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Tests of isotropy for rough textures of trended images.

Frédéric J.P. RICHARD

Abstract:

In this paper, we propose a statistical methodology to test whether the tex-

ture of an image is isotropic or not. This methodology is based on the well-known

quadratic variations defined as averages of square image increments. Specific to our

approach, these variations are computed in different directions using grid-preserving

image rotations. We study asymptotically these variations in a framework of in-

trinsic random fields allowing us to take into account the presence of polynomial

trends in images. We establish a convergence result linking variation and scale

logarithms through an asymptotic Gaussian linear model. This model involves

direction-dependent intercepts which are equal when textures are isotropic. Hence,

we test the texture isotropy using Fisher tests that check the validity of the assump-

tion of the intercept equality. These tests are validated using 6000 realizations of

anisotropic fractional Brownian fields simulated on a grid of size 100×100. Results

show that more than 70% of anisotropic cases can be detected with less than 1%

of misclassified isotropic cases.

Key words and phrases: texture analysis, image processing, isotropy, anisotropy,

intrinsic random field, statistical test, fractional Brownian field, quadratic varia-

tions.

1 Introduction

The notion of Texture usually refers to an image aspect which is essential for

processing images (see [27, 60] and references therein for an introduction to

Texture). From a study to another, the definition of textures varies depend-

ing mainly on analysis approaches, those approaches being based on statistical

models [11, 26, 34, 44, 54], variational image decompositions [4, 5, 52], patches

[31, 55, 62], image filters [29, 41, 56, 61, 64], textons [30, 32, 38], etc. In this

work, we deal with rough textures which appear on irregular images (this irreg-

ularity will be given a Holderian meaning in Section 2.2). From this viewpoint,
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Figure 1: Isotropy and anisotropy of textures of images with trends. (a.1) Realization

Xa of a (isotropic) fractional Brownian field with constant Hurst function β ≡ 0.22, (b.1)

realization Xb of a anisotropic fractional Brownian field with a Hurst function ranging in

(0.13, 0.76), (a.2) Xa+P1, where P1 is an isotropic polynomial of degree 2, (b.2) Xb+P1,

(a.3) Xa + P2, where P2 is an anisotropic polynomial of degree 2, (b.3) Xb + P2.

textures are associated to high frequency components of images, and not related

to their possible trends and other low frequency components. This is illustrated

in Figure 1 where some images having textures of interest are shown with and

without trend.

In these examples, we can further distinguish two types of textures: the

isotropic and anisotropic ones. Isotropic textures (first row) are uniform in all

directions whereas the anisotropic ones (second row) are oriented. Anisotropy is

one of the main features for the analysis of textures. It was early recognized as

an important feature for pre-attentive and attentive vision [43, 57]. It is also rel-

evant for the characterization of material properties in Material Science [35], the

diagnostic or prognostic of diseases in Medicine [13, 16, 20, 48, 59], the fingerprint
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authentication in Biometry [40, 42], the analysis of chemical movements through

aquifers in Hydro-Geology [10], etc. In this paper, our goal is to construct statis-

tical tests to decide whether the texture of an irregular image is isotropic or not.

Let us outline that those tests are focused on the texture of the image, and does

not concern its trend. In particular, images of the first row of Figure 1 should all

be considered as isotropic, even though the third one has an anisotropic trend.

In [59], the issue of testing the texture isotropy was addressed in the frame-

work of anisotropic fractional Brownian fields (AFBF). Introduced in [18], AFBF

are some Gaussian random fields that are spatial extensions on R
d (d > 1) of the

fractional Brownian motion [50]. Having zero-mean and stationary increments,

they are characterized by a semi-variogram vZ whose harmonizable representa-

tion

∀ x, y ∈ R
d, vZ(x) =

1

2
E((Z(x+ y)− Z(y))2) =

∫

Rd

|ei〈w,x〉 − 1|2f(w)dw (1)

is specified by a spectral density f of the form

f(w) = τ

(

w

|w|

)

|w|−2β
(

w
|w|

)

−d
. (2)

In this expression, the so-called topothesy function τ and Hurst function β are

two even, positive, and bounded functions defined on the unit sphere Sd−1 =

{w ∈ R
d, |w| = 1} of R

d. They are two directional functions that make the

model anisotropic. In particular cases when these functions are constant, the

model becomes isotropic. The Hurst function is further assumed to range in

an interval (H,H) ⊂ (0, 1) for almost points of Sd−1. An AFBF has irregular

realizations (see Section 2.2 for details). Hence, due to its properties, AFBF are

well-suited to model anisotropic textures of irregular images. Some realizations

of AFBF (in isotropic and anisotropic cases) are shown in Figure 1. In [59], an

isotropy test was built upon the statistical validation of an hypothesis of the

form β(s1) = β(s2) = H for a couple (s1, s2) of directions. This hypothesis only

gives a necessary condition for the field isotropy, and is focused on two chosen

directions. Hence, the test is likely to fail detecting a texture anisotropy which

checks this condition. Moreover, the test does not cover anisotropies induced by

the topothesy function.

Besides, AFBF model relies upon some stationarity assumptions which re-

strict their application to images without any trend. To overcome this limitation,
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we propose to work in a general framework of Gaussian intrinsic random fields

(IRF), which is already very popular in Spatial Statistic [23, 25, 51]. These fields

generalize fields with stationary increments. They are characterized by a so-

called generalized covariance which can be represented in an harmonizable form

extending the one in Equation (1) (see [33, 51] and Section 2.1 for details). Using

this representation, we focus on IRF having a spectral density f which satisfies

|w| > A ⇒ f(w)− τ

(

w

|w|

)

|w|−2β
(

w
|w|

)

−d ≤ C|w|−2H−d−γ . (3)

for some positive constants A,C and γ, and some topothesy and Hurst functions

τ and β. Such a condition implies that the field texture is similar to the one of

an AFBF. However, this condition only constrains high frequencies of the field.

At low frequency, the spectral density only fulfills general requirements of an

IRF density, allowing the field to have a polynomial trend of an arbitrary order.

In this work, images are considered as realizations of Gaussian IRF satisfying

Condition (3). The texture of such an image is then called isotropic whenever

the condition

τ(s) = τ0 ∈ R
+, β(s) = H ∈ (0, 1) (4)

holds almost everywhere on Sd−1. We construct statistical tests to validate the

hypothesis that a given image is the realization of an isotropic IRF satisfying

Condition (4). As opposed to the one in [59], these tests are designed to detect

texture anisotropies whatever their direction and type.

The construction of our test statistics is based on quadratic variations. These

variations are averages of square increments computed on an observation grid (see

Section 2.1 for a definition of increments). In the literature, they are commonly

used to estimate parameters characterizing a field irregularity, e.g. the Hurst

index of fields related to the fractional Brownian motion in [22, 28, 46, 65], or

the local Hurst function of the multifractional Brownian fields and their gener-

alizations in [6, 7, 8, 9, 24, 39]. In [17, 59], such variations were specifically used

in combination to a Radon transform for the estimation of the Hurst function

of an AFBF. But, due to a discretization issue of the Radon transform, their

application was limited to the estimation of function values in vertical and hori-

zontal directions. Variations we use have some original features. First, they are

computed on rotated and rescaled images so as to provide both direction and
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scale information. Image rotations and rescalings are carefully chosen to pre-

serve the observation grid and avoid data interpolations. Furthermore, the order

of increments is adapted to the order of the polynomial trend so as to annihilate

its effect on the estimation. We establish a convergence result linking variation

and scale logarithms through an asymptotic Gaussian linear model. This model

includes some direction-dependent intercepts which are equal when the texture

isotropic. Hence, we propose to test the texture isotropy using some Fisher tests

which verify the assumption of the equality of these intercepts.

