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The tail behavior of a survival function is controlled by the extreme value index. The aim of this paper is to propose a general procedure for the estimation of this parameter in the case where the observations are not necessarily distributed from the same distribution. The idea is to estimate in a consistent way the survival function and to apply a general functional to obtain a consistent estimator for the extreme value index. This procedure permits to deal with a large set of models such as conditional extremes and heteroscedastic extremes. The consistency of the obtained estimator is established under general conditions. A simulation study and a concrete application on financial data are proposed to illustrate the finite sample behavior of the proposed procedure.

Introduction

In various applications, the behavior of large values (instead of central values) of a random variable Z can be of high interest. For instance, in climatology, Z can represent the temperature or the amount of rain. The study of high values of Z is then a key point to understand the effect of global warming. In actuarial science, the random variable Z can model the claim size and it is of primary interest for insurance companies to estimate the probability of a large value of Z to be exceeded. Denoting by S(•) = P(Z > •) the survival function of Z, the common departure point to make statistical inference on the tail distribution of S(•) is to assume that S(•) belongs to the maximum domain of attraction of an extreme value distribution (see Fisher and Tippett [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF] and Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF]). In other words, denoting by S ← (u) = inf{t, S(t) ≤ u} the right-continuous inverse of S(•), it is assumed that there exist a positive auxiliary function a(•) and a parameter γ ∈ R such that

lim α→0 S ← (uα) -S ← (α) a(α -1 ) = Lγ(1/u), (1) 
for all u ∈ (0, 1] where for all v ≥ 1 and s ∈ R, Ls(v) = v 1 u s-1 du. According to [28, Definition B.2.3], a survival function satisfying [START_REF] Santos | Peaks Over Random Threshold methodology for tail index and high quantile estimation[END_REF] is said to be of extended regular variation. In this paper, the set of extended regularly varying functions is denoted ERV(γ, a(•)). The parameter γ ∈ R involved in condition [START_REF] Santos | Peaks Over Random Threshold methodology for tail index and high quantile estimation[END_REF] is called the extreme value index of S(•). This parameter controls the decay of the tail distribution. If γ > 0, S(•) is called an heavy-tailed distribution and has a polynomial decay with an infinite right endpoint. When γ < 0, the survival function S(•) has also a polynomial decay but with a finite right endpoint. Finally, if γ = 0, S(•) is a light-tailed distribution and has an exponential decay. Obviously, the estimation of the extreme value index γ is often a major step to make statistical inference on the tail distribution in particular to estimate extreme quantile. For this reason, the estimation of the extreme value index has been widely studied in the literature for different models.

Classical extreme value model In the classical model, it is assumed that one observes n independent copies Z1, . . . , Zn of a random value Z with survival function S(•) ∈ ERV(γ, a(•)). In this framework, there exist numerous consistent estimators of γ. For heavy-tailed distributions (i.e. when γ > 0), the most notable estimator is probably the Hill's estimator proposed by Hill [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]. Hill's estimator belongs to a general class of kernel estimators introduced by Csörgő et al. [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF]. Always for heavy-tailed distributions, one can also mention the so-called PORT estimator introduced by Araújo Santos et al. [START_REF] Santos | Peaks Over Random Threshold methodology for tail index and high quantile estimation[END_REF] that is scale and location invariant. In the general case γ ∈ R, Dekkers et al. [START_REF] Dekkers | A moment estimator for the index of an extreme value distribution[END_REF] proposed to extend Hill's estimator by the socalled moment estimator. One can also cite the estimator proposed by Pickands [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] and the Generalized Hill estimator proposed by Beirlant et al. (see [START_REF] Beirlant | Estimation of the extreme value index and generalized quantile plots[END_REF] and [START_REF] Beirlant | Excess functions and estimation of the extreme value index[END_REF]). For a detailed review on statistics of classical extremes, see Gomes and Guillou [START_REF] Gomes | Extreme value theory and statistics of univariate extremes: A review[END_REF].

Non classical extreme value models

In some situations, one can be interested in the study of the tail distribution of a survival function S(•) but without the possibility to observe an identically distributed (i.i.d.) sample from S(•). This problem arises in many different models, we list below some of them (the list is not exhaustive).

Conditional extremes -In insurance [START_REF] Beirlant | Statistics of extremes: Theory and applications[END_REF], finance [START_REF] Tsay | Analysis of financial time series[END_REF], climatology [START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion)[END_REF] to name a few, the variable of interest Y can be often linked to a random covariate X ∈ R p . For a fixed value x0 ∈ R p , an important issue is the study of the conditional tail distribution of Y given X = x0. Assuming that the conditional survival function S(•|x0) of Y given X = x0 belongs to ERV(γ(x0), a(•|x0)), a first step is thus the estimation of γ(x0). Unfortunately, it is often impossible to observe an i.i.d. sample from S(•|x0). A more realistic situation is that one observes n independent copies Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) of the random vector Z = (X, Y ) that must be used to estimate γ(x0). Here γ(x0) is referred to as the conditional extreme value index at point x0. Its estimation has been considered for instance in [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] and [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]. An adaption of the moment estimator has been proposed in [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF] and [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF] and a maximum likelihood approach was considered by Wang and Tsai [START_REF] Wang | Tail index regression[END_REF]. In the particular case of a positive conditional extreme value index, Gardes and Stupfler [START_REF] Gardes | Estimation of the conditional tail index using a smoothed local Hill estimator[END_REF] propose an adaption of the Hill estimator.

Non identically distributed (i.d.) extremes -In this model, n independent observations Z1 = Yx 1 , . . . , Zn = Yx n are recorded where, for all x ∈ R p , Yx is drawn from the survival function Sx(•). Indices {x1, . . . , xn} represent a deterministic additional information on the variable of interest (for instance the time, the geographical position, . . . ). Here, for a fixed value x0 ∈ R p , it is assumed that Sx 0 (•) ∈ ERV(γ(x0), ax 0 (•)) and one wants to estimate γ(x0) from the non-identically distributed sample Yx 1 , . . . , Yx n . This situation is often considered to study extreme rainfalls at different geographical positions. Assuming that γ(x0) > 0, this model was considered for instance in [START_REF] Gardes | Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels[END_REF] to estimate extreme rainfall return levels as a function of latitude and longitude and in [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF] to study extreme daily flow of a river as a function of time. The estimation of γ(x0) has been addressed by many authors such as Davison and Smith [START_REF] Davison | Models for exceedances over high thresholds[END_REF], Smith [START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion)[END_REF], Chavez-Demoulin and Davison [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF]. Einmahl et al. [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF] consider the case where survival functions Sx 1 (•), . . . , Sx n (•) are asymptotically proportional to a survival function S(•) ∈ ERV(γ, a(•)) and are interested in the estimation of γ. This situation is named by the authors heteroscedastic extremes. They show, in the restricted case γ > 0, that the classical Hill's estimator is still consistent for γ. The model of heteroscedastic extremes permits to deal with data presenting a trend in extremes but with a constant shape parameter. A motivating example is the study of extreme daily loss returns of a given financial market where the magnitude of the temporal series, measured by the extreme value index, usually does not depend on time (see the real data application, Section 4.2).

Purpose of the paper Of course, focusing on a particular model, it is always possible to propose specific estimators of γ but the estimation procedure strongly depends on the considered model. Up to our knowledge, no tentative to find a common procedure to estimate the extreme value index in a large range of situations (like the ones described in the previous paragraph for instance) has been proposed. This is the purpose of the present paper. More specifically, let S(•) be a survival function in the set ERV(γ, a(•)) and let Z1, . . . , Zn be random variables non necessarily i.i.d. from S(•) but such that there exists a deterministic functional Q(•) for which Ŝn(•) := Q(•; Z1, . . . , Zn) is a right-continuous and non-increasing estimator of S(•). The main goal of the present paper is to define a unique and general functional T (•) such that T ( Ŝ← n ) is a consistent estimator of γ. The advantage of decoupling the estimation of the survival function S(•) from that of the extreme value index γ is that the estimation of the survival function is often more easy than the one of γ.

The rest of the paper is organized as follows. In Section 2, the expression of the general functional T (•) is introduced and a consistency property on Ŝn(•) is given in order to obtain a consistent estimator of γ. In section 3, our procedure of estimation is illustrated on three models described briefly in the introduction: conditional extremes, i.d. extremes and heteroscedastic extremes. The finite sample behavior of the proposed estimator is illustrated through a simulation study and a real data application in Section 4. A short conclusion is given in Section 5. Section 6 is devoted to the proofs.

Estimation of the extreme value index

The framework considered in this paper is the following:

(F) Let S(•) be a survival function belonging to the set ERV(γ, a(•)) where γ ∈ R and S(y) = 1 for all y < 0 (i.e. S(•) is associated to a positive random variable). We observe a non necessarily i.i.d. sample Z1, . . . , Zn such that there exists a deterministic functional

Q(•) for which Ŝn(•) := Q(•; Z1, . . . , Zn) ∈ D(R + , [0, 1]) is an estimator of S(•).
Here, D(E1, E2) is the set of non-increasing and right-continuous functions from

E1 ⊂ R to E2 ⊂ R. Note that Ŝ← n (•) belongs to D([0, 1], R + ).
The models presented in the introduction enter in this framework. The aim of this section is to give the definition of the functional T : D([0, 1], R + ) → R used throughout this paper and to prove the consistency of the extreme value index estimator T ( Ŝ← n ).

