
Optimal Real-Time Scheduling Algorithm for
Fixed-Priority Energy-Harvesting Systems

Younès Chandarli, Yasmina Abdeddaïm and Damien Masson

October 20, 2014

1 Introduction
In [4] we saw that finding efficient scheduling algorithms for fixed-priority energy-

harvesting systems is one of the challenges of this research area. In [2], we presented
PFPASAP which is an optimal scheduling algorithm. Moreover, the optimality of this al-
gorithm relies on two main assumptions: the considered task sets are energy-non-concrete,
and all the tasks consume more energy than it is replenished. Unfortunately, removing
one of these two assumptions leads PFPASAP to lose its optimality. This is due to the
fact that without these assumptions, the worst-case scenario of PFPASAP is no longer
the synchronous activation with the minimum battery capacity. Moreover, without these
assumptions, the worst-case scenario is unknown up to now. There exist some counter
examples that prove the non-optimality of PFPASAP (see Figures 4 and 1).

The challenge now is to understand why does PFPASAP lose its optimality and we try
to study deeply the fixed-priority scheduling for energy-harvesting systems by trying to
build an optimal algorithm or otherwise to prove the nonexistence of such an algorithm.

In this work, we explore different intuitive ideas of scheduling algorithms and we
explain why they are not optimal through counter examples. Then, we show the difficulty
of finding an optimal algorithm or proving the nonexistence of such an algorithm with a
reasonable complexity.

The remainder of this report is organized as follows. In section 3 we define and prove
some properties of fixed-priority scheduling for energy-harvesting systems. After that, we
explore in Section 4 different ideas of scheduling algorithms and we discuss the existence
of an optimal algorithm. Finally, we conclude the report with Section 5.

1.1 Task Model
The task model considered here is an extension of Liu and Layland’s model that

considers task energy consumption in addition to the classical parameters. Then, we
consider a real-time task set in a renewable energy environment defined by a set of n
periodic/sporadic and independent tasks {τ1, τ2, . . . , τn}. Each task τi is characterized
by its priority Pi, its worst-case execution time Ci, its period Ti, its relative deadline Di

and its worst-case energy consumption Ei.
Therefore, a task τi releases an infinite number of jobs separated by at least Ti time

units and each job is executed during Ci time units and consumes Ei energy units and must
finish before Di time units after being requested. Moreover, the deadlines are constrained

1

Tasks Ci Ei Ti Di

τ1 2 2 8 3
τ2 3 15 10 9

(a) Task set

0 2 4 6 8 10
0
2
4
6
8
10E

max

E
min

0 2 4 6 8 10

τ
1

0 2 4 6 8 10

τ
2

R2

(b) Asynchronous requests

0 2 4 6 8 10
0
2
4
6
8
10E

max

E
min

0 2 4 6 8 10

τ
1

0 2 4 6 8 10

τ
2

R2

(c) Synchronous requests

Figure 1: Worst-case scenario counter example

or implicit and the task set is priority-ordered such that task τn is the task with the lowest
priority.

2 General Model
An energy-harvesting system being composed of a real-time computational part should

be first described as a classical real-time system with a set of recurrent tasks and second as
a more complex system by including the energy source and the energy storage constraints.
In this section we specify the general formal model considered by this dissertation.

2.1 Energy Model
We consider an embedded system connected to an energy harvesting device. An

energy-harvesting device is a system that collects the ambient energy from the envi-
ronment using an energy-harvesting technique. The collected energy is then stored in an
energy storage unit with fixed capacity (e.g. rechargeable battery or supercapacitor).

Replenishment: We suppose that the amount of energy that arrives into the storage
unit is a function of time which is either known or bounded. Recall that the profile
of energy arriving from the harvester depends on the energy source and the harvesting
technique. Most of energy sources are unpredictable or predictable with difficulty, for
example, solar energy harvesting depends on brightness intensity which cannot be pre-
dicted accurately. For this reason, since the scope of this dissertation is hard real-time

2

scheduling for energy-harvesting systems, we consider only energy sources and harvesting
techniques that can provide a predictable profile of energy or that can be lower bounded.
Hopefully, such energy profiles exist especially with vibration energy source and piezo-
electric harvesting technique which seem to be suitable for small embedded systems. It
provides a nearly stable output of energy even with a deviation of vibration frequency
up to 40% form the optimal one as explained in [1]. Therefore, as a first step, we can
consider a uniform or a bounded replenishment function which means that the storage
unit receives the a constant amount of energy every time unit. We denote Pr(t) the re-
plenishment function of the battery, then, the energy replenished during any time interval
[t1, t2] denoted as g(t1, t2) is given by Equation 1.

g(t1, t2) =
∫ t2

t1
.Pr(t) dt (1)

As mentioned above, we assume that that Pr(t) is a constant function, i.e. Pr(t) = Pr.
Then, the energy replenished during any time interval [t1, t2] is given by Equation 2.

g(t1, t2) = (t2 − t1)× Pr (2)
In the remainder of this dissertation, we use Pr instead of Pr(t) to denote the replen-

ishment function and we suppose that it is lesser than or equal to the battery capacity.

