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ABSTRACT 
The non-linear dynamic behavior of an on-board rotor 

mounted on hydrodynamic journal bearings and subject to 
rigid base excitations is investigated in this work. The proposed 
finite element rotor model takes into account the geometric 
asymmetry of shaft and/or rigid disk and considers six types of 
base deterministic motions (rotations and translations) and 
non-linear fluid film forces obtained from the Reynolds 
equation. The equations of motion contain time-varying 
parametric coefficients because of the geometric asymmetry of 
the rotor and the base rotations. In the case when sinusoidal 
excitations of the rotor base lead to periodic (harmonic and 
sub-harmonic) responses, an optimized shooting algorithm 
based on the non-linear Newmark time integration scheme is 
employed to solve the equations of motion. The non-linear 
phenomena observed in the on-board rotor-bearing system, 
such as period-doubling motion and chaos, are characterized 
by means of bifurcation diagrams, rotor orbits and Poincaré 
maps. 

1 INTRODUCTION 
The rotating machines occupy an important position in our 

life and play a paramount role in the modern industry. The rotor 
represents their key component and is subject to base 
excitations when it is embedded in moving systems. Vehicle 
turbochargers and gas turbine rotors installed in power plants 
are especially concerned with such a situation. 

The rotor systems are complex and their dynamic analysis 
is rather difficult. Several studies focused on making a clear 
understanding of the dynamics of symmetric/asymmetric 
rigid/flexible rotor systems supported by linear/non-linear 
elastic bearings in the case of a fixed base, see, for example, 
Lalanne and Ferraris [1] and Genta [2]. Berlioz et al. [3] 
investigated numerically and experimentally the bifurcation of 
solutions of the non-linear equations of motion with periodic 

parameters for an on-board pendulum. Oncescu et al. [4] 
generalized a finite element procedure for rotor-bearing systems 
to include the effects of the asymmetry of shaft and/or bearing 
and predicted the dynamic behavior of such systems. 

The rotor-hydrodynamic bearing system is fully non-linear 
due to non-linear fluid forces acting locally on it. Li and Xu [5] 
studied a Jeffcott rotor mounted on fluid film infinite-length 
bearings to predict periodic orbits, their periods and their 
stability by employing the generalized shooting method. 
Bifurcation diagrams as well as harmonic, sub-harmonic and 
quasi periodic responses and their Poincaré maps were 
investigated for a flexible rotor (Chen and Yau [6]) and a 
vertical rigid rotor (Shi et al. [7]) supported by hydrodynamic 
short bearings. 

Srinivasan and Soni [8] examined the influence of spin, 
base rotation as well as axial force and axial torque on the 
seismic response of a rotor-bearing system. Hori and Kato [9] 
studied the seismic response of a Jeffcott rotor supported by 
fluid film bearings to a real seismic wave and investigated its 
stability by calculating the locations of the disk and journal 
centers. Kang et al. [10] and Cavalca et al. [11] observed the 
influence of the flexible supporting structure on the dynamic 
characteristics of the rotor-bearing systems. 

The number of works dealing with the prediction of 
dynamic behavior of the rotor systems excited by a sinusoidal 
motion of their base remains actually low. Duchemin et al. [12] 
employed the method of multiple scales for a simple rotor 
model under a sinusoidal rotation of the base in order to 
observe its dynamic stability. They showed also experimental 
results to validate the analytical study. Driot et al. [13] 
presented numerical orbits of a rotor induced by a sinusoidal 
rotational excitation of its base. According to their work, the 
comparison between numerical and experimental results was 
widely satisfactory. El-Saeidy and Sticher [14] calculated the 
responses of a rigid rotor-bearing system subject to rotating 
mass unbalance and sinusoidal movements of the base along or 
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around lateral directions using analytical solutions in the case of 
linear bearings and a time integration scheme in the case of a 
bearing cubic non-linearity. Das et al. [15] executed a numerical 
simulation of a flexible rotor system excited by a mass 
unbalance and a sinusoidal rotation of the base in order to 
investigate its active vibration control which was successful for 
avoiding the lateral parametric instability. Dakel et al. [16] 
computed the orbits and their spectral analysis for a rotor 
mounted on linearized hydrodynamic short bearings and excited 
by combined rotational and translational motions of its base. 
They predicted also the linear dynamic behavior of symmetric 
and asymmetric rotors on rigid bearings subject to combined 
constant rotation and sinusoidal translation of the base [17]. 
More recently, they presented a comparison between linear and 
non-linear responses of a rotor mounted on hydrodynamic short 
bearings and excited by sinusoidal motions of the base to assess 
the validity range of the linearized bearing model [18]. 

