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Abstract

This paper proposes a new methodology to quantify the uncertainties associated to multiple depen-
dent functional random variables, linked to a quantity of interest, called the covariate. The proposed
methodology is composed of two main steps. First, the functional random variables are decomposed on
a functional basis. The decomposition basis is computed by the proposed Simultaneous Partial Least
Squares algorithm which enables to decompose simultaneously all the functional variables. Second, the
joint probability density function of the coefficients of the decomposition associated to the functional
variables is modelled by a Gaussian mixture model. A new method to estimate the parameters of the
Gaussian mixture model based on a Lasso penalization algorithm is proposed. This algorithm enables to
estimate sparse covariance matrices, in order to reduce the number of model parameters to be estimated.
Several criteria are proposed to assess the efficiency of the methodology. Finally, its performance is
shown on an analytical example and on a nuclear reliability test case.

1 Introduction

In a large number of fields, like physical or environmental sciences, computer codes prove to be an
invaluable tool to model and predict studied phenomena. With the development of computer abilities,
numerical simulators have become more and more complex. To describe the characteristics of the studied
phenomenon, a great amount of input parameters of various types is needed: scalar, functional, categor-
ical... These characteristics are not perfectly known and the parameters which describe them are thus
uncertain. As they can have a great influence on the computer code output, the study of these uncer-
tainties, thanks to uncertainty quantification or sensitivity analysis (De Rocquigny et al. 2008; Saltelli
et al. 2000), is an invaluable tool to validate, simplify and better understand a model. The knowledge
of the uncertainties associated to each parameter and of their influences on the code output also enables
to guide the efforts of characterization of input parameters.

The objective of the work presented in this paper is to quantify and to model the uncertainties as-
sociated to functional random variables. The quantification of uncertainties in the context of functional
inputs has been studied in some recent works. Anstett-Collin et al. (2013) consider that the functional
variables under study are Gaussian processes, and approximate them by a Karhunen-Loève decomposi-
tion (Loève 1955). As the variables are Gaussian processes, their coefficients on this functional basis are
independent and normally distributed. In their work, this modelling is used to conduct a sensitivity anal-
ysis on the output of the computer code that takes the studied functional variables as inputs. Hyndman
and Shang (2010) propose a visualization method of functional variables based on their characterization.
They decompose the data on the two first components of a functional principal components analysis
basis (Ramsay and Silverman 2005). The joint probability density function of the couples of coefficients
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is computed thanks to kernel density estimation. In this document, the problem under consideration is
different from the previous ones in the sense that the functional random variables to be characterized
are dependent and are linked to a scalar (or vectorial) variable, called hereafter a covariate. This co-
variate can be, for instance, the output of a computer code which takes as inputs the functional random
variables. The main objective of this work is thus to provide a new methodology to characterize the
uncertainties associated to dependent functional variables linked to a covariate.

The proposed characterization process is composed of two parts. First, the dimension of the prob-
lem is reduced by decomposing the functional random variables on a functional basis. In order to take
into account the dependence between the functional random variables, the decomposition is done simul-
taneously on all the variables. This means that the decomposition is done on a vector of functional
random variables instead of a unique functional random variable. The link between the functional ran-
dom variables and the covariate is taken into account in this first step, using specific decomposition.
The functional random variables are approximated by their coefficients on the basis. Thus, the problem
becomes multivariate instead of multivariate functional. The second step consists in estimating the joint
probability density function of the decomposition coefficients. For this, a Gaussian mixture model is
proposed and an estimation method based on a penalization algorithm is developed. In addition to
providing a characterization of the joint distribution of the studied random variables, this methodology
allows also to simulate new realizations of these variables. Indeed to perform simulations, the decom-
position coefficients are sampled from the estimated Gaussian mixture, and the corresponding functions
are constructed by multiplying the new coefficients with the basis functions.

In the next two sections, the methodology to characterize the uncertainty of dependent functional
random variable linked to a covariate is fully described. Two proposed dimension reduction methods
based on functional principal component analysis and Partial Least Squares regression are presented in
section 2. The density estimation step is detailed in section 3. In section 4, criteria chosen to adjust
the parameters of the developed methodology and to assess its quality are presented. Tests of the
methodology are run on an analytical example in section 5.1, then the methodology is applied to a
nuclear reliability example, in section 5.2.

