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Set theory conditions for stability of linear impulsive systems 1

In this paper we give tractable necessary and sufficient condition for the global exponential stability of a linear impulsive system. The reset rule considered in the paper is quasi-periodic and the stability analysis is based on a standard tool in set theory that is Minkowski functional. Firstly, we reformulate the problem in term of discretetime parametric uncertain system with the state matrix belonging to a compact but non-convex set. Secondly, we provide a tractable algorithm for testing the stability and computing the associated polyhedral Lyapunov function when the system is stable. The main result is an algorithm whose computational effort is analogous to that of classical algorithms for contractive polytopes computation for discrete-time parametric uncertain systems with the state matrix belonging to a polytopic set. This is just a report meant to briefly present our results. For a full version of this work, containing proofs, discussions and numerical implementations please contact the authors.

Introduction

In order to overcome performance limitations of classical controllers Clegg introduced an integrator with state reset (see [START_REF] Clegg | A nonlinear integrator for servomechanisms[END_REF]). This idea received an increasing attention and recent works have been dedicated to stability and performances of reset control systems [START_REF] Beker | Fundamental properties of reset control systems[END_REF][START_REF] Nesić | Stability properties of reset systems[END_REF]. These systems are a class of hybrid systems since they are subject to both continuous-time and discrete-time dynamics. A particular class of reset systems is the continuous-time linear systems whose state undergoes finite jumps at some discretetime instants [START_REF] Beker | Plant with an integrator: an example of reset control overcoming limitations of linear feedback[END_REF][START_REF] Aangenent | Performance analysis of reset control systems[END_REF], also referred to as impulsive systems. The rule defining the jump instants is often time-depending (see [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] and the reference therein) and is motivated by the analysis of sampled-data systems ( [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]) as well as periodic triggered stabilization ( [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF][START_REF] Postoyan | Periodic eventtriggered control for nonlinear systems[END_REF]).

The present paper deals with the stability analysis of linear impulsive systems by means of set theoretic techniques. As in [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF], we consider that two consecutive reset instants are separated by an uncertain time. Instead of searching ellipsoidal Lyapunov functions that give sufficient condition for stability, we are searching polyhedral ones leading (as explained later) to necessary and sufficient stability conditions. The stability analysis is based on a standard tool in set theory that is Minkowski functional. Our concern is also to design an algorithm that is able to decide in finite time if a linear impulsive system is globally exponentially stable (GES) or not. In the former case it will also compute in finite time the polyhedral Lyapunov function guaranteeing the stability of the system.

Firstly, we reformulate the problem in term of discrete-time parametric uncertain system with the state matrix belonging to a compact but non-convex set. Secondly, we provide a tractable algorithm for testing the stability and computing the associated polyhedral Lyapunov function when the system is stable. The result is an algorithm whose computational effort is analogous to that of the standard algorithm for computing contractive polytopes for discrete-time polytopic parametric uncertain systems.

Notation. The set of real numbers is denoted by R while N stands for the set of positive integer numbers. We denote N n {i ∈ N, i ≤ n}. For any function x defined on R we denote x(t + ) lim τ →t,τ>t

x(τ) if the limit exists. A C-set is a convex and compact set containing the origin in its interior. For any real λ and any set S we define λ S {λ x | x ∈ S}. The unitary ball in R n with respect to norm • p is B n p {x ∈ R n : x p ≤ 1}, its analogous in the space of matrices is defined in the following.

