
HAL Id: hal-01075839
https://hal.science/hal-01075839

Submitted on 20 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Error Model for a Lane Marking Based
Vehicle Localization Coupled to Open Source Maps
Wenjie Lu, Sergio Alberto Rodriguez Florez, Emmanuel Seignez, Roger

Reynaud

To cite this version:
Wenjie Lu, Sergio Alberto Rodriguez Florez, Emmanuel Seignez, Roger Reynaud. Probabilistic Error
Model for a Lane Marking Based Vehicle Localization Coupled to Open Source Maps. 2014 IEEE 17th
International Conference on Intelligent Transportation Systems (ITSC), Oct 2014, Qingdao, China.
�hal-01075839�

https://hal.science/hal-01075839
https://hal.archives-ouvertes.fr


Probabilistic Error Model for a Lane Marking Based Vehicle
Localization Coupled to Open Source Maps

Wenjie Lu1,2, Sergio A. Rodriguez F.1,2, Emmanuel Seignez1,2 and Roger Reynaud1,2

Abstract—Recent works have focused on lane marking feature
based vehicle localization using enriched maps. The localization
precision of existing methods depends strongly on the accuracy
of the maps which are specially customized. In this article,
we propose a marking feature based vehicle localization using
open source map. Our method makes use of multi-criterion
confidences to infer potential errors, and in advance, to en-
hance the vehicle localization. At first, the vision-based lane
marking models are obtained. Meanwhile, the map-based lane
markings of current state are derived from map databases. Both
lane marking sources are fused together to implement vehicle
localization, using a multi-kernel based algorithm. In order to
further improve the localization performance, a probabilistic
error model is employed to identify the possible errors. The
experiments have been carried out on public database. The
results show that error modeling leads to a lower average lateral
error in localization result.

I. INTRODUCTION

Map-matching algorithms integrate the positioning data
from GPS sensors with Geographic Information Systems
(GIS). The algorithms identify the current road section on
which the host vehicle is traveling, then determine the
position of the host vehicle on the identified road section.
The purpose of a map-matching method is to enhance the
localization performance, and in advance to improve naviga-
tion function in Intelligent Transport Systems (ITS). State-
of-the-art map-matching methods can be classified into four
categories: geometric approaches, topological approaches,
probabilistic approaches, and advanced approaches.

Geometric approaches. A geometric approach takes only
the road section shapes into account, without the connection
relationships of different links. The techniques of this cate-
gory include matching a single vehicle position to a single
map point [1], a single vehicle position to a map road curve
[2], and a vehicle trajectory curve to a map road curve [3].
Methods in this category own high real-time ability because
these techniques have low complexity. However, geometric
approaches are sensible to noises.

Topological approaches. Topological approaches are able
to solve the noise sensitivity problem occurred in geometric
means. The idea is to introduce topological information of
map to help to reduce the possible road curve candidates.
In [4], an improved curve to curve matching algorithm is
demonstrated. Several criteria are used to help identify the
current road section, with the vehicle trajectory from GPS.
Differences between vehicle bearing and road direction are

1. Université Paris-Sud, 91405, Orsay, FRANCE
2. Institut Fondamentale d’Electronique CNRS 8622, 91405, Orsay,

FRANCE

computed, as well as distance to road segment, to determine
the current road section. At road junctions, an algorithm
is designed to decide which branch the vehicle drives to,
considering connectivity, legal possible turn, and difference
of vehicle bearing change and road direction changes.

Probabilistic approaches. Instead of a specific estimated
location, an elliptical or rectangular confidence region is
provided using probabilistic methods [5]. In [6], a confidence
region is created according to Dead Reckoning position. This
confidence region is computed only in complex conditions,
such as junctions, reducing the algorithm executing time. In
[7], a probabilistic value is derived from the structure tensor
of camera images. This value is used to match camera images
and images created from the map database.