Definition of the functional T

Let (η, α) ∈ (0, 1) 2 , δ ∈ N and ϕ(•) a positive and bounded function on [η, 1]. We first introduce the functional

T (δ) (•|η, ϕ) : D([0, 1], R + ) → R + defined for all U (•) ∈ D([0, 1], R + ) by T (δ) (U |α, η, ϕ) := 1 η ϕ(u) ln U (uα) U (α) δ du 1 η ϕ(u)L0(1/u)du δ ,
where we recall that for all v ≥ 1 and s ∈ R, Ls(v) = v 1 u s-1 du. We also introduce the following function: for s ≤ 0 let Ψη,ϕ(s) :=

1 η ϕ(u)Ls(1/u)du 2 1 η ϕ(u)L 2 s (1/u)du . (2) 
It is shown in Lemma 1 that Ψη,ϕ(•) is a decreasing function on (-∞, 0] and thus its inverse

Ψ ← η,ϕ (•) is well defined. The functional T (•|α, η, ϕ) consider in this paper is given for all U (•) ∈ D([0, 1], R + ) by T (U |α, η, ϕ) := T (1) (U |α, η, ϕ) + Ψ ← η,ϕ max [T (1) (U |α, η, ϕ)] 2 T (2) (U |α, η, ϕ) , Ψη,ϕ(0) . (3) 
Let us briefly motivate this functional. First, note that condition (1) is equivalent to assume that lim

α→0 S ← (α) a(α -1 ) ln S ← (uα) S ← (α) = Lγ -(1/u), (4) 
where (•)+ and (•)-are respectively the positive and negative part functions. Furthermore, this convergence holds locally uniformly on u (see Lemma 3, equation ( 19)). Next, the auxiliary function a(•) in ( 1) is such that a(α -1 )/S ← (α) → γ+ as α → 0 (see for instance [START_REF] Alves | A note on second order conditions in extreme value theory: linking general and heavy tail conditions[END_REF]Lemma 3.1]). Collecting this, it is easy to check that

lim α→0 T (1) (S ← |α, η, ϕ) = γ+ and lim α→0 [T (1) (S ← |α, η, ϕ)] 2 T (2) (S ← |α, η, ϕ) = Ψη,ϕ(γ-).
Thus, for S ← (•) satisfying (1), T (S ← |α, η, ϕ) → γ+ + γ-= γ as α goes to 0.

Consistency

We now give a condition on S(•) ∈ ERV(γ, a(•)) and a consistency property on the statistic Ŝn(•) ensuring that there exist sequences τn and αn converging to 0 such that T ( Ŝ← n |αn, η, ϕ) is a consistent estimator of γ with a rate of convergence given by the sequence τn. Note that, roughly speaking, αn represents the percentage of observations among {Z1, . . . , Zn} used to compute the estimator. The choice of this sequence αn is a key point in the estimation of the extreme value index that is not addressed here. Finally, let us remark that, by taking η > 0, the extreme values are excluded leading to a more robust estimator. The problem of robustness in extreme value theory has been tackled for instance by Goegebeur et al. [START_REF] Goegebeur | Robust and asymptotically unbiased estimation of extreme quantiles for heavy-tailed distributions[END_REF]. The effect of η in our estimation procedure is investigated in the simulation study. As usual in extreme value theory, a second-order condition is required in order to precise the rate of convergence in (1).

(A.1) there exists 0 < κ1 < η and κ2 > 1 such that as n goes to infinity

max sup u∈[κ 1 ,κ 2 ] S ← (uαn) -S ← (αn) a(α -1 n ) -Lγ(1/u) , a(α -1 n ) S ← (αn) -γ+ = o(τn).
Clearly, in order to estimate the extreme value index γ, only the behavior of the statistic Ŝn(z) for large values of z must be controlled. This is done by the following consistency property.

(A.2) For all sequences yn(u) such that a -1 (α -1 n )(yn(u) -S ← (uαn)) → 0 for all u ∈ [η, 1] as n goes to infinity,

sup u∈[η,1]
Ŝn(yn(u))

S(yn(u))

-1 = O P (τn).

Roughly speaking, condition (A.2) means that Ŝn(y) is a uniformly consistent estimator of S(y) on [S ← (αn), S ← (ηαn)]. Note that the case η = 0 is not allowed since, most of the time, it is impossible to obtain the consistency uniformly on [S ← (αn), z * S ] where z * S is the right endpoint of S(•). Our main result is given below. The previous result provides an easy way to find a consistent estimator of γ for a large set of models by reducing the problem of estimating the extreme value index to the one of estimating the associated survival function. In the classical i.i.d. setting, our estimator can be seen as a weighted (through the function ϕ(•)) and trimmed version of the moment estimator.

In the next section, we focus on three particular models entering in our framework (F): conditional extremes, non i.d. extremes and heteroscedastic extremes. In each situation, a natural estimator of S(•) satisfying (A.2) can be proposed and thus the estimation of the extreme value index can be achieved using our procedure.

3 Applications

Conditional extremes

This example takes place in a regression context where a positive response variable Y is associated to a random explanatory variable X ∈ R p . In what follows, we consider the following model:

(M.1) Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be n independent copies of a random vector

Z = (X, Y ) ∈ R p × [0, ∞).
The probability density function of X is denoted by g(•).

For a fixed value x0 ∈ R p such that g(x0) > 0, we suppose that the conditional survival function

S(•|x0) = P(Y > •|X = x0) of Y given X = x0 belongs to ERV(γ(x0), a(•|x0))
where γ(x0) ∈ R.

The procedure described in the previous section is used to estimate the conditional extreme value index γ(x0) and thus only an estimation of S(•|x0) is required. We suggest to use the kernel estimator introduced by Nadaraya [START_REF] Nadaraya | On estimating regression, Theory of Probability and its Application[END_REF] and Watson [START_REF] Watson | Smooth regression analysis[END_REF] and given for all y ≥ 0 by

Ŝn(y|x0) = n i=1 I {Y i >y} KH n (x0 -Xi) n i=1 KH n (x0 -Xi) , (5) 
where I {•} is the indicator function and Hn is a positive-definite matrix controlling the smoothness of the estimator. We have introduced the notation KH n (t) := |Hn| -1 K(H -1 n t), t ∈ R p where K(•) is called the kernel function and, for all square matrix M , |M | denotes the determinant of M . To prove that the kernel estimator satisfies condition (A.2), the following assumptions are introduced. The first one is a regularity assumption on g(•).

(B.1) For all (x, x ) ∈ R p×p , there exits a constant cg > 0 such that |g(x)-g(x )| ≤ cg x-x ∞.
Note that the uniform norm was used in condition (B.1) but obviously, any norm on R p can be also considered. A condition on the kernel function K(•) is also required:

(B.2) K(•) is a bounded density on R p with support Up, the unit ball of R p .
This condition is classical in local estimation (see for instance [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF][START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF]). Finally, for a positive-definite matrix M of size p and c ∈ R p , let us denote by B(c, M Corollary 1. Under model (M.1), let (αn) be a sequence converging to 0 such that σn :=

) := {x ∈ R p | M -1 (c -x) ∞ ≤ 1}
(n|Hn|αn) -1/2 → 0 and σ -1 n (ln(σ -1 n )) -1/2 Hn ∞ → 0. If condition (A.1
) holds with sequences τn := σn(ln(σ -1 n )) 1/2 and αn and if there exists δ > 1 such that

sup S(y|x) S(y|x0) -1 , x ∈ B(x0, Hn), y S ← (αn|x0) ∈ [δ -1 , δ] = o(τn), (6) 
then, under (B.1) and (B.2), T ( Ŝ←

n (•|x0)|αn, η, ϕ) -γ(x0) = O P (τn).
Note that taking Hn = hnIp and K(•) = I { • ∞≤1} in [START_REF] Beirlant | Excess functions and estimation of the extreme value index[END_REF] where hn is a positive sequence and Ip is the identity matrix of size p and choosing η = 0 and ϕ(•) = 1 in the functional defined in (3) lead to the same estimator as the one proposed by Stupfler [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF]. A comparison of the two estimators is provided in the simulation study.

Conditions used in the previous corollary are similar to the ones considered in [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] where the pointwise asymptotic normality of Ŝn(•|x0) and Ŝ← n (•|x0) are established. The expected number of points kept for the estimation is given by n|Hn|αn and thus conditions αn → 0 and n|Hn|αn → ∞ are classical in extreme value theory. Finally, condition (6) controls the oscillations of the conditional survival function S(•|x0). An interesting discussion on this condition can be found in [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF].

Non identically distributed extremes

In this paragraph, the following model is considered: 

(M.2) Let E be a compact subset of R p , p ∈ N * . At points {xi ∈ E, i = 1, . . . ,
(•) ∈ ERV(γ(x0), ax 0 (•)).
As mentioned in the introduction, {x1, . . . , xn} can be seen as a deterministic additional information on the variable of interest. It can be for instance the time or the geographical position. Model (M.2) can also be interpreted as a regression model in the fixed design case.

Here also, our goal is to used the procedure described in Section 2 to estimate γ(x0) ∈ R. For the estimation of the survival function Sx 0 (•), we propose to use the estimator introduced by Stone [START_REF] Stone | Consistent nonparametric regression[END_REF] with Gasser and Müller's weights [START_REF] Gasser | Kernel Estimation of Regression Functions[END_REF]. For a positive-definite matrix Hn it is given for all z ≥ 0 by:

Ŝn,x 0 (z) = n i=1 I {Yx i >z} A n,i KH n (x0 -t)dt, (7) 
where An,i are sets that partition the subset E with xi ∈ An,i and where KH n (•) is defined as in paragraph 3.1. Estimator ( 7) seems natural under model (M.2) but others estimators for the survival function Sx 0 (•) can also be considered. For instance, the Nadaraya-Watson estimator defined in [START_REF] Beirlant | Excess functions and estimation of the extreme value index[END_REF] still can be used (by replacing Xi by xi). One can also think on local polynomial estimators (see [START_REF] Wand | Kernel smoothing[END_REF]).

