : ΨΓ(A)≤ 1}
= {A ∈ Rn×n : ΨΓ(Ax)≤ ΨΓ(x)}.

Lemma 14 If Ω is a symmetric C-set, then ΨΩ(x) is a vector norm and ΨΩ(A) is the

induced operator norm.

Remark 15 Given the C-set Ω ⊆ Rn, one has

ΨΩ(A x)≤ ΨΩ(A )ΨΩ(x)

The next lemma follows from convexity of Ω.

Lemma 16 Given the C-set Ω ⊆ Rn, ΨΩ(A ) is such that

ΨΩ(A ) = ΨΩ(co(A )). (13)

Remark 17 Given the C-set Ω ⊆ Rn and A ,B ⊆ Rn×n such that A ⊆ co(B) then

ΨΩ(A ) ≤ ΨΩ(B). The inverse implication is not true in general: consider for in-

stance A = {0} and B 6= {0}. Then ΨΩ(A ) = 0 < ΨΩ(B) but A * co(B).

0.4 Stability analysis for linear impulsive systems

In this section we provide tractable necessary and sufficient condition for stability of (5)

and present the algorithm that allows computing the associated polyhedral Lyapunov

function.



0.4.1 Tractable necessary and sufficient condition

First we provide a necessary condition, together with its implication, for a set to be

λ -contractive for the linear uncertain system (5).

Proposition 18 If the linear parametric uncertain system (5) is GES then for every

C-set Ω and for all A ⊆ co(A(∆)) there exists λ ∈ [0, 1) such that for all µ ∈ (λ ,1)
there is p = p(λ ,µ) ∈ N such that condition

Ωk ⊆ Qµ(Ωk,A ), ∀k ≥ p, (14)

holds, with Ωk given by

{

Ω0 = Ω,
Ωi+1 = Qλ (Ωi, A )∩Ω.

(15)

Moreover, if Ω is a polytope in Rn and co(A ) a polytope in Rn×n then Ωk are polytopes

and ΨΩk
(x) is a polyhedral global exponential Lyapunov function for the system x+∈

A x.

Proof: The result follows directly from Theorem 6 and the fact that if x+ ∈ A(∆)x
is GES, also x+∈ A x is GES.

The Proposition 18 substantially claims that if one replaces the uncertainty set A(∆)
with a set which is either polytopic or finite and contained in co(A(∆)), then the recur-

sion generates sequences of polytopes and terminates with a polytopic contractive set,

if the system is exponentially stable. Notice that this entails a relaxion of the uncer-

tainty bounds and then to an only necessary condition. On the other hand, this leads to

a first computationally tractable recursion for obtaining approximation of the polytopic

contractive set for (5).

Corollary 19 Given Ω ⊆ Rn polytope with 0 ∈ int (Ω) and A = {Ai}
N
i=1 ⊆ co(A(∆)),

then the recursion (15) with stop condition (14) terminates in finite steps for appropri-

ate values of λ ∈ [0, 1) and µ ∈ (λ , 1) if the system (5) is GES.

Then, provided the system is GES, every finite selection of matrices in co(A(∆))
gives in finite time a polytopic contractive set and a polyhedral Lyapunov function, for

adequate λ and µ . This also means that, if one proves that no contractive set exists for

an uncertain system whose matrices forms a subset of co(A(∆)), then the system is not

exponentially stable.

Corollary 20 Given Ω ⊆ Rn polytope with 0 ∈ int (Ω) and A = {Ai}
N
i=1 ⊆ co(A(∆)),

if there are not λ ∈ [0, 1) and µ ∈ (λ , 1) such that the stop condition (11) holds for

recursion (15), then the system (5) is not GES.

The main practical drawback of the latter result is that, in general, it is not trivial to

prove that no such pair of λ and µ exists.

Let us consider an increasing sequence of inner approximations of the set co(A(∆))
(for everyone of which a contractive set exists, from Corollary 19) that converges to

co(A(∆)). Let us also consider the corresponding sequence of contractive sets obtained

by means of (14) and (15). The main idea is to prove that the latter sequence converges

to a polytopic contractive set for system (5), if and only (5) is GES.



Remark 21 The metric space of the compact sets of Rn×n equipped with the Hausdorff

distance (determined by the unitary ball with respect to a matricial induced norm) is

complete, see [15, 16].