2 Functional decomposition

Let us define the probability space (Ω,F , P ) and the functional random variables f1, . . . , fm : Ω×I → R,
where I ⊂ R. fi(ω, .) : I → R, for i ∈ {1, . . . , m} and ω ∈ Ω, is thus a one-dimensional function.
These variables are the inputs of the computer code M. The output of M is the scalar variable Y ,
called hereafter a covariate. In the following, it is considered that a sample of n vectors of m functions
f1,j , . . . , fm,j , j ∈ {1, . . . , n} is known. The corresponding outputs ofM, yj =M(f1,j , . . . , fm,j), are also
known. The functions are discretized on the points t1, . . . , tp of the interval I. The discretized version

of the function fi,j is noted ~fi,j ∈ R
p, i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, such that fi,j(tk) = ~fi,j,k, for

k ∈ {1, . . . , p}.
The objective of this section is to approximate simultaneously the m functional random variables

f1, . . . , fm on a basis. The decomposition of a single functional random variable fi, for i ∈ {1, . . . , m}, is

first presented. The sample functions fi,1, . . . , fi,n are approximated on a truncated basis
(

ϕ
(i)
1 , . . . , ϕ

(i)
d

)

of size d ∈ N:

fi,j(t) ≈ e(i)(t) +

d
∑

k=1

α
(i)
j,kϕ

(i)
k (t), (1)

with t ∈ R, i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, e(i) = 1
n

∑n
j=1 fi,j is the mean function and α

(i)
j,k is the coeffi-

cient of the jth curve on the kth component. Two decompositions have been investigated: simultaneous
Principal Components Analysis (SPCA) and simultaneous Partial Least Squares decomposition (SPLS).

2.1 Principal Components Analysis decomposition

The functional principal components analysis (FPCA) method, proposed by Ramsay and Silverman
(2005), is an adaptation of Principal Component Analysis (PCA), first proposed by Pearson (1901). For
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a sample of functions (fi,j)16j6n, FPCA searches for the basis functions ϕ
(i)
1 , . . . , ϕ

(i)
d and the coefficients

α
(i)
j,k, j ∈ {1, . . . , n}, k ∈ {1, . . . , d} that minimize

n
∑

j=1

∫

I

(

fi,j(t)− e(i)(t)−
d
∑

k=1

α
(i)
j,kϕ

(i)
k (t)

)2

dt,

such that the functions ϕ
(i)
1 , . . . , ϕ

(i)
d are orthonormal. In practice, different approaches exist to solve this

optimization problem. Ramsay and Silverman (2005) proposes to express the functions on a spline basis.
Then PCA can be applied to the coefficients of the functions on the spline basis. They also propose to
apply PCA directly to the discretized functions. This second method is applied here. F (i) is the matrix

of the n discretized functions such that F
(i)
k,j = ~fi,j,k. The PCA decomposition is found by singular value

decomposition of the matrix F (i):

F (i) = U (i)D(i)V (i)T
,

where U (i) and V (i) are orthogonal matrices and D(i) is diagonal. The functions ϕ
(i)
k are the columns of

V (i).
Van Deun et al. (2009) and Ramsay and Silverman (2005) propose to decompose simultaneously

multivariate functional data on a single FPCA basis to handle the dependence between the functional
random variables. In the following, this method is called SPCA. To this mean, the PCA decomposition
is applied to the vectors ~fj of concatenated discretized functions, such that

~fj =
[

~f1,j/N1, . . . , ~fm,j/Nm

]

∈ R
mp, ∀j ∈ {1, . . . , n},

where N1, . . . , Nm are normalization factors. Moreover, if the curves fi are correlated, this simultaneous
decomposition is hoped to help reducing the number of components. For the same number of components,
simultaneous decomposition can, in some cases, give a better approximation than decompositions on each
functional random variable independently. The choice of the normalization factors is important, as it
must ensure that each functional random variable has an equivalent influence on the decomposition.
Three normalization factors are proposed here:

• the maximum of the functional random variable: Ni = max
16j6n
16k6p

~fi,j,k,

• the sum of the standard deviations at each time step k: Ni =

p
∑

k=1

√

Var(~fi,.,k),

• the square root of the sum of the variances at each time step: Ni =

(

p
∑

k=1

Var(~fi,.,k)

)1/2

.

2.2 Partial Least Squares decomposition

The second considered decomposition basis, the Partial Least Squares (PLS) decomposition, is also
built from the available data, and is based on the PLS regression technique, proposed by Wold (1966).
Compared to PCA decomposition, PLS decomposition can take into account the link between the func-
tional random variables and a vectorial covariate. The PLS decomposition is here applied to the dis-
cretized version of the functional data to be decomposed. A detailed description of PLS regression
and decomposition can be found in Höskuldsson (1988). The aim of PLS regression is to explain the
variable Y with linear combinations of the variables X1, . . . , Xp, where the variables X1, . . . , Xp are
standardized and centered. Let us define the samples of n realizations Y1, . . . , Yn and Xi,1, . . . , Xi,n

for i ∈ {1, . . . , p}. The PLS algorithm is initialized to X0 = X, the matrix whose column vectors are
(X1,1, . . . , X1,n)T , . . . , (Xp,1, . . . , Xp,n)T . At each step h > 0, the vector uh of weights for the linear
combination solves the following equation:

max
‖uh‖=1

Cov(Xh−1uh, Y ).
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The hth predictor of the regression is defined as αh = Xh−1uh, with uh the solution of the previous
optimization problem. Finally, the matrix Xh is the so-called deflation of Xh−1: Xh = Xh−1 − αhϕT

h ,
where the vector ϕh is defined as follows:

ϕh =
XT

h−1αh

αT
h αh

.