Storage: The replenishment of the storage unit is performed continuously even during
jobs execution and the level of the stored energy fluctuates between two thresholds Emin

and Emax where Emax is the maximum capacity of the storage unit and Emin is the
minimum energy level that keeps the system running. The difference between these two
thresholds is the part of the battery capacity dedicated to tasks execution. This capacity
is denoted C. We suppose that C is sufficient to execute at least one time unit of each task.
This means that C must be greater or equal to the maximum instantaneous consumption,
i.e. C ≥ max∀i(Ei/Ci), otherwise some tasks cannot be executed. We suppose also that the
storage device is carefully selected to ensure regular behavior, i.e. regular replenishment
and regular discharge in order to avoid charge/discharge speed variations and capacity
losses due to numerous charge/discharge cycles. Recall that supercapacitors can offer
these requirements.

For the sake of clarity, we can consider without loss of generality that Emin = 0 and
that C = Emax. The battery level at time t is denoted as E(t). Below, we use the word
“battery” to refer to the energy storage unit in order to simplify the language.

Consumption: Tasks energy cost should actually include not only dynamic and static
processor energy consumption but also the consumption of other devices that a task can
use, e.g. sensors and data transmission devices. Moreover, even if we consider only pro-
cessor consumption, the global consumption depends much more on the kind of circuitry
used by the code than on the execution duration [6]. For this reason we consider that
the execution time Ci and the energy consumption Ei of a task are fully independent.
For example, considering two tasks τi and τj that do not use the same devices, then, we
can have Ci < Cj and Ei > Ej. Furthermore, we consider that energy consumption is
function of time that is in reality not necessarily uniform. Actually, since tasks can use
different devices, it is difficult to predict the accurate energy profile of tasks. Moreover,
the worst energy consumption profile is not known up to now. This is a serious issue for
real-time predictability, however, including this constraint to scheduling decisions makes

3

Emax

Energy source Battery

Pr < C

Real-time task set

Processor Sensor ...

Harvester

}
Emin

E(t) C

...τ1(C1, T1,D1, E1, P1) τn(Cn, Tn,Dn, En, Pn)

Figure 2: Energy-harvesting system model

it a hard problem with many parameters to consider. As a first step and for the sake
of simplicity, we consider for the scope of this dissertation that the energy consumption
function is different from task to task but linear, which means that each task has its own
constant instantaneous consumption Ei/Ci.
Figure 2 recapitulates these descriptions.

3 Definitions and Notations
In order to facilitate the understanding of the next sections, we first redefine and prove

some properties.

3.1 Model and Notations
We consider the following notations.

• si,j: the starting time of job Ji,j,

• ai,j: the next activation time of task τi after time t,

• ci(t): the remaining execution time of the current job of task τi at time t. It is equal
to 0 if the job is already finished,

• ei(t): the remaining energy cost of the current job of task τi at time t. It is equal
to 0 if the job has finished its execution,

• di(t): the absolute deadline of the current job of task τi at time t, it does not exist
if the job is not yet activated,

• si(t): the execution starting time of the current job of task τi at time t, it is undefined
if the job is not yet activated.

4

3.2 Definitions
Definition 1 (Energy Demand). The energy demand of priority level-i of time interval
[t1, t2[denoted Wei(t1, t2) is the amount of energy to be consumed by the execution of the
jobs of priority levels 1, . . . , i−1, i that are requested within interval [t1, t2[or are pending
at time t1. It can be obtained by Equation 3.

Wei(t1, t2) =
∑
j≤i

ej(t1) +
⌈
t2 − aj(t1)

Tj

⌉
× Ej (3)

The intuition behind Equation 3 is derived from the notion of processor demand. It
represents the sum of the cost of energy of all the jobs of priority equal or higher than i
that are requested during the time interval [t1, t2[. The energy demand of time interval
[0, t[is just noted Wei(t) and can be obtained by Equation 4.

Wei(t) = Wei(0, t) =
∑
j≤i

⌈
t−Oj

Tj

⌉
× Ej (4)

Definition 2 (Energy Budget). The energy budget of the system during time interval
[t1, t2] denoted Bu(t1, t2) is the amount of energy available until time t2, i.e. the battery
level at time t1 plus the energy replenished during time interval [t1, t2]. It can be computed
by Equation 5.

Bu(t1, t2) = E(t1) +
∫ t2

t1
Pr(t) dt (5)

Definition 3 (Energy Balance). The energy balance of a job Ji,j at time t denoted Bai(t)
is the difference between the energy budget between time t and the deadline of Ji,j, and the
energy demand of the same priority level and the same time interval. It can be obtained
by Equation 6.

Bai(t) = Bu(t, di,j)−Wei(t, di,j) (6)

We notice that if the time t does not coincide with a request time of task τi and the
previous job has already finished its execution, we must include the execution of the lower
priority jobs between time t and the next request time of priority level-i, i.e. ai(t), because
they consume energy before time ai(t) and can change the energy balance at time di,j as
illustrated in Figure 3. However, these lower priority executions units depend on the used
scheduling algorithm, i.e. energy-work-conserving or not. This limitation is discussed in
Section 4.

3.3 Energy-Work-Conserving
Without taking into account energy constraints, the work-conserving property in real-

time scheduling means that the scheduling algorithm does not add idle times when there
is at least one job ready to execute. However, when we consider energy-harvesting con-
straints, scheduling algorithms may add necessary idle periods to replenish energy. Then,
this notion is extended to energy-work-conserving to include replenishment time.

Furthermore, in the energy-harvesting context, a scheduling algorithm is considered
as energy-work-conserving if it schedules jobs as soon as they are ready to execute and
the energy is sufficient to execute at least one time unit.