The present work is mainly based on the model presented 
in [18] but investigates in more detail the non-linear effects due 
to the combination of a non-linear rotor-bearing system 
(because of fluid film forces) and base excitations. The 
proposed on-board rotor is discretized using the finite element 
method based on the Timoshenko beam theory and excited by 
combined deterministic motions (three rotations and three 
translations) of its rigid base. The rotary inertia, the gyroscopic 
inertia, the shear deformation of shaft as well as the geometric 
asymmetry of shaft and/or rigid disk are taken into account. The 
non-linear hydrodynamic fluid forces within the bearing are 
evaluated by the Reynolds equation and treated as restoring 
forces acting on the shaft. The application of the Lagrange’s 
equations gives the non-linear differential equations of motion 
of the rotor in bending with respect to a non-inertial reference 
frame linked with the rigid base. These equations point out 
periodic parametric terms due to the geometric asymmetry of 
the rotor and time-varying parametric terms due to the 
rotational excitations of the base. The transient implicit 
Newmark time-step integration scheme combined with the 
Newton-Raphson iterative strategy is employed to treat the 
equations of motion. In addition, in the case when sinusoidal 
motions of the rotor base yield periodic (harmonic and sub-
harmonic) responses, an optimized shooting method is used to 
treat the equations of motion. The non-linear phenomena 
identified in the on-board rotor are described by means of 
bifurcation diagrams, rotor orbits as well as Poincaré maps. 

2 PRELIMINARY CALCULATIONS 
The rotor frequently consists of the disk, shaft, mass 

unbalance, bearing and base. The excitations taken into account 
are due to the mass unbalance and to the rigid base motions. 
Three principal Cartesian coordinate systems shown in Fig. 1 
are introduced to take into consideration the mobility of the 
rotor base. They are attached to the ground Rg, the rigid base R 
and the moving rotor Rl. 

The translational motions of the rotor base are defined by 
the coordinates xO(t), yO(t) and zO(t) of the position vector OgO 
of the origin O expressed in the frame fixed to the base R. The 
rotational motions of the rotor base are defined by the angular 
velocity vector components ωx(t), ωy(t) and ωz(t) of the rigid 
base R with respect to the ground Rg projected in the frame R. 

A generic point Cinit on the elastic line of the non-deformed 
shaft is considered. Its coordinates in the frame R are (0,y,0). Its 
lateral dynamic displacements u(y,t) and w(y,t) due to bending 
are expressed respectively with respect to the Ox and Oz axes. 
Additional details on the kinematics of the on-board rotor can 
be found in [17,18]. 

3 ENERGY AND VIRTUAL WORK CALCULATIONS 

Disk, Shaft and Mass Unbalance.   The necessary 
equations have been established in [17,18] and the calculations 
are briefly described hereafter. 

Since the disk is assumed to be rigid, only its kinetic energy 
is computed. The kinetic energy of a shaft elementary volume is 
considered as a generalization of the case of a disk. Moreover, 
the strain energy of the shaft is calculated using the Timoshenko 
beam theory. The mass unbalance located on the disk is 
characterized by its kinetic energy. 

