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Laurent Gardes
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67084 Strasbourg cedex, France.

Abstract

It is well known that the tail behavior of a survival function is controlled by the so-called
extreme value index. The aim of this paper is the estimation of this extreme value index in
the case where the observations are not necessarily distributed from the same distribution.
A general procedure of estimation is proposed. The idea is to estimate in a consistent way
the survival function and to apply a general functional to obtain a consistent estimator for
the extreme value index. The procedure of estimation presented in this paper permits to deal
with a large set of models such as conditional extremes and heteroscedastic extremes. The
consistency of the obtained estimator is established under general conditions and its finite
sample behavior is investigated through a simulation study.

Keywords. Extreme value index, conditional extremes, heteroscedastic extremes, consis-
tency.

AMS Subject Classifications. 62G05; 62G20; 62G30; 62G32.

1 Introduction
In various applications, the behavior of large values (instead of central values) of a random
variable Z can be of high interest. For instance, in climatology, Z can represent the tempera-
ture or the amount of rain. The study of high values of Z is then a key point to understand
the effect of global warming. In actuarial science, the random variable Z can model the claim
size and it is of primary interest for insurance companies to estimate the probability of a large
value of Z to be exceeded.
Denoting by S(·) the survival function of Z (i.e. for all z ∈ R, S(z) = P(Z > z)), the common
departure point to make statistical inference on the tail distribution of S(·) is to assume that
S(·) belongs to the maximum domain of attraction of an extreme value distribution (see Fisher
and Tippett [14] and Gnedenko [23]). In other words, denoting by S←(u) = inf{t, S(t) ≤ u}
the right-continuous inverse of S(·), it is assumed that there exist a positive auxiliary function
a(·) and a parameter γ ∈ R such that

lim
α→0

S←(uα)− S←(α)

a(α−1)
− Lγ(1/u)→ 0, (1)

for all u ∈ (0, 1] where for all v ≥ 1 and s ∈ R, Ls(v) =
∫ v
1
us−1du. According to [26, Definition

B.2.3], a survival function satisfying (1) is said to be of extended regular variation. In this
paper, the set of extended regularly varying functions is denoted ERV(γ, a(·)).
The parameter γ ∈ R involved in condition (1) is called the extreme value index of S(·). This
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parameter controls the decay of the tail distribution. If γ > 0, S(·) is called an heavy-tailed
distribution and has a polynomial decay with an infinite right endpoint. At the opposite, the
case γ < 0 corresponds to distributions with finite right endpoint. Finally, if γ = 0, S(·)
is a light-tailed distribution and has an exponential decay. Obviously, the estimation of the
extreme value index γ is often a major step to make statistical inference on the tail distribution
in particular to estimate extreme quantile. For this reason, the estimation of the extreme value
index has been widely studied in the literature.

1.1 Classical extreme value analysis

In the classical approach, it is assumed that one can observe n independent copies Z1, . . . , Zn of
a random value Z with survival function S(·) ∈ ERV(γ, a(·)). In this framework, there exist
numerous consistent estimators of γ, let us recall some of them. For heavy-tailed distributions
(i.e. when γ > 0), the most notable estimator is probably the Hill’s estimator [28] defined for
a sequence αn → 0 and such that nαn →∞ as n goes to infinity by

H(1)
n (αn) =

1

bnαnc

bnαnc∑
i=1

ln
Z(n−i+1)

Z(n−bnαnc)
,

where bxc denotes the integer part of x and Z(1) ≤ . . . ≤ Z(n) are the ordered statistics
associated to the sample Z1, . . . , Zn. In the general case γ ∈ R, Dekkers et al. [8] proposed to
extend Hill’s estimator by the so-called moment estimator given by

γ̂M (αn) = H(1)
n (αn)− 1− 1

2

(
1− [H(1)

n (αn)]2

H(2)
n (αn)

)−1

.

One can also cite the estimators proposed by Pickands [32], by Csörgő et al. [3] among many
others. Note that all the previous mentioned estimators and in fact most of the known esti-
mators of the extreme value index only depends on the empirical tail quantile function Qn(·)
defined for t ∈ [0, 1] as Qn(t) = Ŝ←n (αnt) with Ŝn(·) the classical empirical estimator of S(·)
(see Drees [12]).

1.2 Non classical extreme value analysis

In some situations, one can be interested in the study of the tail distribution of a survival
function S(·) but without the possibility to observe an identically distributed (i.i.d.) sample
from S(·). This problem arises in many different models, we list below some of them (the list
is not exhaustive).

In insurance [1], finance [36], climatology [33] to name a few, the variable of interest Y can
be often linked to a random covariate X ∈ Rp. This covariate brings an important additional
information on Y . For a fixed value x0 ∈ Rp, an important issue is the study of the conditional
tail distribution of Y given X = x0. For instance, Y can be the production level and X the
quantity of labor (see Daouia et al. [4]) and thus a natural question is the estimation of the
maximum production level that can be reached for a given quantity of labour. Assuming that
the conditional survival function S(·|x0) of Y given X = x0 belongs to ERV(γ(x0), a(·|x0)),
a first step is thus the estimation of γ(x0). Unfortunately, it is often impossible to observe
an i.i.d. sample from S(·|x0). A more realistic situation is that one observe n independent
copies Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) of the random vector Z = (X,Y ) that must be
used to estimate γ(x0). This situation is called in the literature conditional extremes and
γ(x0) is referred to as the conditional extreme value index at point x0. The estimation of
the conditional extreme value index has been considered for instance in [5] and [18] with an
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estimator inspired from the Refined Pickands estimator proposed by Drees [10]. An adap-
tion of the moment estimator has been proposed in [24] and [35] and a maximum likelihood
approach was considered by Wang and Tsai [38]. In the particular case of a positive condi-
tional extreme value index, Gardes and Stupfler [19] propose an adaption of the Hill estimator.

Let us also mention the situation where n independent observations Z1 = Yx1 , . . . , Zn =

Yxn are recorded where, for all x ∈ Rp, Yx is drawn from the survival function Sx(·). In-
dices {x1, . . . , xn} represent a deterministic additional information on the variable of interest
(for instance the time, the geographical position, . . . ). Here, for a fixed value x0 ∈ Rp, it
is assumed that Sx0(·) ∈ ERV(γ(x0), ax0(·)) and one wants to estimate γ(x0) from the
non-identically distributed sample Yx1 , . . . , Yxn . This situation is called in what follows non
identically distributed (i.d.) extremes and is often considered to study extreme rainfalls at
different geographical positions. Assuming that γ(x0) > 0, this situation was considered for
instance in [17] to estimate extreme rainfall return levels as a function of latitude and longi-
tude and in [16] to study extreme daily flow of a river as a function of time. The estimation
of γ(x0) has been addressed by many authors such as Davison and Smith [7], Smith [33],
Chavez-Demoulin and Davison [2].
In [13], the authors consider the particular case where survival functions Sx1(·), . . . , Sxn(·) are
asymptotically proportional to a survival function S(·) ∈ ERV(γ, a(·)) and are interested in
the estimation of γ. This situation is named by the authors heteroscedastic extremes. Ein-
mahl et al. [13] show, in the restricted case γ > 0, that the classical Hill’s estimator is still
consistent for γ. The model of heteroscedastic extremes permits to deal with data presenting
a trend in extremes but with a constant shape parameter. A motivating example is the study
of extreme daily loss returns of a given financial market where the magnitude of the temporal
series, measured by the extreme value index, usually does not depend on time (see [13] for a
real data set example).

Finally, one can also think on situations of right censored data or right truncated data where
the variable of interest Y with survival function S(·) ∈ ERV(γ, a(·)) is not fully observed
but where the question of estimating γ is still of interest. Such observations can occur for
instance in the analysis of lifetime data or reliability data. The estimation of γ under random
censoring has been considered by Einmahl et al. [11]) and Gomes and Neves [25]. For truncated
data, an estimator has been proposed by Gardes and Stupfler [20] in the case of heavy-tailed
distributions (γ > 0).

1.3 Purpose of the paper

Of course, focusing on a particular model, it is always possible to propose specific estimators
of γ but the estimation procedure strongly depends on the considered model. For example,
the way of estimating γ under random censoring is completely different from the one used in
the situation of conditional extremes. Up to our knowledge, no tentative to find a common
procedure to estimate the extreme value index in a large range of situations (like the ones
described in the previous paragraph for instance) has been proposed. This is the purpose of
the present paper. More specifically, let S(·) be a survival function in the set ERV(γ, a(·))
and let Z1, . . . , Zn be random variables non necessarily i.i.d. from S(·) but such that there
exists a deterministic functional Q(·) for which Ŝn(·) := Q(·;Z1, . . . , Zn) is a right-continuous
and non-increasing estimator of S(·). The main goal of the present paper is to define a unique
and general functional T (·) such that T (Ŝ←n ) is a consistent estimator of γ. In other words,
our idea is to decouple the estimation of the survival function S(·) from that of the extreme
value index γ. The advantage is that, for a given model, the estimation of the survival function
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is often more easy than the one of γ. For instance, in the situation of conditional extremes
one can easily think to use the kernel estimator introduced by Nadaraya [30] and Watson [39].
In presence of censored data, the survival function can be easily estimated by the Kaplan-
Meier product limit estimator [29] and so on. The way of estimating the extreme value index
presented in this paper can thus be used for a large set of models (not restricted the ones
mentioned previously).