This definition means that scheduling algorithms do not replenish energy more than
needed, otherwise, the algorithm is considered as non-energy-work-conserving.

5

t

d4(t)

d2,1

L

interferences of jobs with higher priority than

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
4

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
6

ba2(d2,1)<0

τ2

not yet finished lower priority jobs

already finished lower priority jobs

(RBF2(27))

(DBF6-3(27))

(RBF2(27)-DBF6-3(27))

Figure 3: Energy balance of J2,1 at time t=8

- Oi Ci Ei Ti Di Pi

τ1 2 2 12 10 3 1
τ2 0 3 15 15 15 2

(a) Emax = 10, Emin = 0 and Pr = 3

0 2 4 6
0

2

4

6

8

10E
max

E
min

deadline_missed

0 2 4 6

τ
1

0 2 4 6

τ
2

(b) PFPASAP schedule

0 2 4 6 8 10 12 14
0

2

4

6

8

10E
max

E
min

0 2 4 6 8 10 12 14

τ
1

0 2 4 6 8 10 12 14

τ
2

(c) A valid schedule

Figure 4: PFPASAP is not optimal

Unfortunately, PFPASAP , which is an energy-work-conserving algorithm, loses its op-
timality when we consider tasks with offsets or an initial battery level higher than Emin.
Figure 4 illustrates a counter example. We can see in Figure 4(b) that the lower priority

6

task τ2 is executed before τ1 following the energy-work-conserving principle, i.e. as soon
as the energy is sufficient to execute, it consumes the energy needed for the higher priority
task τ1 which needs more time than its deadline to replenish the required energy. We can
see that in such a situation, executing as early as possible can lead to a deadline miss
while delaying the execution of lower priority tasks can avoid missing deadlines as shown
in Figure 4(c). Following this intuition, we propose Lemma 1.

Lemma 1. The energy-work-conserving scheduling is not optimal for the scheduling prob-
lem of fixed-priority energy-harvesting systems.

Proof. To prove this property we just have to find an example where a valid energy-work-
conserving schedule is not possible while a valid schedule exists.

Let us consider a task set denoted Γ composed of two tasks τ1 and τ2 with the following
configuration:

D2 = 2× C2 + C1
D1 = C1
O1 > O2
C1 + C2 = O1 +D1

E2 =
∫ O1

0
Pr(t).dt

E1 + E2 > E(0) +
∫ O1+D1

0
Pr(t).dt

E1 + E2 ≤ E(0) +
∫ D2

0
Pr(t).dt

T1 = T2

(7)

We can see that it is possible to finish executing τ1 before O2 according to an energy-
work-conserving scheduling. However, it is not possible to schedule both τ1 and τ2 inside
time interval [0, O1 + D1] because the available energy is not sufficient (see Condition
7). Thus, more delay is needed to harvest more energy. Then, executing τ1 before τ2
and delaying τ2 leads to miss the deadline of τ2. Moreover, delaying τ1 leads to add
idle times while there is an active job and enough energy to execute immediately which
violates the property of energy-work-conserving scheduling. In this case, it is impossible
to produce a valid schedule with an energy-work-conserving scheduling. Then, we prove
that energy-work-conserving fixed-priority scheduling cannot be optimal.

3.4 Energy-Lookahead Scheduling
In the classical real-time scheduling theory, a lookahead algorithm is an algorithm that

is able to predict future job requests, for example in sporadic or periodic task models.
However, in energy-harvesting model there is a new parameter subject to fluctuations:
the incoming energy or the replenishment function. Therefore, we need to redefine the
term of lookahead.

Definition 4 (Energy-Lookahead). A energy-lookahead scheduling algorithm attempts to
foresee the effects of a scheduling decision to evaluate the schedulability of future jobs. The
aim of lookahead is to chose the best scheduling decision that does not lead to avoidable
deadline misses. The clairvoyance includes the battery replenishment function as well as
tasks inter arrival times. In the opposite, if the algorithm does not consider the future
state of the system, then, it is said non-energy-lookahead.

7

- Oi Ci Ei Ti Di Pi

τ1 28 2 38 80 40 1
τ2 7 2 32 16 8 2
τ3 3 2 14 80 70 3
τ3 0 1 12 68 44 4

Table 1: Task set Γ with Pr = 3, Emax = 100, Emin = 0 and E0 = 6

This means that the algorithm has knowledge a priori of the future state of the sys-
tem, namely jobs activation times and energy replenishment function. The lookahead or
clairvoyance consists of computations or scheduling simulation performed over a future
interval of time that we call the lookahead window.

Definition 5 (Lookahead Window). The lookahead or clairvoyance window for a priority
level-i at time t is the shortest time interval [t, t+L[such that the scheduling decision of
priority level-i at time t does not impact the scheduling decisions of time interval [t+L,∞).

Using this definition, we propose Conjecture 1.

Conjecture 1. No non-energy-lookahead scheduling algorithm is optimal for fixed-priority
energy-harvesting systems.

Insight. From Lemma 1 we know that non-work-conserving scheduling is needed for
an optimal algorithm. This means that additional delays are needed to ensure meeting
deadlines and energy requirements. It is obvious that the optimal length of these delays
depends on the available energy and the potential interferences, which means that the
replenishment function and the request times of higher priority jobs are needed to compute
the right delay for each job. Therefore, delaying execution without any knowledge about
the future incoming energy and the future activation times of higher priority jobs may
lead to too short or too long idle periods which can compromise the respect of deadlines.