To ensure that condition (A.2) is satisfied by Ŝn,x 0 (•), we suppose as before that the kernel function K(•) satisfy (B.2). In addition, for i ∈ {1, . . . , n}, let Vn,i be the volume of An,i and let Vn := max(Vn,1, . . . , Vn,n). It is assumed that

(C) There exists a positive constant CV such that n Vn ≤ CV .
Since E is a compact subset, this condition is reasonable and classical in nonparametric regression for the fixed design case (see for instance [START_REF] Georgiev | Consistent nonparametric multiple regression: the fixed design case[END_REF]). Asymptotic property of the extreme value index estimator T ( Ŝ← n,x 0 |αn, η, ϕ) is established in the next result.

Corollary 2. Under model (M.2), let (αn) be a sequence converging to 0 and Hn a sequence of matrix converging to the zero matrix such that σn := (n|Hn|αn) -1/2 → 0. If condition (A.1) hold with sequences τn := σn(ln(σ -1 n )) 1/2 and αn and if there exist δ > 1 such that

sup Sx(z) Sx 0 (z) -1 , x ∈ B(x0, 2Hn), z S ← x 0 (αn) ∈ [δ -1 , δ] = o(τn), (8) 
then, under (B.2) and (C),

T ( Ŝ← n,x 0 |αn, η, ϕ) -γ(x0) = O P (τn).
The conditions in Corollary 2 are very similar to the ones of Corollary 1. The only difference is that condition σ

-1 n (ln(σ -1 n )) -1/2
Hn ∞ → 0 is not required here since this condition was used in Corollary 1 to ensure the consistency of the probability density estimator.

Heteroscedastic extremes

As in Einmahl et al. [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], we consider the following model.

(M.3) Let -∞ < b1 < b2 < ∞.
We observe at every points {b1 ≤ x1 ≤ . . . ≤ xn ≤ b2} positive and independent random variables Z1 = Yx 1 , . . . , Zn = Yx n . For all x ∈ [b1, b2], the survival function of Yx is denoted Sx(•). We assume that the right endpoint z * = S ← x (0) does not depend on x and that there exist a survival function S(•) ∈ ERV(γ, a(•)) and a continuous positive function c(•) defined on [b1, b2] such that:

lim z→z * sup x∈[b 1 ,b 2 ] Sx(z) S(z) -c(x) = 0 with b 2 b 1 c(s)ds < ∞. (9) 
Note that we are interesting here in the estimation of the extreme value index γ ∈ R while only the case γ > 0 was considered in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF]. Since the survival function S(•) and the function c(•) in ( 9) are not uniquely defined, we impose from now on that

b 2 b 1 c(x)dx = b2 -b1. Under (M.
3), it is easy to check that survival functions Sx(•), x ∈ [b1, b2] share the same extreme value index γ even if these survival functions are different. More precisely, it is shown in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF] that 9) is called the skedasis function. As mentioned in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], in the case γ = 0, the skedasis function changes the scale of extremes while in the case γ = 0, it only impacts the location of extreme. This model can thus be used to study data presenting a trend in extremes with a constant shape parameter. Let us highlight that in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], the points {xi, i = 1, . . . , n} are assumed to be regularly distributed on [0, 1] (i.e. xi = i/n). This assumption can be too restrictive for an application purpose like for instance in hydrology since the times for which a certain non null amount of rain is observed are clearly not regularly distributed. In this paper, letting x0 = b1 and xn+1 = b2, it is only assumed that

Sx(•) ∈ ERV(γ, c(x)a(•)) for all x ∈ [b1, b2]. The function c(•) in (
(D) there exists d > 0 such that max{xi -xi-1, i = 1, . . . , n + 1} ≤ d/n.
Note that model (M.3) can be seen as particular case of (M.2) by taking E = [b1, b2] and assuming that the survival functions Sx 1 (•), . . . , Sx n (•) satisfy [START_REF] Davison | Local likelihood smoothing of sample extremes[END_REF]. As a consequence, for every x0 ∈ [b1, b2], the extreme value index in model (M.3) can be estimated by the statistic T ( Ŝ← n,x 0 |αn, η, ϕ) where Ŝn,x 0 (•) is defined in [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF]. Nevertheless, this estimator is not the best one since under model (M.3), one can used a global estimator of S(•) instead of the local estimator Ŝn,x 0 (•). We propose to use the estimator

Ŝn(z) = n i=1 xi -xi-1 xn -b1 I {Yx i >z} . ( 10 
)
This survival function estimator is global in the sense that the whole set of observations is used to estimate S(•). This estimator is used in our procedure to estimate γ. Its definition is motivated by the fact that under ( 9) and (D), E( Ŝn(z)) → S(z) as n goes to infinity. As a consequence of Theorem 1, the following result is established.

Corollary 3. Under model (M.3), let αn be a sequence converging to 0 such that σn := (nαn) -1/2 → 0. If condition (A.1) hold with τn := σn(ln(σ -1 n )) 1/2 and αn, if

sup |c(u) -c(u )|, (u, u ) ∈ [b1, b2] 2 with |u -u | ≤ d/n = o(τn). ( 11 
)
and if there exists δ > 1 such that

sup Sx(z) S(z) -c(x) , x ∈ [b1, b2], z S ← (αn) ∈ [δ -1 , δ] = o(τn), (12) 
then, under (D), T ( Ŝ← n |αn, η, ϕ) -γ = O P (τn).

Our procedure thus provides an estimator of the extreme value index in the situation of heteroscedastic extremes. Up to our knowledge, the extreme value index estimation has been considered is this situation only in the paper of Einmahl et al. [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF] where it is shown that, in the restricted case γ > 0, the classical Hill's estimator is still consistent. Conditions [START_REF] Dekkers | A moment estimator for the index of an extreme value distribution[END_REF] and ( 12) are very similar to the ones used in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF]. Condition [START_REF] Dekkers | A moment estimator for the index of an extreme value distribution[END_REF] 

Illustration

Simulations

In order to appreciate the finite sample performance of estimators obtained with our procedure, we focus on two specific models: heteroscedastic extremes and conditional extremes. The situation of heteroscedastic extremes is investigated by generating data with the following process: 

P1 -For i = 1, . . . , n, let xi = G(i/n) where G(•)
-2. For process P1-3, it is easy to check that if θ ∈ (0, 1), c(•) = 1 and if θ = 1, c(•) = c(•)/ 1 0 c(s)ds.
The following generating process for conditional extremes is considered.

P2 -Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X, Y ) where X is uniformly distributed on Influence of parameter η and of function ϕ -We choose to illustrate the impact of η ∈ (0, 1) and of the bounded function ϕ(•) under the model of heteroscedastic extremes. More precisely, N = 500 samples of size n ∈ {50, 100, 200, 400} are generated under P1-1, P1-2 and P1-3 with c(•) = 1 + ln(1/•) and, for P1-3, with θ = 1. In this paragraph, the value of αn is fixed to n -1/3 and, using the survival estimator Ŝn(•) defined in [START_REF] Davison | Models for exceedances over high thresholds[END_REF], the empirical mean squared error of the extreme value index estimator T ( Ŝ← n |αn, τ, ϕ) is computed for each value of n, for η ∈ {0.005 × 2 j , j = 0, 1, . . . , 5} and for the two functions ϕ(•) = 1 and ϕ(•) = ln(1/•). Results are collected in Table 1. The bold numbers are the best results obtained for each values of n. Concerning the function ϕ(•), one can see that the choice ϕ(•) = 1 provides slightly better results for the Fréchet distribution (i.e process P1-1) but, for the two other generating processes, the choice ϕ(•) = ln(1/•) is clearly better (especially for the uniform distribution (P1-2)). For the choice of η, it seems that taking η small provides better results (except for the Fréchet distribution with ϕ(•) = ln(1/•)). Let us also highlight that taking η = 0.02 for each values of n and each generating process leads to mean squared errors quite close to bold numbers. In conclusion, the choice η = 0.02 and ϕ(•) = ln(1/•) seems reasonable and will be used in the rest of this simulation study.

Simulation under heteroscedastic extremes -We are now interested in the behavior of the estimator T ( Ŝ← n |αn, τ, ϕ) where Ŝn(•) is defined in [START_REF] Davison | Models for exceedances over high thresholds[END_REF]. We generate N = 500 samples of size n = 100 using the generating processes P1-1, P1-2 and P1-3 with c(•) = 1 and c(•) = 1 + ln(1/•) and, for P1-3, with θ = 1. Note that when c(•) = 1, the observations are independent and identically distributed. In order to appreciate the effect of the sequence αn, the estimator is computed for αn ∈ {n -1/a , a = 2, . . . , 6} while η is fixed to 0.02 and ϕ(•) = ln(1/•). Estimator T ( Ŝ← n |αn, τ, ϕ) is compared to the moment estimator γM (αn) (with kn = nαn upper order statistics) by computing the ratio R1(αn) between the empirical mean squared error of T ( Ŝ← n |αn, τ, ϕ) and γM (αn) for each values of αn and each functions c(•). Clearly, a ratio lower than 1 means that our estimator provides better results (in term of mean squared error) than the moment estimator. Recall that the consistency of moment estimator has been proved only in presence of independent and identically distributed random variables but, using similar techniques as in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], the consistency must be also true for heteroscedastic extremes. Results are presented in Table 2. It appears that, for the Fréchet distribution (process P1-1), the moment estimator is slightly better than our estimator but for the two other generating processes, our method provides better results in term of mean squared error. Taking into account results collected in Table 1, it seems that the difference between our estimator and the moment estimator is mainly explained by the use of the function ϕ(•) = ln(1/•) (roughly speaking the moment estimator corresponds to the case η = 0 and ϕ(•) = 1). One can also notice that the function c(•) has not a strong influence on the estimation of γ.

