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Abstract

This paper proposes a new methodology to model uncertainties associated with functional random vari-
ables. This methodology allows to deal simultaneously with several dependent functional variables and
to address the specific case where these variables are linked to a vectorial variable, called covariate. In
this case, the proposed uncertainty modelling methodology has two objectives: to retain both the most
important features of the functional variables and their features which are the most correlated to the
covariate. This methodology is composed of two steps. First, the functional variables are decomposed on
a functional basis. To deal simultaneously with several dependent functional variables, a Simultaneous
Partial Least Squares algorithm is proposed to estimate this basis. Second, the joint probability density
function of the coefficients selected in the decomposition is modelled by a Gaussian mixture model. A
new sparse method based on a Lasso penalization algorithm is proposed to estimate the Gaussian mixture
model parameters and reduce their number. Several criteria are introduced to assess the methodology
performance: its ability to approximate the functional variables probability distribution, their depen-
dence structure and their features which explain the covariate. Finally, the whole methodology is applied
on a simulated example and on a nuclear reliability test case.

1 Introduction

In a large number of fields, like physical or environmental sciences, computer codes or numerical simula-
tors have proved to be an invaluable tool to model and predict phenomena. To describe the features of
the studied phenomenon, the simulator computes several output parameters of interest from numerous
explanatory input parameters. All these output and input variables can be of various types: scalar,
functional, categorical, etc. Furthermore, the knowledge of the phenomenon features is often limited
and imprecise, so that the parameters used to describe them in the model are uncertain. These un-
certainties of the parameters of the computer model can be due to measurement errors, the intrinsic
variability of the phenomenon, model errors, numerical errors, etc. The characterization or modelling
of the uncertainties related to these parameters is an important issue in the study and the treatment of
uncertainties in computer codes (De Rocquigny et al., 2008; Helton et al., 2006). This characterization is
moreover necessary to a better understanding of the behaviour of the computer code and more generally
the modelled phenomenon.

In this work, the studied uncertain parameters are functional random variables (or stochastic pro-
cesses) which can be inputs or outputs of a computer code. Functional data analysis is a topic which has
been studied in many references among which one can cite books by Ferraty and Vieu (2006); Horvath
and Kokoszka (2012); Bongiorno et al. (2014) or recent publication by Goia and Vieu (2016) and refer-
ences therein. The objective of the present work is to characterize their uncertainties, ¢.e. to model their
joint probability distribution. Furthermore, it must be possible to apply the methodology proposed in
this paper regardless of the way functional data have been obtained: if data come from experimental



measurements and are inputs of a model or if they are outputs of a deterministic or stochastic computer
code. For instance, in the case where they are outputs of a computer code, no information about the code
or its input parameters is used. The uncertainty modelling of a single functional variable has been thor-
oughly studied in several different contexts. For instance, in the study of stochastic partial differential
equations, functional uncertain parameters can be used in boundary or initial conditions of the studied
equations. In this context, Ghanem and Spanos (1991) have proposed to conduct the study in two steps.
First, the Karhunen-Loéve expansion (Loéve, 1955), of which is derived Principal Component Analysis
(PCA), is used to decompose the variable on a functional basis and thus to reduce the dimension of the
problem. In a second step, the random coefficients of the variable on the functional basis are modelled
by a polynomial chaos expansion. This very common approach has been explored and improved in
many works (Ma and Zabaras 2011; Wan and Zabaras 2014; etc.). In the context of sensitivity analysis,
Anstett-Collin et al. (2015) consider that the functional variables in input of the computer code are
Gaussian processes, and approximate them by a truncation of the Karhunen-Loeve expansion. As the
variables are assumed to be Gaussian processes, their coefficients in the Karhunen-Loéve expansion are
independent and normally distributed. The authors then conduct a sensitivity analysis on the output of
the computer code, replacing the functional inputs by their coefficients in the truncated Karhunen-Loéve
expansion. Hyndman and Shang (2010) propose a visualization tool for functional data, whose first
step consists in decomposing the functional data on the two first components of a functional PCA basis
(Ramsay and Silverman, 2005), and in computing the joint probability density function of the couple of
coefficients by a kernel density estimation procedure (Scott, 2009). In the same spirit, Bongiorno and
Goia (2016, 2015) use a decomposition of the functional variables, via the Karhunen-Loéve expansion,
and estimate the joint distribution of the coefficients of the truncated expansion using a kernel density
estimator. However, their approach is used in a classification context. They exploit the link between
the small-ball probability associated with the functional data and the joint probability density function
of the coefficients, stated in Proposition 1 of Bongiorno and Goia (2016) and discussed in Delaigle and
Hall (2010). The functional variables uncertainty modelling is then used in their visualization tool. The
approach followed by most of these authors can thus be separated into two main steps: the decomposi-
tion of the functional variable on a functional basis and the estimation of the joint probability density
function associated with the first coefficients of the decomposition.

In this paper, we want to address two additional problems. The first studied issue is to deal si-
multaneously with several dependent functional variables. The methodology presented in this paper is
designed to characterize simultaneously several functional variables, and thus to take into account their
dependence. This issue has previously been adressed in Jacques and Preda (2014a,b), in a classification
context. In their work, dependent functional variables are decomposed on a basis using an extension of
PCA, and Gaussian mixture modelling is used to cluster the decomposition coefficients. In addition to
characterizing the uncertainty of functional variables, we also propose to address the case where these
random variables can be linked to a scalar or vectorial variable, called hereafter covariate. The covariate
is thus here defined as a variable dependent on the functional variables under study. The functional
variables and the covariate are thus correlated. For example, the covariate can be the output of a code
taking as inputs the functional variables. The objective of uncertainty modelling is usually to find the
best approximation of the probability distribution of the functional variables. However, the modelling
cannot be perfect and only a part of the characteristics of the functional variables is kept in the model,
so that some of the functional variable features which explain the covariate can be lost in the mod-
elling. In the case where functional variables are linked to a covariate, the modelling of the functional
variables has to retain both their most important characteristics and their characteristics which are the
most correlated to the covariate. The aim is not here to propagate uncertainties to the covariate nor to
model the link between the functional variables and the covariate, but only to preserve, in the estimated
probability distribution of the functional data, the features which best explain the covariate. Returning
to the example where the covariate is the output of a computer code which takes as inputs the functional
variables, their estimated probability distribution could be used, in a second step, to generate more
realizations of the variables and conduct a sensitivity analysis of the computer code. Other applications
of this characterization methodology could be the estimation of probabilities related to the functional
variables and the covariate, such as the joint probability for the functional variables and the covariate
to exceed some thresholds. The computation of such probabilities is illustrated in section 5.1. The
methodology could be also used to build a visualization tool for the functional variables following the
method proposed by Hyndman and Shang (2010). This possible application is illustrated in section 5.2.