2 Image and Texture Modeling

In this work, an image will be considered as a realization of a random field. Let

d > 1 be the dimension of the image (usually, d = 2 or d = 3), and Z be a random

field defined on R
d, i.e. a set of random variables defined on a probability space

(Ω,A,P), and indexed in R
d. For N ∈ N

∗, k ∈ Z
d and x ∈ R

d, Z(x) and ZN [k]

will denote random variables of Z at positions x and k/N , respectively. An image

will be defined as a realization of random variables ZN [k] at points k of the grid

GN = [[1, N ]]d. We will assume that Z is mean square continuous at any point of

R
d.

In what follows, we recall some elements about intrinsic random fields (IRF)

which are required to set our framework for the modeling of random fields (in-

terested readers may refer to [12, 23, 25, 51, 63] for more comprehensive presen-

tations of IRF).

2.1 Intrinsic random fields

In the sequel, we will use some shorthands for manipulating multivariate polyno-

mials: Given a multi-index l = (l1, · · · , ld) ∈ N
d, we denote by xl the monomial

xl11 · · ·xldd defined for x = (x1, · · · , xd) ∈ R
d, and by |l| =∑d

j=1 lj its order.

Definition 2.1. Let Z be a random field on R
d and M ∈ N. An increment of

order M (or M -increment) of Z is a linear combination Zλ,x of random variables

from Z

Zλ,x =
m
∑

i=1

λiZ(xi), (5)
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defined with a set λ = (λi)
m
i=1 of scalar values and a set x = (xi)

m
i=1 of points in

R
d satisfying the condition

m
∑

i=1

λix
l
i = 0, ∀ l ∈ N

d, |l| ≤ M. (6)

Due to Condition (6), the linear combination defined by λ and x removes from

Z any polynomial trend of order less or equal to M . Random variables Z(xi)−
Z(xj), defined with arbitrary xi 6= xj , are examples of 0-increments. In Section

3.1, we will construct increments of arbitrary orders on a grid.

Definition 2.2. Let M ∈ N. A random field Z is an intrinsic random field of

order M (or M -IRF) if, for any sets λ = (λi)
m
i=1 ∈ R

m and x = (xi)
m
i=1 of points

in R
d satisfying Condition (6), the random field defined for all y ∈ R

d by

Vλ,x(y) =

m
∑

i=1

λiZ(xi + y),

has a zero mean, and is second-order stationary, i.e.

E(Vλ,x(y)) = 0, ∀ y ∈ R
d,

E(Vλ,x(y)Vλ,x(z)) = Kλ,x(y − z), ∀ y, z ∈ R
d.

Field models previously used in [14, 22, 59, 65] are continuous 0-IRF. Since

their increments have a zero mean, their expectation is only a constant. Con-

sequently, they cannot be used to describe fields having a polynomial trend of

degree higher than 0. Such a description becomes possible with IRF of higher

orders.

Example 2.1. For instance, letting W be a continuous zero-mean 0-IRF, and

(αl)l a set of square integrable random variables, the random field

Z(x) =
∑

l∈Nd,|l|≤M

αlx
l +W (x),

is a continuous M -IRF with a polynomial trend of degree M .

The correlation structure of a continuous M -IRF Z is characterized by a

generalized covariance, which is defined as a function KZ satisfying

E(Zλ,xZµ,y) =

m
∑

i=1

n
∑

j=1

λi µjKZ(xi − yj) (7)
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for any pair of M -increments Zλ,x and Zµ,y of Z. Generalized covariances extend

ordinary covariances of stationary fields, for which Equation (7) holds for any

linear combination of Z. Besides, when Z is a 0-IRF with a generalized covariance

KZ , its semi-variogram vZ(h) = −KZ(h). A generalized covariance plays the

same characterization role for a M -IRF as the semi-variogram for a 0-IRF.

For any continuous M -IRF Z, there exists a continuous generalized covari-

ance KZ , which is unique up to an even polynomial of order 2M [33, 51]. This

function is symmetric and M -conditionally positive definite, i.e. it satisfies

∑

i,j

λiλjKZ(xi − xj) ≥ 0,

for any sets (λi)i and (xi)i satisfying Condition (6). Reciprocally, any continuous,

symmetric and M -conditionally positive definite is a generalized covariance of a

continuous M -IRF.

Besides, M -conditionally positive definite functions can be characterized

using a spectral theorem established by Vilenkin and Gelfand for generalized

random functions [33], and developed specifically for ordinary random fields by

Matheron [51]. Next, we recall a corollary of this theorem which gives a sufficient

condition for a function to be a generalized covariance.

Theorem 2.3. A function K on R
d is a generalized covariance of an M -IRF if

it is of the form

K(h) =
1

(2π)d

∫

Rd

(cos(〈w, h〉)− 1B(w)PM (〈w, h〉)) f(w)dw +Q(h), (8)

where PM (t) = 1 − t2

2 + · · · + (−1)M

(2M)! t
2M , 1B(w) is the indicator function of an

arbitrary neighborhood of 0, Q an arbitrary even polynomial of degree ≤ 2M , and

f is an even and positive function satisfying the integrability conditions

∀A > 0,

∫

|w|<A
|w|2M+2f(w)dw < ∞ and

∫

|w|>A
f(w)dw < ∞. (9)

The function f is called the spectral density of the field. Conditions (9) con-

cern the spectral density at low and high frequencies, respectively. In particular,

the first condition becomes weaker as M increases. This enables to include den-

sities having a larger power at low frequencies, and to account for fields having

polymial trends of larger order.
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Example 2.2. The anisotropic fractional Brownian fields, whose spectral density

has the form (2), are examples of 0-IRF. Such fields can be easily extended to

arbitrary IRF by letting

H = ess sup{β(s), s ∈ Sd−1, τ(s) 6= 0} (10)

vary in (0,+∞) instead of (0, 1). The obtained IRF is then of order M ≥ H − 1.

Definition 2.4. We say that an M -IRF is Gaussian if any uplet of its M -

increments is a Gaussian random vector.

2.2 Hölder irregularity

As mentioned in Introduction, images we consider in this work are irregular. We

define this irregularity in a Hölder sense [1, 12].

Definition 2.5. A field Z satisfies a uniform stochastic Hölder condition of order

α ∈ (0, 1) if, for any compact set C ⊂ R
d, there exists an almost surely finite,

positive random variable AC such that the Hölder condition

|Z(x)− Z(y)| ≤ AC |x− y|α. (11)

holds for any x, y ∈ C, with probability one.

If there exists H ∈ (0, 1) for which Condition (11) holds for any α < H but

not for α > H, then we say that Z admits H as critical Hölder exponent, or that

Z is H-Hölder.

The critical Hölder exponent H of a field Z quantifies its irregularity. It is

close to 0 for the most irregular fields and to 1 for the least ones. Visually, field

textures look rougher and rougher as H decreases to 0.

The Hölder irregularity of a Gaussian M -IRF with spectral density can be

characterized from the asymptotic behavior of its spectral density at high fre-

quency (as |w| → +∞). To be more specific, we state a proposition which is

borrowed from [12] (Proposition 2.1.6 and Proposition 2.1.7).

Proposition 2.6. Let Z be a continuous Gaussian IRF of an arbitrary order

with a spectral density f , and H ∈ (0, 1). Z is H-Hölder if and only if, for any
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0 < α < H < β < 1, there exist positive constants A, B1, B2, and a positive

measure subset E of the unit sphere Sd−1 of Rd such that for almost all w ∈ R
d

|w| ≥ A ⇒ f(w) ≤ B2|w|−2α−d, (12)

|w| ≥ A and
w

|w| ∈ E ⇒ f(w) ≥ B1|w|−2β−d. (13)

Condition (12) (resp. condition (13)) ensures that the critical Hölder expo-

nent of a Gaussian IRF is above (resp. below) H.

Example 2.3. In the particular case of an anisotropic fractional Brownian field

of density (2), Conditions (12) and (13) are fulfilled for

H = ess inf{β(s), s ∈ Sd−1, τ(s) 6= 0}. (14)

It is the same for an IRF whose spectral density fulfills Condition (3). Hence,

both fields are H-Hölder.

3 Test construction

In this section, we present into details the construction of isotropy tests.