Simulation under conditional extremes -Finally, under a conditional extremes model, the behavior of estimator T ( Ŝ← n (•|x0)|αn, η, ϕ) where Ŝn(•|x0) is given in ( 5) is investigated by generating N = 500 samples of size n = 500 using process P2. The conditional survival function estimator (5) is computed using the Epanechnikov kernel. The function c(•) is taken equal to ln(1/•) + 1 and the conditional extreme value index is given by γ(x) = 2/3 + 1/3 sin(2πx) for all x ∈ [0, 1]. For the process P2-3, we choose θ(•) = γ(•). As before, the value of η is fixed to 0.02 and ϕ(•) = ln(1/•). The couple of sequences (αn, Hn) required to compute the survival function estimator Ŝn(•|x0) are picked in the set {(n -1/i , n (1-i)/(ij) ), i, j = 2, . . . , 6}. Note that taking (αn, Hn) in this set ensures that ln(nHnαn) = (i -1)(j -1)/(ij) ln(n) → ∞ as n → ∞. The value of x0 is fixed to 1/4 for which the maximum of the function γ(•) is reached (γ(1/4) = 1). We compare T ( Ŝ← n (•|x0)|αn, η, ϕ) to the estimator γS(αn, Hn|x0) proposed by Stupfler [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF]. To make the comparison, we compute for each values of αn and Hn the ratio R2(αn, Hn) between rhe empirical mean squared error of T ( Ŝ← n (•|x0)|αn, η, ϕ) and γS(αn, Hn|x0). The results are gathered in Table 3. For the conditional Fréchet and Weibull distributions (processes P2-1 and P2-3), the estimator γS(αn, Hn|x0) provides, for some couples (αn, Hn), slightly better results than our estimator. For the conditional beta distribution, our estimator is clearly better for all couples (αn, Hn).

Daily loss returns of the S&P 500 index

Our procedure of estimation is used to study high loss returns of the S&P 500 index. This dataset has been previously considered in the paper of Einmahl et al. [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF] where the null hypothesis that the (positive) extreme value index is invariant over time has been accepted for the period 1988-2007. We thus start with analyzing the sample of daily loss returns for this period corresponding to n = 5043 observations. Without restrictions on its sign, the extreme value index is estimated using two different estimators. First, model (M.2) is assumed for time points xi = i/n, i = 1, . . . , n where i = 1 correspond to 4th january 1988 and i = n to 31st december 2007. For all t ∈ [0, 1], the extreme value index γ(t) is estimated by T ( Ŝ← n,t |αn, η, ϕ) with η = 0.02 and ϕ(•) = ln(1/•). In [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], the proportion of largest observations used for the estimation is approximatively equal to 0.025. We decide to follow this choice by taking αn = 0.025. The survival function St(•) is estimated by [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF] using the Epanechnikov kernel with a bandwidth Hn such that nHn = 1500. Note that the bandwidth must be taken large enough in order to keep a sufficient number of observations for the estimation. Since, according to [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], the period 1988-2007 is an example of model (M.3), the extreme value index is also estimated by T ( Ŝ← n |αn, η, ϕ) with αn, η and ϕ(•) as before and Ŝ← n as in [START_REF] Davison | Models for exceedances over high thresholds[END_REF] with again nHn = 1500. These two estimators are represented on the left panel of Figure 1. Looking at the first estimator (under model (M.2)), it seems that the extreme value index is in fact not invariant over time. A change appears around 2000 corresponding probably to the crisis event of the burst of the internet bubble. Our conclusion differs from the one given by Einmahl et al [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF]. A possible explanation is that the test procedure used in [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF] assumes a positive value for γ while our procedure of estimation is not restricted to γ > 0. It is likely that after 2000, loss returns are not heavy-tailed distributed. We thus decide to analyze the daily loss returns for the period 1988-2000 (n = 3074) by computing the two previous extreme value index estimators (see the right panel of Figure 1). Here, the assumption of a constant extreme value index seems more plausible. The function c(•) in model (M.3) can be estimated for all t ∈ [0, 1] by ĉ(t) := Ŝn,t(zn)/ Ŝn(zn) with zn = Ŝ← n (αn) where Ŝn,t(•) and Ŝn(•) are defined in [START_REF] Csörgő | Kernel estimates of the tail index of a distribution[END_REF] and [START_REF] Davison | Models for exceedances over high thresholds[END_REF] (see Figure 2). As pointed out by Einmahl et al. [START_REF] Einmahl | Statistics of Heteroscedastic Extremes[END_REF], we observe a peak of the estimated function c(•) around 2000 corresponding to the beginning of the burst of the internet bubble.

Conclusion

In this paper, a general procedure to estimate the extreme value index γ associated to a survival function S(•) was proposed. It can be used for a large set of models where observations are not necessarily distributed from S(•). From a theoretical point of view, this paper offers an easy way to establish the consistency of estimators obtained through our procedure. As part of our future work, at least two developments will be considered:

Our framework (F) encompasses many others situations as for instance right-censoring or truncation. In presence of censored data, the survival function can be easily estimated by the Kaplan-Meier product limit estimator [START_REF] Kaplan | Non-parametric estimation from incomplete observations[END_REF]. It will be interesting to prove that this estimator satisfies condition (A.2) and thus to propose a new estimator of γ that can be compared to the ones proposed by [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] and [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF]. Same think could be done in case of right random truncation with a comparison to the estimator proposed by Gardes and Stupfler [START_REF] Gardes | Estimating extreme quantiles under random truncation[END_REF].

Under (F), another important topic is the estimation of the extreme quantile S ← (βn) for any arbitrary order βn → 0. Using our estimator γn = T ( Ŝ← n |αn, η, ϕ), we propose to estimate S ← (βn) by Š← n (βn) = Ŝ← n (αn) + ân(α

-1
n )L γn (αn/βn) where (αn) is a sequence satisfying αn → 0 and nαn → ∞ and where ân(α

-1 n ) is an estimator of a(α -1 n ).
Note that the expression of this estimator is similar to the one proposed in [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]Theorem 4.3.1]. Based on ( 4), an estimator ân(α

-1 n of a(α -1
n ) can be given by Ŝ← n (αn)T (1) ( Ŝ← n |αn, η, ϕ)

1 η ϕ(u)L0(1/u)du 1 η ϕ(u)L γn,-(1/u)du ,
where γn,-= γn -T (1) ( Ŝ← n |αn, η, ϕ). The study of the asymptotic behavior of Š← n (βn) is clearly beyond the scope of the present paper.

Proofs

Preliminary results

The first lemma is dedicated to the function Ψη(•) defined in (2) and its derivative. Introducing the integral,

I (δ) η (s, t) := 1 η ϕ(u)L δ s (1/u)u -t du < ∞,
where (s, t) ∈ [0, ∞) 2 and δ ∈ N, one can write Ψη(s) = [I

η (s, 0)] 2 /I (1) 
η (s, 0).

Lemma 1. For all η ∈ (0, 1), the function Ψη(•) is decreasing on (-∞, 0] with Ψη(s) →

I (0) η (0, 0) as s → -∞. Furthermore, the function Ψη(•) is continuously differentiable on (-∞, 0] with Ψ η (s) → 0 -as s → -∞ and lim s→0 - Ψ η (s) = [I (2) η (0, 0)] 2 I (1) η (0, 0) -[I (1) η (0, 0)] 2 I (3) η (0, 0) [I (2) η (0, 0)] 2 .
Proof -First, remark that

Ψη(s) = 1 η ϕ(u)sLs(1/u)du 2 1 η ϕ(u)(sLs(1/u)) 2 du .
Since ϕ(•) is a positive bounded function, 0 ≤ -sLs(1/u) ≤ 1 for all s ≥ 0 and sLs(1/u) → -1 as s → -∞, the dominated convergence entails that

I (δ) η (s, 0) = - 1 s δ 1 η ϕ(u)du(1 + o(1)), (13) 
as s → 0 and hence, Ψη(s) → I (0) η (0, 0) as s goes to zero. We now compute the derivative of the function Ψη(•). Since ϕ(•) is a positive bounded function, 0 ≤ Ls(1/u) ≤ ln(1/η) and 0 ≤ u -s ≤ 1 for all s ≥ 0, the functions I (δ) η (s, 0) and I (δ) η (0, s) are continuous on s ∈ (-∞, 0] and one can interchange the derivative and the integral sign. Hence, for s < 0,

A (s) := d ds I (1) η (s, 0) = 1 s I (1) η (0, s) -I (1) η (s, 0) . ( 14 
)
Remarking that I

(2)

η (s, 0) = 2 I (1)
η (2s, 0) -I

η (s, 0) /s, one has for s < 0

B (s) = d ds I (2) η (s, 0) = 2 s 2 I (1) η (0, 2s) -I (1) η (0, s) + 2 I (1) η (s, 0) -I (1) η (2s, 0) = 1 η 2ϕ(u) s Ls(1/u) ln(1/u)u -s -Ls(1/u) du. ( 15 
)
Since the functions A (•) and B (•) are continuous, the derivative

Ψ η (s) = 2A (s)I (1) 
η (s, 0)I

(2)

η (s, 0) -[I (1) η (s, 0)] 2 B (s) [I (2) η (s, 0)] 2
, is also a continuous function on s ∈ (-∞, 0). We now compute the limit of Ψ η (s) as s → 0. Since for all u ∈ (0, 1], Ls(1/u) is a nondecreasing function in s ∈ R, the following inequalities hold:

Ls(1/u) ≤ ln(1/u) if s ≤ 0 and Ls(1/u) ≥ ln(1/u) if s ≥ 0. ( 16 
)
A straightforward consequence is that for all s < 0, 0 ≤ ln(1/u)u -s -Ls(1/u) /s ≤ ln 2 (1/u).