This procedure is repeated for each step h from 1 to d.
To derive the PLS decomposition of fi, i = 1, . . . , m, this regression technique is applied to the matrix

X, such that the elements Xj,k = ~fi,j,k, ∀j = 1, . . . , n and ∀k = 1, . . . , p. d steps are computed. Then,
for i = 1, . . . , m and ∀j = 1, . . . , n, the discretized sample functions can be approximated in this way:

~fi,j ≈
d
∑

h=1

αhjϕh.

The obtained vectors ϕh is then the hth basis function in the PLS decomposition and the hth predictor
αh is the vector of coefficients associated to the hth function basis, for h = 1, . . . , d. As for PCA, the
PLS regression can be applied to the concatenated discretized functional random variables, so that these
variables are decomposed simultaneously on a PLS basis. This decomposition is called SPLS in the
following. No normalization is applied to the variables, as the data is centered and standardized in PLS
algorithm.

The choice of the decomposition depends on the studied case. If no covariate is known, SPCA is
preferable in order to optimize the approximation of the functional variables. On the contrary, if a
covariate is available, SPLS could be a better choice to add information about this covariate.

3 Probability density estimation

3.1 Gaussian Mixture model and EM algorithm

Let αj = (αj,1, . . . , αj,d) , ∀j ∈ {1, . . . , n} be the vectors of coefficients of the decomposition. The density
of the sample of vectors α1, . . . , αn is estimated thanks to a Gaussian mixture model (GMM). Let us
define G the number of clusters in the mixture, µg, Σg, g ∈ {1, . . . , G}, the vectors of means and matrices
of covariance of the clusters and τg the proportions of the clusters in the mixture. The probability density
function f of the GMM is written ∀α ∈ R

d,

f(α) =

G
∑

g=1

τg
√

det(2πΣg)
e−(α−µg)T Σ−1

g (α−µg)/2. (2)

The parameters of the probability density function are estimated by the Expectation-Maximization
algorithm (EM), introduced by Dempster et al. (1977). This algorithm maximizes the likelihood of the
model by replacing the data α by the so-called complete data (α, z), where z is called the unobserved
data. In the case of GMM, the unobserved data are defined in this way for i = 1, . . . , n and g = 1, . . . , G:

zig =

{

1 if αi belongs to group g
0 otherwise.

The log-likelihood of the complete data is:

ℓ (α, z| τg, µg, Σg, g = 1, . . . , G) = −np log(2π)

2
+

G
∑

g=1

n
∑

i=1

zig log τg −
1

2

G
∑

g=1

n
∑

i=1

zig [log det(Σg)+

(αi − µg)T Σ−1
g (αi − µg)

]

. (3)

In the EM algorithm, two steps are repeated until convergence. The Estimation step consists of comput-
ing the conditional expectation of the log-likelihood given the actual estimation of the parameters. The
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Maximization step consists of determining the parameters maximizing the conditional expectation com-
puted in the previous step. Wu (1983) show that, under some regularity conditions, the EM algorithm
converges to a local minimum of the log-likelihood. The minimum reached at the end of the algorithm
depends strongly on the initialization of the algorithm. The EM algorithm is therefore repeated with
different initializations, in practice. In the case of GMM, the Expectation step consists of computing
this expression:

zig =
τgfg(αi|θg)

∑G
k=1 τkfk(αi|θk)

, (4)

where fg : α 7→ e
−(α−µg)T Σ

−1
g (α−µg)/2√

det(2πΣg)
, for g = 1, . . . , G.

For the Maximization step, the three following equations are computed:

τg =
1

n

n
∑

i=1

zig (5)

µg =

∑n
i=1 zigαi
∑n

i=1 zig
(6)

Σg =
1

∑n
i=1 zig

n
∑

i=1

zig(αi − µg)(αi − µg)T . (7)

The EM algorithm for estimating the parameters of a GMM is given in Algorithm 1.

Algorithm 1

1. Initialize the parameters τ
(0)
k , µ

(0)
k and Σ

(0)
k , ∀k ∈ {1, . . . , G}.

2. Expectation Step: Compute z
(j)
ik , ∀k ∈ {1, . . . , G}, ∀i ∈ {1, . . . , n}, thanks to equation (4).

3. Maximization Step: Compute τ
(j+1)
k , µ

(j+1)
k and Σ

(j+1)
k , ∀k ∈ {1, . . . , G} thanks to equations (5),

(6) et (7) respectively.