4 Algorithms
From Lemma 1 and Conjecture 1, we can consider that an optimal algorithm for fixed-

priority energy-harvesting systems must be non-work-conserving and energy-lookahead.
In this section we explore some scheduling algorithms and heuristics that attempt to
be optimal. We start by showing a counter example that is feasible with fixed-priority
scheduling but is not schedulable with all the fixed-priority algorithms presented until
now in this dissertation. Then, we discuss the possibility of finding or building an optimal
algorithm.

The task set described in Table 1 shows many situations that make the fixed-priority
scheduling for energy-harvesting systems difficult. In the following we explain why each
scheduling algorithm fails to schedule this task set in this configuration while a feasible
schedule exists: Figure 5 shows the beginning of such a schedule, and we know that is
feasible because there is no deadline miss within twice the hyper-period.

PFPASAP : the first intuitive scheduling algorithm for fixed-priority energy-harvesting
systems is to use the classical FTP algorithm and add replenishment periods when Emin

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 5: A feasible schedule of task set Γ

Algorithm 1 PFPASAP Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t) + Pr − Emin ≥ Ek/Ck then
7: execute τk for one time unit
8: end if
9: end if

10: t← t+ 1
11: end loop

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

deadline_missed deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 6: PFPASAP counter example

is reached. The PFPASAP policy behaves so. As described in [2], it schedules tasks as soon
as possible when the energy is sufficient and replenishes otherwise. The replenishment
periods are as long as needed to execute one time unit of the higher priority job ready to
execute (see Algorithm 1).

Again, PFPASAP is not optimal because executing as soon as possible maximizes the
energy demand within a short interval of time which can lead to a lack of energy and then
a deadline miss. As we can see in Figure 6, jobs of lower priority than J2,1, namely J3,1
and J4,1, are executed at early as possible and consume the energy needed for a higher
priority job that is requested few instant later, i.e. J2,1. Job J2,1 misses its deadline while

9

Algorithm 2 PFPALAP Algorithm
1: t← 0
2: loop
3: if ST (t) ≥ 0 then
4: τk ← the highest priority active task at time t
5: execute τk

6: else
7: idle the system to replenish energy
8: end if
9: t← t+ 1

10: end loop

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
0

10

20

30

40

50

60E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

τ
1

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

τ
3

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

τ
4

Figure 7: PFPALAP counter example

the lower priority jobs, namely J3,1 and J4,1, can be delayed to avoid this situation.

PFPALAP : the second intuitive idea is to schedule jobs prior to their deadlines in order to
permit a maximum replenishment of energy before executing. The PFPALAP algorithm
was proposed based on this intuition. PFPALAP postpones jobs executions as long as
possible all the time. Whenever there is available slack-time, executions are delayed (see
Algorithm 2).

Unfortunately, this is one of the counter intuitive ideas of fixed-priority scheduling for
energy-harvesting systems. In fact, the PFPALAP algorithm is not optimal also even with
an unlimited battery capacity because the computation of slack-time does not consider
energy constraints. As we can see in Figure 7, a deadline miss can occur while a feasible
schedule exists (Figure 5). A deadline miss occurs at time 31 when the energy balance
of time interval [23, 31] is negative even though there is available slack-time. The energy
available until the deadline of job J2,2 is lesser than the energy demand of the same time
interval. This negative energy balance is due to the fact that delaying job too much J2,2
leads the system to anticipate the execution of the higher priority job J1,1 which increases
the energy demand of time interval [23, 31] and leads to an insufficient energy to finish
executing J2,2 before its deadline. This phenomena is due to the fact that the slack-time
computation used for this algorithm does not consider the energy requirements of the

10

Algorithm 3 PFPST Algorithm
1: while true do
2: while there is ready jobs do
3: while E(t) > Emin do
4: execute jobs according to fixed-priority rules
5: end while
6: while E(t) < Emax and ST (t) > 0 do
7: idle the system to replenish energy
8: end while
9: end while

10: while there is no active jobs do
11: idle the system
12: end while
13: end while

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40

50E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

deadline_missed deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 8: PFPST counter example

system.

PFPST : after PFPASAP and PFPALAP one can propose a hybrid algorithm that can
behave sometimes as PFPASAP and sometimes as PFPALAP . The PFPST algorithm was
built following this intuition. It executes jobs as soon as possible whenever the energy is
sufficient to execute and replenishes otherwise. The replenishment periods are as long as
the available slack-time (see Algorithm 3).

Even though this algorithm improves the schedulability rate comparing to PFPALAP ,
it is still not optimal because of the same reasons than PFPALAP and PFPASAP . Figure
8 shows a counter example.

FPCASAP : the computation of slack-time in PFPALAP and PFPST algorithms is con-
sidered as time clairvoyance or time lookahead because it uses the arrival times of future
jobs. However, the energy constraints were not considered, this is why the precedent
algorithms fail to schedule some feasible task sets.