Remarking that ln(1/u)u -s -Ls(1/u) → ln 2 (1/u)/2 as s → 0, the dominated convergence theorem lead to

lim s→0 A (s) = 1 2 1 η ϕ(u) ln 2 (1/u)du = 1 2 I (2) η (0, 0). (17) 
Furthermore, using the inequalities ( 16) leads to

0 ≤ 1 s Ls(1/u) ln(1/u)u -s -Ls(1/u) ≤ ln 3 (1/u),
for all s < 0. Remarking that Ls(1/u) ln(1/u)u -s -Ls(1/u) /s → ln 3 (1/u)/2 as s → 0 and using the dominated convergence theorem leads to

lim s→0 B (s) = 1 η ϕ(u) ln 3 (1/u)du = I (3) η (0, 0). (18) 
Collecting ( 17) and ( 18) and since

I (δ)
η (s, 0) and

I (δ)
η (0, s) are continuous on (-∞, 0], we obtain the desired result. We are now interested in the limit of Ψ η (•) as s → -∞. Collecting ( 14) and ( 15), Ψ η (s) is equal to

I (1) η (s, 0) 2I (1) η (0, s)I (1) η (2s, 0) -I (1) η (0, s)I (1) η (s, 0) -I (1) η (0, 2s)I (1) η (s, 0) 2 I (1) η (2s, 0) -I (1) η (s, 0) 2 ,
for s < 0. Using [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] and remarking that I 

η (0, s) → 0 as s → -∞ shows that Ψ η (s) → 0 as s → -∞.
It remains to prove that ψ η (s) < 0 for all s < 0 or, since I

(1) η (s, 0) > 0, that ∆η(s) := 2I (1) η (0, s)I (1) η (2s, 0) -I (1) η (0, s)I (1) η (s, 0) -I (1) η (0, 2s)I (1) η (s, 0) < 0.

Using the fact that 2L2s(1/u) = Ls(1/u)(u -s + 1), one has

I (1)
η (2s, 0)

I (1) η (s, 0) = 1 2 1 + I (1)
η (s, s) I

(1) η (s, 0) , Hence, ∆η(s) = I (1) η (s, 0)I (1) η (0, s) 2

I (1)
η (2s, 0)

I (1) η (s, 0) -1 - I (1)
η (0, 2s)

I (1)
η (0, s) = I (1) η (s, s)I (1) η (0, s) -I (1) η (s, 0)I (1) η (0, 2s)

= 1 η 1 η ϕ(u)ϕ(v)Ls(1/u)v -s ln(1/v)(u -s -v -s )dvdu
Next, using the decomposition

1 η = u η + 1 
u and Fubini's Theorem (which can be applied since the involved function is of constant sign),

∆η(s) = 1 η u η ϕ(u)ϕ(v)(u -s -v -s ) L(u, v)dvdu, where L(u, v) := Ls(1/u)v -s ln(1/v) -Ls(1/v)u -s ln(1/u). Remark now that for v ∈ (η, u) and s < 0, ∂ ∂v L(u, v) = v -(s+1) u -s ln(1/u) -Ls(1/u)(s ln(1/v) + 1) ≥ v -(s+1) (ln(1/u) -Ls(1/u)) > 0.
Hence, for all u ∈ (η, 1) and v ∈ (η, u), L(u, v) < L(u, u) = 0 and the proof is complete since

ϕ(u)ϕ(v)(u -s -v -s ) > 0 when u ∈ (η, 1) and v ∈ (η, u).
The next two lemmas are general results on extended regular varying functions. The first result shows that the convergence characterizing a function of extended regular variation is locally uniform.

Lemma 2. Let S(•) ∈ ERV(γ, a(•)). For all 0 < κ1 < κ2 < ∞, lim α→0 sup u∈[κ 1 ,κ 2 ] S ← (uα) -S ← (α) a(α -1 ) -Lγ(1/u) = 0.
Proof of Lemma 2 -From [28, Theorem B.2.18], for all ε ∈ (0, 1), there exists α0(ε) such that for all α < α0(ε) and all u ∈ [κ1, κ2],

∆S← (α, u) := S ← (uα) -S ← (α) a0(α -1 ) -Lγ(1/u) ≤ ε κ1 max{κ -γ 1 , κ -γ 2 },
where for y ≥ 0,

a0(y) =      γS ← (1/y) if γ > 0, -γ(S ← (0) -S ← (1/y)) if γ < 0, S ← (1/y) -y -1 y 0 S ← (1/s)ds if γ = 0.
Clearly, a(y)/a0(y) → 1 as y goes to infinity. Hence, there exists α1(ε) such that for α < α1(ε), |1 -a(α -1 )/a0(α -1 )| ≤ ε. For α < α0(ε) ∧ α1(ε), we thus have the inequality

∆S← (α, u) ≤ a0(α -1 ) a(α -1 ) S ← (uα) -S ← (α) a0(α -1 ) -Lγ(1/u) + |Lγ(1/u)| 1 - a(α -1 ) a0(α -1 ) ≤ 2 ε κ1 max{κ -γ 1 , κ -γ 2 } + Lγ(1/κ1)ε
which concludes the proof.

This second result provides equivalent conditions to the second order condition (A.1).

Lemma 3. If there exist positive sequences αn and τn converging to 0 as n → ∞ such that the survival function S(•) satisfies (A.1) then,

lim n→∞ τ -1 n sup u∈[κ 1 ,κ 2 ] S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) -Lγ -(1/u) = 0, (19) 
and

lim n→∞ τ -1 n sup v∈[Lγ (1/κ 2 ),Lγ (1/κ 1 )] αn S(S ← (αn) + va(α -1 n )) -L ← γ (v) = 0. (20) 
Proof of Lemma 3 -We first focus on [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]. Let us introduce the notations

∆n(u) := S ← (uαn) -S ← (αn) a(α -1 n ) -Lγ(1/u) and ∆n := sup u∈[κ 1 ,κ 2 ]
|∆n(u)|.

We start with the following equality:

S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) = S ← (αn) a(α -1 n ) ln 1 + a(α -1 n ) S ← (αn) (Lγ(1/u) + ∆n(u)) .
We consider the case γ > 0. A straightforward calculus leads to

ln 1 + a(α -1 n ) S ← (αn) (Lγ(1/u) + ∆n(u)) -ln(u -γ ) = ln(1 + Dn,1(u)),
where

|Dn,1(u)| = u γ γ∆n(u) + a(α -1 n ) S ← (αn) -γ (Lγ(1/u) + ∆n(u)) ≤ max{κ γ 1 , κ γ 2 } γ ∆n + a(α -1 n ) S ← (αn) -γ (Lγ(1/κ1) + ∆n) → 0.
Hence, using inequality

| ln(1 + x)| ≤ 3|x|/2 for x ∈ [-1/2, 1/2],
one has for n large enough and γ > 0

τ -1 n sup u∈[κ 1 ,κ 2 ] S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) -ln(1/u) ≤ S ← (αn) a(α -1 n ) 3τ -1 n 2 sup u∈[κ 1 ,κ 2 ]
|Dn,

| + ln(1/κ1)τ -1 n S ← (αn) a(α -1 n ) γ -1 , 1(u) 
which converges to 0 by assumption. Now, assume that γ ≤ 0, since

|Dn,2(u)| := a(α -1 n ) S ← (αn) (Lγ(1/u) + ∆n(u)) ≤ a(α -1 n ) S ← (αn)
(Lγ(1/κ1) + ∆n) → 0 and using the inequality

x(1 -x) ≤ ln(1 + x) ≤ x for x ∈ [-1/2, 1/2], one has: -Lγ(1/u)Dn,2(u) + ∆n(u)(1 -Dn,2(u)) ≤ S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) -Lγ(1/u) ≤ ∆n(u). Since τ -1 n sup |Dn,2(u)| → 0 and τ -1 n ∆n → 0, it is clear that τ -1 n sup u∈[κ 1 ,κ 2 ] S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) -Lγ(1/u) → 0. (22) 
Collecting ( 21) and ( 22) conclude the proof of [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]. The proof of equation ( 20) is a direct consequence of Vervaat's Lemma (see [28, Lemma A.0.2]) applied to

xn(s) = S ← (αn/s) -S ← (αn) a(α -1 n ) and g(s) = Lγ(s),
with δn = τn.

The following lemma is a technical result that will be useful in the proof of Lemma 5. A proof of this result can be found in [21, Lemma 6].

Lemma 4. Let (Xn) be a sequence of positive real-valued random variables such that for every positive nonrandom sequence δn converging to 0, the random sequence δnXn converges to 0 in probability. Then Xn = O P (1).

The next result takes place in our framework (F). It shows that if for large values of y, Ŝn(y) is a consistent estimator of S(y) then Ŝ← n (α) is also a consistent estimator of S ← (α) for small values of α. This result is a cornerstone in the proof of Theorem 1.