The rest of the paper is organized as follows. In Section 2, the expression of the general
functional T (·) is introduced and a consistency property on Ŝn(·) is given in order to obtain
a consistent estimator of γ. In section 3, our procedure of estimation is illustrated on the
three models described briefly in the introduction: conditional extremes, i.d. extremes and
heteroscedastic extremes. The finite sample behavior of the proposed estimator is illustrated
through a simulation study in Section 4 and a short conclusion is given in Section 5. Section 6
is devoted to the proofs.

2 Estimation of the extreme value index
The framework considered in this paper is the following:

(F) Let S(·) be a survival function belonging to the set ERV(γ, a(·)) where γ ∈ R and
S(y) = 0 for all y < 0 (i.e. S(·) is associated to a positive random variable). We
observe a non necessarily i.i.d. sample Z1, . . . , Zn such that there exists a deterministic
functional Q(·) for which Ŝn(·) := Q(·;Z1, . . . , Zn) ∈ D(R+, [0, 1]) is an estimator of S(·).

Here, for E ⊂ R and F ⊂ R, D(E,F ) is the set of non-increasing and right-continuous
functions from E to F . Note that Ŝ←n (·), the right-continuous inverse of S(·), belongs to
D([0, 1],R+). The simplest model entering in our framework is obviously the situation of
an i.d.d. sample from S(·) taking for Ŝ←n (·) the classical empirical estimator. However, as
mentioned in the introduction, situation (F) encompasses many others non classical models
(conditional extremes, heteroscedastic extremes, censored or truncated data).
The aim of this section is first to give the definition of the functional T : D([0, 1],R+) 7→ R
used throughout this paper. Next, a consistency property on the statistic Ŝn(·) is given in
order to ensure the consistency of the extreme value index estimator T (Ŝ←n ).

2.1 Definition of the functional T
Let (η, α) ∈ (0, 1)2, δ ∈ N and ϕ(·) a positive and bounded function on [η, 1]. We first introduce
the functional T (δ)(·|η, ϕ) : D([0, 1],R+) 7→ R+ defined for all U(·) ∈ D([0, 1],R+) by

T (δ)(U |α, η, ϕ) :=

∫ 1

η

ϕ(u)

(
ln
U(uα)

U(α)

)δ
du

/(∫ 1

η

ϕ(u)L0(1/u)du

)δ
,

where we recall that for all v ≥ 1 and s ∈ R, Ls(v) =
∫ v
1
us−1du. We also introduce the

following function: for s ≤ 0 let

Ψη,ϕ(s) :=

(∫ 1

η

ϕ(u)Ls(1/u)du

)2/∫ 1

η

ϕ(u)L2
s(1/u)du . (2)

It is shown in Lemma 1 that Ψη,ϕ(·) is a decreasing function on (−∞, 0] and thus its inverse
Ψ←η,ϕ(·) is well defined. The functional T (·|α, η, ϕ) consider in this paper is given for all
U(·) ∈ D([0, 1],R+) by

T (U |α, η, ϕ) := T (1)(U |α, η, ϕ) + Ψ←η,ϕ

(
max

{
[T (1)(U |α, η, ϕ)]2

T (2)(U |α, η, ϕ)
,Ψη,ϕ(0)

})
. (3)
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Note that taking η = 0 and ϕ(·) = 1 in (3), we found back the functional used to build the
moment estimator introduced by Dekkers et al. [8] in the classical situation where an i.i.d.
sample from S(·) is recorded.

2.2 Consistency

We now give a condition on S(·) ∈ ERV(γ, a(·)) and a consistency property on the statistic
Ŝn(·) ensuring that there exist sequences τn and αn converging to 0 such that T (Ŝ←n |αn, η, ϕ)

is a consistent estimator of γ with a rate of convergence given by the sequence τn. Note
that, roughly speaking, αn represents the percentage of observations among {Z1, . . . , Zn}
used to compute the estimator. The choice of this sequence αn (or equivalently the choice of
kn := nαn) is a key point in the estimation of the extreme value index. The optimal selection
of this sequence is beyond the scope of this paper.
As usual in extreme value theory (see for instance [8], [24], [35]), second-order condition is
required in order to precise the rate of convergence in (1). Note that the auxiliary function
a(·) in (1) is such that a(α−1)/S←(α) → γ+ as α → 0 where (·)+ and (·)− are respectively
the positive and negative part functions (see for instance [15, Lemma 3.1]). Furthermore, it is
shown in Lemma 2 that convergence (1) is in fact locally uniform. The second order condition
used in this paper in given by

(A.1) there exists a closed interval [κ1, κ2] with 0 < κ1 < η and κ2 > 1 such that

lim
n→∞

τ−1
n max

{
sup

u∈[κ1,κ2]

∣∣∣∣S←(uαn)− S←(αn)

a(α−1
n )

− Lγ(1/u)

∣∣∣∣ , ∣∣∣∣ a(α−1
n )

S←(αn)
− γ+

∣∣∣∣
}

= 0.

Clearly, in order to estimate the extreme value index γ, only the behavior of the statistic Ŝn(z)

for large values of z must be controlled. This is done by the following consistency property.

(A.2) For all sequences yn(u) such that a−1(α−1
n )(yn(u)−S←(uαn))→ 0 for all u ∈ [η, 1] as n

goes to infinity,

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝn(yn(u))

S(yn(u)
− 1

∣∣∣∣∣ = OP(1).

Roughly speaking, condition (A.2) means that Ŝn(y) is a uniformly consistent estimator of
S(y) on [S←(αn), S←(ηαn)]. Note that the case η = 0 is not allowed since, most of the time,
it is impossible to obtain the consistency uniformly on [S←(αn), z∗S ] where z∗S is the right
endpoint of S(·). Our main result is given below.

Theorem 1. Under framework (F), if conditions (A.1) and (A.2) hold then∣∣∣T (Ŝ←n |αn, η, ϕ)− γ
∣∣∣ = OP(τn).

The previous result provides an easy way to find a consistent estimator of γ for a large set
of models (again, think for instance to the examples given in the introduction). The main
advantage of our method is that it reduces the problem of estimating the extreme value index
to the one of estimating the associated survival function which is often more simple.
In the next section, we focus on three particular models entering in our framework (F):
conditional extremes, non i.d. extremes and heteroscedastic extremes. In each situation, a
natural estimator of S(·) satisfying (A.2) can be proposed and thus the estimation of the
extreme value index can be achieved using our procedure.
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3 Applications

3.1 Conditional extremes

This example takes place in a regression context where a positive response variable Y is
associated to a random explanatory variable X ∈ Rp. In what follows, we consider the
following model:

(M.1) Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be n independent copies of a random vector
Z = (X,Y ) ∈ Rp × [0,∞). The probability density function of X is denoted by g(·).
For a fixed value x0 ∈ Rp such that g(x0) > 0, we suppose that the conditional survival
function S(·|x0) = P(Y > ·|X = x0) of Y givenX = x0 belongs to ERV(γ(x0), a(·|x0))

where γ(x0) ∈ R.

The procedure described in the previous section is used to estimate the conditional extreme
value index γ(x0) and thus only an estimation of S(·|x0) is required. We suggest to use the
kernel estimator introduced by Nadaraya [30] and Watson [39] and given for all y ≥ 0 by

Ŝn(y|x0) =

n∑
i=1

I{Yi>y}KHn(x0 −Xi)

/
n∑
i=1

KHn(x0 −Xi) , (4)

where I{·} is the indicator function and Hn is a positive-definite matrix controlling the smooth-
ness of the estimator. For the sake of shortness, we have introduced the notation KHn(t) :=

|Hn|−1K(H−1
n t), t ∈ Rp where K(·) is called the kernel function and, for all square matrix

M , |M | denotes the determinant of M . To prove that the kernel estimator satisfies condi-
tion (A.2), the following assumptions are introduced. The first one is a regularity assumption
on g(·).

(B.1) For all x ∈ Rp and x′ ∈ Rp, there exits a constant cg > 0 such that |g(x) − g(x′)| ≤
cg‖x− x′‖∞.

Note that the uniform norm was used in condition (B.1) but obviously, any norm on Rp can
be also considered. The following condition on the kernel function K(·) is also required:

(B.2) K(·) is a bounded density on Rp with support Up, the unit ball of Rp.

This condition is classical in local estimation (see for instance [5, 24]). Finally, the following
notation is required: for a positive-definite matrix M of size p and c ∈ Rp, B(c,M) := {x ∈
Rp | ‖M−1(c − x)‖∞ ≤ 1} denotes the ball of center c and radius M . The next result is
a direct application of Theorem 1. Its proof consists in showing that the kernel estimator
Ŝn(·|x0) satisfy condition (A.2).

Corollary 1. Under model (M.1), let (αn) be a sequence converging to 0 such that σn :=

(n|Hn|αn)−1/2 → 0 and σ−1
n (ln(σ−1

n ))−1/2‖Hn‖∞ → 0. If condition (A.1) holds with se-
quences τn := σn(ln(σ−1

n ))1/2 and αn and if there exists δ > 1 such that

sup

{∣∣∣∣ S(y|x)

S(y|x0)
− 1

∣∣∣∣ , x ∈ B(x0, Hn),
y

S←(αn|x0)
∈ [δ−1, δ]

}
= o(τn), (5)

then, under (B.1) and (B.2),∣∣∣T (Ŝ←n (·|x0)|αn, η, ϕ
)
− γ(x0)

∣∣∣ = OP(τn).