Set-theory for nearly-periodic reset systems

Given the interval ∆ = [τ m , τ M ] with 0 < τ m < τ M ∈ R, we define the set of admissible reset sequences as

Θ(∆) = {t k } k∈N : t k+1 = t k + δ k , δ k ∈ ∆, ∀k ∈ N . (1) 
The aim of this paper is to give tractable necessary and sufficient conditions for the stability of the following linear reset system

   ẋ(t) = A c x(t), ∀t ∈ R + -T , x(t + ) = A r x(t), ∀t ∈ T , x(0) = x 0 ∈ R n , (2) 
where x ∈ R n is the state of the system and T ∈ Θ(∆), see [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF]. By definition

t k+1 -t k ∈ [τ m , τ M ],
∀k ∈ N so we avoid Zeno phenomenon (τ m > 0) but an infinite number of reset instants occurs (τ M < ∞). The state at time t ∈ (t k , t k+1 ], for a given initial state x 0 and a reset sequence T ∈ Θ(∆) is given by

x(t) = e A c (t-t k ) A r x(t k ), ∀t ∈ (t k , t k+1 ] (3) 
thus, the dynamics between two successive resets is given by the following discrete dynamics

x(t k+1 ) = e A c (t k+1 -t k ) A r x(t k ) = e A c (δ k ) A r x(t k ), (4) 
where δ k = t k+1t k ∈ ∆. Thus, denoting A(∆) = {e A c δ A r : δ ∈ ∆}, the problem of stability of the linear impulsive system (2) rewrites in terms of stability of the following discrete-time parametric uncertain system

x + = A(δ )x, x(0) = x 0 ∈ R n , (5) 
where A(δ ) ∈ A(∆). Let us recall the definition of GES for the system [START_REF] Aangenent | Performance analysis of reset control systems[END_REF].

Definition 1 The system (5) is GES if there exist positive scalars c ∈ R and λ ∈ [0, 1) such that x(k) ≤ cλ k x 0 ( 6 
)
for every x 0 ∈ R n and k ∈ N.

It is noteworthy that systems (2) is GES if and only if [START_REF] Aangenent | Performance analysis of reset control systems[END_REF] is GES. Notice that the set A(∆) is not convex in general but it is compact, while the set in which the parameter δ lies, i.e. the interval ∆, is trivially convex and compact. Then, using the classical result from invariance and set-induced Lyapunov functions for linear (uncertain) discretetime systems, see for instance [START_REF] Molchanov | Criteria of asymptotic stability of differential and difference inclusions encountered in control theory[END_REF][START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF][START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF], a necessary and sufficient condition for GES can be given, as follows.

Theorem 2 ( [START_REF] Molchanov | Criteria of asymptotic stability of differential and difference inclusions encountered in control theory[END_REF][START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF]) There exists a Lyapunov function for a linear parametric uncertain system if and only if there exists a polyhedral Lyapunov function for the system.

The theorem above is less conservative than Theorem 1 in [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF], since it gives not only sufficient but also necessary condition for GES. It claims that the search of the candidate Lyapunov function can be limited to the family of functions which are induced by polytopes.

Remark 3 It is noteworthy that the functions considered in Theorem 2 are convex, positive definite and homogeneous as in [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF] (the fact that they are homogenous of order one and not of order two does not induce any loss of generality). Nevertheless, polyhedral Lyapunov functions are determined by a finite number of generators (the facets of the polytope they are induced by), then they form a set of functions strictly contained in the one considered in [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF]. Therefore, the condition in Theorem 2 is less conservative and leads to necessary and sufficient conditions for stability which are computationally affordable, as shown in the sequel.

We also recall another result, concerning set theory and its application to the problem of stability of linear uncertain systems. Given a C-set Ω ⊆ R n , consider the following sequence of sets

Ω 0 = Ω, Ω k+1 = Q λ (Ω k , A(∆)) ∩ Ω, (7) 
where

Q λ (S, A ) = {x ∈ R n : Ax ∈ λ S, ∀A ∈ A } = A∈A A -1 (λ S). ( 8 
)
with S ⊆ R n and A ⊆ R n×n .

Lemma 4 Given λ ∈ R n , Ω, Γ ⊆ R n and A , B ⊆ R n×n then a) A ⊆ B ⇒ Q λ (Ω, A ) ⊇ Q λ (Ω, B). b) Ω ⊆ Γ ⇒ Q λ (Ω, A ) ⊆ Q λ (Γ, A ). c) If Ω is convex, then Q λ (Ω, A ) = Q λ (Ω, co(A )).
d) If the Ω and A are polytopes, i.e.