Hydrodynamic Journal Bearing.   The short bearing 
theory is considered in this study. At a constant speed of 
rotation Ω of the rotor and for a constant static load Wr created 
by the rotor weight, the shaft geometric center Cbe

0 in the 
bearing holds a static equilibrium position defined by the 
displacement vector δbe

0=<ube
0,wbe

0>R
T expressed in R. 

In the dynamic regime, the dynamic transverse 
displacement vector of the shaft center is δbe=<ube,wbe>R

T. 
Assuming an isothermal and laminar flow of an isoviscous 
incompressible fluid, the hydrodynamic fluid pressure field is 
analytically calculated with the Reynolds equation. Its 
integration using the Gümbel boundary conditions leads to the 
dynamic polar (tangential and radial) components of the 
hydrodynamic force vector expressed in the polar frame linked 
with the hydrodynamic bearing Rbe and defined by the following 
formulations (see [19]) 
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Figure 1.  FRAMES OF REFERENCE FOR THE ON-BOARD 
ROTOR 
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where µbe, rbe, lbe and cbe are respectively the dynamic viscosity, 
radius, length, clearance of the bearing. εbe and φbe are the 
relative dynamic eccentricity and the dynamic attitude angle. 

The components of the dynamic fluid force vector 
Fbe=<Fbe

u,Fbe
w>R

T projected in the frame R are obtained by a 
classical change of basis between the frames Rbe and R. They 
are non-linear functions of the dynamic transverse displacement 

and velocity vectors ( ),be beδ δɺ . Since the bearing contribution 

appears as forces Fbe external to the rotor, their virtual work 
δWbe has to be established to apply the Lagrange’s equations 

( ), .T
be be be be beWδ δ= F δ δ δɺ (4) 

4 EQUATIONS OF MOTION 
The finite element method is selected to discretize the rotor 

and to describe its flexural motion as a function of the nodal 
displacement vector defined by δn=<un,wn,θn,ψn>R

T, i.e., the 
rotor has two lateral translations and two rotations at each node. 
The shaft finite element has two nodes and the shape functions 
are based on the Timoshenko beam theory. 

The non-linear equations of motion of the on-board rotor-
bearing system in bending are obtained after applying the 
Lagrange’s equations to the energies for the disk, the shaft finite 
elements and the mass unbalance as well as to the virtual work 
of the hydrodynamic bearings and assembling appropriately the 
produced vectors and matrices. They are written with respect to 
the non-inertial frame connected to the base R as follows 

( ) ( ) ( ) ( ) ( ), ,bet t t t+ + = +M δ C δ K δ F F δ δɺɺ ɺ ɺ (5) 

with δɺɺ , δɺ  and δ  the acceleration, velocity and displacement 
vectors of the on-board rotor-bearing system of dimension 
4(nesh+1)×1 where nesh is the number of shaft finite elements. 
M (t), C(t) and K (t) are respectively the mass, damping and 
stiffness matrices with time-varying coefficients due to the 
asymmetry of the rotating rotor and to its moving base. F(t) is 
the external linear force vector due to the mass unbalance and to 
the rotational and translational motions of the base. In addition, 

the external non-linear hydrodynamic force vector ( ),beF δ δɺ  of 

the bearings is opposite to the rotor motion. 
The matrices of Eq. (5) are defined as follows 
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The subscripts “d”, “ sh” and “b” refer to the disk, shaft as 
well as base respectively and express the contribution to the 
phenomenon represented by the corresponding matrix. The 
superscripts “c2” and “s2” signify the geometric asymmetry of 
the rotor expressed in terms of the time-varying trigonometric 
functions cos2Ωt and sin2Ωt. The superscript “g” stands for the 
rotor gyroscopic effect, “e” for the shaft elasticity 
corresponding to the bending and shear deformations, “re” for 
the rotational effects corresponding to the rotational motions of 
the base (these effects come from the kinetic energies of the 
disk and the shaft) and “gse” for the geometric stiffening effects 
associated with the centrifugal stress due to the rotational 
motions of the base. 