The proposed uncertainty modelling methodology is composed of two main steps, as in some of the
previously presented methods, such as Anstett-Collin et al. (2015). First, the dimension of the problem
is reduced by decomposing the functional random variables on a functional basis. If the studied variables
are not linked to a covariate, we propose to use Functional Principal Component Analysis (Ramsay
and Silverman, 2005). Alternatively, in the presence of a covariate linked to the studied variables, the
Partial Least Squares (PLS) decomposition, based on Partial Least Squares regression (Wold, 1966),
is proposed to reach a compromise between retaining the most important features of the functional
variables and their features which are the most correlated to the covariate. In order to take into account
the dependence between the functional random variables, a simultaneous version of PLS decomposition,
denoted SPLS, is developed. This means that the decomposition is done on a vector of functional random
variables instead of a unique functional random variable. From the SPLS decomposition, a finite number
of coefficients are selected to approximate the functional variables; the problem becoming multivariate.
The second step of our methodology consists in estimating the joint probability density function of the
decomposition coefficients. For this, a Gaussian mixture model is proposed. A new estimation method
has been developed to learn sparse Gaussian mixture models in order to reduce the number of parameters
in the model. This procedure combines the well-known Expectation-Maximization algorithm (Dempster
et al., 1977) and a Lasso penalization-based algorithm for sparse covariance matrices estimation (Bien and
Tibshirani, 2011). Several criteria are proposed in this paper to check the efficiency of the methodology.
Their objectives are to assess its ability to approximate the probability distribution of the functional
variables, to capture their dependence structure or their features related to the covariate.

In the next two sections, the methodology to characterize the uncertainty of dependent functional
random variables is fully described. Two proposed dimension reduction methods based on functional
principal component analysis and Partial Least Squares regression are presented in section 2. The
density estimation step is detailed in section 3. In section 4, criteria chosen to adjust the parameters of
the developed methodology and to assess its quality are presented. Tests of the methodology are run on
an simulated example in section 5.1, and an application to a nuclear reliability test case is proposed in
section 5.2.

2 Functional decomposition

Let us define the probability space (2, F, P). The functional random variables fi,..., fm : Q@ X I = R,
with I C R, are defined on this probability space and take their values in the Hilbert space £2([0,1])
endowed with canonical inner product and associated norm. f;(w,.) : I — R, for i € {1,...,m} and
w € Q, is thus a one-dimensional function. These variables are the inputs of the computer code M. The
output of M is the scalar variable Y, called hereafter a covariate. In the following, it is considered that
a sample of n vectors of m functions fi ;,..., fm;, j € {1,...,n} is known. The corresponding outputs
of M, yj = M(f1,.--,fm,), are also known. The functions are discretized on the points t¢1,...,t,
of the interval I. The discretized version of the function f; ; is noted f; ; € RP, ¢ € {1,...,m} and
je{l,...,n}, such that f; ;(tx) = £ jx, for k€ {1,...,p}.

The objective of this section is to approximate simultaneously the m functional random variables

fi,--., fm on a basis. The decomposition of a single functional random variable f;, for i € {1,...,m}, is
first presented. The sample functions f; 1, ..., fi, are approximated on a truncated basis (gpg )7 R go& ))
of size d € N:
o (¢ () (’) 1
fij(t) = e +Zagk90k ) (1)

witht € R, i€ {1,...,m},je{l,...,n}, e =1 Z] 1 fi,j is the mean function and a ;. 1s the coeffi-
cient of the j* curve on the k" component. TWO decompositions have been 1nvest1gated. simultaneous

Principal Components Analysis (SPCA) and simultaneous Partial Least Squares decomposition (SPLS).

2.1 Principal Components Analysis decomposition

The functional principal components analysis (FPCA) method, proposed by Ramsay and Silverman
(2005), is an adaptation of Principal Component Analysis (PCA), first proposed by Pearson (1901). For



a sample of functions (f; ;)1<j<n, FPCA searches for the basis functions wgi), ey <p£l) and the coefficients

ag.f})c, je{l,...,n} ke{l,...,d} that minimize

2

Z/(f” —e(Z) Za]kgok t) dt,

such that the functions gogl), ceey gof;) are orthonormal. In practice, different approaches exist to solve
this optimization problem. Ramsay and Silverman (2005) proposes to expand the functions as linear
combinations of spline basis functions. Then PCA can be applied to the coefficients of the functions
on the spline basis. In particular, one can use a linear spline basis which is equivalent to apply PCA
directly to the discretized functions. This method is applied here. F(?) is the matrix of the n discretized
functions such that F (¢ ) = f; j 1. The PCA decomposition is found by singular value decomposition of

the matrix F(9:
FO — gy poy®T

@) are the columns of

where U® and V® are orthogonal matrices and D is diagonal. The functions ©p,
1420

Van Deun et al. (2009) and Ramsay and Silverman (2005) propose to decompose simultaneously
multivariate functional data as a single FPCA basis to handle the dependence between the functional
random variables. In the following, this method is called SPCA. To this end, the PCA decomposition is

applied to the vectors f; of concatenated discretized functions, such that
fj =1[f1;/N1,... fm i /Nm] € R™, j€{l,...,n},

where Ny, ..., N,, are normalization factors. Moreover, if the curves f; are correlated, this simultaneous
decomposition is hoped to help reducing the number of components. For the same number of components,
simultaneous decomposition can, in some cases, give a better approximation than decompositions on each
functional random variable independently. The choice of the normalization factors is important, as it
must ensure that each functional random variable has an equivalent influence on the decomposition.
Three normalization factors are proposed here and compared in section 5.1:

e the maximum of the functional random variable: N; = max fi ik,
1<is
12k:<p

p
e the sum of the standard deviations at each time step k: N; = Z \/Var(f;, k),
k=1

1/2
e the square root of the sum of the variances at each time step: N, (Z Var(f;, ) .