Ω = {x ∈ R n : Hx ≤ b}, A = {A ∈ R n×n : A = ∑ i∈N a α i A i , α i ≥ 0, ∑ i∈N a α i = 1}, then Q λ (Ω, A ) is a polytope too.
Proof: The proof requires just some careful but straightforward mathematical manipulations which are not presented here. A journal version containing detailed proof is in preparation.

Definition 5 For any λ ∈ [0, 1) we say the set S is λ -contractive w.r.t. dynamics (5) if and only if

A(δ )x ∈ λ S, ∀x ∈ S, δ ∈ ∆.
As proven in [START_REF] Blanchini | Ultimate boundedness control for discrete-time uncertain systems via set-induced Lyapunov functions[END_REF], the maximal λ -contractive set w.r.t. dynamics [START_REF] Aangenent | Performance analysis of reset control systems[END_REF], which is contained in Ω, is given by

Ω λ = k∈N Ω k , (9) 
where Ω k are defined by [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]. We note that, due to the linearity of ( 5), Ω λ is compact and convex as far as Ω is a C-set. However, Ω λ is not always a C-set since, for some values of λ , it can be reduced to the origin. In the following we denote λ * the infimum in [0, 1) for which Ω λ * is a C-set.

Theorem 6 (Theorem 3.2 in [START_REF] Blanchini | Ultimate boundedness control for discrete-time uncertain systems via set-induced Lyapunov functions[END_REF]) For λ ∈ [0, 1) let us assume that Ω λ defined by ( 7) and ( 9) is a C-set. Then, for every µ ∈ (λ , 1] there exists j such that Ω k is µ-contractive for all k ≥ j.

Remark 7 From Theorem 6, it follows that, for any µ > λ * we can obtain a µcontractive C-set w.r.t. dynamics (5) by iterating [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF] a finite number of times with λ ∈ [λ * , µ).

Therefore, the iteration [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF] together with an appropriate stop condition, represents one version of the basic algorithm for obtaining a λ -contractive set w.r.t. [START_REF] Aangenent | Performance analysis of reset control systems[END_REF]. Moreover, the algorithm terminates in a finite number of steps provided λ is adequately chosen.

Definition 8 Given a C-set S ⊆ R n , its Minkowski functional Ψ S : R n → R is defined as Ψ S (x) = min α≥0 {α ∈ R : x ∈ αS}. ( 10 
)
Proposition 9 The linear parametric uncertain system ( 5) is GES if and only if for every C-set Ω there exists λ ∈ [0, 1) such that for all µ ∈ (λ , 1)

there is k = k(λ , µ) ∈ N such that Ω k ⊆ Q µ (Ω k , A(∆)), ( 11 
)
with Ω k as in [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]. Moreover, Ψ Ω k (x) is a global exponential Lyapunov function for [START_REF] Aangenent | Performance analysis of reset control systems[END_REF].

Proof: The result comes directly from Theorem 6 and the fact that the condition ( 11) is equivalent to µ-contractivity of the set Ω k (see [START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF][START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]). Indeed, ( 11) is equivalent to the fact that for all x ∈ Ω k , x belongs also to Q µ (Ω k , A(∆)) which means, by definition [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], that A(δ )x ∈ µΩ k for every δ ∈ ∆, definition of µ-contractivity of Ω k .

Alternative, but analogous, formulations of the stop conditions are given in literature, see [START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. Thus, summarizing, classical literature results on invariance and set-induced Lyapunov functions permit to assert that the class of positive definite polyhedral Lyapunov functions, that is, the Minkowski functions of polytopic C-sets, forms a universal class of Lyapunov functions for assessing GES for parametric uncertain linear systems. Moreover, algorithms exist such that contractive sets (and then also the related set-induced Lyapunov function) can be obtained after a finite number of iterations for exponentially stable parametric uncertain systems.