Advanced approaches. In recent years, advanced algo-
rithms and methods are employed on map matching problem.
On the one hand, algorithms with refined concepts are
introduced. Common methods in vehicle localization include
Kalman Filter [8], Extended Kalman Filter [9], optimization
algorithm [10], and methods relying on interval analysis [11].
On the other hand, various cues are used to enhance map
matching results. In [12], objects localization is regarded as
one criterion to assist vehicle localization. In [13], traffic
signs (i.e. arrows, pedestrian crossings and markings) from
both vision source and map source are compared to provide
a transformation from vision space to map space.

Localization using lane marking is considered as one
branch of map-matching localization. Publications as
[13][14] on this direction utilize high-accuracy digital maps,
including the precise positions of the markings. In [13],
a translation vector between vision space and map space
are derived according to traffic signs (i.e. markings and
pedestrian crossings) from both sources, which helps adjust
vehicle location. High-accuracy digital maps help improve
localization results. However, these maps are specially cus-
tomized, which is time-consuming and range-limited. Some
papers use normal map database. In [15], a map of lane
marking features is built. Vehicle localization is implemented
using this map and vision based marking features.

In this paper, a lane marking feature based vehicle local-
ization method is proposed. The aim is to estimate accurate
vehicle localization coupling vision information and open
source map database. In addition, the performance of vehicle
localization is improved, taking probabilistic error model into
account. In Section II, lane markings are detected through
image processing. In Section III, vehicle location is esti-
mated according to fusing both vision-based lane markings
and markings from reconstructed map databases. Section



IV designs an error model to search for errors in vehicle
localization method. Finally, Section V presents experimental
results.

II. LANE MARKING DETECTION
Road marking featuresprovided by camera images are

extracted through image processing. The marking model
parameters are then estimated using an improved multi-kernel
method. The lane marking detection algorithm is proposed in
[16].

The image processing procedure includes the following
steps. Inverse Perspective Mapping (IPM) translation trans-
mits perspective space images into Bird Eye’s View (BEV)
space image, which greatly facilitates marking detection
strategies. A second order derivative filter along the hori-
zontal direction is applied to process BEV images where
lane markings are nearly vertical. To eliminate the remaining
outliers, a cell-based blob algorithm, improved from [17], is
introduced. At the end of image processing part, a binary
image representing lane marking pixel candidates is obtained.

A parabola in BEV space: x = c+d · y+ e · y2 is selected
as marking model. The marking initialization step determines
the zero order component c. The other two components d and
e are estimated through a multi-kernel based method.

III. LANE MARKING BASED VEHICLE
LOCALIZATION

A. Particle Filter

A particle filter is designed to estimate vehicle positions
in East North Up (ENU) space using the derived marking
models. The observation of the filter is rough GPS sig-
nal. The state of a particle at time k is represented as
n
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The particle state after movement is then given by:
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The normalized importance weight w̄
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of a particle is
calculated according to a two-dimension Gaussian distribu-
tion centering at (x
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). The particles are resampled
according to Sequential Importance Resampling (SIR) algo-
rithm. Finally, the approximated vehicle fix is given by
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B. Lane Selection

The filtered vehicle position is used to select current lane
in this step. The aim of lane selection is to derive the
map-based lane markings. The markings are obtained from
OpenStreetMap (OSM), a collaborative project to provide
open source map database. In OSM, the coordinates of
road sections are provided, as well as the number of lanes
and lane width in each section. With these information,
the original node topology can be reconstructed to a lane-
marking topology. When the current lane is selected, the
current lane markings are derived.

Lane selection stage is implemented in two steps. In the
first step, map information and filtered vehicle positions
are fused to decide which part of road the vehicle is in.
The nearest road section to the filtered vehicle position is
regarded as the current road section. A road section may
contain one or more lanes. The second step is to determine
which lane the vehicle is in in a road section, according
to multi-criterion. Considered criteria include lane changing
criterion, third lane marking criterion, and history vehicle
state criterion. Assuming that the maximum lane number
is 3, which is left lane, middle lane, and right lane. The
corresponding probabilities of each lane are p

l

, p
m

, and p

r

.
The first criterion is lane changing, which is determined
according to the zero order component c in lane marking
model x = c+d·y+e·y2. The strategy is that a lane changing
from a previous lane to a following lane distributes also the
probability of the previous lane, p

l,lc

, p
m,lc

and p

r,lc

are the
probabilities of left, middle, and right lane, respectively.