3.1 Quadratic variations

First, we describe increments (see Definition 2.1) which compose quadratic vari-

ations. These increments are computed by application to the discrete field ZN

of a linear filter

∀m ∈ Z
d, V N [m] =

∑

k∈[[0,L]]d

v[k]ZN [m− k], (15)

determined by a convolution kernel v of a finite support [[0, L]]d with L ∈ N
d. Let

Qv be the characteristic polynomial associated to v

∀ z ∈ R
d, Qv(z) =

∑

k∈[[0,L]]d

v[k]zk. (16)

We now state a necessary and sufficient condition on partial derivatives of Q for

the random variable V N [m] to be a K-increment of Z for any m ∈ Z
d (the proof

is given in Appendix C).
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Proposition 3.1. Let K ∈ N. For all m ∈ Z
d, random variables V N [m] are

K-increments of Z if and only if

∀ l ∈ [[0,K]]d, |l| ≤ K,
∂|l|Qv

∂zl11 · · · ∂zldd
(1, · · · , 1) = 0. (17)

Example 3.1. Let L ∈ N
d, |L| > 0, and v be the kernel associated to the

characteristic polynomial Qv(z) = (z1 − 1)L1 · · · (zd − 1)Ld. From Proposition

3.1, it follows that v induces increments of order K = |L| − 1. Its terms are

v[l] = (−1)|l|

(

L1

l1

)

· · ·
(

Ld

ld

)

, if l ∈ [[0, L]]d, v[l] = 0 otherwise, (18)

where

(

n

k

)

stands for the binomial coefficient. For 0 < |L| ≤ 2 and d = 2,

such kernels yield the main increments used in [14, 22, 65] for the estimation of

Hölder irregularity.

Besides, our statistical test involves computing increments at different scales

and orientations. To do so, the observation field ZN is transformed into discrete

fields ZN
T by applying combinations T of rescaling and rotation which maps Z

d

into itself:

∀ k ∈ Z
d, ZN

T [k] = Z

(

Tk

N

)

= ZN [Tk] . (19)

When d = 2, such transforms have the form

Tu =

(

u1 −u2

u2 u1

)

= |u|2
(

cos(arg(u)) − sin(arg(u))

sin(arg(u)) cos(arg(u))

)

, for u ∈ Z
2\{(0, 0)},

corresponding to a rescaling of factor |u|2 and a rotation of angle arg(u). When

d = 3, examples of transforms are

Tu =







u1 −u2 0

u2 u1 0

0 0 |u|2






,







u1 0 −u2

0 |u|2 0

u2 0 u1






or







|u|2 0 0

0 u1 −u2

0 u2 u1






.

In both cases, transforms can be identified by a single vector u in R
2 or R3. The

application of a filter v to a transform field ZN
T leads to random variables

∀m ∈ Z
d, V N

T [m] =
∑

k

v[k]Z

(

m− Tk

N

)

=
∑

k

v[k]ZN [m− Tk]. (20)
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Proposition 3.2. Random variables V N
T [m] are K-increments of Z if and only

if the characteristic polynomial of v fulfills Condition (17).

The proof of this Proposition is postponed in Appendix C.

Next, we select a set of transforms. We will use a multi-index a = (i, j) to

classify transforms according to their rotation angle: the transform Ta will be

identified by a vector ua. It will correspond to a jth transform among those that

have a same rotation angle arg ui1. The rescaling factor of this transform is |ua|2.
The index a will vary in a set

F = {i ∈ [[1, nb]], j ∈ [[1, pi]]},

where nb is the number of different rotation angles and pi ∈ N
∗ depends on i.

We denote by nf the cardinal of F . We have an extra transform identified by

u00 which will serve for a normalization purpose (see below). We write F̃ =

F ∪ {(0, 0)}.
Applying a chosen filter v to transformed fields Ta, we obtain a set of in-

crements denoted V N
a [m], for m ∈ Z

d. We define the vector-valued random

field V N = ((V N
a [m])a∈F̃ ,m ∈ Z

d), and state some of its properties under the

assumption that Z is an IRF (see Appendix C for the proof).

Proposition 3.3. For some M ∈ N, let Z be a continuous M -IRF with a spectral

density f . Assume that the vector-valued field V N is constructed using increments

of order K ≥ M . Then, V N is stationary with zero mean. Moreover, for any

a, b ∈ F̃ and m,n ∈ Z
d,

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫

[0,2π]d
fN
a,b(w)e

i〈m−n,w〉dw, (21)

where fN
a,b, the multivariate spectral density of V N , is a function of L1([0, 2π]d)

given by

fN
a,b(w) = Ndv̂(T ′

aw)v̂(T
′
bw)

∑

k∈Zd

f(N(w + 2kπ)), (22)

with T ′ the transpose of T , v̂(w) =
∑

k∈Zd v[k]e−i〈k,w〉 the discrete Fourier trans-

form of v, and v̂ its conjugate.

We now consider the set EN of cardinal Ne including all points m of Zd for

which all increments V N
a [m] can be computed using exclusively observations on
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the grid GN . Then, we define the so-called quadratic variations on EN as

∀ a ∈ F̃ , WN
a =

1

Ne

∑

m∈EN

(V N
a [m])2. (23)

These variations account for those of [14, 22], which can be obtained for d = 2

with u ∝ (1, 0) (i.e. without any field rotation). They also contains variations

defined in [65] using some field rotations. However, they are more generic as they

include variations obtained with arbitrary grid-preserving rotations and K-order

filters.

For a ∈ F , we also define normalized log-variations Y N
a and log-scales xa as

Y N
a = log

(

WN
a

WN
00

)

and xa = log

( |ua|2
|u00|2

)

, respectively. (24)

3.2 Gaussian linear model

The construction of the statistical test is based on asymptotic properties of the

random vector Y N = (Y N
a )a∈F . These properties are stated in the following

theorem.

Theorem 3.4. Assume that Z is a continuous Gaussian M -IRF with a spectral

density f satisfying Condition (3). Let

H = ess inf{β(s), s ∈ Sd−1, τ(s) 6= 0}. (25)

Assume that H ∈ (0, 1), and the set E0 = {s ∈ Sd−1, β(s) = H, τ(s) 6= 0} is of

positive measure on Sd−1. Consider a log-variation vector Y N constructed using

increments of orders K ≥ M + 1, and K ≥ M/2 + d/4 if d > 4.

For a, b ∈ F̃ , let fa,b be a function defined for almost w ∈ [0, 2π]d by

fa,b(w) = v̂(T ′
aw)v̂(T

′
bw)

∑

k∈Zd

δ

(

w + 2kπ

|w + 2kπ|

)

|w + 2kπ|−2H−d, (26)

where δ is defined, for almost s ∈ Sd−1, by δ(s) = lim
ρ→+∞

f(sρ)ρ2H+d.

Then,

N
d
2 (Y N − ζ)

d−→
N→+∞

N (0,Σ), (27)

for a vector ζ ∈ R
nf and a nf × nf -covariance matrix Σ, both specified next.
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The expectation term ζ is of the form

∀ a = (i, j) ∈ F , ζij = xijH + βi, (28)

where βi depends only on the filter v and the rotation angle arg(ui1). This term

is given by

βi = log

(

CH(arg(ui1), v)

CH(arg(u00), v)

)

, (29)

where

CH(arg(ua), v) =
1

(2π)d

∫

Rd

∣

∣

∣

∣

v̂

(

T ′
a

|ua|
w

)∣

∣

∣

∣

2

δ

(

w

|w|

)

|w|−2H−ddw. (30)

The matrix Σ = (Σa,b)a,b∈F has terms Σa,b = Γa,b − Γa,00 − Γ00,b − Γ00,00, where

Γã,b̃ =
2(2π)d

∫

[0,2π]d |fã,b̃(w)|2dw
∫

[0,2π]d fã,ã(w)dw
∫

[0,2π]d fb̃,b̃(w)dw
, ∀ã, b̃ ∈ F̃ . (31)

Moreover, when Z has an isotropic texture, βi = 0 for all i ∈ [[1, nb]].