Problem 10 Given an exponentially stable uncertain system [START_REF] Aangenent | Performance analysis of reset control systems[END_REF], an initial polytopic C-set and a λ such that a C-set λ -contractive exists, does the recursion [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF] with stop condition [START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF] provide a λ -contractive polytope?

The answer depends on the assumptions on A(∆). It has been proven that if A(∆) is a polytope, then the algorithm provides λ -contractive polytopes [START_REF] Blanchini | Ultimate boundedness control for discrete-time uncertain systems via set-induced Lyapunov functions[END_REF][START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]. Such results follow directly from the fact that Q λ (•, A(∆)) maps polytopes into polytopes provided that A(∆) is a polytope in R n×n . Nevertheless, supposing that A(∆) is just a compact set, such property is no more ensured in general.

Example 11 Consider the discrete-time linear uncertain system (5) with A(δ

) = αR(δ ) where R(δ ) is the rotation matrix, i.e. R(δ ) = cos(δ ) -sin(δ ) sin(δ ) cos(δ ) , ( 12 
)
with δ ∈ ∆ = [0, π/4] and α ∈ (0, 1), which ensures robust asymptotic stability. The set A(∆) is not a polytope, neither a convex set, in R 2×2 . Notice, the A(δ ) is related to a contraction and turn dynamics. Given a set Ω, the set of successor and predecessor states of x ∈ Ω for the system [START_REF] Aangenent | Performance analysis of reset control systems[END_REF] are

A(∆)Ω = δ ∈∆ A(δ )Ω = δ ∈∆ αR(δ )Ω = {x ∈ R 2 : x = αR(δ )z, z ∈ Ω, ∀δ ∈ ∆}, A(∆) -1 Ω = δ ∈∆ A(δ ) -1 Ω = δ ∈∆ α -1 R(-δ )Ω = δ ∈∆ {x ∈ R 2 : x = α -1 R(-δ )z, z ∈ Ω} = δ ∈∆ {x ∈ R 2 : αR(δ )x ∈ Ω} = {x ∈ R 2 : αR(δ )x ∈ Ω, ∀δ ∈ ∆} = Q 1 (Ω, A(∆)).
Geometrically it means that, for every Ω ⊆ R n , the set Q λ (Ω, A(∆)) is given by the intersection of α -1 Ω rotated by -δ , for every δ ∈ [0, π/4]. Therefore the set Q λ (Ω, A(∆)) is not, in general, a polytope, neither for polytopic Ω. Then there is no insurance that the λ -invariant set potentially provided by the recursion ( 7) is a polytope. In fact, we have that

Ω k+1 = {x ∈ Ω 0 : αR(δ )x ∈ λ Ω k , ∀δ ∈ ∆} = {x ∈ Ω 0 : R(δ )x ∈ α -1 λ Ω k , ∀δ ∈ ∆},
which is given by the intersection of an infinite number of sets, one for every δ ∈ ∆.

Consider, for instance the case of α = 0.9 and apply the recursion with Ω 0 = B 2 ∞ and λ = 0.9. We obtain, at the first step, Ω 1 depicted in Figure 1 (left), non-polytopic.

1: Ω 0 and Q λ (Ω, A(∆)) for α = 0.9 (left) and α = 0.5 (right).

Nevertheless, if we choose α small enough for the contraction to compensate the rotation due to the uncertainty, then a λ -contractive polytope is obtained at the first step. Figure 1 at right represents Ω 0 and Q λ (Ω, A(∆)) for α = 0.5. It is obvious that Ω 1 = Ω 0 and that it is a λ -contractive polytope.

Our main objective is to provide a variation of the classical recursive algorithm for contractive sets computation, such that a polytopic contractive set, and then a polyhedral set-induced Lyapunov functions, can be obtained in finite time. Moreover, such algorithm should have a computional complexity analogous to the classical one. The algorithm is afterward adapted to the case of study of nearly-periodic reset systems.