Note that taking Hn = hnIp and K(·) = I{‖·‖∞≤1} in (4) where hn is a positive sequence
and Ip is the identity matrix of size p and choosing η = 0 and ϕ(·) = 1 in the functional
defined in (3) lead to the same estimator as the one proposed by Stupfler [35]. Hence, the
expression of the estimator obtained using our procedure can be seen as a generalization of
the Stupfler’s estimator. A comparison of the two estimators is provided in the simulation
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study (see Section 4).
Conditions used in the previous corollary are similar to the ones considered in [5] where
the pointwise asymptotic normality of Ŝn(·|x0) and Ŝ←n (·|x0) are established. The expected
number of points kept for the estimation is given by n|Hn|αn and thus conditions αn → 0

and n|Hn|αn → ∞ are classical in extreme value theory. Finally, condition (5) controls the
oscillations of the conditional survival function S(·|x0). An interesting discussion on this
condition can be found in [35].

3.2 Non identically distributed extremes

In this paragraph, the following model is considered:

(M.2) Let E be a compact subset of Rp, p ∈ N∗. At points {xi ∈ E, i = 1, . . . , n}, we observe
positive and independent random variables Z1 = Yx1 , . . . , Zn = Yxn where for all x ∈ E,
the survival function of Yx is given by Sx(·). For a given x0 ∈ E̊ where E̊ denotes the
interior of E, it is assumed that Sx0(·) ∈ ERV(γ(x0), ax0(·)).

As mentioned in the introduction, {x1, . . . , xn} can be seen as a deterministic additional
information on the variable of interest. It can be for instance the time or the geographical
position. Model (M.2) can also be interpreted as a regression model in the fixed design case.
Here also, our goal is to used the procedure described in Section 2 to estimate γ(x0) ∈ R. For
the estimation of the survival function Sx0(·), we propose to use the estimator introduced by
Stone [34] with Gasser and Müller’s weights [21]. For a positive-definite matrix Hn it is given
for all z ≥ 0 by:

Ŝn,x0(z) =

n∑
i=1

I{Yxi>z}
∫
An,i

KHn(x0 − t)dt, (6)

where An,i are sets that partition the subset E with xi ∈ An,i and where KHn(·) is defined
as in paragraph 3.1. Estimator (6) seems natural under model (M.2) but others estimators
for the survival function Sx0(·) can also be considered. For instance, the Nadaraya-Watson
estimator defined in (4) still can be used (by replacing Xi by xi). One can also think on local
polynomial estimators (see [37]). A discussion on the advantages and disadvantages of each
estimator in the purpose of the estimation of γ would be interesting but it is beyond the scope
of this paper.
To ensure that condition (A.2) is satisfied by the estimator Ŝn,x0(·), we suppose as before that
the kernel function K(·) satisfy (B.2). In addition, let us introduced the following notation:
for i ∈ {1, . . . , n}, let Vn,i the volume of An,i and let V̄n := max(Vn,1, . . . ,Vn,n). It is assumed
that

(C) There exists a positive constant CV such that nV̄n ≤ CV .

Since E is a compact subset, this condition is reasonable and classical in nonparametric re-
gression for the fixed design case (see for instance [22]). Asymptotic property of the extreme
value index estimator T (Ŝ←n,x0 |αn, η, ϕ) is established in the next result.

Corollary 2. Under model (M.2), let (αn) be a sequence converging to 0 and Hn a sequence of
matrix converging to the zero matrix such that σn := (n|Hn|αn)−1/2 → 0. If condition (A.1)
hold with sequences τn := σn(ln(σ−1

n ))1/2 and αn and if there exist δ > 1 such that

sup

{∣∣∣∣ Sx(z)

Sx0(z)
− 1

∣∣∣∣ , x ∈ B(x0, 2Hn),
z

S←x0(αn)
∈ [δ−1, δ]

}
= o(τn), (7)

then, under (B.2) and (C),∣∣∣T (Ŝ←n,x0 |αn, η, ϕ)− γ(x0)
∣∣∣ = OP(τn).
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The conditions in Corollary 2 are very similar to the ones of Corollary 1. The only difference
is that condition σ−1

n (ln(σ−1
n ))−1/2‖Hn‖∞ → 0 is not required here since this condition was

used in Corollary 1 to ensure the consistency of the probability density estimator.

3.3 Heteroscedastic extremes

As in Einmahl et al. [13] and de Haan et al. [27], we consider the following model called
Heteroscedastic extremes.

(M.3) Let −∞ < b1 < b2 <∞. We observe at every points {xi ∈ [b1, b2], i = 1, . . . , n} positive
and independent random variables Z1 = Yx1 , . . . , Zn = Yxn . For all x ∈ [b1, b2], the
survival function of Yx is denoted Sx(·). We assume that the right endpoint z∗ = S←x (0)

does not depend on x and that there exist a survival function S(·) ∈ ERV(γ, a(·)) and
a continuous positive function c(·) defined on [b1, b2] such that:

lim
z→z∗

sup
x∈[b1,b2]

∣∣∣∣Sx(z)

S(z)
− c(x)

∣∣∣∣ = 0 with
∫ b

a

c(s)ds <∞. (8)

Note that the survival function S(·) and the function c(·) in (8) are not uniquely defined.
To ensure uniqueness, we impose from now on that

∫ b2
b1
c(x)dx = b2 − b1. Under (M.3), it

is easy to check that survival functions Sx(·), x ∈ [b1, b2] share the same extreme value in-
dex γ even if these survival functions are different. More precisely, it is shown in [13] that
Sx(·) ∈ ERV(γ, c(x)a(·)) for all x ∈ [b1, b2]. The function c(·) in (8) is called the skedasis
function. As mentioned in [13], in the case γ 6= 0, the skedasis function changes the scale of
extremes while in the case γ = 0, it only impacts the location of extreme. This model can
thus be used to study data presenting a trend in extremes with a constant shape parameter.
Let us highlight that in [13], the points {xi, i = 1, . . . , n} are assumed to be regularly dis-
tributed on [0, 1] (i.e. xi = i/n). This assumption can be too restrictive for an application
purpose like for instance in hydrology since the times for which a certain non null amount
of rain is observed are clearly not regularly distributed. In this paper, letting x0 = b1 and
xn+1 = b2, it is only assumed that

(D) there exists d > 0 such that max{xi − xi−1, i = 1, . . . , n+ 1} ≤ d/n.

Note that model (M.3) can be seen as particular case of (M.2) by taking E = [b1, b2] and
assuming that the survival functions Sx1(·), . . . , Sxn(·) satisfy (8). As a consequence, for
every x0 ∈ [b1, b2], the extreme value index in model (M.3) can be estimated by the statistic
T (Ŝ←n,x0 |αn, η, ϕ) where Ŝn,x0(·) is defined in (6). Nevertheless, this estimator is not the best
one since under model (M.3), one can used a global estimator of S(·) instead of the local
estimator Ŝn,x0(·). More specifically, we propose here to use the estimator

Ŝn(z) =

n∑
i=1

xi − xi−1

xn − b1
I{Yxi>z}. (9)

This survival function estimator is global in the sense that the whole set of observations is
used to estimate S(·). This estimator is used in our procedure to estimate γ. As a consequence
of Theorem 1, the following result is established.

Corollary 3. Under model (M.3), let αn be a sequence converging to 0 such that σn :=

(nαn)−1/2 → 0. If condition (A.1) hold with sequences τn := σn(ln(σ−1
n ))1/2 and αn, if

sup
{
|c(u)− c(u′)|, (u, u′) ∈ [b1, b2]2 with |u− u′| ≤ d/n

}
= o(τn). (10)

and if there exists δ > 1 such that

sup

{∣∣∣∣Sx(z)

S(z)
− c(x)

∣∣∣∣ , x ∈ [b1, b2],
z

S←(αn)
∈ [δ−1, δ]

}
= o(τn), (11)
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then, under (D), ∣∣∣T (Ŝ←n |αn, η, ϕ)− γ∣∣∣ = OP(τn).

Our procedure thus provides an estimator of the extreme value index in the situation of
heteroscedastic extremes. Up to our knowledge, the extreme value index estimation has been
considered is this situation only in the paper of Einmahl et al. [13] where it is shown that, in
the restricted case γ > 0, the classical Hill’s estimator is still consistent.
Conditions (10) and (11) are very similar to the ones used in [13]. Condition (10) is a regularity
condition on the function c(·) involved in model (M.3). It is satisfied for instance if the
function c(·) is Lipschitz continuous of order at least 1/2. Condition (10) is also a regularity
condition but on the function Sx(z) considered as a function of x for large values of z. The
sequence αn represents the proportion of largest observations used in the estimation procedure
and thus kn := nαn is the number of kept observations. Conditions αn → 0 and nαn → ∞
(or equivalently kn/n → 0 and kn → ∞) are standard hypothesis for the estimation of the
extreme value index.