This theorem is proved in Section 4. It brings out a linear asymptotic de-

pendency between variations and parameters related to field irregularity and

anisotropy. This dependency can be formalized in terms of a Gaussian linear

model

∀ (i, j) ∈ F , Y N
ij = xijH + βi + ǫNij , (32)

where ǫNij are correlated Gaussian variables. This model can be interpreted as

a generalized model of analysis of covariance, in which the xij are regression

variables, and the rotation angle (index j) used to form Y N
ij is a qualitative factor.

As mentioned in Theorem 3.4, parameters βi vary according to the rotation index,

and become constant when the texture is isotropic. Hence, for testing the texture

isotropy, we propose to check statistically the null hypothesis

H0 : ∀ i ∈ [[1, nb]], βi = β̃, (isotropy) (33)

against its alternative hypothesis H1 : ∃ i, j, βi 6= βj (anisotropy).

3.3 Parameter estimation

Model (32) can also be formulated in a matricial form. Let Y N and ǫN be

the two random vectors of size nf formed by terms Y N
a and ǫNa , respectively.
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Define a parameter vector θ of size nb + 1. Set a design matrix X, of size

nf × (nb + 1), having terms Xij,0 = xij on the (i, j)th row and the first column

and, Xij,m = δi=m on (i, j)th row of the mth column. Then, Model (32) is

equivalent to

Y N = Xθ + ǫN , ǫN ∼ N (0,Σ). (34)

Using a generalized least square criterion, parameters θ of this model can be

estimated by

θ̃N = P (Σ)Y N with P (Σ) = (X ′Σ−1X)−1X ′Σ−1. (35)

In particular, the field irregularity H is estimated by H̃N = θ̂N0 = P0(Σ)Y
N ,

P0(Σ) being the first row of the matrix P (Σ). Similarly, for i ∈ [[1, nb]], parameters

βN
i are estimated by θ̃Ni .

3.4 Fisher test

To test hypothesis H0 against H1, we construct a Fisher test. Under H0, Model

(32) reduces to the model

Y N = X̃α+ ǫN , ǫN ∼ N (0,Σ), (36)

where α is a parameter vector of size 2, and X̃ = (xa)a∈F is the design matrix

of size nf × 2 having terms X̃ij,0 = xij on the (i, j)th row and the first column

and, 1 on rows of the second column. The GLS estimator of parameters of this

model is

α̂N = P̃ (Σ)Y N with P̃ (Σ) = (X̃ ′Σ−1X̃)−1X̃ ′Σ−1, (37)

Then, we define the test statistic

FN (Σ) =
nf − nb − 1

nb − 1

|Xβ̂N − X̃α̂N |2
|Y −Xβ̂N |2

. (38)

Under H0, F
N (Σ) has a Fisher law distribution with (nb − 1, nf − nb − 1) as

degrees of freedom. Let α ∈ (0, 1), and set sα to be the quantile of order 1 − α

of a (nb − 1, nf − nb − 1)-Fisher law distribution. Then, the rejection interval

Rα = {FN > sα} defines an isotropy test with a confidence level α.

The expression of the covariance matrix Σ depends on the spectral density of

Z, which is unknown. Hence, to implement the test, we compute FN (Σ̃N ) instead

14



of FN (Σ̃) using an estimate Σ̃N of the covariance matrix of the log-variations

(see Appendix B for more details).

4 Convergence study

This section is devoted to the proof of Theorem 3.4. In a first part, we prove the

asymptotic normality of the random vector

UN =

(

WN
a

E(WN
a )

)

a∈F̃

(39)

defined with quadratic variations WN
a of Equation (23). Then, we deduce the

asymptotic normality (27) of Y N = (Y N
a )a∈F . In a second part, we further

specify terms of this convergence.

Part 1. For establishing the asymptotic normality of UN , we use a multivariate

version of the Breuer-Major theorem which is recalled in Appendix A. For that,

let us first notice that

N
d
2 (TN

a − 1) =
N

d
2

Ne

∑

m∈EN

(

(XN
a [k])2 − 1

)

∼
N→+∞

1

N
d
2

∑

k∈[[1,N ]]d

(

(XN
a [k])2 − 1

)

,

with XN
a [m] = V N

a [m]/
√

E((V N
a [m])2). So, if the Breuer-Major theorem could

be applied to the vector-valued random field XN = ((XN
a [m])a∈F̃ ,m ∈ Z

d), it

would follow that

N
d
2 (TN − 1)

d−→
N→+∞

N (0,Σ), (40)

where 1 is the unit vector of the same size as UN , and Γ is a covariance matrix.

But, using Proposition 3.3, the spectral density of XN can be specified as

gNa,b(w) =
fN
a,b(w)

√

E((V N
a [m])2)

√

E((V N
b [m])2)

,

where E((V N
a [m])2) = 1

(2π)d

∫

[0,2π]d f
N
a,a(w)dw. Thus, it suffices to show the con-

vergence in L2([0, 2π]d) of gNa,b. This convergence results from the next lemma

whose proof is postponed at the end of the section.
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Lemma 4.1. Take the same conditions as in Theorem 3.4. Consider the mul-

tivariate spectral density fN
a,b of V N given by Equation (22) of Proposition 3.3.

Then, for any a, b ∈ F̃ , as N tends to +∞, N2HfN
a,b converges in L2([0, 2π]d) to

the function fa,b defined by Equation (26).

Due to Lemma 4.1, N2HfN
a,b tends to fa,b in L2([0, 2π]d) and, a fortiori in

L1([0, 2π]d). Hence, for a ∈ F̃ , N2H
E((V N

a [m])2) converges to

Ca =
1

(2π)d

∫

[0,2π]d
fa,a(w)dw. (41)

Therefore, gNa,b tends in L2([0, 2π]d) to ga,b = fa,b/
√
CaCb.

Consequently, the Breuer-Major theorem yields the asymptotic normality

(40) for a covariance matrix Γ whose terms are defined by Equation (31).

Now, let G be the differentiable function mapping (R+
∗ )

nf+1 into R
nf defined

by G(u)a = log(ua/u00) for a ∈ F . Since Nd/2(UN − 1)
d−→

N→+∞
N (0,Σ), we have

Nd/2(G(UN )−G(1))
d−→

N→+∞
∇G(1)′N (0,Σ).

using the multivariate ∆-method. But, for a ∈ F ,

G(UN )a −G(1)a = Y N
a − log

(

Ca

C00

)

+RN
a ,

where RN
a = log(Ca/C01)− log(E(WN

a )/E(WN
01)) and Ca is defined by Equation

(41). Moreover, due to Lemma 4.1, lim
N→+∞

RN
a = 0. Hence, the asymptotic

normality (27) follows for ζ = (log(Ca/C00)a∈F and the covariance matrix Σ

defined in the theorem.

Part 2. Let us notice that

Ca =
1

(2π)d

∫

[0,2π]d

∫

Rd

|v̂(T ′
a(w + z))|2δ

(

(w + z)

|w + z|

)

|w + z|−2H−dd∆(z)dw,

where d∆(z) =
∑

k∈Zd δ2kπ(z) is a counting measure on R
d. But, Ca < +∞.

Hence, by application of the Lebesgue-Fubini theorem, we obtain

Ca =
1

(2π)d

∑

k∈Zd

∫

[0,2π]d
|v̂(T ′

a(w + 2kπ))|2δ
(

w + 2kπ

|w + 2kπ|

)

|w + 2kπ|−2H−ddw.
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After a variable change ζ = w + 2kπ in each integral, we further get

Ca =
1

(2π)d

∫

Rd

|v̂(T ′
aζ)|2δ

(

ζ

|ζ|

)

|ζ|−2H−ddζ.

Next, using the variable change w = |ua|ζ, we have Ca = |ua|2HCH(arg(ua), v),

where arg(ua) is the angle of the rotation T ′
a

|ua|
and CH(arg(ua), v) is defined

by Equation (30). Then, the expression of ζ given by Equations (28) and (29)

follows.