Thus, one can add energy clairvoyance to compute the right retardations that lead
to a valid schedule. Following this idea, the As Soon As Possible Clairvoyant Fixed-
Priority Algorithm (FPCASAP) was proposed in [3]. Before authorizing a job to execute,

11

Algorithm 4 FPCASAP Algorithm
1: t← 0
2: loop
3: A← set of active jobs at time t
4: if A 6= ∅ then
5: Ji,j ← the highest priority job of A
6: di(t)← the next absolute deadline of Ji,j

7: if ResponseT imeP F PASAP
(t+ 1, Ji,j, E(t+ 1)) > di(t) then

8: execute Ji,j for one time unit at time t
9: else

10: if ClairvoyanceP F PASAP
(t, Ji,j, di(t), E(t)) then

11: execute Ji,j for one time unit at time t
12: else
13: suspend the system for one time unit
14: end if
15: end if
16: end if
17: t← t+ 1
18: end loop

it simulates the PFPASAP schedule of the current and the future jobs in a clairvoyance
window or a looakahead window.

The FPCASAP algorithm inherits the behavior of PFPASAP and adds clairvoyance
capabilities. It schedules jobs as soon as possible whenever the two following conditions
are met:

• there is enough energy available in the storage unit to execute at least one time
unit,

• the execution of the current job does not lead to a deadline miss of jobs of higher
priority which are requested during the clairvoyance window.

If these conditions are not satisfied, then, the algorithm suspends all executions for one
time unit and then it tries again.

Algorithm 4 shows how FPCASAP takes scheduling decisions at time t when a job
of priority level-i is ready to be executed. The FPCASAP algorithm checks first if the
execution of jobs of priority level higher or equal than i meet theirs deadlines. Then, it
checks if it is possible to delay the current job by comparing its response time at time t+1
with its deadline (line 7). After that, it repeats the process for higher priority jobs. This
prevent delaying the current job uselessly because in the case where it is impossible to
delay, if a deadline miss occurs in a higher priority level in the clairvoyance window, the
deadline miss cannot be avoided and the system is not schedulable with FPCASAP . The
length of the clairvoyance window for a job is not proved but can be intuitively defined as
the interval of time starting from time t to the absolute deadline di(t) because the current
job of level-i cannot be delayed more than its deadline.

Unfortunately, FPCASAP is not optimal because when a future deadline is detected
with the clairvoyance algorithm, all the jobs are delayed until the deadline miss disappears
and it is too much in certain cases. This delay is from the left to the right following the
time increasing axis. When the energy balance is negative at the end of the clairvoyance

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40

50
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 9: FPCASAP counter example

window, delaying a lower priority job for an unbounded period can lead to a deadline
miss when a higher priority job is also delayed to a later time than the deadline of the
lower priority job. Computing the response time at time t+ 1 of the ready job according
to PFPASAP algorithm is not sufficient because it does not reflect the real response time
of the job. Figure 9 illustrates a counter example where such a situation occurs. We can
see that at time 0 when job J4,1 is ready to execute, the PFPASAP lookahead schedule
detects a deadline miss in a higher priority level in the looakahead window, i.e. the
deadline of job J2,1 (see Figure 6), then, it postpones execution for one time unit and
then checks again at time 1, 2 and 3 and the same decision is taken. However, from time
3 to time 51, job J4,1 cannot be executed because of the higher priority interferences and
the required replenishments. This example teaches us that when the energy balance is
negative, in this case in time interval [0, 44], it is impossible to schedule all the jobs that
are requested inside this interval. Thus, the only way is to delay some jobs out of this
interval. Moreover, we can see that all the jobs cannot be pushed out of this interval, only
the ones that are requested inside the interval and have deadlines outside the interval.
We can see that FPCASAP takes the wrong decision by delaying the lower priority jobs,
in this case J4,1, instead of higher priority jobs.

FPLSA: one of the possible ways to find optimal fixed-priority algorithms is to try
to adapt the behavior of some optimal algorithms for EDF scheduling. One can use
the concept of the LSA presented in [7]. It consists of computing the latest time from
which jobs can be executed continuously. This algorithm was proved to be optimal for
task sets that consume energy with the same rate. To adapt LSA algorithm to fixed-
priority scheduling, we assume that all tasks consume energy with the same rate, i.e.
∀ τi, Ei/Ci = r. Furthermore, we keep the same scheduling schemes and we use fixed-
priority scheduling instead of EDF ones. Therefore, the algorithm becomes as described
in Algorithm 5 and we call it FPLSA.

The latest job starting time denoted si,j is computed by Equation 8.
si,j = max(s′i,j, s∗i,j)

s∗i,j = di,j −
E(ai,j) + g(ai,j, di,j)

r
g(ai,j, s

′
i,j)− C = g(ai,j, di,j) + (s′i,j − di,j)× r

(8)

13

Algorithm 5 FPLSA Algorithm
1: t← 0
2: while true do
3: Ji,j the ready job with the higher priority at time t
4: calculate si,j

5: if t ≥ si,j or E(t) + Pr > Emax then
6: execute job Ji,j

7: else
8: idle the system
9: end if

10: t← t+ 1
11: end while

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150E

max

E
min

1,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

2,1 2,2

deadline_missed

2,3 2,4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

3,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 10: FPLSA counter example

Unfortunately, this algorithm is not optimal even if we consider the same consumption
rate for all tasks. We can see in Figure 10 that the computation of the starting time si,j

is not adapted to fixed-priority scheduling. In fact, si,j is the latest time from which we
can execute continuously until the deadline di,j. This works for EDF scheduling because
in EDF all higher priority jobs have their request times and deadlines inside interval
[t, di,j]. However, this is not the case in fixed-priority scheduling which can lead to too
long delays. In Figure 10, we can see that the delay computed at time 3 for job J3,1 is
much longer than the delay computed for job J4,4 at time 0 which led this later to miss
its deadline.