4 Simulations
In this paper, a general procedure for the estimation of the extreme value index in a set of
various models has been proposed. In order to appreciate the finite sample performance of
estimators obtained with our procedure, we focus on two specific models: heteroscedastic ex-
tremes and conditional extremes. More precisely, the situation of heteroscedastic extremes is
investigated by generating data with the following process:

P1 - For i = 1, . . . , n, let xi = G(i/n) where G(·) is the distribution function of a beta dis-
tribution with parameters a = b = 2. For a given function c̃ : [0, 1] 7→ [1,∞), we generate
n independent random variables Yx1 , . . . , Yxn where for all x ∈ [0, 1], the survival function of
Yx is one of the three following:

P1-1: Heteroscedastic Fréchet distribution: for z ≥ 0, Sx(z) = 1− exp (−c̃(x)/z).
P1-2: Heteroscedastic uniform distribution: for z ∈ [1− 1/c̃(x), 1], Sx(z) = (1− z)c̃(x).
P1-3: Heteroscedastic Weibull distribution: for z ≥ ln c̃(x), Sx(z) = exp

[
−(z − ln c̃(x))θ

]
,

where the parameter θ belongs to (0, 1].

The data generating by this process satisfy model (M.3) with b1 = 0 and b2 = 1 and where the
common extreme value index and right endpoint are given by γ = 1 and z∗ = +∞ for P1-1,
γ = −1 and z∗ = 1 for P1-2 and γ = 0 and z∗ = +∞ for P1-3. The function c(·) is given
by c̃(·)/

∫ 1

0
c(s)ds for processes P1-1 and P1-2. For process P1-3, it is easy to check that if

θ ∈ (0, 1), c(·) = 1 and if θ = 1, c(·) = c̃(·)/
∫ 1

0
c(s)ds.

In the situation of conditional extremes, the following generating process for model (M.2) is
considered.

P2 - Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y ) where X is
uniformly distributed on [0, 1] and, for a positive function γ(·) defined on [0, 1] and a function
c̃ : [0, 1] 7→ [1,∞), the conditional survival function S(·|x) of Y given X = x is one of the three
following:

P2-1 Conditional Fréchet distribution: for y ≥ 0, S(y|x) = 1− exp(−c̃(x)y−1/γ(x)).
P2-2: Conditional beta distribution: let G(·|x) be the distribution function of a beta

distribution with parameters a = b = −1/γ(x), for y ∈ [G←(1 − 1/c̃(x)|x), 1], S(y|x) =

(1−G(y|x))c̃(x).
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P2-3: Conditional Weibull distribution: for a function θ : [0, 1] 7→ (0, 1] and y ≥ ln c(x),
S(y|x) = exp

[
−(y − ln c̃(x))θ(x)

]
.

The rest of this section is organized as follows: first, the question of the choice of η and ϕ(·)
in the functional T (·|α, η, ϕ) defined in (3) is investigated on data generated by process P1.
Next, always for data generated by processP1, estimator T (Ŝ←n |αn, τ, ϕ) where Ŝn(·) is defined
in (9) is compared to the classical moment estimator proposed by Dekkers et al. [8]. Recall
that the consistency of moment estimator has been proved only in presence of independent and
identically distributed random variables but, using similar techniques as in [13], the consistency
must be also true for heteroscedastic extremes (the consistency was proved in [13] only in the
situation γ > 0 for the Hill’s estimator). Finally, for data generated by the process P2,
estimator T (Ŝ←n (·|x0)|αn, τ, ϕ) where Ŝn(·|x0) is defined in (4) is compared to the estimator
proposed by Stupfler [35].

4.1 Influence of parameter η and of function ϕ

The functional T (·|α, η, ϕ) defined in (3) depends on a parameter η ∈ (0, 1) and a bounded
function ϕ(·). It is natural to wondering about the impact of both η and ϕ(·) on our estima-
tion procedure. We choose here to illustrate this impact under the model of heteroscedastic
extremes. More precisely, N = 500 samples of size n ∈ {50, 100, 200, 400} are generated un-
der P1-1, P1-2 and P1-3 with c̃(·) = 1+ln(1/·) and, for P1-3, with θ = 1. In this paragraph,
the value of αn is fixed to n−1/3 and, using the survival estimator Ŝn(·) defined in (9), the em-
pirical mean squared error of the extreme value index estimator T (Ŝ←n |αn, τ, ϕ) is computed
for each value of n, for η ∈ {0.005×2j , j = 0, 1, . . . , 5} and for the two functions ϕ(·) = 1 and
ϕ(·) = ln(1/·). Recall that for a given estimator γ̂n of γ, denoting by γ̂(r)

n , r = 1, . . . , N the
values of γ̂n observed on each replications, the empirical mean squared error of γ̂n is given by:

EMSE (γ̂n) =
1

N

N∑
r=1

(γ̂n − γ)2 .

Results are collected in Table 1 (for ϕ(·) = 1) and Table 2 (for ϕ(·) = ln(1/·)). The bold
numbers are the best results obtained for each values of n. Concerning the function ϕ(·), one
can see that the choice ϕ(·) = 1 provides slightly better results for the Fréchet distribution (i.e
process P1-1) but, for the two other generating processes, the choice ϕ(·) = ln(1/·) is clearly
better (especially for the uniform distribution (P1-2)). For the choice of η, it seems that
taking η small provides better results (except for the Fréchet distribution with ϕ(·) = ln(1/·)).
Let us also highlight that taking η = 0.02 for each values of n and each generating process
leads to mean squared errors quite close to bold numbers. In conclusion, the choice η = 0.02

and ϕ(·) = ln(1/·) seems reasonable and will be used in the rest of this simulation study.

4.2 Simulation under heteroscedastic extremes

We are now interested in the behavior of the estimator T (Ŝ←n |αn, τ, ϕ) where Ŝn(·) is defined
in (9). We generate N = 500 samples of size n = 100 using the generating processes P1-1,
P1-2 and P1-3 with c̃(·) = 1 and c̃(·) = 1+ln(1/·) and, for P1-3, with θ = 1. Note that when
c̃(·) = 1, the observations are independent and identically distributed. In order to appreciate
the effect of the sequence αn, the estimator is computed for αn ∈ {n−1/a, a = 2, . . . , 6} while
η is fixed to 0.02 and ϕ(·) = ln(1/·). Estimator T (Ŝ←n |αn, τ, ϕ) is compared to the moment
estimator γ̂M (αn) by computing the ratio

R1(αn) := EMSE
(
T (Ŝ←n |αn, τ, ϕ)

)/
EMSE (γ̂M(αn)) ,
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for each values of αn and each functions c̃(·). Clearly, a ratio lower than 1 means that our
estimator provides better results (in term of mean squared error) than the moment estimator.
Results are presented in Table 3. It appears that, for the Fréchet distribution (process P1-1),
the moment estimator is slightly better than our estimator but for the two other generating
processes, our method provides better results in term of mean squared error. Taking into
account results collected in Table 1 and Table 2, it seems that the difference between our
estimator and the moment estimator is mainly explained by the use of the function ϕ(·) =

ln(1/·) (roughly speaking the moment estimator corresponds to the case η = 0 and ϕ(·) = 1).
One can also notice that the function c̃(·) has not a strong influence on the estimation of γ.

4.3 Simulation under conditional extremes

Finally, under a conditional extremes model, the behavior of estimator T (Ŝ←n (·|x0)|αn, η, ϕ)

where Ŝn(·|x0) is given in (4) is investigated by generating N = 500 samples of size n = 500

using process P2. The function c̃(·) is taken equal to ln(1/·) + 1 and the conditional extreme
value index is given by γ(x) = 2/3 + 1/3 sin(2πx) for all x ∈ [0, 1]. For the process P2-3, we
choose θ(·) = γ(·). As before, the value of η is fixed to 0.02 and ϕ(·) = ln(1/·). The couple of
sequences (αn, Hn) required to compute the survival function estimator Ŝn(·|x0) are picked in
the set {(n−1/i, n(1−i)/(ij)), i, j = 2, . . . , 6}. Not that taking (αn, Hn) is this set ensures that
ln(nHnαn) = (i − 1)(j − 1)/(ij) ln(n) → ∞ as n → ∞. The value of x0 is fixed to 1/4 for
which the maximum of the function γ(·) is reached (γ(1/4) = 1).
We compare T (Ŝ←n (·|x0)|αn, η, ϕ) to the estimator proposed by Stupfler [35] defined as follows.
Let (X1, Y1), . . . , (Xn, Yn) be random variables drawn from model (M.1). For δ ∈ N, let
kn(x0) := bαnM(x0, Hn)c and

H(δ)
n,S(αn|x0) :=

1

kn(x0)

kn(x0)∑
i=1

(
ln

Y ∗(M(x0,Hn)−i+1)(x0)

Y ∗(M(x0,Hn)−kn(x0))(x0)

)δ
,

where

M(x0, Hn) :=

n∑
i=1

I{‖Xi−x0‖∞≤Hn},

and, given M(x0, Hn) = q, Y ∗1 (x0), . . . , Y ∗q (x0) are the response variables Yi whose associated
covariateXi is such that ‖Xi−x0‖∞ ≤ Hn. As previously mentioned, Y ∗(1)(x0) ≤ . . . ≤ Y ∗(q)(x0)

are the associated ordered statistics. The estimator introduced in [35] is defined by:

γ̂S(αn, Hn|x0) := H(1)
n,S(αn|x0)− 1− 1

2

(
1−

[H(1)
n,S(αn|x0)]2

H(2)
n,S(αn|x0)

)−1

.