Furthermore, let us notice that, when the texture of Z is isotropic, the

function δ ≡ τ0 ∈ R
+
∗ . Hence, in this case, we obtain

CH(arg(ua), v) =
τ0

(2π)d

∫

Rd

|v̂(w)|2|w|−2H−ddζ.

by applying the variable change w = T ′
a

|ua|
ζ. Therefore, in this case, CH(arg(ua), v)

only depends on v.

Proof of Lemma 4.1. Let us define

GN (w) = N2H+df(Nw)− δ

(

w

|w|

)

|w|−2H−d,

and, for L ∈ N
∗, consider SN

L (w) =
∑

0<|k|≤LGN (w + 2kπ). Since f satisfies

Condition (3), we have

f(N(w + 2kπ)) ≤ CN |k|−2H−d,

for k 6= 0, w ∈ [0, 2π]d, and N sufficiently large. Hence,
∑

0<|k| f(N(w+2kπ)) is

normally convergent, and, as L tends to +∞, SN
L tends uniformly to

SN = N2H+d
∑

0<|k|

f(N(w + 2kπ))−
∑

0<|k|

δ

(

w + 2kπ

|w + 2kπ|

)

|w + 2kπ|−2H−d.

Let us now consider

UN =

∫

[0,2π]d
|v̂(T ′

aw)v̂(T
′
bw)|2

(

SN (w) +GN (w)
)2

dw,

and show that UN tends to 0 as N tends to +∞.

First, let us quote that, for all w ∈ [0, 2π]d, SN (w) is bounded by

IN =

∫

Rd\B(0,A)
|GN (w)|dw =

∫

Sd−1

∫ +∞

A
|GN (ρs)|ρd−1dρds,
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where B(0, A) denotes a ball of Rd centered at 0 of radius 0 < A ≤ 2π. Further

notice that

|GN (ρs)| ≤ GN
1 (ρs) +GN

2 (ρs), (42)

where GN
1 (ρs) = N2H+d

∣

∣

∣f(Nρs)− τ(s)(Nρ)−2β(s)−d
∣

∣

∣ , (43)

and GN
2 (ρs) =

∣

∣

∣
N2(H−β(s))τ(s)ρ−2β(s)−d − δ(s)ρ−2H−d

∣

∣

∣
. (44)

Hence, IN ≤ IN1 + IN2 with INj =
∫

Sd−1

∫ +∞
A GN

j (ρs)ρd−1dρds.

Since f satisfies Condition (3) and τ is bounded, we have

IN1 ≤ c1N
−γA−2H−γ ,

for some c1 > 0, and large N . So, lim
N→+∞

IN1 = 0.

Besides, for η > 0, let us define sets

Eη = {s ∈ Sd−1, H < β(s) < H + η} and Fη = {s ∈ Sd−1, β(s) ≥ H + η}. (45)

When s ∈ Eη ∪ Fη, δ(s) = 0, so that GN
2 (ρs) ≤ cN2(H−β(s))ρ−2β(s)−d. When

s ∈ E0, τ(s) = δ(s) and β(s) = H, so that GN
2 (ρs) = 0. Hence,

IN2 ≤ c2

∫

Eη∪Fη
N2(H−β(s))A−2β(s)ds.

Thus, IN2 ≤ c̃2(µ(Eη) + N−2η), where µ(Eη) is the Lebesgue measure of Eη

over the sphere Sd−1. Let us show that lim
η→0+

µ(Eη) = 0. Assume it is not the

case. Then, there exists c0 > 0 and a decreasing sequence (ηn)n∈N such that

lim
n→+∞

ηn = 0 and µ(Eηn) > c0. Since Eη ⊂ E′
η when η < η′, the sequence µ(Eη)

decreases, and admits a positive limit as η decreases to 0. This implies that

µ( ∩
η<η0

Eη) > 0. So, take s ∈ ∩
η<η0

Eη. It satisfies H < β(s) < H + η for all η > 0.

This yields β(s) = H, which is contradictory.

Now, for 0 < α < 1, let us set ηN = log(N)−α/2. We then obtain

IN2 ≤ c̃2(µ(Elog(N)−α) + e− log(N)1−α

), (46)

and lim
N→+∞

IN2 = 0. Therefore, lim
N→+∞

IN = 0. Thus, on [0, 2π]d, SN converges

uniformly to 0, as N tends to 0.
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Consequently, the integral UN is bounded by c1(supw∈[0,2π]d |SN (w)|)2 +

c2J
N , where

JN =

∫

[0,2π]d
|v̂(T ′

aw)v̂(T
′
bw)|2((GN (w))2 +GN (w))dw.

Let us then decompose JN into a sum of two integrals JN
1 =

∫

B(0,A) · · · dw and

JN
2 =

∫

[0,2π]d\B(0,A) · · · dw, and study separately these integrals.

Notice that v̂(y) = Qv(e
iy1 , · · · , eiyd) where Qv is the characteristic poly-

nomial of v. Hence, using Proposition 3.2 and Taylor expansions of Qv in the

neighborhood of 0, we obtain |v̂(y)|2 ≤ C|y|2K+2 for some C > 0. Therefore, JN
1

is bounded by

c3N
4(H−K−1)+d

∫

B(0,A
N
) |w|4(K+1)(f2(w) + f(w)|w|−2H−d + |w|−4H−2d)dw

+c4N
2(H−2K−2)

∫

B(0,A
N
) |w|4(K+1)(f(w) + |w|−2H−d)dw,

for some c3, c4 > 0. In this upper bound, integrals of the form
∫

B(0,ǫ) |w|uf(w)dw
are finite for both u = 4(K +1)− 2H − d and u = 4(K +1), since Z is a M -IRF

and K ≥ M/2 + d/4. Moreover, sup
w∈B(0,ǫ)

|w|2K+3f(w) ≤ c < +∞, since Z is a

M -IRF and Ka ≥ M . Therefore,
∫

B(0,ǫ)
|w|4(K+1)f2(w)dw ≤ c

∫

B(0,ǫ)
|w|2K+1f(w)dw < +∞,

since K ≥ M + 1. Besides, integrals of the form
∫

B(0,ǫ) |w|udw are finite for

u = 4(K+1)−2H−d and u = 4(K+1)−4H−2d, since K ≥ d/4. Consequently,

JN
1 ≤ c̃3N

4(H−K−1)+d + c̃4N
2(H−2K−2),

and lim
N→+∞

JN
1 = 0, since K ≥ d/4.

Besides, using the bound (42), we obtain

JN
2 ≤

∫

Sd−1

∫ +∞

A
(GN

1 (ρs) +GN
2 (ρs))2ρd−1dρds.

Then, using previous bounds on GN
1 and GN

2 , we get

JN
2 ≤ c5

(

N−2γ +N−2η + µ(Eη)
)

ΓH ,

with c5 > 0 and ΓH =
∫ +∞
A ρ−4H−d−1dρ < +∞. Setting again ηN = log(N)−α/2

with 0 < α < 1, we obtain lim
N→+∞

JN
2 = 0. Therefore, lim

N→+∞
JN = 0.

Consequently, limN→+∞ UN = 0. This implies the convergence of N2HfN
a,b

to fa,b in L2([0, 2π]d).
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5 Numerical results

We conducted some experiments on AFBF (see definition in Equation (2)) sim-

ulated using the turning-band method developed in [15]. This method was ap-

plied with approximately 500 bands to simulate field realizations on a grid of size

100 × 100. We simulated fields by triplets consisting of an isotropic fractional

Brownian field (i.e. AFBF with constant Hurst and topothesy functions), an

AFBF with a non-constant Hurst function and a constant topothesy (i.e. with a

Hurst-induced anisotropy), and an AFBF with a constant Hurst function and a

non-constant topothesy function (i.e. with a topothesy-induced anisotropy). For

anisotropic fields, the Hurst and topothesy functions were specified using a func-

tion ga1,a2,δ1,δ2,ϕ depending on a few parameters a1 > 0 , a2 > 0, 0 < δ1 ≤ π/2,

0 < δ2 < π/2− δ1, ϕ ∈ (0, π). This function was defined as the π-periodic and C2

function which is equal to a1 on a set of intervals ∪k∈Z(ϕ− δ1+ kπ, ϕ+ δ1+ kπ),

a2 in another disjoint set ∪k∈Z(ϕ+ π/2− δ2 + kπ, ϕ+ π/2 + δ2 + kπ), and poly-

nomial of order 2 outside those two sets. Such a function leads to a field whose

the anisotropy is oriented in a privileged direction ϕ (see Examples in Figure 5).