4. Repeat 2–3 until convergence.

The number of clusters G in the Gaussian Mixture is not selected by the EM algorithm and must be
chosen by the user. Many criteria have been developed to select this quantity. In this work, we consider
an information theoretic criteria based on a penalization of the log-likelihood. This criterion, called the
Bayesian Information Criterion (BIC), has been introduced by Schwarz (1978) and is defined as follows:

BIC = −2ℓ + k ln n, (8)

where ℓ is the log-likelihood of the model, k is the number of parameters and N is the sample size. BIC
is computed for models estimated with different numbers of clusters and the number of clusters G which
maximizes this criterion is selected.

3.2 Sparse Gaussian Mixture estimation

The total number N of parameters in the GM model increases with the dimension and the number of
clusters:

N = G− 1 + Gd + G
d(d + 1)

2
,

because G− 1 proportions, G mean vectors and G symmetric covariance matrices have to be estimated.
There can be overfitting if the number of parameters becomes too high with respect to the number of
data points. To avoid this, it can be interesting to reduce the number of parameters. The idea of the
developed method is to estimate a GMM with sparse covariance matrices. In an unpublished article1,
Krishnamurthy has proposed to estimate a GMM with sparse covariance by adding a Lasso penalization

1www.cs.cmu.edu/~akshaykr/files/sgmm_paper.pdf
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on the inverse of the covariance matrices. This algorithm is based on the method of Friedman et al.
(2008) to estimate sparse inverse of covariance matrices. However, the penalization of the inverse of a
covariance matrix enforces the inverse to be sparse but not necessarily the covariance matrix. A matrix
can be sparse whereas its inverse is not.

We will follow a scheme close to the one of Krishnamurthy. However, we propose to apply directly
the Lasso penalization on the covariance matrix thanks to the method of Bien and Tibshirani (2011)
which estimates sparse covariance matrices, by maximizing the penalized log-likelihood.

Instead of maximizing the log-likelihood of the GMM, given in (3), we propose to maximize the
penalized log-likelihood. The maximization problem can be defined as follows for each cluster g =
1, . . . , G:

Σ̂g = argmaxS

[

−
n
∑

i=1

zig

(

log det(S) + λ‖P ∗ S‖1 + (αi − µg)T S−1(αi − µg)
)

]

. (9)

The symbol ∗ denotes the Hadamard product of two matrices, λ ∈ R+ is a penalization parameter, the
norm ‖.‖1 is such that ‖A‖1 =

∑

i,j |Aij | and P is the penalization matrix. In Bien and Tibshirani
(2011), three penalization matrices P have been proposed such that ∀i, j ∈ {1, . . . , n},

P
(1)
ij = 1, P

(2)
ij = 1− δij or P

(3)
ij =

1− δij

| (Σg)ij |
, (10)

where δij is the Kronecker delta which is equal to one when i = j and is null otherwise, and

Σg =

∑n
i=1 zig(αi − µg)(αi − µg)T

∑n
i=1 zig

is the empirical covariance matrix for group g.
Dividing the maximization problem (9) by

∑n
i=1 zig, one gets:

Σ̂g = argminS

[

log det(S)− λ‖P ∗ S‖1 −
∑n

i=1 zig(αi − µg)T S−1(αi − µg)
∑n

i=1 zig

]

Σ̂g = argminS log det(S)− tr(S−1Σg)− λ‖P ∗ S‖1. (11)

Bien and Tibshirani (2011) have proposed a method to solve the optimization problem (11). It relies
on the fact that the objective function is the sum of a convex function S 7→ tr(S−1Σg) + λ‖P ∗ S‖1 and
a concave function S 7→ log det S. The optimization of such a function is a classical problem and can
be solved by Majorization-Minimization algorithm. Wang (2013) proposed a new algorithm based on
coordinate descent algorithm to solve (11). According to the results of Wang (2013), this new algorithm
is faster and numerically more stable for most cases than the algorithm of Bien and Tibshirani (2011).

The EM algorithm can be thus modified by adding these G penalized problems. At each maximization
step, the covariance matrices are estimated as in the EM algorithm by equation (7), and then the matrices
are re-estimated by Wang’s algorithm. The covariance matrix estimated with (7) can be used as initial
value for Wang’s algorithm. The proposed algorithm is summarized in Algorithm 2.

Algorithm 2

1. Initialize the parameters τ
(0)
k , µ

(0)
k and Σ

(0)
k , ∀k ∈ {1, . . . , G}.

2. Expectation Step: Compute z
(j)
ik , ∀k ∈ {1, . . . , G}, ∀i ∈ {1, . . . , n}, thanks to equation (4).

3. Maximization Step: Compute τ
(j+1)
k , µ

(j+1)
k and Σ

(j+1)
k , ∀k ∈ {1, . . . , G} thanks to equations (5),

(6) and (7) respectively.

4. Σ
(j+1)
k ← argminS log det S − tr(S−1Σ

(j+1)
k )− λ‖P ∗ S‖1.