To make the comparison, we compute for each values of αn and Hn the ratio

R2(αn, Hn) := EMSE
(
T (Ŝ←n (·|x0)|αn, η, ϕ)

)/
EMSE (γ̂S(αn, Hn|x0)) .

The results are gathered in Table 4. For the conditional Fréchet and Weibull distributions
(processes P2-1 and P2-3), the estimator γ̂S(αn, Hn|x0) provides, for some couples (αn, Hn)

slightly better results than our estimator. For the conditional beta distribution, our estimator
is clearly better for all couples (αn, Hn).

5 Conclusion
In this paper, a general procedure to estimate the extreme value index γ associated to a survival
function S(·) was proposed. It can be used for a large set of models where observations are
not necessarily distributed from S(·). From a theoretical point of view, this paper offers an
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easy way to establish the consistency of estimators obtained through our procedure. Three
different models have been specifically considered here and part of our future work is to use our
procedure to deal with the case of censored and/or truncated data. Another possible pursuit
of this work is to establish the asymptotic normality of the estimator and treat the problem
of extreme quantile estimation.

6 Proofs

6.1 Preliminary results

The first lemma is dedicated to the function Ψη(·) defined in (2) and its derivative. Introducing
the integral,

I(δ)η (s, t) :=

∫ 1

η

ϕ(u)Lδs(1/u)u−tdu <∞,

where (s, t) ∈ [0,∞)2 and δ ∈ N, one can write Ψη(s) = [I
(1)
η (s, 0)]2/I

(2)
η (s, 0).

Lemma 1. For all η ∈ (0, 1), the function Ψη(·) is decreasing on (−∞, 0] with Ψη(s) →
I
(0)
η (0, 0) as s → −∞. Furthermore, the function Ψη(·) is continuously differentiable on

(−∞, 0] with Ψ′η(s)→ 0− as s→ −∞ and

lim
s→0−

Ψ′η(s) =
[I

(2)
η (0, 0)]2I

(1)
η (0, 0)− [I

(1)
η (0, 0)]2I

(3)
η (0, 0)

[I
(2)
η (0, 0)]2

.

Proof − First, remark that

Ψη(s) =

(∫ 1

η

ϕ(u)sLs(1/u)du

)2/∫ 1

η

ϕ(u)(sLs(1/u))2du .

Since ϕ(·) is a positive bounded function, 0 ≤ −sLs(1/u) ≤ 1 for all s ≥ 0 and sLs(1/u)→ −1

as s→ −∞, the dominated convergence entails that

I(δ)η (s, 0) = − 1

sδ

∫ 1

η

ϕ(u)du(1 + o(1)), (12)

as s→ 0 and hence, Ψη(s)→ I
(0)
η (0, 0) as s goes to zero.

We now compute the derivative of the function Ψη(·). Since ϕ(·) is a positive bounded function,
0 ≤ Ls(1/u) ≤ ln(1/η) and 0 ≤ u−s ≤ 1 for all s ≥ 0, the functions I(δ)η (s, 0) and I(δ)η (0, s)

are continuous on s ∈ (−∞, 0] and one can interchange the derivative and the integral sign.
Hence, for s < 0,

A′(s) :=
d

ds
I(1)η (s, 0) =

1

s

(
I(1)η (0, s)− I(1)η (s, 0)

)
=

∫ 1

η

ϕ(u)

s

(
ln(1/u)u−s − Ls(1/u)

)
du.

(13)
Furthermore, remarking that

I(2)η (s, 0) =
2

s

(
I(1)η (2s, 0)− I(1)η (s, 0)

)
,

one has for s < 0;

B′(s) =
d

ds
I(2)η (s, 0) =

2

s2

(
I(1)η (0, 2s)− I(1)η (0, s) + 2

(
I(1)η (s, 0)− I(1)η (2s, 0)

))
=

∫ 1

η

2ϕ(u)

s
Ls(1/u)

[
ln(1/u)u−s − Ls(1/u)

]
du. (14)

Since the functions A′(·) and B′(·) are continuous, the derivative

Ψ′η(s) =
2A′(s)I

(1)
η (s, 0)I

(2)
η (s, 0)− [I

(1)
η (s, 0)]2B′(s)

[I
(2)
η (s, 0)]2

,
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is also a continuous function on s ∈ (−∞, 0).
We now compute the limit of Ψ′η(s) as s→ 0. First, we focus on the function A′(·). Since for
all u ∈ (0, 1], Ls(1/u) is a non-decreasing function in s ∈ R, the following inequalities hold:

Ls(1/u) ≤ ln(1/u) if s ≤ 0 and Ls(1/u) ≥ ln(1/u) if s ≥ 0. (15)

A straightforward consequence is that for all s < 0, 0 ≤
[
ln(1/u)u−s − Ls(1/u)

]
/s ≤ ln2(1/u).

Remarking that ln(1/u)u−s − Ls(1/u) → ln2(1/u)/2 as s → 0, the dominated convergence
theorem lead to

lim
s→0

A′(s) =
1

2

∫ 1

η

ϕ(u) ln2(1/u)du =
1

2
I(2)η (0, 0). (16)

We now focus on the function B′(·). Using the inequalities (15) leads to

0 ≤ 1

s
Ls(1/u)

[
ln(1/u)u−s − Ls(1/u)

]
≤ ln3(1/u),

for all s < 0. Remarking that Ls(1/u)
[
ln(1/u)u−s − Ls(1/u)

]
/s→ ln3(1/u)/2 as s→ 0 and

using the dominated convergence theorem leads to

lim
s→0

B′(s) =

∫ 1

η

ϕ(u) ln3(1/u)du = I(3)η (0, 0). (17)

Collecting (16) and (17) and since I(δ)η (s, 0) and I(δ)η (0, s) are continuous on (−∞, 0], the limit
of Ψ′η as s→ 0 is given by {[I(2)η (0, 0)]2I

(1)
η (0, 0)− [I

(1)
η (0, 0)]2I

(3)
η (0, 0)}/[I(2)η (0, 0)]2.

We are now interested in the limit of the derivative of Ψη(·) as s → −∞. Collecting (13)
and (14),

Ψ′η(s) =
I
(1)
η (s, 0)

(
2I

(1)
η (0, s)I

(1)
η (2s, 0)− I(1)η (0, s)I

(1)
η (s, 0)− I(1)η (0, 2s)I

(1)
η (s, 0)

)
2
(
I
(1)
η (2s, 0)− I(1)η (s, 0)

)2 , (18)

for s < 0. Using (12) and remarking that I(1)η (0, s)→ 0 as s→ −∞ shows that Ψ′η(s)→ 0 as
s→ −∞.
It remains to prove that ψ′η(s) < 0 for all s < 0 or equivalently, in view of (18) that

∆η(s) := 2I(1)η (0, s)I(1)η (2s, 0)− I(1)η (0, s)I(1)η (s, 0)− I(1)η (0, 2s)I(1)η (s, 0) < 0,

since I(1)η (s, 0) > 0 for s ≤ 0. Furthermore, using the fact that 2L2s(1/u) = Ls(1/u)(u−s + 1),
one has

I
(1)
η (2s, 0)

I
(1)
η (s, 0)

=
1

2

(
1 +

I
(1)
η (s, s)

I
(1)
η (s, 0)

)
,

Hence,

∆η(s) = I(1)η (s, 0)I(1)η (0, s)

(
2
I
(1)
η (2s, 0)

I
(1)
η (s, 0)

− 1− I
(1)
η (0, 2s)

I
(1)
η (0, s)

)
= I(1)η (s, s)I(1)η (0, s)− I(1)η (s, 0)I(1)η (0, 2s)

=

∫ 1

η

∫ 1

η

ϕ(u)ϕ(v)Ls(1/u)v−s ln(1/v)(u−s − v−s)dvdu

Next, using the decomposition
∫ 1

η
=
∫ u
η

+
∫ 1

u
and Fubini’s Theorem (which can be applied

since the involved function is of constant sign),

∆η(s) =

∫ 1

η

∫ u

η

ϕ(u)ϕ(v)(u−s − v−s)L̃(u, v)dvdu,
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where L̃(u, v) := Ls(1/u)v−s ln(1/v) − Ls(1/v)u−s ln(1/u). Remark now that for v ∈ (η, u)

and s < 0,

∂

∂v
L̃(u, v) = v−(s+1) (u−s ln(1/u)− Ls(1/u)(s ln(1/v) + 1)

)
≥ v−(s+1)(ln(1/u)− Ls(1/u)) > 0.

Hence, for all u ∈ (η, 1) and v ∈ (η, u), L̃(u, v) < L̃(u, u) = 0 and the proof is complete since
ϕ(u)ϕ(v)(u−s − v−s) > 0 when u ∈ (η, 1) and v ∈ (η, u).

The next two lemmas are general results on extended regular varying functions. The first
result shows that the convergence characterizing a function of extended regular variation is
locally uniform.

Lemma 2. Let S(·) ∈ ERV(γ, a(·)). For all 0 < κ1 < κ2 <∞,

lim
α→0

sup
u∈[κ1,κ2]

∣∣∣∣S←(uα)− S←(α)

a(α−1)
− Lγ(1/u)

∣∣∣∣ = 0.