2.2 Partial Least Squares decomposition

The second considered decomposition basis, the Partial Least Squares (PLS) decomposition, is also
built from the available data, and is based on the PLS regression technique, proposed by Wold (1966).
Compared to PCA decomposition, PLS decomposition can take into account the link between the func-
tional random variables and a vectorial covariate. The PLS decomposition is here applied to the dis-
cretized version of the functional data to be decomposed. A detailed description of PLS regression
and decomposition can be found in Hoskuldsson (1988). The aim of PLS regression is to explain the

variable Y with linear combinations of the variables X,...,X,, where the variables X;,..., X, are
standardized and centered. Let us define the samples of n realizations Y7,...,Y, and X;1,...,X;,
for i € {1,...,p}. The PLS algorithm is initialized to Xy = X, the matrix whose column vectors are

(X115, X)) T, oo (Xpa, .-, Xpn)T. At each step h > 0, the vector uy, of weights for the linear
combination solves the following equation:

”mzﬁx Cov(Xp—1un,Y).
Up 1



The hth predictor of the regression is defined as ap = Xp_1up, with u, the solution of the previous
optimization problem. Finally, the matrix X} is the so-called deflation of X, _1: X, = Xp_1 — ahgoz:,
where the vector ¢, is defined as follows:

_ X}?—lah
Yn = a{ah '
This procedure is repeated for each step h from 1 to d.
To derive the PLS decomposition of f;, i = 1,...,m, this regression technique is applied to the matrix
X, such that the elements X, =1f;, ;1,7 =1,...,nand k =1,...,p. d steps are computed. Then, for
i=1,...,mand for j =1,...,n, the discretized sample functions can be approximated in this way:

d
fzj"rti E QhiPh-
h=1

Each obtained vector ¢y, is then the ht" basis function in the PLS decomposition and the A*" predictor
ay, is the vector of coefficients associated to the A" function basis, for h = 1,...,d. As for PCA, the
PLS regression can be applied to the concatenated discretized functional random variables, so that these
variables are decomposed simultaneously on a PLS basis. This decomposition is called SPLS in the
following. No normalization is applied to the variables, as the data is centered and standardized in the
PLS algorithm.

The choice of the decomposition depends on the studied case. In the absence of covariate, SPCA is
preferable in order to optimize the approximation of the functional variables. On the contrary, SPLS
could be a better choice to add information about this covariate.

3 Probability density estimation

The objective of this section is to model the probability density function of coefficients of the decom-
position, with number of coefficients d being fixed. In practice, the number of coefficients depends on
quality criteria defined in section 4 and whose usage is detailed in section 5.

3.1 Gaussian Mixture model and EM algorithm

Let aj = (aj1,...,a54), j € {1,...,n} be the vectors of coefficients of the decomposition. The density
of the sample of vectors ag, ..., , is estimated with a Gaussian mixture model (GMM). Let us define
G the number of clusters in the mixture, p4, X4, g € {1,..., G}, the vectors of means and matrices of
covariance of the clusters and 7, the proportions of the clusters in the mixture. The probability density
function g of the GMM is written for all o € R?,

Z e P e )5 )/2), 2)

The parameters of the probablhty density function are estimated by the Expectation-Maximization
algorithm (EM), introduced by Dempster et al. (1977). More complete reviews of the EM algorithm can
be found in Mclachlan and Krishnan (1997). This algorithm maximizes the likelihood of the model by
replacing the data « by the so-called complete data («, z), where z is called the hidden variable. In the
case of GMM, the hidden variables are defined in this way fori =1,...,nand g=1,...,G:

~ _ | 1 if a; belongs to group g
%9 =1 0 otherwise.
The log-likelihood of the complete data is:

nplog(2m
Z(Oé,Z‘Tg,Mg7Zg,g:1,...,G) = _w—i_

2
G n 1 G n
Z Z Ziglog Ty — 5 Z Z zig [log det(E,)+
g=11i=1 g=11i=1
(o — :“g)Tz ( Mg)} : (3)

(@3



In the EM algorithm, two steps are repeated until convergence. The Expectation step consists of com-
puting the conditional expectation of the log-likelihood given the actual estimation of the parameters.
The Maximization step consists of determining the parameters maximizing the conditional expectation
computed in the previous step. Wu (1983) show that, under some regularity conditions, the EM algo-
rithm converges to a local minimum of the log-likelihood. In practice, the minimum reached at the end
of the algorithm depends strongly on the initialization of the algorithm. The EM algorithm is therefore
repeated with different initializations. In the case of GMM, the Expectation step consists of computing

this expression:
_ 79.fg(cilfly)
= —% ,
> ket T fr(ci|Ok)
exp (—(a—pg) TS (a—pg)/2)

\/det(272,) yforg=1,...,G.
For the Maximization step, the three following equations are computed:

(4)

Zig

where fq: a—

Tg = n o Zig (5)
En—l RigQi
py = T ©)
I > e Zig
1 n
So = w2 ziglai — pg) (i — pig) " (7)

The EM algorithm for estimating the parameters of a GMM is given in Algorithm 1.