5. Repeat 2–4 until convergence.
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The choice of the penalization parameter is important. Bien and Tibshirani (2011) propose to choose
it by cross-validation. The ensemble {1, . . . , n} is partitioned into K subsets A1, . . . , AK . For a fixed
penalization parameter and for each k ∈ {1, . . . , K}, the sparse EM algorithm is applied to all points
except those of Ak. The log-likelihood of the estimated model is then computed on the points of Ak. This
is repeated for several values of the penalization parameter λ. The value of λ maximizing the computed
log-likelihood is selected.

4 Criteria to assess the methodology quality

4.1 Criteria for the functional decomposition step

The functional decomposition of the functional variables is done conditionally to two objectives. The
variables f1, . . . , fm must be approximated by the functional basis and the coefficients of the decompo-
sition must be linked to the model output Y . Hence, two criteria are defined to evaluate the ability
of the functional decomposition to answer these two objectives. To assess the approximation quality of
the variables on the basis, the first criterion is the explained variance. Let us denote the discretized

versions of the functions by ~f1,j , . . . , ~fm,j for j = 1, . . . , n and their approximation by ~̂f1,j , . . . , ~̂fm,j . The
explained variance, denoted as criterion C1 is then defined by this expression:

C1 =

m
∑

i=1

n
∑

j=1

(

~fi,j − ~̂fi,j

)T (
~fi,j − ~̂fi,j

)

m
∑

i=1

n
∑

j=1

(

~fi,j − ~̄fi

)T (
~fi,j − ~̄fi

)

, (12)

with ~̄fi =
∑n

j=1
~fi,j .

To quantify the link between the covariate and the coefficients, a linear model is estimated between
these variables. The quality of the linear model can be assessed by the Q2 coefficient. For a validation
sample Y1, . . . , Ynt

with nt ∈ N, the Q2 is defined as follows:

Q2 = 1−

nt
∑

j=1

(

Yj − Ŷj

)2

nt
∑

j=1

(

Yj − Ȳ
)2

, (13)

where Ȳ =
∑nt

j=1 Yj is the output mean, and, for j = 1, . . . , nt, Ŷj is the estimation of Yj by the linear

regression. In practice, the Q2 can be computed by cross-validation. The second criterion is defined as
the Q2 computed by cross-validation and is denoted as C2.

4.2 Criteria for the whole uncertainty quantification methodology

Three criteria have been chosen to assess the global methodology. First, the estimated probability
distribution function of the coefficients is evaluated. To this mean, new samples of coefficients are
simulated thanks to the estimated GMM. Their joint probability density function is compared to the
one of a test sample of coefficients thanks to a multivariate goodness-of-fit test. The employed test
is a kernel-based two-sample goodness-of-fit test, which has been developed by Fromont et al. (2012).
This test has been chosen among all existing multivariate goodness-of-fit test because it is proven to be
exactly of level α and not only asymptotically. The test is carried out on multiple pairs of test basis and
simulated samples of coefficients. The proposed criterion, denoted as Ca

3 , is then the acceptance rate of
the goodness-of-fit over these multiple runs.

The second criterion evaluates the methodology ability to reproduce the correlations between the

functional variables. The studied correlations are pointwise correlations at each point of I. The m(m−1)
2

pointwise correlation between variables fi and fj for i, j = 1, . . . , m, i 6= j, is defined in this way:

ci,j(t) = Corr (fi(t), fj(t)) ,∀t ∈ I. (14)
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The test basis is composed of realizations of the functional variables and the simulated basis contains
functions simulated thanks to the characterization methodology. The mean square error between the
pointwise correlations of the test and the simulated bases is used as criterion and is noted Cb

3. This error
is defined as follows ∀i, j = 1, . . . , m:

∫

I

(ci,j(t)− ĉi,j(t))
2

dt. (15)

Finally, the ability of the methodology to reproduce the behaviour of the covariate is also tested.
Similarly to the first criterion, a goodness-of-fit test is used to evaluate the estimated probability density
function of the covariate. Test samples of the covariate are computed by applying the modelM to known
realizations of (f1, . . . , fm), and simulated samples of covariates are computed by applying the model
M to functions simulated with the characterization methodology. The Kolmogorov-Smirnov two-sample
test (Conover 1971) is applied between multiple pairs of simulated and test samples of the covariate.
This test is a classical, simple and efficient one-dimensional goodness-of-fit test. The third criterion Cc

3

is defined as the acceptance rate of all these tests.