The vector F(t) is expressed as follows 
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where Vmu (Fmu(t)), Vd,sh,b (Fd,sh,b(t)) and Vmu,b (Fmu,b(t)) are load 
vectors (force vectors) associated respectively with the mass 
unbalance, the inertia force due to base motions and that due to 
coupling between both phenomena. ,

rW
d shF  is the rotor weight 

vector. The superscripts “c1” and “s1” denote the components of 
the mass unbalance force expressed in terms of the time-varying 
trigonometric functions cosΩt and sinΩt. The superscripts u, w, 
ψ and θ denote the direction of the action force components 
associated with the motions of the rotor base. 

As already stated above, the equations of motion are non-
linear. This is due to the hydrodynamic bearings (local 
components) even if they do not concern all the degrees of 
freedom of the rotor system. In the two following sections (i.e., 
Sections 5 and 6), the treatment of these equations is detailed. 

5 TRANSIENT DYNAMIC ANALYSIS 
The resolution of the complete non-linear dynamic problem 

requires solving simultaneously the equations of motion (i.e., 
Eq. (5)) of the rotor-bearing system and Eqs. (1)-(3) calculating 
the non-linear hydrodynamic bearing forces governed by the 
Reynolds equation in the dynamic regime. Therefore the non-
linear analysis uses a complex procedure combining the 
Newton-Raphson incremental-iterative technique with the 
Newmark time integration algorithm. The semi-discrete 
equations of motion (Eq. (5)) applied at time ti+1 (1≤i≤nts+1 
where nts is the number of time steps) can be given in the 
following residual form 
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The velocity and displacement vectors of the rotor nodes 
between ti and ti+1=ti+∆t, ∆t being the time step, are 
approximated by the following general formulations of the 
implicit Newmark scheme 
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where the parameters α=1/2 and β=1/4 define the constant 
average acceleration scheme. As Eq. (16) is non-linear, an 
iterative procedure is employed to treat the non-linearity. 
Namely, the linearization of Eq. (16) is performed by building a 
first-order Taylor series of this equation and the Newton-
Raphson iterative strategy is taken into consideration as follows 
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then 

( ) ( )1 1 ,NL k k
i i+ += −J δ ∆δ G δ  (19) 

where 1
1 1

k k
i i

+
+ += −∆δ δ δ is the iterative increment of the 

displacement vector and k is the Newton-Raphson iteration. The 
Jacobian matrix JNL is a function of the displacement vector 

1i +δ  at iteration k and expressed by 
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where I  is the identity matrix. The derivative of the non-linear 
hydrodynamic forces in the Jacobian matrix of Eq. (20) is a 
function of both the displacement and velocity vectors 

( )1 1,k k
i i+ +δ δɺ , updated at each iteration k and expressed by 
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The procedure of the Newton-Raphson incremental-
iterative strategy combined with the Newmark time integration 
scheme is presented as pseudo-code hereafter. 
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(1) Initial conditions 1 1;δ δɺ

( ) ( ) ( ) ( ) ( )( )1
1 1 1 1 10 0 , 0 0−= + − −beδ M F F δ δ C δ K δɺɺ ɺ ɺ

(2) Prediction step: 
2

1 1 1
1 1 1; ;

2i i i i i i i i i

t
t t

∆∆ ∆+ + += = + = + +δ δ δ δ δ δ δ δ δɺɺ ɺɺ ɺ ɺ ɺɺ ɺ ɺɺ

(3) Calculation of the hydrodynamic forces ( ),beF δ δɺ

(4) Residual calculation G with Eq. (16) 
(5) Calculation of the Jacobian matrix JNL with Eq. (20) 
(6) Correction increment ∆δ with Eq. (19) 
(7) Correction step: 

( )