The second criterion is the third lane marking. At first, the
third lane marking parameter range is estimated through the
detected two current lane markings in Sect II. p

l,mk

, p
m,mk

and p

r,mk

are the probabilities of third lane marking criteria
respectively. If a third marking on the left side is detected,
the right lane probabilities p

m,mk

and p

r,mk

increase.
The third criterion is the historical vehicle state in previous

states. The probabilities of historical state are represented as
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where k

lc

= 0.6, k
mk

= 0.24 and k

hs

= 0.16 are coefficients
of the three cues, used to tune the importance of different
cues.

The lane whose probability is the maximum value among
p

l

, p
m

and p

r

is defined as the lane state S

lane

of current
lane. The map-based lane markings of current state can be
thus derived.

C. Marking Based Localization

When both vision-based and map-based lane markings of
current lane are obtained, the vehicle position is derived using
a multi-kernel based estimation method. Fig. 1 illustrates the
vehicle localization procedure. The markings of current cell
and the cell in front are projected to BEV space, as the black
lines in Fig. 1. The sets of left and right marking pixels
are denoted as S

l,ipm

and S

r,ipm

respectively. Vision-based
lane markings are represented as the form of quadratic model
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kernel based estimation method. The translation matrix is
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Fig. 1. Vehicle localization procedure.
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is the set of lane marking pixels in BEV space,
S
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is the projected pixel set. Translated markings
through T
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) are illustrated as dashed lines
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The marking based localized position is (x
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),
through the transfer from BEV space to ENU space.

IV. PROBABILISTIC ERROR MODELING

In order to estimate the confidence of the vehicle local-
ization procedure, a representation of potential error sources
in localization method can be identified. To this end, a
probabilistic error modeling is proposed. Normally, the main
problems which cause unsuccessful localization are errors of
lane detection, errors of vehicle localization, and errors of
map topology. The models of these errors can be constructed
lying on several criteria, such as marking detection cues, third
marking cues, and localization fitting cues.

A. Error Modeling

The confidences of lane detection error model, localization
error model and map error model are estimated. The poten-
tial errors are decided according to methods based on the
following models.

Error model of lane detection. Improper vision-based
marking detection leads to a dismatch with map-based lane
marking, and thus, an inaccurate localization. This kind
of error can be detected through lane detection confidence
conf

ld

. When a marking is detected from an image, conf
ld

is employed to quantify the quality of a marking, which can
be a meaningful criterion to detect when lane detection fails.
To this end, a set �
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number of high contributed pixels in l

th block.
When the number of high contributed pixels in all the

blocks are determined, the confidence of a detection can be
estimated as:
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It is worth to mention that conf

ld

, takes the number of
contributed pixels (n

con

/L in Eq. (18) ) and the distribution
of these pixels (

P

L�1
l=0 p

con,l

in Eq. (18) ) into account. A
detection result which has more contributed pixels and whose
contributed pixels are more equally distributed earns a higher
confidence.

A lane detection error is modeled based on conf

ld

and lane
width. An unsuccessful detection contains two conditions.
One condition is that conf

ld

is lower than a threshold conf

ld

,
as shown in Fig. 3(a). The second condition relies on the
differences between the vision-based lane width (blue curves
in Fig. 3(b)) and the lane width provided by OSM (red
curves in Fig. 3(b)). When both conditions are satisfied, a
lane detection error is found, as shown in Fig. 3(c).

Error model of localization. In fitting step of localization
(see Section III-C), dismatching situations may happen. For
instance, the vision-based left marking matches the map-
based right marking, rather than map-based left marking.
Marking fitting confidence conf

ft

is used to detect this
kind of failure. When 4x

⇤
loc

and 4✓
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loc

are computed, error
confidence is defined according to Eq. (13):
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When conf
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tends to 0, it implies a high quality mark-
ing fitting, because the left and right fitting confidence
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(x, y) are almost
equal. If conf

ft

is higher than threshold conf

ft

, a localiza-
tion failure is identified. This procedure is demonstrated in
Fig. 4.