Algorithm 1

1. Initialize the parameters T,go), ,u,(co) and E,(CO), ked{l,...,G}.

2. Expectation Step: Compute zi(,i), ke{l,....,G}, i€ {1,...,n}, using equation (4).

3. Mazimization Step: Compute Téj+1), u,(cjﬂ) and E,(Cjﬂ), ke {l,...,G} using equations (5), (6) et
(7) respectively.

4. Repeat 2-3 until convergence.

The number of clusters G in the Gaussian mixture is not selected by the EM algorithm and must be
chosen by the user. Many criteria have been developed to select this quantity. In this work, we consider
a widely used information theoretic criteria based on a penalization of the log-likelihood. This criterion,
called the Bayesian Information Criterion (BIC), has been introduced by Schwarz (1978) and is defined
as follows:

BIC = -2(+ klnn, (8)

where / is the log-likelihood of the model, k is the number of parameters and N is the sample size. BIC
is computed for models estimated with different numbers of clusters and the number of clusters G which
maximizes this criterion is selected.

This criterion can also be used to determine the optimal number of clusters in sparse Gaussian mixture
models on which our methodology is based and that are introduced in the next section.

3.2 Sparse Gaussian Mixture estimation
The total number N of GMM parameters increases with the dimension and the number of clusters:

d(d+1)

N=G-1+Gd+G 7

because G — 1 proportions, G mean vectors and G symmetric covariance matrices have to be estimated.
There can be overfitting if the number of parameters becomes too high with respect to the number of



data points. To avoid this, it can be interesting to reduce the number of parameters. The idea of the
developed method is to estimate a GMM with sparse covariance matrices. In an unpublished article!,
Krishnamurthy has proposed to estimate a GMM with sparse covariance by adding a Lasso penalization
on the inverse of the covariance matrices. This algorithm is based on the method of Friedman et al.
(2008) to estimate the sparse structure of inverse covariance matrices. However, the penalization of the
inverse of a covariance matrix enforces the inverse to be sparse but not necessarily the covariance matrix.
A matrix can be sparse whereas its inverse is not.

We propose to follow a scheme close to the one of Krishnamurthy, but applying directly the Lasso
penalization on the covariance matrix. For this, we use the method of Bien and Tibshirani (2011) which
estimates sparse covariance matrices, by maximizing the penalized log-likelihood.

Instead of maximizing the log-likelihood of the GMM, given in (3), we propose to maximize the
penalized log-likelihood. The maximization problem can be defined as follows for each cluster g =
1,...,G:

n

2, = argmaxges, |— Zzig (log det(S) + A| P * S||1 + (i — )" S (a; — pg)) | - 9)

i=1

Sy is the space of symmetric definite positive d X d matrices, the symbol * denotes the Hadamard product
of two matrices, A € Ry is a penalization parameter, the norm ||.[[1 is such that [|Af1 =32, ;[A;;] and
P is the penalization matrix. In Bien and Tibshirani (2011), three penalization matrices P have been
proposed such that for 4,5 € {1,...,n},

M _q p® _ e _ 10y
Py =1 P’ =18y o P = e, (10)
ij
where §;; is the Kronecker delta which is equal to one when ¢ = j and is null otherwise, and
Eg — Z?:l Zig(ai - :u’g)(al - l’l’g)T
Die1 Zig
is the empirical covariance matrix for group g.
Dividing the maximization problem (9) by > | z;,, one gets:
. n . - Te-1(q, —
S, = argming.g, |logdet(S) + AP+ S| + iz 2ig(Xi — Hg) ST (0 = 1y)
> i1 Zig
3, = argming.g, logdet(S) + tr(S7'S,) + A|[P * |1 (11)

Bien and Tibshirani (2011) have proposed a method to solve the optimization problem (11). It relies
on the fact that the objective function is the sum of a convex function S +— tr(S™1%,) + A||P % S||; and
a concave function S — logdet . S. The optimization of such a function is a classical problem and can
be solved by Majorization-Minimization algorithm. Wang (2013) proposed a new algorithm based on
coordinate descent algorithm to solve (11). According to the results of Wang (2013), this new algorithm
is faster and numerically more stable for most cases than the algorithm of Bien and Tibshirani (2011).

The EM algorithm can be thus modified by adding these G penalized problems. At each maximization
step, the covariance matrices are estimated as in the EM algorithm by equation (7), and then the matrices
are re-estimated by Wang’s algorithm. The covariance matrix estimated with (7) can be used as initial
value for Wang’s algorithm. The proposed algorithm is summarized in Algorithm 2.

Algorithm 2

1. Initialize the parameters T,EO), u,(co) and E,(CO), ke{l,...,G}.

2. Expectation Step: Compute zf,z), ke{l,...,G},ie{l,...,n}, using equation (4).
3. Mazimization Step: Compute Tlgj+1), u,(jﬂ) and Egﬂ), ke {1,...,G} using equations (5), (6)
and (7) respectively.

Lwww.cs.cmu.edu/~akshaykr/files/sgmm_ paper.pdf



4. Zlgjﬂ) < argmingcg, logdet S — tr(S_lZgH)) — AP *S|;.

5. Repeat 2—4 until convergence.

The choice of the penalization parameter is important. Bien and Tibshirani (2011) propose to choose
it by cross-validation. The ensemble {1,...,n} is partitioned into K subsets Aj,..., Ax. For a fixed
penalization parameter and for each k € {1,..., K}, the sparse EM algorithm is applied to all points
except those of Ay. The log-likelihood of the estimated model is then computed on the points of A.
This is repeated for several values of the penalization parameter A\, and the value of A maximizing the
computed log-likelihood is selected.

4 Criteria to assess the methodology quality

In this section, 5 criteria are proposed to both asses the quality of the proposed modelling and to
determine the number d of selected components in the decomposition. The way these criteria can be
used to determine d is detailed in Sections 5.1 and 5.2. The first two criteria address specifically the
functional decomposition step while the following three criteria evaluate the whole uncertainty modelling
methodology.