1 1
1 1 1 1

1
1 1 2

; ,

1

k k k k
i i i i

k k
i i

t

t

α
β

β

+ +
+ + + +

+
+ +

= + = +
∆

= +
∆

δ δ ∆δ δ δ ∆δ

δ δ ∆δ

ɺ ɺ

ɺɺ ɺɺ

(8) Return to (3) for new hydrodynamic forces ( ),beF δ δɺ

(9) Return to (4) for a new residual G 
(10) If NLε>G F , return to (5) for a new Newton-Raphson 

iteration, else return to (2) for a new time step 

In order to reach the steady-state periodic regime, the 
Newmark algorithm has to be used over a large number of time 
periods. This results in an enormous computational time when 
the algorithm is repeated for a large number of fundamental 
excitation frequencies. Computational time can be saved by 
seeking directly the periodic solution by means of the shooting 
method being discussed in the next section. 

6 PERIODIC SOLUTION USING THE SHOOTING 
METHOD 
The following two-point boundary-value problem defined 

by the periodicity condition is considered 

( )( ) ( )( ) ( )0 , 0 , 0 ,r rt tτ τ= = = − =H X X X X 0 (22) 

with 

, ,
TT T=X δ δɺ  (23) 

where τr is the minimal period of the rotor response. The 
dependence of the system on the fundamental period τex of the 
periodic exciting forces is assumed, i.e., τr=jτex (with j=1,2,3...). 
Integer multiples of the fundamental period are used to 
calculate sub-harmonic responses occurring, for example, after 
a period-doubling bifurcation. Practically, in order to find the 
minimal period τr of the response, the shooting method is first 
performed with τr=τex and if there is no convergence, it is then 
performed with τr=2τex, τr=3τex, ... successively. The state-space 
vector X in Eq. (22) is the solution of Eq. (5) at the end of one 

period τr for an approached initial solution X(0). This vector is 
computed by the non-linear Newmark time integration 
procedure over one period τr (see Section 5). A consistent 
linearization of Eq. (22) is made by finding a first-order Taylor 
series expansion of this equation and a Newton-Raphson 
iterative correction is executed 

( )( ) ( )( ) ( ) ( )( )

1

0 ,

0 , 0 , ,
0 k

r

k k

r r

τ

τ τ+ ∂+ =
∂

X

H
H X H X ∆X 0

X
≃ (24) 

then 

( )( ) ( )( )0 , 0 , ,
k kSH

r rτ τ= −J X ∆X H X (25) 

where ∆X = Xk+1(0) - Xk(0) represents the iterative increment of 
the state-space vector and k is the Newton-Raphson iteration. 
The Jacobian matrix SHJ  is a function of the state-space vector 
X(0) at iteration k and defined by 

( )( ) ( ) ( )( ) ( ) ( )( )0 , 0 ,

0 , ,
0 0k k

r r

kSH
r

τ τ

τ ∂ ∂= = −
∂ ∂

X X

H X
J X I

X X
(26) 

with 

( ) ( )( )
( ) ( )

( )
0 ,

,
0 k

r

r
r

rτ

τ
τ

τ
 ∂ = =  ∂  X

ΦX
φ

ΦX ɺ
 (27) 

where φ(τr) is the monodromy matrix. The differentiation of Eq. 
(5) with respect to the vector X(0) yields 

( ) ( ) ( ) .be bet t t
∂ ∂   + + + + =   ∂∂   

F F
M Φ C Φ K Φ 0

δδ
ɺɺ ɺ

ɺ
 (28) 

Equation (28) is a system of linear differential equations. In 

order to solve it and to obtain the matrices ( )rτΦ and ( )rτΦɺ

forming the monodromy matrix φ(τr), the linear version of the 
Newmark algorithm is used over one period τr of the rotor 
response. 

The shooting algorithm solving simultaneously Eqs. (5) and 
(22) is presented as pseudo-code hereafter. 