For each field triplet, we set parameters δ1, δ2, ϕ by sampling from uniform dis-

tributions on (0, π/2), (0, π/2−δ1), and (0, π), respectively. We also sampled pa-

rameters H1 ∼ U(0, 1), H2 ∼ U(H1, 1), C2 ∼ |N (0, 1)|, and C1 ∼ C2 + |N (0, 1)|.
Fields of a same triplet were then defined as an AFBF with β ≡ H1, τ ≡ 1, an

AFBF with τ ≡ 1 and β = gH1,H2,δ1,δ2,ϕ, and an AFBF with τ = gC1,C2,δ1,δ2,ϕ

and β ≡ H1. In this way, fields of a same triplet had the same order H1 of

Hölder irregularity, and anisotropic fields had a same privileged direction ϕ. We

simulated 2000 triplets (6000 fields), covering largely the range of the irregularity

and orientation pair (H1, ϕ).

For testing the isotropy, we used quadratic variations obtained with different

increments filters of Example 3.1. We took two filters of order 1 specified ((L1, L2)

in {(0, 2), (1, 1)}), two of order 2 ((L1, L2) in {(0, 3), (1, 2)}), three of order 3

((L1, L2) ∈ {(0, 4), (1, 3), (2, 2)}). According to Theorem 3.4, filters of order 1, 2

and 3 are adapted to 0-IRF, 1-IRF, and 2-IRF, respectively. We did not consider

filters (L1, L2) with L1 > L2 since they are symmetric to filters (L2, L1) and

lead to the same quadratic variations. For filters with L1 6= L2, we computed
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β ≡ 0.41, τ ≡ 1, β ≡ 0.12, τ ≡ 1, β ≡ 0.6, τ ≡ 1,

p = 0.95. p = 0.5. p = 0.1.

β(s) ∈ [0.18, 0.21], β(s) ∈ [0.12; 0.58], β(s) ∈ [0.33; 0.55],

τ ≡ 1, p = 10−2. τ ≡ 1, p = 10−8. τ ≡ 1, p = 10−10.

τ(s) ∈ [1.24, 1.52], τ(s) ∈ [0.3, 1.51], τ(s) ∈ [0.22, 0.87],

β ≡ 0.83, p = 10−2. β ≡ 0.32, p = 10−8. β ≡ 0.22, p = 10−10.

Figure 2: Examples of simulated fields. On the first, second, and third rows, fields are

(isotropic) fractional Brownian fields, AFBF with a constant topothesy function, and

AFBF with a constant Hurst function, respectively. P-values of the isotropy test (filter

(0,2)) applied to each realizations are indicated by p below each image.
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quadratic variations on images transformed by composition of rotations of angles

0 (i.e. for u ∝ (1, 0)), π/4 (u ∝ (1, 1)), π/2 (u ∝ (0, 1)), or 3π/4 (u ∝ (1,−1)),

and rescalings of factors |u|2 with 1 ≤ |u| ≤ 6. Hence, we had 6 quadratic

variations in vertical or horizontal directions (u ∝ (1, 0) or u ∝ (0, 1)), and

4 in each diagonal direction (u ∝ (1, 1) or u ∝ (1,−1)). For the filter (1, 1),

we only used rotations of angles 0 and π/4. Indeed, due to the symmetry of

filters for which L1 = L2, quadratic variations are the same up to a rotation

of angle π/2. For each filter, we computed the Fisher statistic FN defined in

(38). Given a threshold sα, a realization could then be considered as isotropic

whenever FN ≤ sα, and anisotropic in the opposite case. Following Theorem

3.4, under the null assumption H0, Fisher statistics are theoretically distributed

according to a Fisher law of degrees (3, 15) if (L1 6= L2) and (1, 7) if L1 = L2.

Hence, the threshold sα could be set to ensure a theoretical level of significance

PH0
(FN > sα) ≤ α, for α ∈ (0, 1).

To assess the performance of a test, we estimated the probability distribution

PH1
(FN ≤ sα) of errors of type II. For that, we computed the ratio between the

number of misclassified anisotropic cases and the total number of anisotropic

case, for different significance levels α. This was done for the two anisotropy

types separately and jointly. We also computed the empirical distribution of

errors of type I (PH0
(FN > sα)) to check its adequacy to the theoretical one.

Evaluation results are shown in Figure 3.

We observe that empirical distributions of type I errors (black lines) are

slightly above the significance level. This means that values of the Fisher statis-

tics tend to be higher than expected on isotropic realizations. For each filter, we

tested the adequacy of the empirical distribution of FN (under H0) to its the-

oretical one using a one-way Kolmogorov-Smirnov test. Adequacy assumptions

were validated with p-values 0.03, 0.08, 0.3, 0.15, 0.22, 0.28, 0.48 for filters (0, 2),

(1, 1), (0, 3), (1, 2), (0, 4), (1, 3) and (2, 2), respectively.

Filters had different performances in terms of type II errors (red lines). The

symmetric filter (1, 1) had the worst results. This filter mixes increments in

two orthogonal directions, which leads to a lost of directional information. The

filter (2, 2) had comparable poor performances, which are not presented in the

figure. The filter (0, 3) (resp. (0, 4)) outperformed the filter (1, 2) (resp. (1, 3))
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Figure 3: Evaluation of the isotropy tests on 6000 simulated fields.
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suggesting that the most directional filters of the form (0, L2) are preferable to

the other ones. Choosing those filters led to fairly good results. For a significance

level of 0.01 (i.e. less than 1% of misclassified isotropic cases), we detected 78.3%,

76.6%, 73.3% percents of anisotropic cases for (0, 2), (0, 3) and (0, 4), respectively.

The performance of these filters decreased as the filter order increased. This was

probability due to the fact that the number of points (ne) used for computing

quadratic variations decreases as the order increases. Nevertheless, the detection

score obtained with the filter (0, 4) of higher order was still close to the filter (0, 2).

Hence, we conclude that anisotropic cases can be well-detected using filters of

the form (0, L2) even when a polynomial trend is present in images.

Besides, let us notice that percents of detected cases were significantly lower

for cases with a topothesy anisotropy (red dot lines) than with the topothesy one

(red dash lines). This performance difference will be explained below.

We further investigated effects of simulation and analysis parameters on

the isotropic test. For that, we classified simulations of anisotropic fields into

isotropic and anisotropic by applying the test of filter (0, 2) with a level of sig-

nificance α = 0.05. We then computed numbers and percentages of detected

anisotropic cases by range of parameter values.

Range

of ϕ

[-1.57,-1.37]

[-1.37,-0.98]

[-0.98,-0.59]

[-0.59,-0.20]

[-0.20, 0.20]

[0.20 , 0.59]

[0.59 , 0.98]

[0.98 , 1.37]

[1.37 , 1.57]

Total

case

number

137

261

233

240

246

222

289

238

134

Analysis in four directions

Detected cases

H. anisot. T. anisot.

125 (91%) 114 (83%)

231 (89%) 204 (78%)

211 (91%) 184 (79%)

214 (89%) 177 (74%)

220 (89%) 194 (79%)

205 (92%) 175 (79%)

255 (88%) 228 (79%)

213 (89%) 195 (82%)

120 (90%) 108 (81%)

Analysis in two directions

Detected cases

H. anisot. T. anisot.

131 (96%) 122 (89%)

227 (87%) 196 (75%)

140 (60%) 88 (38%)

214 (89%) 167 (70%)

225 (91%) 202 (82%)

202 (91%) 164 (74%)

165 (57%) 113 (39%)

213 (89%) 190 (80%)

121 (90%) 116 (87%)

Table 1: Effect of the anisotropy orientation on the detection.