FPLeg: the counter examples of the precedent algorithms show that even with energy
and time clairvoyance the above algorithms are still not optimal. In fact, the priorities
of tasks complicates the computation of the clairvoyance. The precedent examples show
that in the case when the energy balance is negative in a certain interval of time, it is
necessary to reduce the energy demand by pushing some jobs out of the interval. Then,
the difficulty now is to find the subset of jobs to delay and calculate the lengths of their
delays. We showed that delaying all the jobs at the maximum without considering energy
like PFPALAP , delaying all the lower priority jobs when a future deadline miss is detected
as FPCASAP and delaying jobs to satisfy only energy constraints like FPLSA are not
the right decisions to reduce safely the energy demand within a time interval. In fact,
the potential jobs to be pushed out of the interval are the ones that are requested inside

14

Algorithm 6 FPLeg Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t) ≥ Ek/Ck and Slack.T ime(t) ≤ 0 then
7: execute τk for one time unit
8: else
9: replenish until time t+ max(1, Slack.T ime.with.virtual.deadlines(t))

10: end if
11: end if
12: t← t+ 1
13: end loop

the interval and have their deadlines outside. These kind of jobs can be delayed by
anticipating the execution of lower priority jobs. By doing so, the higher priority jobs to
be pushed out need more replenishment time since the energy balance is negative. This
leads to push them out of the interval and permits lower priority jobs to have more energy
to execute which can help them to meet their deadlines.

The anticipation of lower priority jobs can be done by introducing a kind of virtual
deadlines that coincide with request time of the jobs to be pushed out of the considered
time interval. Then, once the virtual deadlines are set, we delay all the jobs at the maxi-
mum using the new virtual deadlines in the slack-time computation algorithm. Following
this intuition we propose the FPLeg algorithm for Fixed-Priority as Late as possible with
energy guaranty which is inspired from the EDeg algorithm presented in [5].

The idea behind this algorithm is to use the same scheduling schemes as PFPALAP

but by using virtual deadlines that consider energy constraints.

Definition 6 (Virtual deadline). The virtual deadline of a job Ji,j denoted vdij is the
earliest time that makes its energy balance positive. This time can be the effective deadline
of the job or the request time of one of the higher priority jobs described above. It must
satisfy the following conditions: {

vdi,j ≤ di,j

Bu(t, vdi,j) ≥ 0

By analyzing the counter example of PFPALAP shown by Figure 7, we can see that
if the energy balance was positive at time 31, the schedule would be valid and the slack-
time time would be correctly calculated. Therefore, using virtual deadlines that makes
the energy balance positive may be an interesting idea to build an optimal algorithm.
Then, FPLeg behaves as described in Algorithm 6.

Figure 11 illustrates the scheduling schemes of FPLeg algorithm. We can see that
the virtual deadline of job J4,1 was shifted from time 44 to time 28 where the energy
balance is positive, i.e. the battery level at time 28 is 0, and then, the as late as possible
schedule produced in time interval [0, 28] is valid. However, we notice that this does not
solve completely the problem of late scheduling. In fact, using virtual deadlines improves
schedulability but there exist some cases where it anticipates the execution of some lower
priority jobs that consume the energy needed for other higher priority jobs. This is

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40

50
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 11: FPLeg counter example

illustrated by Figure 11 at time 46. Even though the energy balance was positive at time
28, the missed deadline (time 47) is due to the anticipated execution of job J3,1 which
can be delayed further. Unfortunately, this proves that FPLeg is not optimal and that
the fixed-priority scheduling for energy-harvesting systems is subject to many counter
intuitive ideas.

FPlh: The use of virtual deadlines in FPLeg was a good idea because it helps reducing
the energy demand when the energy balance is negative. However, the above counter
example shows that having a positive energy balance is not sufficient to check whether
the current virtual deadline is the right one or not. Combining the idea of lookahead of
FPCASAP with the idea of virtual deadlines can be an interesting intuition to achieve an
optimal algorithm.

In the following we propose a new algorithm called FPlh for Fixed-Priority lookahead
that combines the ideas of virtual deadlines and lookahead. The virtual deadlines make
the energy balances positive and the lookahead computation checks if all future deadlines
are met during a bounded window. Therefore, the definition of the virtual deadline should
take into account the future higher priority jobs. Moreover, the looakahead computation
consists not only of calculating the energy balance of the current job Ji,j but also the one
of higher priority jobs that are included in the lookahead window. For this reason, we
need to generalize the energy balance formula to compute the energy balance of any job
at any moment.

Definition 7 (Energy Balance). The energy balance of priority level-i at time interval
[t1, t2[denoted Bai(t1, t2) is the difference between the energy budget and the energy de-
mand during [t1, t2[. It can be computed with Equation 9.



A =
∑
j>i

(DBFj(0, ai(t1))× Ej

B = (RBFj(0, ai(t1))−DBFj(0,−ai(t1)))× (Ej − ej(ai(t1)))
Bai(t1, t2) = Bu(t1, t2)−Wei(t1, t2)

= Bu(0, t2)−Wei(0, t2)− A+B

(9)

where :

16

• A: is the energy demand of lower priority jobs within time interval [0, ai(t1)[, i.e.
finished jobs (see Figure 3),

• B: is the energy demand of lower priority jobs that are probably not yet finished at
time ai(t1). To compute this value we need to simulate the execution with PFPALAP

algorithm.