(1) Approached initial solution 1X(0) 
(2) Calculation of the state-space vector X 
(3) Residual calculation H with Eq. (22) 
(4) Calculation of the Jacobian matrix JSH with Eq. (26) 
(5) Newton-Raphson increment ∆X with Eq. (25) 
(6) Correction step Xk+1(0)=Xk(0)+∆X 
(7) If iterations SHl> , increase the period of the rotor response 
and return to (1) 
(8) If SHε>H X , return to (2) for a new Newton-Raphson 

iteration, else stop the algorithm 
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After the periodic solution is obtained, its stability can be 
verified by applying the Floquet theory, i.e., by calculating the 
eigenvalues of the monodromy matrix called “Floquet 
multipliers”. The solution is asymptotically stable if every 
Floquet multiplier remains inside a unit circle in the complex 
plane. When any Floquet multiplier leaves the unit circle, the 
periodic solution losses its stability and a bifurcation begins to 
appear. In practice, the saddle-node or period-doubling 
bifurcations occur if any Floquet multiplier leaves through +1 
or through −1 respectively, while the quasi-periodic bifurcation 
occurs if two complex conjugate Floquet multipliers leave 
transversely the unit circle. 

7 NUMERICAL RESULTS AND DISCUSSION 

7.1 Configuration and Data 
The symmetric rotor-hydrodynamic bearing system 

illustrated in Fig. 2 is excited by both a rotating mass unbalance 
and a sinusoidal translation of the base along the Oz axis 
expressed as zO=ZOcos(Ωzt) in m. 

The physical properties as well as the geometry of the rotor 
and the bearings are listed in Table 1. The shaft is discretized 
with eight identical 2-node Timoshenko beam finite elements 
i.e., the total number of degrees of freedom is ng=36. The disk
is located at node 5 and the bearings # 1 and # 2 are placed at 
nodes 1 and 9 respectively, i.e., the corresponding localized 
non-linear degrees of freedom are 1-4 and 33-36. The rotor runs 
at a speed of rotation Ω=1200 rpm (=20 Hz, the mass unbalance 
frequency), the mass unbalance being located on the disk. 

The relative coordinates of the static equilibrium position 
of the shaft geometric center in the fluid film bearings are given 
by δbe

0/cbe=<-0.29,-0.88>R
T. 

The overall dynamic analysis of the non-linear on-board 
rotor is done by means of bifurcation diagrams, rotor orbits and 
Poincaré maps. 

7.2 Bifurcation Diagrams 
In the case of a harmonic external excitation of period τex, a 

linear rotor system has always a harmonic response of same 
period, i.e., τr=τex, while a non-linear rotor system can have a 
non-periodic response or a periodic response with different 
period due to bifurcations. Such changes in the non-linear 
dynamic regime of the system can be identified by means of 
bifurcation diagrams. 

Figure 3 shows the bifurcation diagram of the on-board 
rotor at the bearing # 2 (node 9) excited by the mass unbalance 
(mmurmu=1500 g mm) and the sinusoidal translational motion of 
the base of frequency Ω

z=80 Hz. 
In the diagram, the amplitude ZO of the base motion is used 

as a bifurcation parameter to provide essential information 
about the Poincaré sections. The step used for this parameter ZO 
is 0.05×10-5 m. Since the excitations due to the mass unbalance 
and  to  the  base  motions  are  sinusoidal  and  commensurable, 

Figure 2.  ON-BOARD ROTOR-HYDRODYNAMIC BEARING 
SYSTEM CONFIGURATION 

Table 1.  ROTOR AND BEARING DATA 

Disk material density 
Disk radius 

Disk thickness 
Disk location 

Shaft material density 
Young’s modulus of the shaft 

Poisson’s ratio of the shaft 
Shaft radius 
Shaft length 

Mass unbalance 

ρd=7800 kg/m3 
rd=0.15 m 
ed=0.03 m 
yd=0.2 m 

ρsh=7800 kg/m3 
Esh=2×1011 N/m2 

νsh=0.3 
rsh=0.04 m 
lsh=0.4 m 

mmurmu=1500 g mm, ηmu=0° 

Radius of the bearings 
Length of the bearings 

Locations of the bearings 
Radial clearance of the bearings 

Oil film dynamic viscosity 

rbe=0.04 m 
lbe=0.01 m 

ybe.# 1=0 m, ybe.# 2=0.4 m 
cbe=2×10-4 m 

µbe=288×10-4 Pa s 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10

-4

-1

-0.5

0

0.5

Z
O

 (m)