We first focus on the effect of the anisotropy direction ϕ. In Table 1, we

report results obtained with two isotropy tests. The first one corresponds to the
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test described initially (”analysis in four directions”), whereas the second one

(”analysis in two directions”) is based on variations computed in the horizontal

and vertical directions only. Concerning the first test, we observe that, for both

anisotropy types, the number of detected cases were quite uniform with respect

to the direction. This suggests that the detection is independent of this factor.

This independence was confirmed by a χ2-test with a large p-value of 0.56. This

clearly differed from the second test. Without the diagonal directions, the test

performances were much lower when the anisotropy orientation ϕ was away from

the vertical and horizontal directions (especially when ϕ ∈ (−0.98,−0.59) or

ϕ ∈ (0.59, 0.98)).

Range

of ϕ

[-1.57,-1.37]

[-1.37,-0.98]

[-0.98,-0.59]

[-0.59,-0.20]

[-0.20, 0.20]

[0.20 , 0.59]

[0.59 , 0.98]

[0.98 , 1.37]

[1.37 , 1.57]

Total

case

number

137

261

233

240

246

222

289

238

134

Test 1 of [59]

Detected cases

H. anisot. T. anisot.

21 (15%) 8 (6%)

37 (14%) 8 (3%)

41 (18%) 12 (5%)

41 (17%) 8 (3%)

47 (19%) 13 (5%)

52 (23%) 14 (6%)

50 (17%) 16 (6%)

33 (14%) 11 (5%)

19 (14%) 5 (4%)

Test 2 of [59]

Detected cases

H. anisot. T. anisot.

30 (22%) 9 (7%)

45 (17%) 12 (5%)

20 (9 %) 4 (2%)

29 (12%) 21 (9%)

37 (15%) 22 (9%)

34 (15%) 21 (9%)

17 (6 %) 18 (6%)

40 (17%) 15 (6%)

31 (23%) 4 (3%)

Table 2: Evaluation of isotropy tests of Richard and Biermé [59].

On the same data, we also evaluated the two isotropy tests proposed in [59]

(see Table 2). Both of these tests had much lower detection scores than the new

ones. Their performances were particularly low when the anisotropy was induced

by the topothesy or oriented away from the vertical and horizontal directions.

In Table 3, we deal with the order of Hölder irregularity H1. We notice that

the detection was worser for fields with a very low regularity (0 < H1 ≤ 0.2) than

for the more regular one. But, for a regularity above 0.2, detection performances

seem quite uniform with respect to H1. We applied a χ2-test on all anisotropic

cases for whichH1 > 0.2. This test confirmed the independence of the irregularity

and the detection with a p-value of 0.36. In other words, the irregularity effect
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Range Detected cases

of H1 H. anisotropy T. anisotropy

[0 , 0.1] 175/206 (85%) 95/206 (46%)

[0.1, 0.2] 197/203 (97%) 152/203 (75%)

[0.2, 0.3] 194/202 (96%) 160/202 (79%)

[0.3, 0.4] 186/194 (96%) 152/194 (78%)

[0.4, 0.5] 207/212 (98%) 176/212 (83%)

[0.5, 0.6] 186/203 (92%) 179/203 (88%)

[0.6, 0.7] 178/188 (95%) 161/188 (86%)

[0.7, 0.8] 164/181 (91%) 157/181 (87%)

[0.8, 0.9] 176/197 (89%) 163/197 (83%)

[0.9, 1] 131/214 (61%) 184/214 (86%)

Table 3: Effect of the irregularity on the anisotropy detection.

is limited to the lowest values of H1.

Notice however that the detection was low (61%) for fields with a Hurst

anisotropy when H1 > 0.9. This was not directly due to the field irregularity,

but rather to the low amplitude δβ = H2 − H1 of the Hurst function, which is

necessarily below 0.1 when H > 0.9.

H. anisotropy

δβ Detected cases

[0 ,0.01] 19/128 (15%)

[0.01,0.02] 17/91 (19%)

[0.02,0.03] 41/66 (62%)

[0.03,0.04] 70/81 (86%)

[0.04,0.07] 152/168 (90%)

[0.07, 1] 1427/1466 (97%)

T. anisotropy

δτ Detected cases

[1 , 1.1] 9/140 (6%)

[1.1, 1.2] 39/129 (30%)

[1.2, 1.3] 67/119 (56%)

[1.3, 1.4] 87/120 (72%)

[1.4, 1.8] 323/385 (84%)

[1.8,+∞] 1054/1107 (95%)

Table 4: Effect of the anisotropy amplitude on the detection.

The effect of this amplitude is analyzed into more details in Table 4. We

clearly see that the detection depended on this factor up to a bound, which

was about 0.07. When the amplitude is above this bound, the detection was

almost perfect (97% of detected cases). The same phenomenon occurred for the

detection of cases with a topothesy anisotropy. For these cases, we defined the
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amplitude as δτ = C2/C1. The anisotropic cases were almost perfectly detected

when the amplitude was above 1.8. Hence, results obtained for these cases could

have been better if we had chosen to simulate fields with higher amplitudes.

6 Discussion

We constructed an original statistical methodology to test whether the texture of

an irregular image is isotropic or not. Statistics of our isotropy tests were built

upon the well-known quadratic variations. However, specific to our approach,

these variations were defined with increments computed both in different orien-

tations and at different scales. Hence, variations could bring useful directional

information. We developed the asymptotic theory of tests in a general context

of intrinsic random fields which allows us to take into account the presence of

arbitrary polynomial trends in images. We established an asymptotic Gaus-

sian linear relationship between variation and scale logarithms which involves

direction-dependent intercepts. We then designed isotropy tests using Fisher

statistics which check the equality of these intercepts. The methodology was val-

idated using 6000 realizations of anisotropic fractional Brownian fields simulated

on a grid of size 100 × 100. Results showed that our tests could detect more

than 70% of anisotropic cases with less than 1% of misclassified isotropic cases

in the presence of a polynomial trend of order 2. They also revealed that test

performances were not dependent on the anisotropy direction, and outperformed

those of tests proposed in [59].

The asymptotical result was obtained by applying a multivariate version of

the Breuer-Major (see Theorem 3.4). Proved in [14], this Breuer-Major theorem

was already applied for a variation-based estimation of the Hölder irregularity in

the case when the field is Gaussian with stationary increments and has a spec-

tral density satisfying Condition (3) with a constant Hurst function. We thus

extended its application to both a more general framework of IRF satisfying Con-

dition (3) with non-constant Hurst functions, and the analysis of multi-oriented

variations.

Our test methodology is semi-parametric. It is theoretically established for

a large class of Gaussian random fields whose spectral densities satisfy two weak

27



conditions. The first one is a generic non-parametric integrability condition at

low frequency. The second is a condition at high frequency constraining densities

to be close to the one of an AFBF. This condition involves some functional

parameters (topothesy and Hurst functions). However, the test procedure does

not involve any estimation of these parameters.

Some isotropy tests developed in [21, 37, 49] for spatial data could be ap-

plied to images. These tests enable to check if a stationary field is geometrically

isotropic, i.e. if it has a rotation-invariant covariance. However, such an isotropy

concerns all field frequencies whereas ours focuses on the asymptotic of the high-

est ones. Hence, applied to images, tests in [21, 37, 49] would probably detect

anisotropic features which are not necessarily related to textures we deal with.

Moreover, they are not suitable for IRF of arbitrary orders.

In Image Processing, the analysis of the texture anisotropy is often associated

to a detection of a priveleged anisotropy direction [2, 35, 36, 47, 53, 58, 45]. This

topic is beyond the scope of the work presented here. But, we plan to extend our

methodology to include confidence intervals and tests for anisotropy directions.
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A A multivariate Breuer Major Theorem

The original Breur-Major theorem was shown for stationary processes in [19], and

extended to multivariate fields in [3]. Another formulation of the Breuer-Major

Theorem is demonstrated in [14] (Theorem 3.2) using the Malliavin calculus. We

state a specific version of this theorem which is sufficient for the proof of Theorem

3.4.