Now, we redefine the virtual deadline to include the lookahead computation.

Definition 8 (Virtual Deadline). The virtual deadline vdi,j of a job Ji,j is an early dead-
line that makes the energy balance Ba(t, vdi,j) positive and does not cause negative energy
balances for jobs of higher priority tasks withing the lookahead window that ends at time
L. It must respect the following conditions:

• vdi,j ≤ di,j

• Bai(t, vdi,j) ≥ 0

• ∀ Jk,l ∈ C, Bak(ak,l, dk,l) ≥ 0 where C = {Jk,l, k < i and ak,l > ai,j and dk,l ≤ L}

The FPlh algorithm is an extension of FPLeg algorithm described above. It post-
pones executions whenever there is available slack-time like PFPALAP but the slack-time
computation is done using the virtual deadlines. Note that the virtual deadline vdi,j co-
incides with a request time of a higher priority job that is activated before the deadline
of Ji,j and has an absolute deadline later than the one of Ji,j.

For a job Ji,j at time t, we know that the higher priority jobs that have an absolute
deadline earlier than di,j cannot be delayed outside the time interval [t, di(t)]. Thus, the
only jobs that can be pushed totally or partially out of this interval are those that have
a deadline later than di,j. The virtual deadline of Ji,j can be the request time of one of
these jobs. To find the right virtual deadline, we test all of them starting with the earliest
one. This test consists of checking two conditions:

• whether the energy balance of the considered job at this time is positive or not,

• whether there is future deadline misses within the lookahead window.

The length of the lookahead window is one of the problems of lookahead scheduling, it
is at least bounded but should be specified carefully. For this algorithm, we consider that
the lookahead window begins at time t and ends at time L which is the latest deadline
of higher priority jobs that are requested before time di,j and have their deadlines after
di,j. We choose this length because the jobs to delay cannot be delayed longer than the
length of the lookahead window.

The lookahead function consists of checking the energy balance of all the jobs that are
requested within the lookahead window as described in Algorithm 8.

These rules allow us to be sure that the selected virtual deadlines prevent negative
energy balances and future deadline misses, and lead to a correct energy-aware slack-time
computation that can give the correct retardations. Figure 5 shows the correct schedule of
the task set that was not feasible with all the precedent algorithms. We can see that the
virtual deadline of job J4,1 was shifted to time 3 which makes the energy balance in time
interval [0, 3] positive and ensure that all higher priority jobs included in the lookahead
window [0, 70] meet their deadlines in contrast to FPLeg.

17

Algorithm 7 FPlh Algorithm
1: t← 0
2: loop
3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t)− Emin ≥ Ek/Ck and Slack.T ime.with.virtual.deadlines(t) ≤ 0 then
7: execute τk for one time unit
8: t← t+ 1
9: else

10: replenish until slack-time time unit
11: t← t+ max(1, Slack.T ime.with.virtual.deadlines(t))
12: end if
13: end if
14: end loop

Algorithm 8 Lookahead(Bai(t), t, τi, L) Algorithm
1: C = {Jk,l, k < i and ak,l > t and dk,l ≤ L}
2: for Jk,l ∈ C do
3: if Bak(t, dk,l) < 0 then
4: return False
5: end if
6: end for
7: return True

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

10

20

30

40
E
max

E
min

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

τ
4

Figure 12: A FPlh schedule

After all the precedent intuitions and counter intuitive ideas, we think that this algo-
rithm is optimal or at least dominates than the other algorithms. However, its main issue
is its complexity. In fact, the length of the lookahead window and the relationship be-
tween jobs deadlines are the main factors that increase the complexity of FPlh. Therefore,
the following questions arise:

1. Does the use of virtual deadlines change the set of jobs to check with lookahead
computations ?

• Using earlier deadlines can decrease the number of jobs to check because the

18

interval to study is shortened. For example, when a valid virtual deadline is
found for the higher priority job with latest deadline, the lookahead window
becomes shorter.
• Using real deadlines may lead to a negative energy balance for a higher priority

job, as shown in the counter example of PFPALAP . Furthermore, computing
virtual deadlines by only checking the energy balance of the current job can
lead to a wrong virtual deadline as shown in the counter example of FPLeg.
• Then, the virtual deadline computation for a job of priority level-i needs to

compute the energy balance Bai(t, di(t)) and the energy balances of higher
priority jobs within the lookahead window as shown in Definition 8. Moreover,
since a part of the energy demand of lower priority jobs that have already
began their execution before the request time of the job whose virtual deadline
is being computed is necessary as shown with vertical lines pattern in Figure
3. Their virtual deadlines are also needed to compute the energy balance of a
higher priority job. This means that to compute the virtual deadline of one job,
we need both virtual deadlines of higher and lower priority jobs which leads to
a kind of cross dependency between the virtual deadlines of different priority
levels. Figure 13 illustrates such a situation. We can see that to compute the
virtual deadline of job J4,1 at time 8, we need the one of J2,1 because it is inside
the lookahead window. Moreover, to compute the virtual deadline of job J2,1
at time 20, we need the real schedule of jobs J4,1 and J5,1 which depend on
their virtual deadlines. Therefore, there is an interdependence between virtual
deadlines computation which makes calculating them one by one impossible.
A combination of virtual deadlines is the set of virtual deadlines of the jobs
that are included in the lookahead window. Since each job may have several
potential virtual deadlines, finding the right one means finding the right virtual
deadlines of all the other jobs. Then, to find such correct virtual deadlines, we
have to pick one combination and test if it works. We do this until we find a
correct combination. In the worst-case we haveMN combinations to test which
is an exponential complexity, where M is the maximum number of potential
virtual deadlines of a job and N is the maximum number of jobs that we can
have inside a lookahead window.