Minkowski functional formalism

In this section we present more details on the Minkowski functional, which is main tool used in the sequel to obtain necessary and sufficient condition for GES of [START_REF] Aangenent | Performance analysis of reset control systems[END_REF]. Due to space limitations we do not provide the proofs of the instrumental lemmas in this section. A journal version containing detailed proof is in preparation.

Definition 12 Given a C-set Ω ⊆ R n , define:

• Minkowski functional of a compact set S ⊆ R n×n :

Ψ Ω (S) = max x∈S Ψ Ω (x),
• Minkowski functional of a matrix A ∈ R n×n , as induced by the functional for a vector:

Ψ Ω (A) = max x∈Ω Ψ Ω (Ax).
• Minkowski functional of compact sets of matrices A ⊆ R n×n , as induced by the functional for a matrix:

Ψ Ω (A ) = max A∈A Ψ Ω (A).
Notice: if Ω is a symmetric C-set, then Ψ Ω (x) is a vector norm ( [START_REF] Luenberger | Optimization by vector space methods[END_REF][START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF]).

Definition 13 The (Hausdorff) distance induced by the Minkowski functional of the

C-set Γ ⊆ R n in the space of matrices R n×n is defined d Γ (A , B) inf{α ≥ 0 : A ⊆ B + αB n×n Γ , B ⊆ A + αB n×n Γ } where B n×n Γ {A ∈ R n×n : Ψ Γ (A) ≤ 1} = {A ∈ R n×n : Ψ Γ (Ax) ≤ Ψ Γ (x)}.

Lemma 14

If Ω is a symmetric C-set, then Ψ Ω (x) is a vector norm and Ψ Ω (A) is the induced operator norm.

Remark 15 Given the C-set Ω ⊆ R n , one has

Ψ Ω (A x) ≤ Ψ Ω (A )Ψ Ω (x)
The next lemma follows from convexity of Ω.

Lemma 16 Given the C-set

Ω ⊆ R n , Ψ Ω (A ) is such that Ψ Ω (A ) = Ψ Ω (co(A )). ( 13 
)
Remark 17 Given the C-set Ω ⊆ R n and A , B ⊆ R n×n such that A ⊆ co(B) then Ψ Ω (A ) ≤ Ψ Ω (B). The inverse implication is not true in general: consider for instance A = {0} and B = {0}. Then Ψ Ω (A ) = 0 < Ψ Ω (B) but A co(B).

Stability analysis for linear impulsive systems

In this section we provide tractable necessary and sufficient condition for stability of (5) and present the algorithm that allows computing the associated polyhedral Lyapunov function.

Tractable necessary and sufficient condition

First we provide a necessary condition, together with its implication, for a set to be λ -contractive for the linear uncertain system (5).

Proposition 18 If the linear parametric uncertain system ( 5) is GES then for every C-set Ω and for all A ⊆ co(A(∆)) there exists λ ∈ [0, 1) such that for all µ ∈ (λ , 1) there is p = p(λ , µ) ∈ N such that condition

Ω k ⊆ Q µ (Ω k , A ), ∀k ≥ p, ( 14 
)
holds, with Ω k given by

Ω 0 = Ω, Ω i+1 = Q λ (Ω i , A ) ∩ Ω. ( 15 
)
Moreover, if Ω is a polytope in R n and co(A ) a polytope in R n×n then Ω k are polytopes and Ψ Ω k (x) is a polyhedral global exponential Lyapunov function for the system x + ∈ A x.

Proof: The result follows directly from Theorem 6 and the fact that if

x + ∈ A(∆)x is GES, also x + ∈ A x is GES.
The Proposition 18 substantially claims that if one replaces the uncertainty set A(∆) with a set which is either polytopic or finite and contained in co(A(∆)), then the recursion generates sequences of polytopes and terminates with a polytopic contractive set, if the system is exponentially stable. Notice that this entails a relaxion of the uncertainty bounds and then to an only necessary condition. On the other hand, this leads to a first computationally tractable recursion for obtaining approximation of the polytopic contractive set for [START_REF] Aangenent | Performance analysis of reset control systems[END_REF].