Proof of Lemma 2 − From [26, Theorem B.2.18], for all ε ∈ (0, 1), there exists α0(ε) such
that for all α < α0(ε) and all u ∈ [κ1, κ2],

∆S←(α, u) :=

∣∣∣∣S←(uα)− S←(α)

a0(α−1)
− Lγ(1/u)

∣∣∣∣ ≤ ε

κ1
max{κ−γ1 , κ−γ2 },

where for y ≥ 0,

a0(y) =


γS←(1/y) if γ > 0,

−γ(S←(0)− S←(1/y)) if γ < 0,

S←(1/y)− y−1
∫ y
0
S←(1/s)ds if γ = 0.

Clearly, a(y)/a0(y)→ 1 as y goes to infinity. Hence, there exists α1(ε) such that for α < α1(ε),
|1− a(α−1)/a0(α−1)| ≤ ε. For α < α0(ε) ∧ α1(ε), we thus have the inequality

∆S←(α, u) ≤ a0(α−1)

a(α−1)

∣∣∣∣S←(uα)− S←(α)

a0(α−1)
− Lγ(1/u)

∣∣∣∣+ |Lγ(1/u)|
∣∣∣∣1− a(α−1)

a0(α−1)

∣∣∣∣
≤ (1 + ε)

ε

κ1
max{κ−γ1 , κ−γ2 }+ Lγ(1/κ1)ε ≤

(
2 max{κ−γ1 , κ−γ2 }

κ1
+ Lγ(1/κ1)

)
ε,

which concludes the proof.

This second result provides equivalent conditions to the second order condition (A.1).

Lemma 3. If there exist positive sequences αn and τn converging to 0 as n → ∞ such that
the survival function S(·) satisfies (A.1) then,

lim
n→∞

τ−1
n sup

u∈[κ1,κ2]

∣∣∣∣S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
− Lγ−(1/u)

∣∣∣∣ = 0, (19)

and
lim
n→∞

τ−1
n sup

v∈[Lγ(1/κ2),Lγ(1/κ1)]

∣∣∣∣ αn

S(S←(αn) + va(α−1
n ))

− L←γ (v)

∣∣∣∣ = 0. (20)

Proof of Lemma 3 − We first focus on (19). Let us introduce the notations

∆n(u) :=
S←(uαn)− S←(αn)

a(α−1
n )

− Lγ(1/u) and ∆̄n := sup
u∈[κ1,κ2]

|∆n(u)|.

We start with the following equality:

S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
=
S←(αn)

a(α−1
n )

ln

[
1 +

a(α−1
n )

S←(αn)
(Lγ(1/u) + ∆n(u))

]
.
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We consider the case γ > 0. A straightforward calculus leads to

ln

[
1 +

a(α−1
n )

S←(αn)
(Lγ(1/u) + ∆n(u))

]
− ln(u−γ) = ln(1 +Dn,1(u)),

where

|Dn,1(u)| = uγ
∣∣∣∣γ∆n(u) +

(
a(α−1

n )

S←(αn)
− γ
)

(Lγ(1/u) + ∆n(u))

∣∣∣∣
≤ max{κγ1 , κ

γ
2}
{
γ∆̄n +

∣∣∣∣ a(α−1
n )

S←(αn)
− γ
∣∣∣∣ (Lγ(1/κ1) + ∆̄n)

}
→ 0.

Hence, using inequality | ln(1 + x)| ≤ 3|x|/2 for x ∈ [−1/2, 1/2], one has for n large enough
and γ > 0

τ−1
n sup

u∈[κ1,κ2]

∣∣∣∣S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
− ln(1/u)

∣∣∣∣ ≤ S←(αn)

a(α−1
n )

3τ−1
n

2
sup

u∈[κ1,κ2]

|Dn,1(u)|

+ ln(1/κ1)τ−1
n

∣∣∣∣S←(αn)

a(α−1
n )

γ − 1

∣∣∣∣ , (21)

which converges to 0 by assumption. Now, assume that γ ≤ 0, since

|Dn,2(u)| :=
∣∣∣∣ a(α−1

n )

S←(αn)
(Lγ(1/u) + ∆n(u))

∣∣∣∣ ≤ a(α−1
n )

S←(αn)
(Lγ(1/κ1) + ∆̄n)→ 0

and using the inequality x(1− x) ≤ ln(1 + x) ≤ x for x ∈ [−1/2, 1/2], one has:

−Lγ(1/u)Dn,2(u) + ∆n(u)(1−Dn,2(u)) ≤ S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
− Lγ(1/u) ≤ ∆n(u).

Since τ−1
n sup |Dn,2(u)| → 0 and τ−1

n ∆̄n → 0, it is clear that

τ−1
n sup

u∈[κ1,κ2]

∣∣∣∣S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
− Lγ(1/u)

∣∣∣∣→ 0. (22)

Collecting (21) and (22) conclude the proof of (19). The proof of equation (20) is a direct
consequence of Vervaat’s Lemma (see [26, Lemma A.0.2]) applied to

xn(s) =
S←(αn/s)− S←(αn)

a(α−1
n )

and g(s) = Lγ(s),

with δn = τn.

The following lemma is a technical result that will be useful in the proof of Lemma 5. A proof
of this result can be found in [20, Lemma 6].

Lemma 4. Let (Xn) be a sequence of positive real-valued random variables such that for every
positive nonrandom sequence δn converging to 0, the random sequence δnXn converges to 0 in
probability. Then Xn = OP(1).

The next result takes place in our framework (F). It shows that if for large values of y, Ŝn(y)

is a consistent estimator of S(y) then Ŝ←n (α) is also a consistent estimator of S←(α) for small
values of α. This result is a cornerstone in the proof of Theorem 1.

Lemma 5. Under (F), let (αn) and (τn) be sequences converging to 0 as n→∞ and assume
that the survival function S(·) satisfies condition (A.1). If for all sequences yn(u) such that
a−1(α−1

n )(yn(u)− S←(uαn)))→ 0 for all u ∈ [η, 1], one has for all η ∈ (0, 1),

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝn(yn(u))

S(yn(u))
− 1

∣∣∣∣∣ = OP(1),

then
S←(αn)

a(α−1
n )

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝ←n (uαn)

S←(uαn)
− 1

∣∣∣∣∣ = OP(1). (23)
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From equation (20) in Lemma 3, it is easy to see that uniformly on u ∈ [η, 1], S(yn(u)) =

uαn(1 + o(1)) ≥ ηαn/2 > 0 for n large enough. Hence, the division by S(yn(u)) is allowed at
least for n large enough.

Proof of Lemma 5 − Let us introduce the sequence mn := bτ−1
n c. For j = 1, . . . ,mn, let

θn(j) := η+(j−1)(1−η)/(mn−1). Clearly, for all u ∈ [η, 1], there exists ju ∈ {1, . . . ,mn−1}
such that θn(ju) ≤ u ≤ θn(ju + 1). Since S←(·) and Ŝ←n (·) are non-increasing and right-
continuous functions, it is easy to check that for all u ∈ [η, 1],∣∣∣Ŝ←n (uαn)− S←(uαn)

∣∣∣ ≤ 2
∣∣∣Ŝ←n (θn(ju)αn)− S←(θn(ju)αn)

∣∣∣
+

∣∣∣Ŝ←n (θn(ju + 1)αn)− S(θn(ju + 1)αn)
∣∣∣

+ 2 (S←(θn(ju)αn)− S←(θn(ju + 1)αn)) .

Hence,
sup
u∈[η,1]

∣∣∣Ŝ←n (uαn)− S←(uαn)
∣∣∣ ≤ 3(Tn,1 + Tn,2),

with
Tn,1 := max

j=1,...,mn−1
[S←(θn(j)αn)− S←(θn(j + 1)αn)] ,

and
Tn,2 := max

j=1,...,mn

∣∣∣Ŝ←n (θn(j)αn)− S←(θn(j)αn)
∣∣∣ .

Let us first focus on the term Tn,1. Since S(·) satisfies condition (A.1), a straightforward
calculus entails that

S←(θn(j)αn)− S←(θn(j + 1)αn) = a(α−1
n ) [Lγ(1/θn(j))− Lγ(1/θn(j + 1)) + o(τn)] ,

where the term o(τn) converges to 0 uniformly on u ∈ [η, 1].
Since the derivative of the function Lγ(1/·) is bounded on [η, 1], a first order Taylor expansion
leads to S←(θn(j)αn)−S←(θn(j+ 1)αn) = a(α−1

n )
(
O(m−1

n ) + o(τn)
)
, uniformly on u ∈ [η, 1]

and thus
Tn,1 = a(α−1

n )O(τn). (24)

Let us now consider the term Tn,2. Our goal is to show that

τ−1
n

a(α−1
n )

Tn,2 = OP(1). (25)

To this end, it suffices, from Lemma 4, to show that for every sequence δn → 0 and for every
ε > 0,

pn(ε) := P
[
δnτ
−1
n

a(α−1
n )

max
j=1,...,mn

∣∣∣Ŝ←n (θn(j)αn)− S←(θn(j)αn)
∣∣∣ > ε

]
→ 0.