2. Are the virtual deadlines necessary to compute the energy balance ?

• The energy demand of higher priority levels is calculated only with requests
times, i.e. with request bound function, thus, virtual deadlines of higher pri-
ority levels cannot change the final energy demand.
• The energy demand of lower priority jobs that have already finished their

execution is calculated only with deadlines, i.e. with demand bound function
denoted A in Equation 6. Then, the use of virtual deadlines of higher priority
levels cannot change the final energy demand because they are earlier than the
real deadlines.
• The energy demand of lower priority jobs that have not yet finished, denoted B

in Equation 9 depends on the executions done before time ai(t1) with PFPALAP

policy which is based on deadlines. Using virtual deadlines for these jobs can
change the final energy demand.

19

t

d4(t)

d2,1vd2,1

L

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
4

deadline_missed

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

τ
6

ba2(vd2,1)>0 ba2(d2,1)<0

Figure 13: Interdependency between virtual deadlines

Therefore, virtual deadlines of lower priority jobs are needed for the energy balance
computation.

3. Assuming that computing virtual deadlines is an NP-hard problem, are they neces-
sary for an optimal algorithm ?

• If yes, the scheduling problem for fixed-priority energy-harvesting systems is
also NP-Hard also,
• Otherwise, it is an open problem.

These insights confirm that the fixed-priority scheduling for energy-harvesting systems
is not easy to handle. Moreover, the only algorithm we have up to now that could be
optimal has an exponential complexity. Therefore, finding an optimal algorithm with a
reasonable complexity or proving that the fixed-priority problem scheduling for energy-
harvesting systems is an NP-Hard problem is still an open problem.

5 Conclusion
In this work we explored the possibility of the existence of an optimal scheduling algo-

rithm for energy-harvesting systems. We started by proving that such an algorithm must
be both non-energy-work-conserving and lookahead (or clairvoyant). Then, we listed some
ideas of scheduling algorithms that seem intuitively optimal and we showed with counter
examples why they are not. We showed that the computation of the needed delays, i.e.
replenishment periods, must consider jobs deadlines and energy cost as well as the re-
plenished energy. Moreover, we showed also that deciding which job to delay is the main
problem of building an optimal algorithm. We know now that considering a late or a lazy
scheduling and having a positive energy balance at the deadline of a job is not sufficient.
The maximum delay for a job must ensure not only a positive energy balance but also
the respect of all deadlines in a bounded lookahead window. This idea is very interesting,

20

however, the exact lookahead computation seems to be complicated and have an exponen-
tial complexity. This complexity seems to be difficult to reduce because the computation
of the maximum delay of one job, i.e. the computation of the virtual deadline, depends
on the maximum delay of the other jobs inside the lookahead window. There is a kind
of cross dependency between jobs which complicates the computations. The only inves-
tigated solution here is to perform a brute force search for the right combination of jobs
delays or virtual deadlines which has an exponential complexity. The conclusion of this
work is that the correct late scheduling that respects the energy constraints needs earlier
deadlines and that the computation of these deadlines has an exponential complexity.
Moreover, if an optimal algorithm requires these deadlines, then, the scheduling problem
of fixed-priority energy-harvesting systems is a hard problem. Otherwise, we should find
an other way to compute the right delays, this is still an open problem.

References
[1] Y. Abdeddaïm, Y. Chandarli, R. Davis, and D. Masson. Schedulability analysis for

fixed priority real-time systems with energy-harvesting. In Proceedings of the Interna-
tional Conference on Real-Time Networks and Systems (RTNS), pages 67–76, 2014.

[2] Y. Abdeddaïm, Y. Chandarli, and D. Masson. The Optimality of PFPASAP Algo-
rithm for Fixed-Priority Energy-Harvesting Real-Time Systems. In Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[3] Y. Abdeddaïm, Y. Chandarli, and D. Masson. Toward an optimal fixed-priority algo-
rithm for energy-harvesting real-time systems. In Proceedings of the Work in progress
session of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 45–48, 2013.

[4] Y. Chandarli, Y. Abdeddaïm, and D. Masson. The Fixed Priority Scheduling Prob-
lem for Energy Harvesting Real-Time Systems. In Proceedings of the work in progress
session of the the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), 2012.

[5] M. Chetto. Optimal scheduling for real-time jobs in energy harvesting computing
systems. IEEE Transactions on Emerging Topics in Computing, 2014.

[6] R. Jayaseelan and T. Mitra. Estimating the Worst-Case Energy Consumption of
Embedded Software. In Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2006.

[7] C. Moser, L. Thiele, L. Benini, and D. Brunelli. Real-time scheduling with regenerative
energy. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS),
ECRTS ’06, pages 261–270. IEEE Computer Society, 2006.

21

	Introduction
	Task Model

	General Model
	Energy Model

	Definitions and Notations
	Model and Notations
	Definitions
	Energy-Work-Conserving
	Energy-Lookahead Scheduling

	Algorithms
	Conclusion