u/
c be

Figure 3.  BIFURCATION DIAGRAM OF THE ROTOR AT THE 
BEARING # 2 FOR A SINUSOIDAL TRANSLATION OF THE 

BASE: zO=ZOcosΩzt WITH Ωz=80 Hz 

the external excitation of the rotor is harmonic of period τex 
equal to the inverse of the greatest common factor of the mass 
unbalance frequency Ω=20 Hz and the base motion frequency 
Ω

z=80 Hz. Thus the period of the external excitation of the 

1τex 2τex, 4τex, …

Quasi-periodic 
and chaotic 
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rotor is τex=1/20=0.05 s. The shooting algorithm is first run with 
τr=τex, then with τr=2τex, τr=3τex, ... consecutively and limited 
with τr=16τex. If the shooting method fails in finding a periodic 
solution, then the algorithm switches to a full transient time 
integration method which enables the computation of quasi-
periodic and chaotic motions. The combination of the shooting 
method and the full transient time integration permits to speed 
up significantly the computation of the bifurcation diagram. The 
transient numerical simulations are executed with 1000 rotor 
revolutions (i.e., 1000τex) and 512 time steps per period τex. The 
data of the first 500 revolutions of the rotor are not used in the 
bifurcation diagram in order to overcome the transient regime. 
The Poincaré sections are produced by considering successive 
intersections of the x coordinates of the lateral dynamic motions 
of the rotor with the instants associated with the multiples of the 
period τex, i.e., t=kτex and [ ]501;1000k ∈ . The initial conditions

for the simulations are set to δbe
0/cbe. 

For 1×10-5≤ZO≤4.95×10-5 m, the rotor motion is harmonic 
of period τr=τex because there is only one point obtained by the 
Poincaré sections. Then, the first bifurcation appears and the 
rotor vibration displays a period-doubling orbit with τr=2τex 
when 5×10-5≤ZO≤5.1×10-5 m. At ZO =5.15×10-5 m, the rotor 
follows a quasi-periodic orbit, but it returns to the harmonic 
motion for 5.35×10-5≤ZO≤6.3×10-5 m. For the rest of the 
diagram, the solution of the equations of motion undergoes a 
series of bifurcations as shown in Fig. 3. 

In order to visualize successive period-doubling 
bifurcations which lead to quasi-periodic responses and to 
chaos, a zoom of the bifurcation diagram is reproduced in Fig. 4 

for the zone of interest 5 54.5 10 ; 5.5 10 mOZ − − ∈ × ×  . This

time, the step of the bifurcation parameter ZO is 0.01×10-5 m. 
The finer grid allows a better observation of the changes of non-
linear dynamic regime when compared with Fig. 3 for the same 
zone of interest. For example, the rotor motion holds 4τex-
periodic and 5τex-periodic orbits (sub-harmonic) for ZO 
=5.17×10-5 m and 5.26×10-5 m respectively. 

The stability of some periodic solutions obtained in Fig. 4 
is predicted using the Floquet theory. The monodromy matrix is 
calculated at the end of one period τr of the rotor response and 
its corresponding Floquet multipliers are presented in Fig. 5 
within a unit circle in the complex plane. As can be seen, the 
solution is stable at the point A of Fig. 4 where ZO=4.95×10-5 m 
with τr=τex (see Fig. 5(a)) and also at C where ZO=5×10-5 m with 
τr=2τex (see Fig. 5(c)), while it is unstable and a period-doubling 
bifurcation occurs at B where ZO=4.96×10-5 m with τr=τex (see 
Fig. 5(b)) because one of the Floquet multipliers leaves the 
circle through the negative real axis at −1. This can be verified 
with the orbit of the rotor at the bearing # 2 which is 1τex-
periodic (see Fig. 6(a)) for the point A and becomes 2τex-
periodic (see Fig. 6(b)) for the point C. 