4.1 Criteria for the functional decomposition step

The functional decomposition of the functional variables is performed with two objectives: retaining the
features which are the most important for the approximation and the most correlated to the covariate.
Hence, two criteria are defined to evaluate the ability of the functional decomposition to answer these
two objectives. To assess the approximation quality of the variables on the basis, the first criterion

is the explained variance. Let us denote the discretized versions of the functions by f; ;,...,f, ; for
j=1,...,n and their approximation by f; ;,...,f, ;. The explained variance, denoted as criterion C1,

is then defined by this expression:

with fl = % Z?:l fi,j~

In order to quantify how well the link between the covariate and the coefficients is preserved, a
metamodel (Sacks et al., 1989) can be used to predict the covariate as a function of the coefficients.
If the metamodel predicts efficiently the covariate, this could confirm that the functional variables fea-
tures which explain the covariate are well captured by the decomposition coefficients. Among all the
metamodel-based solutions (polynomials, splines, neural networks, etc.), we focus our attention on the
Gaussian process model (Oakley and O’Hagan, 2002; Rasmussen and Williams, 2006). Many authors
(e.g. Welch et al. 1992; Marrel et al. 2008) have shown how the Gp model can be used as an efficient
emulator of code responses, even in high dimensional cases. The quality of the model can be assessed by
the Q2 coefficient. For a validation sample Y1,...,Y,, with n, € N, the Q? is defined as follows:

n

> (vi-%)

Q=1 (13)

ne

> (v -7)°

j=1
where Y = n% Z;“:l Y; is the output mean, and, for j = 1,...,ny, Y] is the estimation of Y; by the
Gaussian process model. In practice, the Q@ can be computed by cross-validation (Hastie and Tibshirani,
1990). In the validation procedure, the dataset is partitioned into ny disjoint ensembles. At each of the



ny steps, a metamodel is learned on the data from ny — 1 ensembles and the metamodel is applied to
the points in the only ensemble not used to train the metamodel. The Q? criterion is finally computed
using all the metamodel outputs. It constitutes the second proposed criterion to assess the quality of
the methodology and is denoted C5. In the tests conducted in section 5, cross-validation with ny = 10
partitions has been used to compute Cs criterion.

4.2 Criteria for the whole uncertainty modelling methodology

Three criteria have been chosen to assess the whole methodology of probability density estimation.
First, the estimated probability distribution function of the coefficients is evaluated. To this end, new
samples of coefficients are simulated from the estimated GMM. Their joint probability density function
is compared to the one of a test sample of coefficients using a multivariate goodness-of-fit test. The
selected test is a kernel-based two-sample goodness-of-fit test, which has been developed by Fromont
et al. (2012). This test has been chosen among all existing multivariate goodness-of-fit test because it
is proven to be exactly of level a and not only asymptotically. The test is carried out on multiple pairs
of test basis and simulated samples of coefficients. The proposed criterion, denoted as C¥, is then the
acceptance rate of the goodness-of-fit over these multiple runs.

The second criterion evaluates the methodology ability to reproduce the correlations between the

functional variables. The studied correlations are pointwise correlations at each point of I. The W
pointwise correlation between variables f; and f; for 4,5 =1,...,m, ¢ # j, is defined in this way:
¢i,j(t) = Corr (fi(t), f(t)) .t € 1. (14)

The test basis is composed of realizations of the functional variables and the simulated basis contains
functions simulated using the characterization methodology. The mean square error between the point-
wise correlations of the test and those of the simulated bases is used as criterion and is noted C%, for
,jg=1,...,m:

ch = / (c05(1) — & (1)% dt. (15)

Finally, the ability of the methodology to reproduce the behaviour of the covariate is also tested.
Similarly to the first criterion C§, a goodness-of-fit test is used to evaluate the estimated probability
density function of the covariate. Test samples of the covariate are computed by applying the model
M to known realizations of (f1,..., fm), and simulated samples of covariates are computed by applying
the model M to functions simulated with the characterization methodology. The Kolmogorov-Smirnov
two-sample test (Conover, 1971) is applied between multiple pairs of simulated and test samples of the
covariate. This test is a classical, simple and efficient one-dimensional goodness-of-fit test. The third
criterion CY is defined as the acceptance rate of all these tests.

5 Applications

In this section, the proposed methodology is applied to two test cases: an simulated model and a nuclear
reliability test case. Different options of the methodology are studied and compared: the normalization
factors for SPCA decomposition (see section 2.1), the different decomposition methods (see section
2) and the GMM estimation algorithms (see section 3). Moreover, the benefit of the simultaneous
decompositions is shown. In the tests presented below, the algorithm proposed in section 3.2 and the
algorithm developed by Krishnamurthy are called respectively sEM2 and sEM in the following. The
SsEM2 algorithm with penalization matrix P(), P2 or P®) is called respectively sEM2.1, sSEM2.2,
sEM2.3.

5.1 Simulated example

The presented characterization methodology is tested in this section on an simulated model. The two
studied temporal random variables are defined by these equations:

fl(taA17A27A3)
fa(t, A1, Aa, Ag)

AgBB(ﬁ) + A1 =+ Cg(t, Ag)
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Figure 1: Simulated example: samples of 600 realizations of functional variables f; (left) and fo (right).

where ¢ is a continuous variable defined on I = [0,1]. The random variables A;, As and Aj follow
independent uniform laws on respectively [0, 0.5], [0.05,0.2] and [2,3]. The functions h, ¢; and co are
defined as follows, where BB is a Brownian bridge.

t — 1004
h(t,As) = 0.15 (1 - ‘60003 >
Cft-1 ift< B
alt) = { % —t otherwise
1—t if t <0.5
oot As) = { S -05t if05<t<05+ 3%
05—t otherwise

The covariate Y is defined as the output of the function M:
Y (A1, As, Az) = M(f1(., A1, Az, A3), fa(., A1, Az, A3))
1
[+ 22 (0.1, 20, A (16)
0

A sample of n = 600 realizations of the triplet (Agj ), A(QJ ), Aé] )) is available and provides 600 realizations
fij = fi(, AP AP AP i e {1,2} j € {1,...,n} of the two variables. These realizations constitute
the learning sample. The corresponding outputs of M, Y; = M(f1 ;, f2,;), are also known. This sample
is represented on Figure 1. The functions are discretized on ¢4, ...,t, € I, with p = 512.