Lemma 5. Under (F), let (αn) and (τn) be sequences converging to 0 as n → ∞ and assume that the survival function S(•) satisfies condition (A.1). If for all sequences yn(u) such that a -1 (α -1 n )(yn(u) -S ← (uαn))) → 0 for all u ∈ [η, 1], one has for all η ∈ (0, 1),

τ -1 n sup u∈[η,1]
Ŝn(yn(u))

S(yn(u)) -1 = O P (1), then S ← (αn) a(α -1 n ) τ -1 n sup u∈[η,1] Ŝ← n (uαn) S ← (uαn) -1 = O P (1). (23) 
From equation [START_REF] Gardes | Estimation of the conditional tail index using a smoothed local Hill estimator[END_REF] in Lemma 3, it is easy to see that uniformly on u ∈ [η, 1], S(yn(u)) = uαn(1 + o(1)) ≥ ηαn/2 > 0 for n large enough. Hence, the division by S(yn(u)) is allowed at least for n large enough.

Proof of Lemma 5 -Let us introduce the sequence mn := τ -1 n . For j = 1, . . . , mn, let θn(j) := η + (j -1)(1 -η)/(mn -1). Clearly, for all u ∈ [η, 1], there exists ju ∈ {1, . . . , mn -1} such that θn(ju) ≤ u ≤ θn(ju + 1). Since S ← (•) and Ŝ← n (•) are non-increasing and rightcontinuous functions, it is easy to check that for all u ∈ [η, 1],

Ŝ← n (uαn) -S ← (uαn) ≤ 2 Ŝ← n (θn(ju)αn) -S ← (θn (ju)αn) 
+ Ŝ← n (θn(ju + 1)αn) -S(θn(ju + 1)αn) + 2 (S ← (θn(ju)αn) -S ← (θn(ju + 1)αn)) . 

Let us now consider the term Tn,2. Our goal is to show that

τ -1 n a(α -1 n ) Tn,2 = O P (1). (25) 
To this end, it suffices, from Lemma 4, to show that for every sequence δn → 0 and for every ε > 0,

pn(ε) := P δnτ -1 n a(α -1 n ) max j=1,...,mn
Ŝ← n (θn(j)αn) -S ← (θn(j)αn) > ε → 0.

Note that it is sufficient to consider sequences δn → 0 such that δ -1 n τn → 0 as n goes to infinity. Introducing the sequence y ± n (θn(j)) := S ← (θn(j)αn) ± ετna(α -1 n )/δn, pn(ε) ≤ P mn j=1 Ŝ← n (θn(j)αn) > y + n (θn(j)) ∪ Ŝ← n (θn(j)αn) ≤ y - n (θn(j)) .

Since Ŝ← n (•) is a non-increasing and right-continuous function, it is easy to see that pn(ε) ≤ P 

+ n,j (ε) = τ -1 n θn(j)L ← γ Lγ(1/θn(j)) + ζ + n (ε) -1 + o(τn) . Since for v ∈ [Lγ(1/κ2), Lγ(1/κ1)] the derivative of L ← γ (•) is larger than κ γ-1 1 ∧ κ γ-1 2
, a Taylor expansion leads to, for n large enough: b

+ n,j (ε) ≥ κ1ε(κ γ-1 1 ∧ κ γ-1 2 
)/(2δn). Similarly, for n large enough, one can show that b - n,j (ε) ≤ -κ1ε(κ γ-1

1 ∧ κ γ-1 2 
)/(2δn). Hence, pn(ε) is smaller or equal than

P sup u∈[η,1] δn|W + n (u)| > κ1ε(κ γ-1 1 ∧ κ γ-1 2 ) 2 + P sup u∈[η,1] δn|W - n (u)| ≥ - κ1ε(κ γ-1 1 ∧ κ γ-1 2 ) 2 → 0,
proving [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF]. Finally, since S ← (•) is a non-increasing function, collecting [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] and [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF],

S ← (αn) a(α -1 n ) τ -1 n sup u∈[η,1] Ŝ← n (uαn) S ← (αn) -1 ≤ 3τ -1 n a(α -1 n ) (Tn,1 + Tn,2) = O P (1),
which conclude the proof.

The next lemma establishes a uniform convergence result on processes of the form:

Φn(u) := n i=1 Xn,i(u),
where, for η ∈ (0, 1), {Xn,i(u), u ∈ [η, 1]}, i = 1, . . . , n are n independent stochastic processes with Xn,i(•) non-decreasing and positive. The expectation of Φn(u) is denoted µn(u).

Lemma 6. Let τn = (ln(µn(1))/µn(1)) 

Let us now introduce the sequence mn := (µn(1)) 1/2 + 1 → ∞, and, for j = 1, . . . , mn, let θn(j) := η + (j -1)(1 -η)/(mn -1) ∈ [η, 1]. Here • is the notation for the ceiling function.

Clearly, for all u ∈ [η, 1], there exists ju ∈ {1, . . . , mn -1} such that θn(ju) ≤ u < θn(ju + 1) and then, since Xn,i(•), i = 1, . . . , n are non-increasing,

Φn(u) µn(u) -1 ≤ 1 µn(η)
Φn(θn(ju + 1)) -µn(θn(ju + 1)) + 2 Φn(θn(ju)) -µn(θn(ju))

+ 2 (µn(θn(ju + 1)) -µn(θn(ju))) ,

leading to sup u∈[η,1]
Φn(u)

µn(u) -1 ≤ 3 µn(η) (Tn,1 + Tn,2), with 
Tn,1 := max j=1,...,mn-1 µn(θn(j + 1)) -µn(θn(j)) and Tn,2 := max j=1,...,mn Φn(θn(j)) -µn(θn(j)) .

Under [START_REF] Goegebeur | Robust and asymptotically unbiased estimation of extreme quantiles for heavy-tailed distributions[END_REF], since for all j ∈ {1, . . . , mn -1}, θn(j) -θn(j + 1) = (mn -1) -1 ≤ (µn(1)) -1/2 , the following holds for n large enough:

Tn,1 = O (µn(1) ln(µn(1))) 1/2 . (28) 
Furthermore, using ( 27) 

P (µn ( 
From ( 28) and ( 29), since µn(1)/µn(η) ≤ C -1 µ , τ -1 n Tn,1/µn(η) = O(1) and τ -1 n Tn,2/µn(η) = O P (1), which conclude the proof.

Proofs of main results

Proof of Theorem 1 -We are first interesting in the asymptotic behavior of the statistic T (δ) ( Ŝ← n |αn, η, ϕ). More precisely, we start by showing the following equation:

S ← (αn) a(α -1 n ) δ T (δ) ( Ŝ← n |αn, η, ϕ) - 1 η ϕ(u)L δ γ -(1/u)du 1 η ϕ(u)L0(1/u)du δ = O P (τn) . (30) 
Let us first introduce the following notations: for u ∈

[η, 1], ∆n(u) = Ŝ← n (uαn) S ← (uαn) -1 , Rn(u) = ln 1 + ∆n(u) 1 + ∆n(1) , 
and bn(u) = S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) -Lγ -(1/u).
One has

S ← (αn) a(α -1 n ) ln Ŝ← n (uαn) Ŝ← n (αn) δ = S ← (αn) a(α -1 n ) δ ln S ← (uαn) S ← (αn) + Rn(u) δ = S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) δ + δ-1 j=0 C j δ S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) j S ← (αn) a(α -1 n ) Rn(u) δ-j
Since from Lemma 5, Ŝn(•) satisfies [START_REF] Georgiev | Consistent nonparametric multiple regression: the fixed design case[END_REF],

∆n := sup u∈[η,1] |∆n(u)| = O P a(α -1 n ) S ← (αn) τn = o P (1),
and thus, |Rn(u

)| = O P ( ∆n) = o P (1). Remark that δ-1 j=0 C j δ S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) j ≤ δ j=0 C j δ Lγ -(1/u) + bn(u) j ≤ (1 + Lγ -(1/η) + bn) δ ,
with bn = sup{|bn(u)|, u ∈ [η, 1]} which converges to 0 from the first part of Lemma 3. Hence,

δ-1 j=0 C j δ S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) j = O(1),
and thus,

S ← (αn) a(α -1 n ) δ   ln Ŝ← n (uαn) Ŝ← n (αn) δ -ln S ← (uαn) S ← (αn) δ   = O P (τn) , uniformly on u ∈ [η, 1]. Since S ← (αn) a(α -1 n ) ln S ← (uαn) S ← (αn) δ -L δ γ -(1/u) = (Lγ -(1/u) + bn(u)) δ -L δ γ -(1/u) = O( bn),
we have, as a first conclusion that, uniformly on u ∈ [η, 1],

S ← (αn) a(α -1 n ) ln Ŝ← n (uαn) Ŝ← n (αn) δ = L δ γ -(1/u) + O P (τn) , (31) 
since, from Lemma 3, τ -1 n bn → 0. Multiplying equation ( 31) by ϕ(u) and integrating between η and 1 lead to [START_REF] Kaplan | Non-parametric estimation from incomplete observations[END_REF]. The rest of the proof is based on the decomposition

T ( Ŝn|αn, η, ϕ) -γ = T (1) ( Ŝn|αn, η, ϕ) -γ+ + Ψ ← η,ϕ max [T (1) ( Ŝn|αn, η, ϕ)] 2 T (2) ( Ŝn|αn, η, ϕ) , Ψη,ϕ(0) -γ-=: D + n + D - n .
Let us first consider the term D + n . From [START_REF] Kaplan | Non-parametric estimation from incomplete observations[END_REF], one has

D + n = a(α -1 n ) S ← (αn) O P (τn) + a(α -1 n ) S ← (αn) 1 η ϕ(u)Lγ -(1/u)du 1 η ϕ(u)L0(1/u)du -γ+.
Since S(•) satisfies (A.1) it is clear that D + n = O P (τn). Now, using again [START_REF] Kaplan | Non-parametric estimation from incomplete observations[END_REF], it is easy to check that [T (1) ( Ŝn|αn, η, ϕ)] 2 T (2) ( Ŝn|αn, η, ϕ) = Ψη,ϕ(γ-) (1 + O P (τn)) .