Corollary 19

Given Ω ⊆ R n polytope with 0 ∈ int (Ω) and A = {A i } N i=1 ⊆ co(A(∆)), then the recursion [START_REF] Schneider | Convex bodies: The Brunn-Minkowski theory[END_REF] with stop condition [START_REF] Luenberger | Optimization by vector space methods[END_REF] terminates in finite steps for appropriate values of λ ∈ [0, 1) and µ ∈ (λ , 1) if the system ( 5) is GES.

Then, provided the system is GES, every finite selection of matrices in co(A(∆)) gives in finite time a polytopic contractive set and a polyhedral Lyapunov function, for adequate λ and µ. This also means that, if one proves that no contractive set exists for an uncertain system whose matrices forms a subset of co(A(∆)), then the system is not exponentially stable. andµ ∈ (λ , 1) such that the stop condition [START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF] holds for recursion [START_REF] Schneider | Convex bodies: The Brunn-Minkowski theory[END_REF], then the system ( 5) is not GES.

Corollary 20 Given Ω ⊆ R n polytope with 0 ∈ int (Ω) and A = {A i } N i=1 ⊆ co(A(∆)), if there are not λ ∈ [0, 1)
The main practical drawback of the latter result is that, in general, it is not trivial to prove that no such pair of λ and µ exists.

Let us consider an increasing sequence of inner approximations of the set co(A(∆)) (for everyone of which a contractive set exists, from Corollary 19) that converges to co(A(∆)). Let us also consider the corresponding sequence of contractive sets obtained by means of ( 14) and [START_REF] Schneider | Convex bodies: The Brunn-Minkowski theory[END_REF]. The main idea is to prove that the latter sequence converges to a polytopic contractive set for system [START_REF] Aangenent | Performance analysis of reset control systems[END_REF], if and only ( 5) is GES.

Remark 21

The metric space of the compact sets of R n×n equipped with the Hausdorff distance (determined by the unitary ball with respect to a matricial induced norm) is complete, see [START_REF] Schneider | Convex bodies: The Brunn-Minkowski theory[END_REF][START_REF] Rockafellar | Variational analysis[END_REF].

Theorem 22 The linear parametric uncertain system [START_REF] Aangenent | Performance analysis of reset control systems[END_REF] is GES if and only if for every C-set Ω and every increasing sequence of compact convex sets {A ( j) } j∈N such that A ( j) ⊆ co(A(∆)) and

lim j→∞ co(A ( j) ) = co(A(∆)), ( 16 
)
there exists λ ∈ [0, 1), ν ∈ (λ , 1), k = k(λ , ν) ∈ N and h = h(λ , ν) ∈ N such that condition Ω (h) k ⊆ Q ν (Ω (h) k , A(∆)) (17)
holds, with the sequence of sets Ω ( j) k given by

Ω ( j) 0 = Ω, Ω ( j) i+1 = Q λ (Ω ( j) i , A ( j) ) ∩ Ω. (18)
Moreover, if Ω is a polytope in R n and co(A ( j) ) are polytopes in R n×n then Ω ( j) k are polytopes and Ψ Ω (h) k (x) is a polyhedral global exponential Lyapunov function for [START_REF] Aangenent | Performance analysis of reset control systems[END_REF].

Remark 23 Notice that λ and k do not necessarily depend on A ( j) , whereas ν and h do. Moreover, from the practical point of view, it is worth noting that the value of µ, ρ and h don't have to be computed. Theorem 22 claims that, by choosing appropriate λ ∈ [0, 1) and ν ∈ (λ , 1), the sets Ω ( j) k are ν-contractive for all j big enough. Thus, the computational complexity is analogous to that of classical algorithm for contractive sets computation. The shape of the computed contractive sets could be complex, but this is related to the complexity of the problem itself.