The sample of realizations is decomposed on the SPCA and SPLS bases. The three normalization
factors given in section 2.1 are first compared. Concerning the SPCA basis, the normalization by the
maximum of the functional variable yields different approximation errors for both variables, while the
two others give equivalent weights to f; and fs. In the following, the normalization by the sum of the
standard deviations is used, but the normalization by the square root of the variances could be used as
well.

The explained variances C; of SPCA and SPLS are compared with these of PCA and PLS respectively.
The idea is to evaluate the benefit of simultaneous decomposition against non simultaneous decomposition
for the same number of total components. For this, figures 3 and 2, represent in abscissa the number of
components selected in SPLS (resp. SPCA) decomposition and in ordinate the number of components
selected in the PLS (resp. PCA) of only one functional variable. For instance, the use of 2 components in
the decomposition of f; and 3 in the decomposition of f; is compared to the use of 5 components in the
simultaneours decomposition. The black and red curves represent the maximal number of components
selected in the decompositions of each variable f; and fo separately such that these PLS (resp. PCA)
decompositions have an explained variance lower or equal to the explained variance of the SPLS (resp.
SPCA) decomposition, for each SPLS (resp. SPCA) basis size. The dotted line is the reference curve
y = z. If the sum of the number of components of each PLS (resp. PCA), the blue line, is over the
curve y = x, SPLS (resp. SPCA) gives better approximations of the curves for the same number of
coefficients. For 3 (resp. 2) or more components, SPCA (resp. SPLS) better approximates the sample
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Figure 2: Simulated example: the maximal number of PCA components of each variable such that the
sum of the explained variances of these decompositions is lower than the explained variance of SPCA
(red and black curves). Sum of black and red curves (blue curve). Reference curve y = z (dotted line).
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Figure 3: Simulated example: the maximal number of PLS components of each variable such that the
sum of the explained variances of these decompositions is lower than the explained variance of SPLS (red
and black curves). Sum of black and red curves (blue curve). Reference curve y = z (dotted line).

than two individual PCAs (resp. PLS) on f; and fs separately for an equal total number of components.
The simultaneous decompositions are therefore more efficient than individual ones when more than one
component is retained.

Then, SPLS and SPCA are compared in Figures 4 and 5 based on criteria C7 and Cs. In Figure 4,
the percentage of explained variance as defined in equation (12) is drawn as a function of the basis size
for SPCA (black circles) and for SPLS (red crosses). The explained variance of SPCA is higher than
the one of SPLS by definition of SPCA. However, for basis with more than 8 components, the difference
between the two explained variances becomes quite low. A Gaussian process model is fitted between the
coefficients of SPLS (resp. SPCA) and the covariate for different basis sizes. The Figure 5 shows the
Q? of this Gaussian process model, defined in equation (13). The Q? of SPLS is higher than the one
of SPCA. The difference is low for basis with more than 5 components. SPLS decomposition preserves
more the features of the two functional variables which are linked to the covariate than SPCA. It seems
to be a better compromise between the two objectives.

In the following, we focus on the SPLS decomposition. For different basis sizes, the probability
density functions of the coefficients is estimated with the five different estimation methods, EM, sEM,
sEM2.1, sEM2.2 and sEM2.3. The criteria C§, C% and C§ presented in section 4.2 are computed for
these different basis sizes. The criteria C'§ and C§ are computed with 10 test basis and 10 simulated
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Figure 4: Simulated example - criterion C: explained variance by SPCA (black circles) and SPLS (red
crosses) as a function of the decomposition basis size.
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Figure 5: Simulated example - criterion Cy: Q? coefficient of the Gaussian process model between the
coefficients of SPCA (black circles) or SPLS (red crosses) and the covariate Y as a function of the
decomposition basis size.
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Figure 6: Simulated example - criterion C§: boxplot of the acceptance rates for the goodness-of-fit test
between the estimated coefficients probability density and the true density as a function of the basis size
and for each of the 5 estimation algorithms.
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Figure 7: Simulated example - criterion Cg : boxplot of the mean square errors for the pointwise corre-
lations between etimates of f; and fo as a function of the basis size and for each of the 5 estimation
algorithms.

samples, containing 10? realizations. For the criterion C3, one test basis with 10° realizations and 10
simulated samples of 10% realizations are used. The values of the three criteria are computed on 50
different learning basis of size n. The boxplots of these values are given as a function of the basis size
for each estimation algorithm in Figures 6, 7 and 8.

In Figure 6, the criterion C' evolves in the same manner for each estimation algorithm. For each
algorithm, the acceptance rate of the goodness-of-fit test is increasing until a basis of size 8, then it
decreases quickly. Compared to the acceptance rates for sEM2.2 and sEM2.3 algorithms, the acceptance
rates for EM, sEM and sEM2.1 have much more variability and are lower for basis with 12 or more
functions. Therefore, the use of sSEM2 with penalization matrices 2 and 3, without penalization on
the diagonal, improves the results in higher basis sizes. In Figure 7, the criterion C} is represented in
logarithmic scale. It decreases quickly with the basis size. Moreover, the errors are quite low for high
basis sizes as it is around 0.01 for a decomposition basis with 8 or 10 functions. Finally, the values of
the criterion C%, in Figure 8, are quite constant for all algorithms except sEM2.1. Moreover, they are
about 90% or higher for these algorithms. On the contrary, the acceptance rates of algorithm sEM2.1
vary much more, and even decrease as a function of the basis size, at first. Moreover, studies conducted
on learning samples of sizes from n = 200 to 1000 show that the three criteria increase as n increases.