Note that it is sufficient to consider sequences δn → 0 such that δ−1
n τn → 0 as n goes to

infinity. Introducing the sequence

y±n (θn(j)) := S←(θn(j)αn)± ετn
a(α−1

n )

δn
,

one has

pn(ε) ≤ P

[
mn⋃
j=1

{
Ŝ←n (θn(j)αn) > y+n (θn(j))

}
∪
{
Ŝ←n (θn(j)αn) ≤ y−n (θn(j))

}]

≤ 1− P

[
mn⋂
j=1

{
Ŝ←n (θn(j)αn) ≤ y+n (θn(j))

}]
+ P

[
mn⋃
j=1

{
Ŝ←n (θn(j)αn) ≤ y−n (θn(j))

}]
.
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Since Ŝ←n (·) is a non-increasing and right-continuous function, it is easy to see that

pn(ε) ≤ P

[
mn⋃
j=1

{
W+
n (θn(j)) > b+n,j(ε)

}]
+ P

[
mn⋃
j=1

{
W−n (θn(j)) ≤ b−n,j(ε)

}]
,

where

W±n (θn(j)) := τ−1
n

(
Ŝn(y±n (θn(j)))

S(y±n (θn(j)))
− 1

)
and b±n,j(ε) := τ−1

n

(
θn(j)αn

S(y±n (θn(j)))
− 1

)
.

By assumption, W±n (u) = OP(1) uniformly on u ∈ [η, 1]. Since S(·) satisfies (A.1),

y±n (θn(j)) = S←(αn) + a(α−1
n )

[
Lγ(1/θn(j)) + ζ±n (ε)

]
,

where ζ±n (ε) = τn(±εδ−1
n + o(1)), the term o(1) converging to 0 uniformly on u ∈ [η, 1]. Thus,

from Lemma 3, equation (20), one has for all j ∈ {1, . . . ,mn},

b+n,j(ε) = τ−1
n

[
θn(j)L←γ

(
Lγ(1/θn(j)) + ζ+n (ε)

)
− 1 + o(τn)

]
.

Since for v ∈ [Lγ(1/κ2), Lγ(1/κ1)] the derivative of L←γ (·) is larger than κγ−1
1 ∧κγ−1

2 , a Taylor
expansion leads to, for n large enough:

b+n,j(ε) ≥
κ1ε(κ

γ−1
1 ∧ κγ−1

2 )

2δn
.

Similarly, for n large enough, one can show that

b−n,j(ε) ≤ −
κ1ε(κ

γ−1
1 ∧ κγ−1

2 )

2δn
.

Hence, pn(ε) is smaller or equal than

P

[
mn⋃
j=1

{
W+
n (θn(j)) >

κ1ε(κ
γ−1
1 ∧ κγ−1

2 )

2δn

}]
+ P

[
mn⋃
j=1

{
W−n (θn(j)) ≤ −κ1ε(κ

γ−1
1 ∧ κγ−1

2 )

2δn

}]
,

which is smaller that

P

[
sup
u∈[η,1]

δn|W+
n (u)| > κ1ε(κ

γ−1
1 ∧ κγ−1

2 )

2

]
+P

[
sup
u∈[η,1]

δn|W−n (u)| ≥ −κ1ε(κ
γ−1
1 ∧ κγ−1

2 )

2

]
→ 0,

proving (25). Finally, since S←(·) is a non-increasing function and collecting (24) and (25),

S←(αn)

a(α−1
n )

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝ←n (uαn)

S←(αn)
− 1

∣∣∣∣∣ ≤ 3τ−1
n

a(α−1
n )

(Tn,1 + Tn,2) = OP(1),

which conclude the proof.

The next lemma establishes a uniform convergence result on processes of the form:

Φ̂n(u) :=

n∑
i=1

Xn,i(u),

where, for η ∈ (0, 1), {Xn,i(u), u ∈ [η, 1]}, i = 1, . . . , n are n independent stochastic processes
with Xn,i(·) non-decreasing and positive. The expectation of Φ̂n(u) is denoted µn(u).

Lemma 6. Let τn = (ln(µn(1))/µn(1))1/2. If µn(η)→∞ as n goes to infinity, if there exist
positive constants CX and Cµ such that for all i ∈ {1, . . . , n} and u ∈ [η, 1], Xn,i(u) ≤ CX ,
µn(η)/µn(1) ≥ Cµ for n large enough and

sup

{∣∣∣∣ µn(u)

µn(u′)
− 1

∣∣∣∣ , u ∈ [η, 1] with |u− u′| ≤ (µn(1))−1/2

}
= O (τn) , (26)

then,

sup
u∈[η,1]

∣∣∣∣∣ Φ̂n(u)

µn(u)
− 1

∣∣∣∣∣ = OP (τn) .
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Proof of Lemma 6 − Let Cε := (3CX/Cµ)1/2. Using a multiplicative form of the Chernoff’s
inequality for bounded variables (see for instance [9, Theorem 1.1]), one has for all u ∈ [η, 1]

P

[
τ−1
n

∣∣∣∣∣ Φ̂n(u)

µn(u)
− 1

∣∣∣∣∣ > Cε

]
≤ 2 exp

(
− C2

ε

3CX

µn(u)

µn(1)
ln(µn(1))

)
≤ 2

µn(1)
. (27)

Let us now introduce the sequence mn := d(µn(1))1/2e + 1 → ∞, and, for j = 1, . . . ,mn, let
θn(j) := η + (j − 1)(1− η)/(mn − 1) ∈ [η, 1]. Here d·e is the notation for the ceiling function.
Clearly, for all u ∈ [η, 1], there exists ju ∈ {1, . . . ,mn − 1} such that θn(ju) ≤ u < θn(ju + 1)

and then, since Xn,i(·), i = 1, . . . , n are non-increasing,∣∣∣∣∣ Φ̂n(u)

µn(u)
− 1

∣∣∣∣∣ ≤ 1

µn(η)

[∣∣∣Φ̂n(θn(ju + 1))− µn(θn(ju + 1))
∣∣∣+ 2

∣∣∣Φ̂n(θn(ju))− µn(θn(ju))
∣∣∣

+ 2 (µn(θn(ju + 1))− µn(θn(ju)))

]
,

leading to

sup
u∈[η,1]

∣∣∣∣∣ Φ̂n(u)

µn(u)
− 1

∣∣∣∣∣ ≤ 3

µn(η)
(Tn,1 + Tn,2),

with

Tn,1 := max
j=1,...,mn−1

(
µn(θn(j+ 1))−µn(θn(j))

)
and Tn,2 := max

j=1,...,mn

∣∣∣Φ̂n(θn(j))− µn(θn(j))
∣∣∣ .

Under (26), since for all j ∈ {1, . . . ,mn − 1}, θn(j)− θn(j + 1) = (mn − 1)−1 ≤ (µn(1))−1/2,
the following holds for n large enough:

Tn,1 = O
(

(µn(1) ln(µn(1)))1/2
)
. (28)

Furthermore, using (27)

P
[
(µn(1) ln(µn(1)))−1/2 Tn,2 > Cε

]
≤ P

[(
µn(1)

ln(µn(1))

)1/2 mn⋃
j=1

{∣∣∣∣∣ Φ̂n(θn(j))

µn(θn(j))
− 1

∣∣∣∣∣ > Cε

}]
≤ 2(µn(1))−1/2 → 0,

since µn(b)→∞. Hence,

Tn,2 = OP

(
(µn(1) ln(µn(1)))1/2

)
. (29)

From (28) and (29), since µn(1)/µn(η) ≤ C−1
µ , τ−1

n Tn,1/µn(η) = O(1) and τ−1
n Tn,2/µn(η) =

OP(1), which conclude the proof.

6.2 Proofs of main results

Proof of Theorem 1 − We start by showing the following equation:∣∣∣∣∣
(
S←(αn)

a(α−1
n )

)δ
T (δ)(Ŝ←n |αn, η, ϕ)−

∫ 1

η

ϕ(u)Lδγ−(1/u)du

/(∫ 1

η

ϕ(u)L0(1/u)du

)δ∣∣∣∣∣ = OP (τn) ,

(30)
Let us first introduce the following notations: for u ∈ [η, 1],

∆n(u) =

(
Ŝ←n (uαn)

S←(uαn)
− 1

)
, Rn(u) = ln

1 + ∆n(u)

1 + ∆n(1)
,

and bn(u) =
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)
− Lγ−(1/u).
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One has(
S←(αn)

a(α−1
n )

ln
Ŝ←n (uαn)

Ŝ←n (αn)

)δ
=

(
S←(αn)

a(α−1
n )

)δ (
ln
S←(uαn)

S←(αn)
+Rn(u)

)δ
=

(
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)

)δ
+

δ−1∑
j=0

Cjδ

(
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)

)j (
S←(αn)

a(α−1
n )

Rn(u)

)δ−j
Since from Lemma 5, Ŝn(·) satisfies (23),

∆̄n := sup
u∈[η,1]

|∆n(u)| = OP

(
a(α−1

n )

S←(αn)
τn

)
= oP(1),

and thus, |Rn(u)| = OP(∆̄n) = oP(1). Remark that

δ−1∑
j=0

Cjδ

(
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)

)j
≤

δ∑
j=0

Cjδ
(
Lγ−(1/u) + bn(u)

)j ≤ (1 + Lγ−(1/η) + b̄n)δ,

with b̄n = sup{|bn(u)|, u ∈ [η, 1]} which converges to 0 from the first part of Lemma 3. Hence,

δ−1∑
j=0

Cjδ

(
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)

)j
= O(1),

and thus, (
S←(αn)

a(α−1
n )

)δ (ln
Ŝ←n (uαn)

Ŝ←n (αn)

)δ
−
(

ln
S←(uαn)

S←(αn)

)δ = OP (τn) ,

uniformly on u ∈ [η, 1]. Since(
S←(αn)

a(α−1
n )

ln
S←(uαn)

S←(αn)

)δ
− Lδγ−(1/u) = (Lγ−(1/u) + bn(u))δ − Lδγ−(1/u) = O(b̄n),

we have, as a first conclusion that, uniformly on u ∈ [η, 1],(
S←(αn)

a(α−1
n )

ln
Ŝ←n (uαn)

Ŝ←n (αn)

)δ
= Lδγ−(1/u) +OP (τn) , (31)

since, from Lemma 3, τ−1
n b̄n → 0. Multiplying equation (31) by ϕ(u) and integrating between

η and 1 lead to (30).