5 Applications

5.1 Analytical example

The algorithm proposed in section 3.2 and the algorithm developed by Krishnamurthy are called respec-
tively sEM2 and sEM in the following. The sEM2 algorithm with penalization matrix P (1), P (2) or P (3)

is called respectively sEM2.1, sEM2.2, sEM2.3.
The presented characterization methodology is tested in this section on an analytical model. The

two studied functional random variables are defined by these equations:

f1(t, A1, A2, A3) = 0.8A2BB(t) + A1 + c1(t) + h(t, A3)

f2(t, A1, A2, A3) = A2BB(t) + A1 + c2(t, A3)

where the random variables A1, A2 and A3 follow uniform laws on respectively [0, 03.05], [0.05, 0.2] and
[2, 3], and with

h(t, A3) = 0.15

(

1−
∣

∣

∣

∣

t− 100A3

60

∣

∣

∣

∣

)

c1(t) =

{

t− 1 if t < 35
256

93
128 − t otherwise

c2(t, A3) =







1− t if t < 0.5
64

5A3
− 0.5t if 0.5 < t < 0.5 + 5A3

256

0.5− t otherwise

The covariate Y is defined as the output of the function M:

Y (A1, A2, A3) = M(f1(., A1, A2, A3), f2(., A1, A2, A3))

=

∫ 1

0

(f1 + f2) (t, A1, A2, A3)dt (16)

A sample of n = 600 realizations of the triplet (A
(j)
1 , A

(j)
2 , A

(j)
3 ) is available and provides 600 realizations

fi,j = fi(., A
(j)
1 , A

(j)
2 , A

(j)
3 ), i ∈ {1, 2} j ∈ {1, . . . , n} of the two variables. These realizations constitute

the learning sample. The corresponding outputs of M, Yj =M(f1,j , f2,j), are also known. This sample
is represented on Figure 1. The functions are discretized on t1, . . . , tp ∈ I, with p = 512.

The sample of realizations is first decomposed on the SPCA and SPLS bases. The normalization
factors are first compared. SPCA with the normalization by the maximum of the functional variable
yields different approximation errors for both variables, while the two others give equivalent weights
to f1 and f2. In the following, the normalization by the sum of the standard deviations is used. The
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Figure 1: Samples of 600 realizations of f1 (left) and f2 (right).
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Figure 2: The maximal number of components of PCA of each variable such that the sum of the explained
variances of these decompositions is lower than the explained variance of SPCA.

explained variances C1 of SPCA and SPLS are compared with these of PCA and PLS respectively. The
idea is to compare the explained variances of simultaneous and non-simultaneous decompositions for
the same number of total components. For instance, the use of 2 components in the decomposition
of f1 and 3 in the decomposition of f2 is compared to the use of 5 components in the simultaneous
decomposition. Figures 3 and 2, represent in abscissa the number of components selected in SPLS (resp.
SPCA) decomposition and in ordinate the number of components selected in the PLS (resp. PCA) of
only one functional variable. The black and red curves represent the maximal number of components
selected in the decompositions of each variable f1 and f2 separately such that these PLS (resp. PCA)
decompositions have an explained variance lower or equal to the explained variance of the SPLS (resp.
SPCA) decomposition, for each SPLS (resp. SPCA) basis size. The dotted line is the y = x curve. If
the sum of the number of components of each PLS (resp. PCA), the blue line, is over the y = x line,
SPLS (resp. SPCA) gives better approximations of the curves for the same number of coefficients. For
3 (resp. 2) or more components, SPCA (resp. SPLS) better approximates the sample than PCA (resp.
PLS) on f1 and f2 separately for an equal total number of components.

SPLS and SPCA are compared in Figures 4 and 5 on the criteria C1 and C2. In Figure 4, the
percentage of explained variance as defined in equation (12) is drawn in function of the basis size in red
for SPCA and in black for SPLS. The explained variance of SPCA is higher than the one of SPLS by
definition. However, for basis with more than 8 components, the difference between the two explained
variances becomes quite low. A linear model is fitted between the coefficients of SPLS (resp. SPCA)
and the covariate for different basis sizes. The Figure 5 shows the Q2 of this linear model, defined in
equation (13). The Q2 of SPLS is higher than the one of SPCA. The difference is low for basis with
more than 5 components.

In the following, we focus on the SPLS decomposition. For different basis sizes, the probability
density functions of the coefficients is estimated with the different estimation methods. The criteria Ca

3 ,
Cb

3 and Cc
3 presented in section 4.2 are computed for these different basis sizes. The criteria Ca

3 and Cc
3

9
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Figure 3: The maximal number of components of the PLS decomposition of each variable such that the
sum of the explained variances of these decompositions is lower than the explained variance of SPLS.
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Figure 4: Explained variance by SPCA (in red) and SPLS (in black) (criterion C1) as a function of the
decomposition basis size.
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Figure 5: Q2 coefficient of the linear regression between the coefficients of SPCA (in red) or SPLS (in
black) and the covariate (criterion C2) as a function of the decomposition basis size.
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Figure 6: Boxplot of the acceptance rates for the goodness-of-fit test on the estimated coefficients density
(criterion Ca

3 ) in function of the basis size and for each estimation algorithm.
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Figure 7: Boxplot of the mean square errors for the pointwise correlations (criterion Cb
3) in function of

the basis size and for each estimation algorithm.

are computed with 10 test basis and 10 simulated samples, containing 103 realizations. For the criterion
Cb

3, one test basis with 105 realizations and 10 simulated samples of 103 realizations are used. The values
of the three criteria are computed on 50 different learning basis of size n. The boxplots of these values
are given in function of the basis size for each estimation algorithm in Figures 6, 7 and 8.