With the five considered algorithms, the highest basis size such that the median of the criterion C is
above 80% (resp. 90%) is 10 (resp. 8). The criterion C§ is over 90% with all algorithms except sEM2.1
for which it is about 85%. The criterion C% is about 0.016 for bases with 8 functions and 0.012 for bases
with 10 functions. Criteria C¢, C% and C§ can be used to choose the decomposition basis size. As the
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Figure 8: Simulated example - criterion Cf: boxplot of the acceptance rates for the goodness-of-fit test
between the estimated covariates probability density and the true density as a function of the basis size
and for each of the 5 estimation algorithms.

values of both C% and C% criteria seem acceptable for bases with 8 or 10 functions, the chosen value for
the basis size could be here 8 or 10, depending on what we prefer to better represent: the dependence
between the functional variables or the coefficients probability distribution. If 10 is chosen, the criterion
C4 is a little worsened but C? is improved. A 8 functions basis is used in the rest of the section as it
minimizes the error on the estimated distribution.

In this simulated example, the proposed methodology has proven its efficiency to characterize the
functional variables and their link to the covariate. The sparse estimation algorithm sEM2 with penaliza-
tion matrices 2 and 3 seems to improve the criterion C§ for higher basis sizes. However, overall, there are
few differences between the various estimation methods. This may be due to the low number of parame-
ters in this example, because the sparse methods are the most helpful when the ratio between the number
of parameters to be estimated and the learning data size is high. For instance, for a decomposition basis
of 8 functions and 3 clusters in the GMM, the number of parameters is only 89.

Finally, this uncertainty modelling method can be used to estimate probabilities for the studied
variables to exceed a given threshold. No error bound is available for this estimation method, so that the
efficiency of the method is not theoretically guaranteed. A bootstrap method could be used to measure
the uncertainty on the computed probability and thus assess method stability. Let us define a probability
to estimate:

- P((te]:fl(t,Al,Ag,Ag)>—0.8)U
1\ 270
i Al Ay A3 < =) < 22 U(Y < =1)).
(rtné?(ﬁ(t’ 142 3)<2><512)U( <-1)

The reference value for p is computed on a sample of 10° realizations of the functional variables and
covariate. The computed value, 0.272,; is considered as the true value in the following. An estimation p
of p is estimated with a sample of 10° realizations of the estimated GMM. The relative approximation
error

lp — B

100

is computed for 50 learning bases and different decomposition basis sizes. Figure 9 represents this
absolute error as a function of the basis size and for each estimation algorithm. The obtained ranges
of errors show that it is not possible to have a very precise estimation of the probability but rather a
good estimate of its order of magnitude. For instance for bases of size 10, the medians of the errors
are between 16 and 20%, which corresponds to an error of about 0.05. This analysis is not surprising
considering that the probability p has been estimated using a method designed to approximate a whole
density probability function and not uniquely a single probability, and considering that a sample of
only 600 realizations is used. EM and sEM algorithms give slightly lower errors than other algorithms.
Moreover, the convergence to the real value is first very fast. Then, the decrease of the error slows down
for higher basis sizes.
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Figure 9: Simulated example: boxplot of the relative approximation error, 100 |p — p| /p, between the
estimated probability p and p as a function of the basis size and for each of the 5 estimation algorithms.
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Figure 10: Nuclear reliability example: sample of 400 curves of temperature (left panel), pressure (center)
and transfer coefficient (right).

5.2 Nuclear reliability application

In the scope of nuclear reliability and nuclear power plant lifetime program, physical modelling tools
have been developed to assess the component reliability of nuclear plants in numerous scenarios of use
or accident. In the framework of nuclear plant risk assessment studies, the evaluation of component
reliability during accidental conditions is a major issue required for the safety case. A thermal-hydraulic
system code (code 1) models the behaviour of the considered component subjected to highly hypothetical
accidental conditions. Three functions of time, fluid temperature, transfer coefficient and pressure are
computed. Then, a thermal-mechanical code (code 2), taking as input code 1 results along with some
mechanical scalar parameters, calculates the absolute mechanical strength of the component and the
mechanical applied load. From these two quantities, a safety criterion Y is deduced. In accidental
conditions, the component behaviour depends on several uncertain parameters which are input variables
of the two computer codes. The functional outputs of code 1 are thus uncertain too. The objective is
here to characterize the three dependent functional random variables, temperature, pressure and transfer
coefficient, linked to the safety criterion. A learning dataset of 400 temperature, pressure and transfer
coefficient functions is available. The safety criteria corresponding to the available functions are computed
with constant mechanical parameters. Penalizing values from a safety point of view have been given to
mechanical input parameters of code 2. A sample of the learning dataset is represented in Figure 10.

SPLS and SPCA decompositions are first compared on the three functional variables. The safety
criterion is considered as the covariate in the SPLS decomposition. To apply both simultaneous decom-
positions, the functions are discretized on a regular grid of p = 512 points. The three normalization
factors (see section 2.1) are first compared for SPCA. As in section 5.1, SPCA with the normalization
by the maximum of the functional variable favours one variable. The normalization by the sum of the
standard deviations is used here.
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Figure 11: Nuclear reliability example - criterion C;: explained variance by SPCA (black circles) and
SPLS (red crosses) as a function of the decomposition basis size.
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Figure 12: Nuclear reliability example - criterion Cy: Q2 coefficient of the Gaussian process model
between the coefficients of SPCA (black circles) or SPLS (red crosses) and the covariate Y as a function
of the decomposition basis size.

Figure 11 represents the variance explained by the SPLS (red crosses) and SPCA (black circles)
decompositions. Variance explained by SPCA is above the variance explained for every basis size. The
explained variance of SPLS decomposition is though quite close to the one of SPCA and becomes closer
for basis sizes higher than 14. In Figure 12, the Q2 of the Gaussian process model between the coefficients
of the decomposition and the covariate is represented. The Q? computed for SPLS clearly outperforms
the Q2 of SPCA. As it was expected, SPLS decomposition retains more than SPCA functional variables
features which are correlated to the covariate. SPLS decomposition is used in the rest of the section, as
it is a good compromise between the two objectives of the characterization.