Since Ψη,ϕ(•) is a decreasing function (see Lemma 1) and τn → 0, max [T (1) ( Ŝn|αn, η, ϕ)] 2 T (2) ( Ŝn|αn, η, ϕ) , Ψη,ϕ(0) = Ψη,ϕ(γ-) (1 + O P (τn)) .

Finally, since from Lemma 1, the derivative of Ψ ← η,ϕ (•) is bounded in a neighborhood of Ψη,ϕ(γ-),

D - n = Ψ ← η,ϕ max [T (1) ( Ŝn|αn, η, ϕ)] 2 T (2) ( Ŝn|αn, η, ϕ) , Ψη,ϕ(0) -Ψ ← η,ϕ (Ψη,ϕ(γ-)) = O P (τn),
which concludes the proof.

Before proving Corollaries 1, 2 and 3, we establish the following result that can be useful when working under framework (F). Let us assume that n independent random variables Z1, . . . , Zn (not necessarily identically distributed) are recorded and let us consider the statistic defined for all y ≥ 0 and for all i ∈ 1, . . . , n by Rn,i(y) := Rn,i(y; Zi), where Rn,i(•) is a given deterministic functional. Assume that the statistic defined for all y ≥ 0 by

Ŝn(y) := Q(y; Z1, . . . , Zn) = n i=1 Rn,i(y) n i=1 Rn,i(0) , (32) 
is an estimator of the survival function S(•) ∈ ERV(γ, a(•)). The following proposition gives sufficient conditions ensuring that T ( Ŝ← n |αn, η, ϕ) is a consistent estimator of γ. Proposition 1. Let (σn) and (αn) be sequences converging to 0 as n → ∞ and let Z1, . . . , Zn be independent random variables. If for all i = 1, . . . , n and for some positive constant CR, the stochastic process Rn,i(•) ∈ D(R + , R + ) with sup{ Rn,i(y), y ≥ 0} ≤ CR almost surely, if S(•) satisfies condition (A.1) with sequences τn := σn(ln(σ -1 n )) 1/2 and αn and if there exits a constant r0 > 0 such that for all sequence yn(u) satisfying a 

-1 (α -1 n )(yn(u) -S ← (uαn)) → 0 for all u ∈ [η, 1], sup u∈[η,1]
where

µn(u) := E n i=1 Rn,i(yn(u)) , then T Ŝ← n |αn, η, ϕ -γ = O P (τn). Proof of Proposition 1 -From Theorem 1, it suffices to show that S ← (αn) a(α -1 n ) τ -1 n sup u∈[η,1] Ŝ← n (uαn) S ← (uαn) -1 = O P (1), (34) 
where Ŝn(•) is given by [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF]. From Lemma 5, it suffices to prove that for every sequence yn(u)

satisfying a -1 (α -1 n )(yn(u) -S ← (uαn)) → 0 for all u ∈ [η, 1] τ -1 n sup u∈[η,1]
Ŝn(yn(u)

S(yn(u)) -1 = O P (1). (35) 
First, let us consider the numerator of Ŝn(yn(u)). Recall that, by assumption, As a first conclusion, (µn(1)/ ln(µn(1))) -1/2 is asymptotically proportional to τn and, for n large enough, µn(η) µn(1) ≥ η/2.

µn(u) = E Φn(u) = r
We now show that µn(u) satisfies condition [START_REF] Goegebeur | Robust and asymptotically unbiased estimation of extreme quantiles for heavy-tailed distributions[END_REF] Ŝn(yn(u))

S(yn(u))

(1 + o P (τn)) -1 = O P (τn).

It is easy to check that the factor 1 + o P (τn) can be removed proving [START_REF] Stone | Consistent nonparametric regression[END_REF] for every sequence yn(u) satisfying a -1 (α -1 n )(yn(u) -S ← (uαn)) → 0 for all u ∈ [η, 1] and consequently [START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion)[END_REF] is established. This concludes the proof.

Note that under the assumptions of Proposition 1, Ŝn(•) ∈ D(R + , [0, 1]). Proposition 1 is a key point to prove corollaries 1, 2 and 3 since all the survival function estimators can be written as in [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF]. under condition (D). It is easy to check that Rn,1(0) + . . . + Rn,n(0) = n and thus the second part of condition (33) of Proposition 1 is clearly satisfied with r0 = 1. Let zn(u) be a sequence such that a -1 (α -1 n )(zn(u) -S ← (uαn)) → 0 as n → ∞ and let

Φn(u) := n i=1
Rn,i(zn(u)).

Our goal is to provide an expansion of µn(u) := E( Φn(u)) in order to check the validity of the first part of condition [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] From conditions (D) and ( 11), since nσn → ∞, we deduce from the previous equation that the term (44) is equal to 1 + o(τn) uniformly on u ∈ [η, 1]. Hence, condition [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] 3) while the black curve is the estimation under (M.2). On the left panel, the dashed line corresponds to the "positive part" T (1) ( Ŝn,t |α n , η, ϕ) of our estimator. 

Theorem 1 .

 1 Under framework (F), if conditions (A.1) and (A.2) hold then T ( Ŝ← n |αn, η, ϕ) -γ = O P (τn).

  the ball of center c and radius M . The next result is a direct application of Theorem 1. Its proof consists in showing that the kernel estimator Ŝn(•|x0) satisfy condition (A.2).

1 0

 1 is the distribution function of a beta distribution with parameters a = b = 2. For a given function c : [0, 1] → [1, ∞), we generate n independent random variables Yx 1 , . . . , Yx n where for all x ∈ [0, 1], the survival function of Yx is one of the three following: P1-1: Heteroscedastic Fréchet distribution: for z ≥ 0, Sx(z) = 1 -exp (-c(x)/z). P1-2: Heteroscedastic uniform distribution: for z ∈ [1 -1/c(x), 1], Sx(z) = (1 -z)c(x). P1-3: Heteroscedastic Weibull distribution: for z ≥ ln c(x) and θ ∈ (0, 1], Sx(z) = exp -(z -ln c(x)) θ . The data generating by this process satisfy model (M.3) with b1 = 0 and b2 = 1. The common extreme value index and right endpoint are given by γ = 1 and z * = +∞ for P1-1, γ = -1 and z * = 1 for P1-2 and γ = 0 and z * = +∞ for P1-3. The function c(•) is given by c(•)/ c(s)ds for processes P1-1 and P1

2 : 3 :

 23 [0, 1]. For a positive function γ(•) defined on [0, 1] and a function c : [0, 1] → [1, ∞), the conditional survival function S(•|x) of Y given X = x is one of the three following: P2-1 Conditional Fréchet distribution: for y ≥ 0, S(y|x) = 1 -exp(-c(x)y -1/γ(x) ). P2-Conditional beta distribution: let G(•|x) be the distribution function of a beta distribution with parameters a = b = -1/γ(x), for y ∈ [G ← (1 -1/c(x)|x), 1], S(y|x) = (1 -G(y|x))c(x). P2-Conditional Weibull distribution: for a function θ : [0, 1] → (0, 1] and y ≥ ln c(x), S(y|x) = exp -(y -ln c(x)) θ(x) .

  Hence, Ŝ← n (uαn) -S ← (uαn) ≤ 3(Tn,1 + Tn,2) uniformly on u ∈ [η, 1], with Tn,1 := max j=1,...,mn-1 [S ← (θn(j)αn) -S ← (θn(j + 1)αn)] , and Tn,2 := max j=1,...,mn Ŝ← n (θn(j)αn) -S ← (θn(j)αn) . Let us first focus on the term Tn,1. Since S(•) satisfies condition (A.1), a straightforward calculus entails that S ← (θn(j)αn) -S ← (θn(j + 1)αn) = a(α -1 n ) [Lγ(1/θn(j)) -Lγ(1/θn(j + 1)) + o(τn)] , where the term o(τn) converges to 0 uniformly on u ∈ [η, 1]. Since the derivative of the function Lγ(1/•) is bounded on [η, 1], a first order Taylor expansion leads to S ← (θn(j)αn) -S ← (θn(j + 1)αn) = a(α -1 n ) O(m -1 n ) + o(τn) , uniformly on u ∈ [η, 1] and thus Tn,1 = a(α -1 n )O(τn).

- 1 1 .

 11 and b ± n,j (ε) := τ -1 n θn(j)αn S(y ± n (θn(j)))-By assumption, W ± n (u) = O P (1) uniformly on u ∈ [η, 1]. Since S(•) satisfies (A.1), y ± n (θn(j)) = S ← (αn) + a(α -1 n ) Lγ(1/θn(j)) + ζ ± n (ε) , where ζ ± n (ε) = τn(±εδ -1 n + o(1)), the term o(1) converging to 0 uniformly on u ∈ [η, 1]. Thus, from Lemma 3, equation (20), one has for all j ∈ {1, . . . , mn}, b

≤ 2 (

 2 1) ln(µn(1))) -1/2 Tn,µn(1)) -1/2 → 0, since µn(b) → ∞. Hence, Tn,2 = O P (µn(1) ln(µn(1))) 1/2 .