Theorem 22 The linear parametric uncertain system (5) is GES if and only if for every

C-set Ω and every increasing sequence of compact convex sets {A ( j)} j∈N such that

A ( j) ⊆ co(A(∆)) and

lim
j→∞

co(A ( j)) = co(A(∆)), (16)

there exists λ ∈ [0,1), ν ∈ (λ ,1), k = k(λ ,ν) ∈ N and h = h(λ ,ν) ∈ N such that

condition

Ω
(h)
k ⊆ Qν(Ω

(h)
k , A(∆)) (17)

holds, with the sequence of sets Ω
( j)
k given by

{

Ω
( j)
0 = Ω,

Ω
( j)
i+1 = Qλ (Ω

( j)
i , A

( j))∩Ω.
(18)

Moreover, if Ω is a polytope in Rn and co(A ( j)) are polytopes in Rn×n then Ω
( j)
k are

polytopes and Ψ
Ω
(h)
k

(x) is a polyhedral global exponential Lyapunov function for (5).

Remark 23 Notice that λ and k do not necessarily depend on A ( j), whereas ν and h

do. Moreover, from the practical point of view, it is worth noting that the value of µ ,

ρ and h don’t have to be computed. Theorem 22 claims that, by choosing appropriate

λ ∈ [0,1) and ν ∈ (λ ,1), the sets Ω
( j)
k are ν-contractive for all j big enough. Thus, the

computational complexity is analogous to that of classical algorithm for contractive

sets computation. The shape of the computed contractive sets could be complex, but

this is related to the complexity of the problem itself.

Thus, any sequence of compact sets A ( j) whose convex hull converges from the

interior to the convex hull of A(∆) generates a sequence of C-sets Ω
( j)
k that converges

to a contractive set for (5). Remarkably, if the sets A ( j) are polytopes or finite sets

(and Ω is a polytope), the sets Ω
( j)
k are also polytopes.

Corollary 24 Let the linear parametric uncertain system (5) be GES and consider

λ ∈ [0,1), µ ∈ (λ ,1), k = k(λ ,µ) ∈ N such that Ωk is µ-contractive. Then, for every

ν ∈ (µ,1) and every increasing sequence of compact convex sets {A ( j)} j∈N such that

A ( j) ⊆ co(A(∆) with (16) there exists h = h(λ ,ν) such that Ω
( j)
k given by (18) is ν-

contractive for (5) for all j ≥ h.

0.4.2 Computation of contractive polytopes and polyhedral Lya-

punov functions

The basic idea for certifying a nearly periodic reset system is GES, is to generate appro-

priate inner approximations of the set A(∆) and use it to compute a contractive C-set.

Since every sequence A ( j) whose convex hull converges to the one of A(∆) eventually

lead to a contractive C-set for (5), we can restrict our attention to finite sets A ( j). This,

together with polytopic Ω would lead to sequences of polytopic Ω
( j)
k , thus numerically

suitable.



Remark 25 An important computational implication of considering inner approxima-

tions of co(A(∆)) rather than outer ones, as for instance in [6], is that they are much

easier to be obtained. In fact, every finite set A contained in co(A(∆)) is an inner ap-

proximation. Moreover, adding a matrix A /∈A such that A ∈ co(A(∆)) to A leads to a

tighter approximation of co(A(∆)). Then, the sequences A ( j) can be easily genarated

by adequately selecting points on the boundary of co(A(∆)). Hence no relevant com-

putational effort is required to generate the sequence A ( j).

Thus, generating an appropriate sequence A ( j) with j ∈N such that (16) is satisfied

is a tractable problem in general, even for non-polytopic and nonconvex sets A(∆).
Then, the only main computational issue for the practical application of the result of

Theorem 22 is checking whether the condition (17) is satisfied, i.e. if

Ax ∈ νΩ
( j)
k , ∀A ∈ A(∆), x ∈ Ω

( j)
k ⇔

AΩ
( j)
k ⊆ νΩ

( j)
k , ∀A ∈ A(∆).

Indeed, if the set A(∆) is not polytopic (in which case a finite number of matrices

A∈A(∆) should suffice to be checked), condition (17) concerns an uncountable number

of matrices in A(∆). A possible approach could consist in evaluating the condition

for an outer polytopic set A , i.e. for A ∈ A with A polytopic and co(A(∆)) ⊆ A .

Nevertheless, once more, the computation of outer approximations of co(A(∆)) could

be numerically inefficient, besides of introducing a certain conservatism.

The following considerations are aimed at providing tractable conditions to check

whether (17) is satisfied.

Given the two generic sets Λ ⊆ Rp×n and A ⊆ Rn×m define

ΛA =
⋃

Γ∈Λ

ΓA =
⋃

Γ∈Λ

⋃

Σ∈A

ΓΣ.