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.55.5
x 10

-5

-0.35

-0.3

-0.25

-0.2

-0.15-0.15

Z
O

 (m)

u/
c be

Figure 4.  ZOOM ON THE BIFURCATION DIAGRAM IN FIG. 3 

FOR THE ZONE OF INTEREST . ; .− − ∈ × × 
5 54 5 10 5 5 10 mOZ

(a)

(b)

(c)
Figure 5.  EIGENVALUES OF THE MONODROMY MATRIX 
CORRESPONDING TO THE POINTS A,B AND C IN FIG. 4 
ASSOCIATED WITH: ZO= (a) 4.95×10-5 m, (b) 4.96×10 -5 m,  

(c) 5×10-5 m, RESPECTIVELY 

A 
C 

B 
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(a)

(b)
Figure 6.  ORBITS OF THE ROTOR AT THE BEARING # 2 

OBTAINED WITH THE SHOOTING METHOD FOR THE 
POINTS (a) A, AND (b) C OF FIG. 4 

7.3 Bifurcation Responses of the Rotor-Bearing 
System 
In this section, some orbits of the rotor and their projected 

Poincaré maps at the bearing # 2 (node 9) corresponding to 
values of interest of the bifurcation parameter ZO of the 
bifurcation diagram in Fig. 3 are presented. 

All the orbits are made dimensionless with respect to the 
bearing clearance cbe and are thus plotted within a unit circle 
(red curve). 

The relative coordinates of the static equilibrium position 
of the shaft center in the bearings δbe

0/cbe are used as initial 
conditions for the transient dynamic calculations. The Poincaré 
maps are obtained by taking successive intersections of the 
relative dynamic displacements of the rotor with the instants 
corresponding to the multiples of the period τex=0.05 s of the 
harmonic external excitation of the rotor starting from t=501τex 
to eliminate the transient effects. 

When the amplitudes ZO of the base translation are 
consecutively equal to 7×10-5 m (Fig. 7(a)), 9×10-5 m (Fig. 
7(b)) and 9.45×10-5 m (Fig. 7(c)), the rotor displacements 
exhibit a chaotic orbit, a quasi-periodic orbit and a sub-
harmonic orbit (8τex-periodic) respectively.

(a)

(b)
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(c)
Figure 7.  ORBITS AND POINCARÉ MAPS OF THE ROTOR AT THE BEARING # 2 DUE TO SINUSOIDAL TRANSLATIONS OF 

THE BASE: zO=ZOcosΩzt WITH Ωz=80 Hz AND ZO= (a) 7×10-5 m, (b) 9×10 -5 m, (c) 9.45×10 -5 m 

8 CONCLUDING REMARKS 
A finite element model based on the Timoshenko beam 

theory is presented to analyze the dynamic behavior of a 
symmetric on-board rotor-non-linear hydrodynamic bearing 
system whose base is subject to sinusoidal translations. 

The derivation of the equations of motion shows that the 
base rotations create time-varying parametric coefficients, while 
the base translations contribute only to the external force vector. 

Robust Newmark integration and shooting algorithms 
combined with the Newton-Raphson iterative procedure are 
used to obtain the dynamic responses of the on-board rotor. 

It is noted that depending on the amplitudes of the sinusoidal 
motions of the base, non-linear phenomena, such as period-
doubling and quasi-periodic motions and transition to chaos, are 
observed by means of bifurcation diagrams and rotor responses. 
The stability of periodic solutions is verified using the Floquet 
theory. 
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