Thus, any sequence of compact sets A ( j) whose convex hull converges from the interior to the convex hull of A(∆) generates a sequence of C-sets Ω ( j) k that converges to a contractive set for [START_REF] Aangenent | Performance analysis of reset control systems[END_REF]. Remarkably, if the sets A ( j) are polytopes or finite sets (and Ω is a polytope), the sets Ω ( j) k are also polytopes.

Corollary 24 Let the linear parametric uncertain system (5) be GES and consider λ ∈ [0, 1), µ ∈ (λ , 1), k = k(λ , µ) ∈ N such that Ω k is µ-contractive. Then, for every ν ∈ (µ, 1) and every increasing sequence of compact convex sets {A ( j) } j∈N such that A ( j) ⊆ co(A(∆) with ( 16) there exists h = h(λ , ν) such that Ω ( j) k given by ( 18) is νcontractive for ( 5) for all j ≥ h.

Computation of contractive polytopes and polyhedral Lyapunov functions

The basic idea for certifying a nearly periodic reset system is GES, is to generate appropriate inner approximations of the set A(∆) and use it to compute a contractive C-set. Since every sequence A ( j) whose convex hull converges to the one of A(∆) eventually lead to a contractive C-set for (5), we can restrict our attention to finite sets A ( j) . This, together with polytopic Ω would lead to sequences of polytopic Ω ( j) k , thus numerically suitable.

Remark 25 An important computational implication of considering inner approximations of co(A(∆)) rather than outer ones, as for instance in [START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF], is that they are much easier to be obtained. In fact, every finite set A contained in co(A(∆)) is an inner approximation. Moreover, adding a matrix A / ∈ A such that A ∈ co(A(∆)) to A leads to a tighter approximation of co(A(∆)). Then, the sequences A ( j) can be easily genarated by adequately selecting points on the boundary of co(A(∆)). Hence no relevant computational effort is required to generate the sequence A ( j) .

Thus, generating an appropriate sequence A ( j) with j ∈ N such that ( 16) is satisfied is a tractable problem in general, even for non-polytopic and nonconvex sets A(∆). Then, the only main computational issue for the practical application of the result of Theorem 22 is checking whether the condition (17) is satisfied, i.e. if Ax ∈ νΩ

( j) k , ∀A ∈ A(∆), x ∈ Ω ( j) k ⇔ AΩ ( j) k ⊆ νΩ ( j) k , ∀A ∈ A(∆).
Indeed, if the set A(∆) is not polytopic (in which case a finite number of matrices A ∈ A(∆) should suffice to be checked), condition (17) concerns an uncountable number of matrices in A(∆). A possible approach could consist in evaluating the condition for an outer polytopic set A , i.e. for A ∈ A with A polytopic and co(A(∆)) ⊆ A . Nevertheless, once more, the computation of outer approximations of co(A(∆)) could be numerically inefficient, besides of introducing a certain conservatism.

The following considerations are aimed at providing tractable conditions to check whether (17) is satisfied.

Given the two generic sets Λ ⊆ R p×n and A ⊆ R n×m define

ΛA = Γ∈Λ ΓA = Γ∈Λ Σ∈A ΓΣ.
Proposition 26 Suppose that A ⊆ R n×n compact is such that for every C-set Ω there exists λ ∈ [0, 1) such that for all µ ∈ (λ , 1) there is k = k(λ , µ) ∈ N such that condition [START_REF] Luenberger | Optimization by vector space methods[END_REF] holds, with Ω k given by the sequence of sets given by [START_REF] Schneider | Convex bodies: The Brunn-Minkowski theory[END_REF].