In Figure 6, the criterion Ca
3 evolves in the same manner for each estimation algorithm. For each

algorithm, the acceptance rate is increasing until a basis of size 8, then it decreases quickly. Compared to
the acceptance rates for sEM2.2 and sEM2.3 algorithms, the acceptance rates for EM, sEM and sEM2.1
have much more variability and are lower for basis with 12 or more functions. Therefore, the use of sEM2
with penalization matrices 2 and 3, without penalization on the diagonal, improves the results in higher
basis sizes. In Figure 7, the criterion Cb

3 is represented in logarithmic scale. It decreases quickly with the
basis size. Moreover, the errors are quite low for high basis sizes as it is around 0.01 for a decomposition
basis with 8 or 10 functions. Finally, the values of the criterion Cc

3, in Figure 8, are quite constant for
all algorithms except sEM2.1. Moreover, they are about 90% or higher for these algorithms. On the
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Figure 9: Boxplot of the relative approximation error between the estimated probability p̂ and p in
function of the basis size and for each estimation algorithm.

contrary, the acceptance rates of algorithm sEM2.1 vary much more, and even decrease in function of
the basis size, at first. Moreover, studies conducted on learning samples of sizes from n = 200 to 1000
show that the three criteria increase as n increases.

With the five considered algorithms, the highest basis size such that the median of the criterion Ca
3 is

above 80% (resp. 90%) is 10 (resp. 8). The criterion Cb
3 is over 90% with all algorithms except sEM2.1

for which it is about 85%. The criterion Cc
3 is about 0.016 for bases with 8 functions and 0.012 for bases

with 10 functions. As the values of both Cb
3 and Cc

3 criteria seem acceptable for bases with 8 or 10
functions, the chosen value for the basis size is here 8 or 10, depending on the threshold chosen for the
Ca

3 criterion. If 10 is chosen, the criterion Ca
3 is a little worsened but the second one is improved.

In this analytical example, the global methodology has proven its efficiency to characterize the func-
tional variables and their link to the covariate. The sparse estimation algorithm sEM2 with penalization
matrices 2 and 3 seems to improve the criterion Ca

3 for higher basis sizes. However, overall, there are few
differences between the various estimation methods. This may be due to the low number of parameters
in this example, because the sparse methods are the most helpful when the ratio between the number of
parameters to be estimated and the learning data size is high. For instance, for a decomposition basis
of 8 functions and 3 clusters in the GMM, the number of parameters is only 89.

Finally, this uncertainty quantification method can be used to estimate probabilities for the studied
variables to exceed a given threshold. No error bound is available for this estimation method, so that
the efficiency of the method is not theoretically guaranteed. Let us define the probability to estimate:

p = P
(

( t ∈ I : f1(t, A1, A2, A3) > −0.8) ∪
(

min
t∈I

(

f2(t, A1, A2, A3) <
1

2

)

<
270

512

)

∪ (Y < −1)
)

.

The reference value for p is computed on a sample of 105 realizations of the functional variables and
covariate. The computed value, 0.272, is considered as the true value in the following. An estimation p̂
of p is estimated with a sample of 105 realizations of the estimated GMM. The relative approximation
error

100
|p− p̂|

p

is computed for 50 learning bases and different decomposition basis sizes. Figure 9 represents this
absolute error in function of the basis size and for each estimation algorithm. The estimation gives good
results. For example, the medians of the errors are between 16 and 20% for bases of size 10. EM and
sEM algorithms give slightly lower errors than other algorithms. The decrease of the error slows down
for higher basis sizes.

5.2 Nuclear reliability application

In the scope of nuclear reliability and nuclear power plant lifetime program, physical modelling tools
have been developed to assess the component reliability of nuclear plants in numerous scenarios of use
or accident. In the framework of nuclear plant risk assessment studies, the evaluation of component
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Figure 10: Samples of 400 curves of temperature (left panel), pressure (center) and transfer coefficient
(right).
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Figure 11: Explained variance by SPCA (in red) and SPLS (in black) (criterion C1) as a function of the
decomposition basis size.

reliability during accidental conditions is a major issue required for the safety case. A thermal-hydraulic
system code (code 1) models the behaviour of the considered component subjected to highly hypothetic
accidental conditions. Three functions of time, fluid temperature, transfer coefficient and pressure are
computed. Then, a thermal-mechanical code (code 2), taking as input code 1 results along with some
mechanical scalar parameters, calculates the absolute mechanical strength of the component and the
mechanical applied load. From these two quantities, a safety criterion Y is deduced. In accidental
conditions, the component behaviour depends on several uncertain parameters which are input variables
of the two computer codes. The functional outputs of code 1 are thus uncertain too. The objective
is here to characterize the three dependent functional random variables, temperature, pressure and
transfer coefficient, linked to the safety criterion. A learning dataset of 400 temperature, pressure and
transfer coefficient functions is available. The safety criteria corresponding to the available functions are
computed with constant mechanical parameters. Pessimistic values have been given to mechanical input
parameters of code 2. A sample of the learning dataset is represented in Figure 10.