  (0) -r0 = o P (τn),

2 n( 1 +- 2 n 1 L

 2121 o(τn)), uniformly on u ∈ [η, 1]. Since the survival function S(•) satisfies condition (A.1), Lemma 3, equation (20) entails that, uniformly on u ∈ [η, 1] S(yn(u)) = αn 1 L ← γ (Lγ(1/u) + υn + o(τn)) + o(τn) = uαn(1 + o(1)),where υn := a -1 (α -1 n )(yn(u) -S ← (uαn)) → 0. Thus, uniformly on u ∈ [η, 1], µn(u) = r -1 0 σ ← γ (Lγ(1/u) + υn + o(τn)) + o(τn) .

  of Lemma 6. For (u, u ) ∈ [η, 1] 2 such that |u -u | ≤ (µn(1)) -1/2 , since the derivatives of 1/L ← γ (•) and Lγ(1/•) are bounded on [η, 1], a Taylor expansion leads to |µn(u) -µn(u )| = O σ -2 n τn uniformly on u ∈ [η, 1]. Thus,µn(u) µn(u ) -1 ≤ 1 µn(η) |µn(u) -µn(u )| = O (τn) .(37)Hence, collecting (36) and (37), Lemma 6 entails thatsup u∈[η,1]Φn(u)r0αnσ2 nS(yn(u))(1 + o(τn)) -1 = O P (τn).

Finally

  (0) = r0 + o P (τn), uniformly on u ∈ [η, 1], one has sup u∈[η,1]

in Proposition 1 . 1 c

 11 •) satisfies (A.1), it is easy to check that there exists δ > 1 such that for all u ∈[η, 1], zn(u)/S ← (αn) ∈ [δ -1 , δ]. Hence, from condition (12), the term (43) is a o(τn) uniformly on u ∈ [η, 1]. Furthermore, (s)ds = xn -b1 b2 -b1 n i=1 xi -xi-1 xn -b1 c(xi) + c(b2) xn -b1 b2 -b1 (b2 -xn) s) -c(xi))ds.

  n |n -1/3 , η, ϕ)) in the case ϕ(•) = 1 (1) and ϕ(•) = ln(1/•) (2) using the generating processes P1-1, P1-2 and P1-3 with c(•) = 1 + ln(1/•).

Figure 1 :

 1 Figure 1: Estimation of the extreme value index for daily loss returns of the S&P 500 index for the period 1988-2007 (left panel) and 1988-2000 (right panel). The straight line corresponds to the estimation under (M.3) while the black curve is the estimation under (M.2). On the left panel, the dashed line corresponds to the "positive part" T(1) ( Ŝn,t |α n , η, ϕ) of our estimator.

Figure 2 :

 2 Figure 2: Estimation of the function c(•) for daily loss returns of the S&P 500 index for the period 1988-2000.

  is a regularity condition on the function c(•) involved in model (M.3). It is satisfied for instance if the function c(•) is Lipschitz continuous of order at least 1/2. Condition (11) is also a regularity condition but on the function Sx(z) considered as a function of x for large values of z. The sequence αn represents the proportion of largest observations used in the estimation procedure and thus kn := nαn is the number of kept observations. Conditions αn → 0 and nαn → ∞ (or equivalently kn/n → 0 and kn → ∞) are standard hypothesis for the estimation of the extreme value index.

  1/2 . If µn(η) → ∞ as n goes to infinity, if there exist positive constants CX and Cµ such that for all i ∈ {1, . . . , n} and u ∈ [η, 1], Xn,i(u) ≤ CX , Proof of Lemma 6 -Let Cε := (3CX /Cµ) 1/2 . Using a multiplicative form of the Chernoff's inequality for bounded variables (see for instance[START_REF] Dubhashi | Concentration of measure for the analysis of randomized algorithms[END_REF] Theorem 1.1]), one has for all u ∈ [η,[START_REF] Santos | Peaks Over Random Threshold methodology for tail index and high quantile estimation[END_REF] 

	P τ -1 n	Φn(u) µn(u)	-1 > Cε ≤ 2 exp -	C 2 ε 3CX	µn(u) µn(1)	ln(µn(1)) ≤	2 µn(1)	.
	µn(η)/µn(1) ≥ Cµ for n large enough and				
	sup	µn(u) µn(u )	-1 , u ∈ [η, 1] with |u -u | ≤ (µn(1)) -1/2 = O (τn) ,	(26)
	then,							
				Φn(u)				
			sup u∈[η,1]	µn(u)	-1 = O P (τn) .

Table 1 :

 1 is satisfied and the conclusion follows applying Proposition 1. Values for different values of η and n of EMSE(T ( Ŝ←

			P1-1			P1-2	
	η	n = 50	100	200	400	n = 50	100	200	400
	0.005 (1)	0.194 0.098 0.056 0.035	0.682	0.320	0.176	0.112
	0.005 (2)	0.242	0.129	0.074	0.047	0.268 0.151 0.085 0.054
	0.01 (1)	0.195	0.100	0.057	0.035	0.700	0.330	0.182	0.116
	0.01 (2)	0.228	0.125	0.073	0.046	0.278	0.158	0.089	0.057
	0.02 (1)	0.210	0.102	0.059	0.037	0.735	0.349	0.193	0.123
	0.02 (2)	0.224	0.122	0.070	0.045	0.299	0.171	0.096	0.063
	0.04 (1)	0.229	0.112	0.067	0.044	0.804	0.390	0.218	0.139
	0.04 (2)	0.221	0.124	0.069	0.050	0.341	0.197	0.113	0.075
	0.08 (1)	0.303	0.133	0.093	0.056	0.960	0.478	0.276	0.172
	0.08 (2)	0.265	0.140	0.090	0.057	0.440	0.256	0.148	0.100
	0.16 (1)	0.438	0.200	0.158	0.088	1.338	0.699	0.419	0.259
	0.16 (2)	0.373	0.193	0.134	0.080	0.634	0.404	0.241	0.166
					P1-3			
			η	n = 50	100	200	400		
		0.005 (1)	0.108	0.077	0.044	0.030		
		0.005 (2)	0.094 0.063 0.034 0.024		
		0.01 (1)	0.112	0.082	0.048	0.034		
		0.01 (2)	0.095	0.066	0.038	0.027		
		0.02 (1)	0.121	0.091	0.056	0.040		
		0.02 (2)	0.100	0.072	0.044	0.031		
		0.04 (1)	0.143	0.110	0.068	0.050		
		0.04 (2)	0.112	0.082	0.053	0.039		
		0.08 (1)	0.201	0.166	0.096	0.069		
		0.08 (2)	0.149	0.124	0.076	0.056		
		0.16 (1)	0.360	0.292	0.159	0.112		
		0.16 (2)	0.273	0.221	0.122	0.097		
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Proof of Corollary 1 -It is easy to check that the estimator Ŝn(•|x0) defined in [START_REF] Beirlant | Excess functions and estimation of the extreme value index[END_REF] is of the form [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF] with

under (B.2). Let yn(u) be a sequence such that a -1 (α -1 n |x0)(yn(u) -S ← (uαn|x0)) → 0 as n → ∞. Let us first focus on the denominator of Ŝn(•|x0). Let

Rn,i(0).

Under (B.1) and (B.2), since n|Hn| → ∞, it is well known that

(see Parzen [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF] for a proof). Then, since by assumption τ -1 n Hn ∞ and τ -1 n (n|Hn|) -1/2 converge to 0, one has that ĝn(x0)/g(x0) = 1 + o P (τn). Thus the second part of condition [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] in Proposition 1 is satisfied. Now, let

Rn,i(yn(u)).

Let µn(u|x0) = E( Φn(u|x0)). Straightforward calculus leads to:

Let us first focus on the second term. Under condition (B.1),

since τ -1 n Hn ∞ → 0. Now, since S(•|x0) satisfies (A.1), it is easy to check that there exists δ > 1 such that for all u ∈ [η, 1], yn(u)/S ← (αn|x0) ∈ [δ -1 , δ]. Hence, from condition (6) and using (39

Collecting ( 39) and ( 40), the first part of condition ( 33) is satisfied. Proposition 1 concludes the proof.

Proof of Corollary 2 -It is easy to check that the estimator Ŝn,x 0 (•) defined in ( 7) is of the form [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF] with

Rn,i(0) = n|Hn|.

As a consequence, the second part of condition (33) is satisfied. Let zn(u) be a sequence such that a -1

Rn,i(zn(u)), and denote by µn,x 0 (u) its expectation. Recalling that

Since n Vn ≤ CV , for all i ∈ {1, . . . , n}, An,i ⊂ B(xi, rn,pIp) with 2rn,p := (CV /n) 1/p . Thus if

By assumption n|Hn| → ∞ and since for all positive-definite matrix M of size p, |M | 1/p ≤ M ∞, one has for n large enough that H -1 n ∞rn,p ≤ 1 and thus, H -1 n (xi -x0) ∞ ≤ 2 i.e. xn,i ∈ B(x0, 2Hn). Furthermore, since Sx 0 (•) satisfies condition (A.1), there exists δ > 1 such that for all u ∈ [η, 1] zn(u)/S ← x 0 (αn) ∈ [δ -1 , δ]. Hence, from condition (8), µn,x 0 (u) = n|Hn|Sx 0 (zn(u)) (1 + o(τn)), proving the first part of condition [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]. Proposition 1 concludes the proof.

Proof of Corollary 3 -Clearly, the estimator Ŝn(•) given in ( 10) is of the form [START_REF] Parzen | On the estimation of a probability density function and mode[END_REF] with for i ∈ {1, . . . , n} ) with ϕ(•) = ln(1/•) and τ = 0.02 using the generating processes P2-1, P2-2 and P2-3 for (α n,i = n -1/i , H n,i,j = n (1-i)/(ij) ), i, j = 2, . . . , 6.