Theorem A.1 (Breuer-Major theorem). Let d, l ∈ N
∗, and XN = (XN [k])k∈Zd

be centered Gaussian stationary fields with values in R
l. Assume that there exist

functions gNa,b in L2([0, 2π]d) (spectral densities) such that, for all a, b ∈ [[1, l]] and

k ∈ Z
d,

Cov(XN
a [k], XN

b [0]) =
1

(2π)d

∫

[0,2π]d
ei〈w,k〉gNa,b(w)dw.

Further assume that, for all a, b ∈ [[1, l]], gNa,b converges in L2([0, 2π]d) to a func-

tion ga,b as N tends to +∞. Define

∀ k ∈ Z
2, ra,b[k] =

1

(2π)d

∫

[0,2π]d
ei〈w,k〉ga,a(w)dw,

and assume that ra,b[0] = 1. Then,

1

Nd/2

∑

k∈[[1,N ]]d

((XN [k])2 − 1)
d−→

N→+∞
N (0,Σ),

where 1 is the unit vector of size l and Γ is a l × l-matrix having terms

Γa,b = 2
∑

k∈Zd

(ra,b[k])
2 =

2

(2π)d

∫

[0,2π]d
|ga,b(w)|2dw.

B Covariance estimation

In this section, we construct an estimate of the covariance matrix ΣN of log-

variations Y N involved in the linear model (32). According to the proof in

Section 4, the random vector Y N has the same asymptotical covariance Σ as the

34



random vector UN defined by Equation (39). Hence, we approximate ΣN by an

estimate of the covariance matrix of UN . We have

E(UN
a UN

b ) =
1

N2
eE(W

N
a )E(WN

b )

∑

p,q∈EN

E((V N
a [p])2(V N

a [q])2).

But (V N
a [p], V N

a [q]) are centered Gaussian vectors. Thus, E((V N
a [p])2(V N

a [q])2) =

2(E(V N
a [p]V N

a [q]))2. Moreover,

E(V N
a [p]V N

a [q]) =
∑

k,l

v[k]v[l]KZ

(

p− Tak − q + Tbl

N

)

,

where KZ is the generalized covariance of the IRF Z. Let H̃ be an estimate

of the Hölder irregularity of Z (e.g. an OLS estimate of H in the linear model

(32)). Approximating the generalized covariance KZ by the one of a fractional

Brownian field of order H̃, it follows that

E(V N
a [p]V N

a [q]) ≃ CH̃

∑

k,l

v[k]v[l]|p− Tak − q + Tbl|2H̃ .

Using the same approximation, we also have

E(WN
a ) = E((V N

a [0])2) ≃
∑

k,l

v[k]v[l]|Ta(l − k)|2H̃ .

Hence, we get

ΣN
a,b ≃

∑

δ∈∆EN

Nδ

(

∑

k,l v[k]v[l]|δ − Tak + Tbl|2H̃
)2

N2
e

(

∑

k,l v[k]v[l]|Ta(l − k)|2H̃
)(

∑

k,l v[k]v[l]|Tb(l − k)|2H̃
) ,

where ∆EN = {δ = p− q, p, q ∈ EN} and Nδ is the number of couples (p, q) ∈ E2
N

for which δ = p− q.

C Proofs of Propositions

Proof of Proposition 3.1. By definition, the kernel v leads to K-order increments

of Z if and only if
∑

k∈[[0,L]]d v[k](m − k)l = 0, ∀ m ∈ Z
d, ∀l ∈ [[0,K]]d, |l| ≤ K,

which is also equivalent to

∑

k∈L

v[k]kl = 0, ∀ l ∈ [[0,K]]d, |l| ≤ K.
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Besides, we have

∂|l|Qv

∂zl
(z) =

L1
∑

k1=l1

· · ·
Ld
∑

kd=ld

v[k]

l1−1
∏

j1=0

(k1 − j1) · · ·
ld−1
∏

jd=0

(kd − jd)z
k−l,

using the convention that
∏li−1

ji=0(ki − ji) = 1 if li = 0. From that, we deduce the

recurrence equations

∂|l|Qv

∂zl
(z) =

∑

k∈[[0,L]]d

v[k]klzk−l −
∑

j∈[[1,d]],lj≥1

lj − 1

zj

∂|l|−1Qv

∂zl−ej
(z),

where ej is the jth vector of the canonical basis of Rd. In particular,

∀j, l, ∂|l|Qv

∂zl
(1, · · · , 1) +

∑

j∈[[1,d]],lj≥1

(lj − 1)
∂|l|−1Qv

∂zl−ej
(1, · · · , 1) =

∑

k∈[[0,L]]d

v[k]kl.

We conclude the proof by recurrence on the order of the partial derivatives of

Q.

Proof of Proposition 3.2. Let P be a polynomial of degree l ≤ K. We notice

∑

k

v[k]P

(

m− Tuk

N

)

=
∑

k

v[k]P ◦ Tu

(

m′ − k

N

)

,with m′ = T−1
u m.

But, any rescaling or rotation P ◦Tu of a polynomial P remains a polynomial

of the same degree. Hence,
∑

k v[k]P
(

m−Tuk
N

)

= 0 for all P of degree l ≤ K if and

only if
∑

k v[k]P
(

m′−k
N

)

= 0 for all P of degree l ≤ K. According to Proposition

(3.1), this only holds if an and only if Condition (17) is satistied.

Proof of Proposition 3.3. Since, for a ∈ F̃ and m ∈ Z
d, V N

a [m] is an increment

of Z of order ≥ M , it has zero mean. Moreover, for any a, b ∈ F̃ and m,n ∈ Z
d,

Theorem 2.3 yields

E(V N
a [m]V N

b [n]) =
∑

k,l∈Zd

v[k]vb[l]KZ

(

m− Tak

N
− n− Tbl

N

)

< +∞,

where KZ is a generalized covariance of the form (8). But, for any even poly-

nomial P of degree 2M , we can write P (x− y) =
∑M

|l|=0 ql(y)x
l +
∑M

|l|=0 ql(x)y
l

where ql are polynomials of degree up to 2M . Hence, since V N
a [m] and V N

b [n]

are increments of order K ≥ M ,

∑

k,l∈Zd

v[k]v[l]P

(

m− Tak

N
− n− Tbl

N

)

= 0,
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for any even polynomial P of degree 2M , including PM and Q of Equation (8).

Therefore,

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫

Rd

∑

k,l∈Zd

v[k]v[l] cos

(〈

m− Tak

N
− n− Tbl

N
,w

〉)

f(w)dw,

and, since f is even,

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫

Rd

∑

k,l∈Zd

v[k]v[l]ei〈
m−n
N

−Tak
N

+
Tbl

N
,w〉f(w)dw.

From this, we deduce

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫

Rd

v̂

(

T ′
aw

N

)

v̂b

(

T ′
bw

N

)

ei〈
m−n
N

,w〉f(w)dw.

Since this expression exclusively depends on m − n, and not on m and n, V N

is stationary. Using a variable change ζ = w/N , and a decomposition of the

integral domain, we further obtain

E(V N
a [m]V N

b [n]) =
1

(2π)d

∑

k∈Zd

∫

[0,2π]d+2kπ
v̂(T ′

aζ)v̂(T
′
bζ)e

i2π〈m−n,ζ〉f(Nζ)Nddζ,

After a variable change ζ = w + 2kπ in each integral, we then get

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫

Rd

∫

[0,2π]d
gNa,b(w, z)dwd∆(z),

where d∆(u) =
∑

k∈Zd δ2kπ(u) is a counting measure on R
d and gNa,b(w, z) =

Ndv̂(T ′
aw)v̂(T

′
bw)e

i〈m−n,w〉f(N(w+z)). Since E(V N
a [m]V N

b [n]) < +∞, the Lebesgue

Fubini theorem implies that fN
a,b(w) =

∫

Rd g
N
a,b(w, z)d∆(z) is almost everywhere

defined, and that
∫

[0,2π]d f
N
a,b(w)dw < +∞.
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