SPLS and SPCA decompositions are first compared on the three functional variables. The safety
criterion is considered as the covariate in the SPLS decomposition. To apply both simultaneous decom-
positions, the functions are discretized on a regular grid of p = 512 points. As in section 5.1, SPCA with
the normalization by the maximum of the functional variable favours one variable. The normalization
by the sum of the standard deviations is used here. Figure 11 represents the variance explained by the
SPLS (in red) and SPCA (in black) decompositions. Variance explained by SPCA is above the variance
explained for every basis size. The explained variance of SPLS decomposition is though quite close to
the one of SPCA and becomes closer for basis sizes higher than 14. In Figure 12, the Q2 of the linear
regression between the coefficients of the decomposition and the covariate is represented. The Q2 com-
puted for SPLS clearly outperforms the Q2 of SPCA. As it was expected, SPLS decomposition explains
better than SPCA the link between the functional variables and the covariate. SPLS decomposition is
used in the rest of the section.

The probability density function of the SPLS coefficients is estimated thanks to the EM, sEM and
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Figure 12: Q2 of the linear regression between the coefficients of SPCA (in red) or SPLS (in black) and
the covariate (criterion C2) as a function of the decomposition basis size.
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Figure 13: Acceptance rates for the goodness-of-fit test on the estimated coefficients density (criterion
Ca

3 ) in function of the basis size.

sEM2 algorithms for different basis sizes. The criteria Ca
3 and Cb

3, described in section 4.2, are com-
puted. They are averaged on 50 simulated samples of size 1000. These samples are compared to a test
dataset of 1000 functions. Figures 13 and 14 show respectively the criteria Ca

3 and Cb
3 in function of the

decomposition basis size. The results for algorithms EM, sEM, sEM2.1, sEM2.2 and sEM2.3 are plotted
respectively in black, red, green, dark blue and light blue. In Figure 13, the acceptance rates are quite
high for basis sizes lower than 10. For higher sizes, the rates decrease quickly and the sEM2 algorithm
with the three penalization matrices performs much better than EM and sEM algorithms. In Figure 14,
the mean square errors on the correlation between temperature and pressure, temperature and transfer
coefficient, and pressure and transfer coefficient are presented from left to right. The errors decrease
quickly in function of the basis size. Moreover, they are quite low for basis sizes over 6 or 8. From these
two criteria, one could choose a decomposition basis with 10 functions, as it gives an acceptance rate
about 80% for each algorithm and as the errors on the correlations are quite low for this basis size.

For the criterion Cc
3, such intensive tests could not have been applied because of the computation

time of code 2.
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Figure 14: Mean square errors for the pointwise correlations (criterion Cb
3) in function of the basis size.
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6 Conclusion

In this article, we have proposed a global methodology to quantify the uncertainties in a context of
functional random variables. The distinctive features of the studied case are the facts that the functional
variables are dependent and linked to a scalar or vectorial variable called covariate. An objective of the
method is thus to preserve these features of the data during the modelling. The proposed method is
composed of two main steps: the decomposition of the functional variables on a reduced functional basis
and the modelling of the probability density function of the coefficients of the variables in the functional
basis. The first step is carried by the simultaneous principal component analysis or the developed
simultaneous partial least squares decomposition. The latter one has the advantage to maximize the
link between the covariate and the approximated functional variables. In the second step, the joint
probability density function of the selected coefficients is modelled by a Gaussian mixture model. A new
algorithm, using Lasso penalization, is proposed in this paper to estimate the parameters of Gaussian
mixture model with sparse covariance matrices.

The uncertainty quantification methodology has been successfully applied to an analytical example
with two functional random variables and to a nuclear assessment test case. In both presented test
examples, the SPLS algorithm has been shown to better explain the link between the functional variables
and the covariate, and the sparse algorithm has improved the estimation of the GMM parameters.
A possible application of the methodology has been exposed: the joint probability for the functional
variables and the covariate to exceed thresholds is estimated thanks to the probability density function
estimated in the methodology. Finally, the presented method can be used for uncertainty quantification
in computed codes. If the covariate is the output of a computer code whose inputs are the functional
variables, it enables to simulate new samples of inputs and thus to run uncertainty propagation or
sensitivity analysis studies on the computer code. However, tests, which are not displayed here, have
shown that the ability of the method to reproduce the covariate distribution depends strongly on the
definition of the covariate. This is the topic of future works.
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