The probability density function of the SPLS coefficients is estimated using the EM, sEM and sEM?2
algorithms for different basis sizes. The criteria C§ and C3, described in section 4.2, are computed. They
are averaged on 50 simulated samples of size 1000. These samples are compared to a test dataset of 1000
functions. Figures 13 and 14 show respectively the criteria C§ and C% as a function of the decomposition
basis size. The results for algorithms EM, sEM, sEM2.1, sEM2.2 and sEM2.3 are plotted respectively
in black, red, green, dark blue and light blue. In Figure 13, the acceptance rates are quite high for
basis sizes lower than 10. For higher sizes, the rates decrease quickly and the sEM2 algorithm with the
three penalization matrices performs much better than EM and sEM algorithms. In Figure 14, the mean
square errors on the correlation between temperature and pressure, temperature and transfer coefficient,
and pressure and transfer coefficient are presented from left to right. The errors decrease quickly as
a function of the basis size. Moreover, they are quite low for basis sizes over 6 or 8. From these two
criteria, a decomposition basis with 10 functions is chosen, as it gives an acceptance rate about 80% for
each algorithm and as the errors on the correlations are quite low for this basis size.

For the criterion C%, such intensive tests could not have been applied because of the computation
time of code 2. However, criterion C'§ has been computed for eight retained coefficients, its value is
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Figure 13: Nuclear reliability example - criterion C§: acceptance rates for the goodness-of-fit test on the
estimated coefficients density as a function of the basis size.
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Figure 14: Nuclear reliability example - criterion C%: mean square errors for the pointwise correlations
as a function of the basis size.
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Figure 15: Nuclear reliability example: proposed extension of the Highest Density Region (HDR) boxplot
of the temperature, the pressure and the transfer coefficient functional variables.

approximately 98%, based on 50 Kolmogorov-Smirnov tests. Hence, the covariate seems to be well
reproduced. For the sake of comparison, criterion C§ has also been computed with models based on
9 and 11 components, averaged on 50 goodness-of-fit tests. Its values are respectively 92% and 94%.
Both are slightly inferior to the value obtained with 8 components. With 9 components, even though
the Gaussian mixture model is more accurate, less components are used, thus information is missing in
the model. On the contrary, the lower value obtained with 11 components is due to the fact that the
Gaussian mixture model is less accurate, and that its lower accuracy is not enough counterbalanced by
the higher number of components.

Finally, a possible application of this uncertainty modelling methodology could be to provide a
tool to visualize simultaneously several dependent functional data. For this, we propose to adapt the
visualization technique developed by Hyndman and Shang (2010) and called Highest Density Region
(HDR) boxplot. This technique is an extension of boxplot visualization to functional data in the sense
that it helps identifying a central curve, zones containing a certain proportion (e.g. 50%) of most central
curves and outlying curves. However, its shape (as in the boxplot bivariate extension) is very different
to the one of boxplot. It is worth noting that it has already been applied in the context of nuclear
reliability study in Popelin and Iooss (2013). The method of Hyndman and Shang (2010) is based on the
uncertainty characterization of the functional variables. They propose to decompose the functional data
on a PCA basis and to select the first two basis functions. Then, the joint probability of the coefficients
is estimated with a kernel density estimation (Rosenblatt, 1956). The estimated probability density
function f of the coefficients is used as a probability density function of the corresponding functions.
The function whose coefficients has the highest density is called the functional mode. Conversely, the
functions whose corresponding coefficients have the lowest density are considered as outliers. A HDR is
defined as

R, = {x : f(iL’) > fa}v (17)

where f, is such that fRa f(x)dx =1—q,and 0 < a < 1 is a probability. The points outside Ry
are considered as outliers. We propose here to replace the characterization step by the methodology
proposed in this paper. The rest of the visualization method is unchanged. This modified version of the
HDR boxplot is applied simultaneously to the temperature, the pressure and the transfer coefficient and
the result is represented on Figure 15. A SPCA basis with 8 functions is used in the characterization
step. The black curve is the functional mode. The dark and light gray zones are the regions bounded
by all curves whose corresponding coefficients are in Rsgy and Ry, respectively. The colored curves are
outliers, i.e. curves whose corresponding coefficients are not in Rjg.

6 Conclusion
In this article, we have proposed a methodology to model the uncertainties of several functional random

variables. This method allows to deal simultaneously with several dependent functional variables and to
address the specific case where these variables are linked to a scalar or vectorial variable, called covariate.
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In this case, the two objectives of the method are thus to preserve the most important characteristics
of the functional variables and their features which best explain the covariate. The proposed method
is composed of two main steps: the decomposition of the functional variables on a reduced functional
basis and the modelling of the probability density function of the coefficients of the variables in the
functional basis. The first step is carried out by the Simultaneous Principal Component Analysis, if
the variables are not linked to a covariate and otherwise by the developed Simultaneous Partial Least
Squares decomposition. The latter one has the advantage to maximize the covariance between the
covariate and the approximated functional variables. In the second step, the joint probability density
function of the selected coefficients is modelled by a Gaussian mixture model. A new algorithm, using
Lasso penalization, is proposed in this paper to estimate the parameters of the Gaussian mixture model
with sparse covariance matrices and hence reduce the number of model parameters to be estimated.

This uncertainty modelling methodology has been successfully applied to an simulated example with
two functional random variables and to a nuclear reliability test case. In both presented test examples,
the SPLS algorithm has been shown to better preserve the variable features which explain the covariate,
and the sparse algorithm has improved the estimation of the GMM parameters. A possible application
of the methodology has been exposed: the joint probability for the functional variables and the covariate
to exceed thresholds is estimated using the probability density function estimated in the methodology.
Another presented application is to use the characterization methodology to build a visualization tool
for functional data. Finally, if the covariate is the output of a computer code whose inputs are the
functional variables, it enables to simulate new samples of inputs and thus to run uncertainty propagation
or sensitivity analysis studies on the computer code. However, tests, which are not displayed here, have
shown that the ability of the method to reproduce the covariate distribution depends strongly on the
definition of the covariate. This is the topic of future works.
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