Error model of map topology. A map error here stands
for a fault lane number assigned to a road segment in OSM.
For instance, the host vehicle is in a two-lane section, but the
lane number offered from OSM is 3. Third lane markings,
mentioned in Section III-B, can be used to identify this

TABLE I
CONFUSION MATRIX OF conf

ld

with threshold conf

ld

conf

ld

conf

ld

conf

ld

>conf

ld

with an error TP FN
ground truth not an error FP TN

TABLE II
CONFUSION MATRIX OF conf

ft

with threshold conf

ft

conf

ft

conf

ft

conf

ft

>conf

ft

with an error FN TP
ground truth not an error TN FP

error. The third marking confidence conf

trd

represents the
probability of the lane markings to form the neighboring
lanes. When third markings are derived, marking confidence
conf

trd

can be calculated by the same method in Eq. (18).
The third lane markings with confidence conf

trd

greater than
conf

trd

are considered as potential third markings, shown
as green markers in Fig. 5(b) and (c). Barriers or other
noises sometimes can cause an instantaneous spourious third
marking, so the markings keeping visible for a period are
considered as a detected third marking, as red markers in Fig.
5(b) and (c). Once the third lane markings are derived, map
error can be modeled logically through fusing third marking
and number of lanes from OSM (red curves in 5(a)). For
instance, when the vision detects a third lane marking, but
the map database indicates the current section is one-lane
road section, an error is identified.

B. Threshold Estimation

When the confidences conf

ld

and conf

ft

are estimated,
the potential error can be inferred according to the thresholds
conf

ld

and conf

ft

. To determine the optimized thresholds,
confusion matrices of conf

ld

and conf

ft

are constructed as
Table I and II respectively, including the required confusion
matrix elements: true positive (TP), false positive (FP), true
negative (TN) or false negative (FN).

A higher confidence conf

ld

means a lower possibility of
lane detection error, while a higher confidence conf

ft

repre-
sents a higher possibility of localization error. Therefore, the
definition of matrix elements in Table I and II are different.
The optimized thresholds are derived using ROC curve [18].
The thresholds are valued as conf

ld

= 400, conf
ft

= 0.8.
The third marking threshold conf

trd

is assigned the same as
marking detection threshold conf

ld

.

V. RESULTS

Our method has been evaluated on KITTI database [19].
The input images are captured by a facing-front gray-scale
camera mounted on the vehicle. The raw GPS signals are
produced by adding noise model on high precision GPS
positions provided by KITTI. This method is implemented
using C++, and the obtained result data are analyzed using
Matlab.

A. Localization Results

The results of marking based localization are depicted in
Fig. 2. Fig. 2(a)-(b) are two zoomed map areas. In Fig. 2(a),
the pink curve represents the vehicle positions filtered from



(a) (b)
Fig. 2. Localization result.

TABLE III
ERROR STATISTICS.

Lateral position error Lateral position error
after particle filter after localization

Mean value 1.884m 0.089m
MAE 2.867m 1.006m

Standard deviation 2.942m 1.284m
Max 9.083m 5.429m

95th percentile 6.345m 2.589m

rough GPS signals (black), using particle filter. However,
this pink curve is not in the current road section. The
vehicle positions on pink curve are used to select current
road lane according to multi-criterion. When the road lane is
determined, marking based localization is implemented, the
vehicle position is adjusted to the central area of road, as red
curve in Fig. 2(a). Fig. 2(b) depicts an example: a mismatch
occurred between two sources, benchmark positions from
KITTI and map information from OSM. In this example,
the ground truth GPS data is in the middle of two lanes, but
in the vision, the vehicle is in the middle lane. One can infer
that at least one source is not accurate. Such mismatch leads
to an error even if the marking based method is utilized. The
localization result of the entire scenario is shown in Fig. 6(a).

Table III provides the performance metrics of localization
results. In Table III, the mean value of both errors are far
below the noise error bound (14.2m). The maximum error of
particle filter (9.083m) does not exceed the noise error bound
neither. Comparing position errors of the two methods, all
the statistics of marking based method are less than that of
particle filter, which numerically proves that marking based
localization helps to improve the performance of vehicle fix.