If Λ ⊆ R n×n is such that A(∆) ⊆ Λ co(A ), (19) 
with

Ψ Ω k (Λ) < µ -1 , (20) 
then the linear parametric uncertain system ( 5) is GES and Ψ Ω k (x) is a global exponential Lyapunov function for [START_REF] Aangenent | Performance analysis of reset control systems[END_REF].

Theorem 27 The system ( 5) is GES if and only if for every two sequences of compact sets {A ( j) } j∈N , increasing, and {Λ ( j) } j∈N such that

A ( j) ⊆ co(A(∆)) ⊆ Λ ( j) co(A ( j) ), (21) 
and

lim j→+∞ Λ ( j) = I, ( 22 
)
there exist λ ∈ [0, 1), ν ∈ (λ , 1), k ∈ N and h ∈ N such that Ω (h)
k , given by ( 18) is ν-contractive for x + ∈ A (h) x and

Ψ Ω (h) k (Λ ( j) ) < ν -1 .
(23)

Finitely determined polytopic Lyapunov functions

We sketch here the procedure for obtaining polyhedral exponential Lyapunov functions, and thus for checking if the nearly-periodic reset system is GES. Many important computational issues, that would deserve to be deeply analysed, are the objective of our current and future research. The first step concern a possible method to generate the sequence of sets in the space of matrices Λ ( j) and A ( j) , with j ∈ N such that conditions (21) and ( 22) hold. Precisely, the sequences of sets Λ ( j) and A ( j) , with j ∈ N satisfying (21) and ( 22) can be constructed as follows:

A ( j) = j i=0 e A c τ ( j) i A m , τ ( j) = (τ M -τ m ) j -1 , ∆ ( j) = [0, τ ( j) ], Λ ( j) = δ ∈∆ ( j) e A c δ , (24) 
with A m = e A c τ m A r .

Then, the testing procedure consists in iterating through j ∈ N to obtain the structures in (24). For every j, a polytope Ω ( j) k that is robustly contractive for A ( j) is computed (where k depends on j) and then condition (23) is checked. If it holds, then the polytope Ω ( j) k is contractive also in presence of the uncertainty induced by Λ ( j) and thus the impulsive system is GES and the function induced by Ω and ∆ = [0.5, 1.5]. Notice that, whereas the discrete-time transition matrix A r is Schur, A c has two complex conjugate poles with positive real part and then e A c t = e 0.1t cos(t) -e 0.1t sin(t) e 0.1t sin(t) e 0.1t cos(t) , thus, the continuous-time trajectories are diverging spirals. Such divergence must be compensated by the reset action to have stability. Notice that A(∆) is neither a polytope nor a convex set. Applying the procedure illustrated in Section 0.4.3 we proved that the system is GES. For different values of j we computed Ω ( j) k for an appropriate λ and then check if (23) holds (with, in our case, λ = ν). We found that for different values of j > 1, the condition can be satisfied whereas is not for j = 1. Some numerical results are summarized in Table 1. Thus, the impulsive system with (25) is GES. Although the analysis with j = 2 would have been sufficient to asses GES, we wanted to stress that the procedure can be applied for much higher j highlighting the computational flexibility of the approach. 

Conclusions

In this paper we employ set theory to provide a tractable method for testing whether an impulsive linear system is globally exponentially stable. The reset rule considered in this paper is assumed to be nearly-periodic. We provide a method for obtaining a polyhedral Lyapunov function, whose existence is necessary and sufficient for the system to be GES. The approach is particularly suitable since the computational burden is analogous to that required for linear uncertain polytopic systems. Many issues related to the computational aspects are among the objectives of our current research.

Table 1 :

 1 

		j = 1	j = 2	j = 5	j = 10 j = 12 j = 15
	λ	0.874	0.88	0.90	0.91	0.91	0.92
	k	4	10	9	9	9	9
	Ψ Ω µ -1 ( j) k	1.1554 1.1149 1.0234 1.0128 1.0175 1.0190 1.1442 1.1364 1.1111 1.0989 1.0989 1.0870
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