Proposition 26 Suppose that A ⊆ Rn×n compact is such that for every C-set Ω there

exists λ ∈ [0, 1) such that for all µ ∈ (λ ,1) there is k = k(λ ,µ)∈N such that condition

(14) holds, with Ωk given by the sequence of sets given by (15). If Λ ⊆ Rn×n is such

that

A(∆)⊆ Λco(A ), (19)

with

ΨΩk
(Λ)< µ−1, (20)

then the linear parametric uncertain system (5) is GES and ΨΩk
(x) is a global expo-

nential Lyapunov function for (5).

Theorem 27 The system (5) is GES if and only if for every two sequences of compact

sets {A ( j)} j∈N, increasing, and {Λ( j)} j∈N such that

A
( j) ⊆ co(A(∆))⊆ Λ( j)co(A ( j)), (21)

and

lim
j→+∞

Λ( j) = I, (22)

there exist λ ∈ [0,1), ν ∈ (λ ,1), k ∈ N and h ∈ N such that Ω
(h)
k , given by (18) is

ν-contractive for x+ ∈ A (h)x and

Ψ
Ω
(h)
k

(Λ( j))< ν−1. (23)



0.4.3 Finitely determined polytopic Lyapunov functions

We sketch here the procedure for obtaining polyhedral exponential Lyapunov func-

tions, and thus for checking if the nearly-periodic reset system is GES. Many important

computational issues, that would deserve to be deeply analysed, are the objective of our

current and future research.

The first step concern a possible method to generate the sequence of sets in the

space of matrices Λ( j) and A ( j), with j ∈ N such that conditions (21) and (22) hold.

Precisely, the sequences of sets Λ( j) and A ( j), with j ∈ N satisfying (21) and (22) can

be constructed as follows:

A
( j) =

j
⋃

i=0

eAcτ( j)iAm, τ( j) = (τM − τm) j−1,

∆( j) = [0, τ( j)], Λ( j) =
⋃

δ∈∆( j)

eAcδ ,
(24)

with Am = eAcτmAr.

Then, the testing procedure consists in iterating through j ∈ N to obtain the struc-

tures in (24). For every j, a polytope Ω
( j)
k that is robustly contractive for A ( j) is

computed (where k depends on j) and then condition (23) is checked. If it holds, then

the polytope Ω
( j)
k is contractive also in presence of the uncertainty induced by Λ( j)

and thus the impulsive system is GES and the function induced by Ω
( j)
k is a Lyapunov

function.

0.5 Numerical example

Consider the impulsive system (2) with matrices

Ar =

[

0.5 −0.25

0.5 1

]

, Ac =

[

0.1 −1

1 0.1

]

(25)

and ∆ = [0.5,1.5]. Notice that, whereas the discrete-time transition matrix Ar is Schur,

Ac has two complex conjugate poles with positive real part and then

eAct =

[

e0.1t cos(t) −e0.1t sin(t)
e0.1t sin(t) e0.1t cos(t)

]

,

thus, the continuous-time trajectories are diverging spirals. Such divergence must be

compensated by the reset action to have stability. Notice that A(∆) is neither a polytope

nor a convex set. Applying the procedure illustrated in Section 0.4.3 we proved that the

system is GES. For different values of j we computed Ω
( j)
k for an appropriate λ and

then check if (23) holds (with, in our case, λ = ν). We found that for different values of

j > 1, the condition can be satisfied whereas is not for j = 1. Some numerical results

are summarized in Table 1. Thus, the impulsive system with (25) is GES. Although

the analysis with j = 2 would have been sufficient to asses GES, we wanted to stress

that the procedure can be applied for much higher j highlighting the computational

flexibility of the approach.



Table 1:
j = 1 j = 2 j = 5 j = 10 j = 12 j = 15

λ 0.874 0.88 0.90 0.91 0.91 0.92

k 4 10 9 9 9 9

Ψ
Ω
( j)
k

1.1554 1.1149 1.0234 1.0128 1.0175 1.0190

µ−1 1.1442 1.1364 1.1111 1.0989 1.0989 1.0870

0.6 Conclusions

In this paper we employ set theory to provide a tractable method for testing whether

an impulsive linear system is globally exponentially stable. The reset rule considered

in this paper is assumed to be nearly-periodic. We provide a method for obtaining

a polyhedral Lyapunov function, whose existence is necessary and sufficient for the

system to be GES. The approach is particularly suitable since the computational burden

is analogous to that required for linear uncertain polytopic systems. Many issues related

to the computational aspects are among the objectives of our current research.
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