B. Error Modeling Results

The identified errors are compared with error ground
truth, which were annotated manually frame by frame. The
observed lane detection error with ground truth is illustrated
in Fig. 3(c). In frame 1080, a lane detection error is detected,
because the lane marking confidence conf

ld

is lower than the
threshold and the lane width is abnormal. Such kind of false
alarm can be caused by an affected lane marker or a poor
vision.

The error state of vehicle localization is shown in Fig. (4).
False alarm states happen in frame 550, an unusual frame is
detected where no error occurred actually. The reason is that
the lane widths from map source and from vision detection
are different, leading to a difficulty in marking fitting.

The map errors are depicted in Fig. 5(a), as well as the
ground truth. In frame 980, the lane number of the current

(a)

(b)

(c)

Ground 
truth

Detected 
error

Fig. 3. The lane detection error. (a) marking confidence, (b) detected lane
width and map-based lane width, (c) detected error and ground truth.

Ground truth

Detected error

Confidence

Fig. 4. Localization error.

section is one, while from vision, the vehicle is in a two-
lane road section. A third lane marking helps to catch this
error. From frame 1100 to frame 1120, the map error frames
do not seem fit strictly, because the vision has discovered
a third lane marking in the following two-lane section, but
the vehicle itself is still in the previous one-lane section. In
frame 1040, the barrier is detected as a third lane marking by
mistake, this instantaneous third marking causes false alarm
of map error.

Fig. 6 shows the localization result with the inferred errors.
In Fig. 6(a), an original localization result is represented.
Blue lines are noise bounds. The cyan curve is the noised
GPS position. The position processed by Particle Filter is
shown as yellow curve. And the red curve is the optimized
vehicle position. The Mean Absolute Error (MAE) of the
optimized position is MAE

a

= 1.006m. In Fig. 6(b), the
ground truth errors in localization method are marked on
localization result. The blue columns represent localization
errors, green ones are lane detection errors, and pink are map
errors. These errors lead to unsuccessful vehicle localization.
If these error frames are ignored, the MAE decreases to



(a)

(b)

(c)

Ground truth

Detected error

Lane number

Fig. 5. Map error. (a) Detected map error and ground truth, (b) right third
marking confidence, (c) left third marking confidence.

(a)

(b)

(c)
Fig. 6. The localization results and detected errors. (a) Localization result
of all the frames in a scenario, (b) localization result with ground truth
errors, (c) localization result with identified errors.

MAE

b

= 0.860m. Fig. 6(c) is the same localization result,
but with the errors identified by error detection models
mentioned in Section IV. If the error frames are removed, the
MAE of lateral vehicle position error is MAE

c

= 0.925m.
MAE

c

is greater than the MAE

b

, this is because not all the
detected errors match ground truth errors. In this experimen-
tal scenario, 73 frames are measured as questionable frames
but 21 frames of them are not included in ground truth,
which means that 52 errors among a total number of 73 are
detected correctly, the success ratio is 71.23%. Meanwhile,
13 error frames are not identified by the error modeling
and thresholding. These false alarm errors and undetected
errors causes a larger MAE in Fig. 6(c) than (b), which is
MAE

c

> MAE

b

. However, MAE

c

is lower than MAE

a

,
which means that the probabilistic error modeling helps to
improve vehicle localization performance.

VI. CONCLUSIONS

A lane marking based vehicle localization, using open
source map dataset and low-cost sensors has been demon-
strated. The results verify a real-time and precise vehicle
localization. An enhanced multi-kernel based method is
represented to detect lane markings and optimize vehicle

positions. The vehicle position is adjusted in two steps.
Firstly, a particle filter is designed to adjust the rough GPS
position. Secondly, vision-based markings and map-based
markings are fused to obtain vehicle position. Corresponding
potential errors are identified according to probabilistic error
models.

Future work will focus on how to cope with different errors
into error detection algorithm. Meanwhile, map reconfigura-
tion and road connections and road branches are needed to
be improved.
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