The rest of the proof is based on the decomposition

T (Ŝn|αn, η, ϕ)− γ = T (1)(Ŝn|αn, η, ϕ)− γ+

+ Ψ←η,ϕ

(
max

{
[T (1)(Ŝn|αn, η, ϕ)]2

T (2)(Ŝn|αn, η, ϕ)
,Ψη,ϕ(0)

})
− γ− =: D+

n +D−n .

Let us first consider the term D+
n . From (30), one has

D+
n =

a(α−1
n )

S←(αn)
OP(τn) +

a(α−1
n )

S←(αn)

∫ 1

η

ϕ(u)Lγ−(1/u)du

/∫ 1

η

ϕ(u)L0(1/u)du− γ+.

Since S(·) satisfies (A.1) and remarking that if γ ≥ 0,∫ 1

η

ϕ(u)Lγ−(1/u)du

/∫ 1

η

ϕ(u)L0(1/u)du = 1,
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it is clear that D+
n = OP(τn). Now, using again (30), it is easy to check that

[T (1)(Ŝn|αn, η, ϕ)]2

T (2)(Ŝn|αn, η, ϕ)
= Ψη,ϕ(γ−) (1 +OP(τn)) .

Since Ψη,ϕ(·) is a decreasing function (see Lemma 1) and τn → 0,

max

{
[T (1)(Ŝn|αn, η, ϕ)]2

T (2)(Ŝn|αn, η, ϕ)
,Ψη,ϕ(0)

}
= Ψη,ϕ(γ−) (1 +OP(τn)) .

Finally, since from Lemma 1, the derivative of Ψ←η,ϕ(·) is bounded in a neighborhood of
Ψη,ϕ(γ−),

D−n = Ψ←η,ϕ

(
max

{
[T (1)(Ŝn|αn, η, ϕ)]2

T (2)(Ŝn|αn, η, ϕ)
,Ψη,ϕ(0)

})
−Ψ←η,ϕ (Ψη,ϕ(γ−)) = OP(τn),

which concludes the proof.

Before proving Corollaries 1, 2 and 3, we establish the following result that can be useful when
working under framework (F). Let us assume that n independent random variables Z1, . . . , Zn

(not necessarily identically distributed) are recorded and let us consider the statistic defined
for all y ≥ 0 and for all i ∈ 1, . . . , n by

R̂n,i(y) := Rn,i(y;Zi),

where Rn,i(·) is a given deterministic functional. Assume that the statistic defined for all
y ≥ 0 by

Ŝn(y) := Q(y;Z1, . . . , Zn) =

n∑
i=1

R̂n,i(y)

/
n∑
i=1

R̂n,i(0) , (32)

is an estimator of the survival function S(·) ∈ ERV(γ, a(·)). The following proposition gives
sufficient conditions ensuring that T (Ŝ←n |αn, η, ϕ) is a consistent estimator of γ.

Proposition 1. Let (σn) and (αn) be sequences converging to 0 as n→∞ and let Z1, . . . , Zn

be independent random variables. If for all i = 1, . . . , n and for some positive constant CR,
the stochastic process R̂n,i(·) ∈ D(R+,R+) with sup{R̂n,i(y), y ≥ 0} ≤ CR almost surely, if
S(·) satisfies condition (A.1) with sequences τn := σn(ln(σ−1

n ))1/2 and αn and if there exits a
constant r0 > 0 such that for all sequence yn(u) satisfying a−1(α−1

n )(yn(u) − S←(uαn)) → 0

for all u ∈ [η, 1],

sup
u∈[η,1]

∣∣∣∣r0αnσ2
nµn(u)

S(yn(u))
− 1

∣∣∣∣ = o(τn) and sup
u∈[η,1]

∣∣∣∣∣αnσ2
n

n∑
i=1

R̂n,i(0)− r0

∣∣∣∣∣ = oP(τn), (33)

where

µn(u) := E

(
n∑
i=1

R̂n,i(yn(u))

)
,

then ∣∣∣T (Ŝ←n |αn, η, ϕ)− γ∣∣∣ = OP(τn).

Proof of Proposition 1 − From Theorem 1, it suffices to show that

S←(αn)

a(α−1
n )

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝ←n (uαn)

S←(uαn)
− 1

∣∣∣∣∣ = OP(1), (34)

where Ŝn(·) is given by (32). From Lemma 5, it suffices to prove that for every sequence yn(u)

satisfying a−1(α−1
n )(yn(u)− S←(uαn))→ 0 for all u ∈ [η, 1]

τ−1
n sup

u∈[η,1]

∣∣∣∣∣ Ŝn(yn(u)

S(yn(u))
− 1

∣∣∣∣∣ = OP(1). (35)
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First, let us consider the numerator of Ŝn(yn(u)) given by:

Φ̂n(u) :=

n∑
i=1

R̂n,i(yn(u)).

Recall that, by assumption,

µn(u) = E
(

Φ̂n(u)
)

= r−1
0

S(yn(u))

αnσ2
n

(1 + o(τn)),

uniformly on u ∈ [η, 1]. Since the survival function S(·) satisfies condition (A.1), Lemma 3,
equation (20) entails that, uniformly on u ∈ [η, 1]

S(yn(u)) = αn
[
1
/
L←γ (Lγ(1/u) + υn + o(τn)) + o(τn)

]
= uαn(1 + o(1)),

where υn := a−1(α−1
n )(yn(u)− S←(uαn))→ 0. Thus, uniformly on u ∈ [η, 1],

µn(u) = r−1
0 σ−2

n

[
1
/
L←γ (Lγ(1/u) + υn + o(τn)) + o(τn)

]
.

As a first conclusion, (µn(1)/ ln(µn(1)))−1/2 is asymptotically proportional to τn and, for n
large enough,

µn(η)

µn(1)
≥ η/2. (36)

We now show that µn(u) satisfies condition (26) of Lemma 6. For (u, u′) ∈ [η, 1]2 such that
|u − u′| ≤ (µn(1))−1/2, since the derivatives of 1/L←γ (·) and Lγ(1/·) are bounded on [η, 1], a
Taylor expansion leads to |µn(u)− µn(u′)| = O

(
σ−2
n τn

)
uniformly on u ∈ [η, 1]. Thus,∣∣∣∣ µn(u)

µn(u′)
− 1

∣∣∣∣ ≤ 1

µn(η)
|µn(u)− µn(u′)| = O (τn) . (37)

Hence, collecting (36) and (37), Lemma 6 entails that

sup
u∈[η,1]

∣∣∣∣∣ Φ̂n(u)r0αnσ
2
n

S(yn(u))
(1 + o(τn))− 1

∣∣∣∣∣ = OP(τn).

Finally, since by assumption,

αnσ
2
n

n∑
i=1

R̂n,i(0) = r0 + oP(τn),

uniformly on u ∈ [η, 1], one has

sup
u∈[η,1]

∣∣∣∣∣ Ŝn(yn(u))

S(yn(u))
(1 + oP(τn))− 1

∣∣∣∣∣ = OP(τn).

It is easy to check that the factor 1 + oP(τn) can be removed proving (35) for every sequence
yn(u) satisfying a−1(α−1

n )(yn(u) − S←(uαn)) → 0 for all u ∈ [η, 1] and consequently (34) is
established. This concludes the proof.

Note that under the assumptions of Proposition 1, Ŝn(·) ∈ D(R+, [0, 1]). Proposition 1 is a key
point to prove corollaries 1, 2 and 3 since all the survival function estimators can be written
as in (32).

Proof of Corollary 1 − It is easy to check that the estimator Ŝn(·|x0) defined in (4) is of
the form (32) with

R̂n,i(y) = |Hn|KHn(x0 −Xi)I{Yi>y} ≤ ‖K‖∞, (38)

under (B.2). Let yn(u) be a sequence such that a−1(α−1
n |x0)(yn(u) − S←(uαn|x0)) → 0 as

n→∞. Let us first focus on the denominator of Ŝn(·|x0). Let

ĝn(x0) =
1

n

n∑
i=1

KHn(x0 −Xi) = (n|Hn|)−1
n∑
i=1

R̂n,i(0).
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Under (B.1) and (B.2), since n|Hn| → ∞, it is well known that

ĝn(x0) = g(x0)
(

1 +OP(‖Hn‖∞) +OP

(
(n|Hn|)−1/2

))
,

(see Parzen [31] for a proof). Then, since by assumption τ−1
n ‖Hn‖∞ and τ−1

n (n|Hn|)−1/2

converge to 0, one has that ĝn(x0)/g(x0) = 1 + oP(τn). Thus the second part of condition (33)
in Proposition 1 is satisfied. Now, let

Φ̂n(u|x0) :=

n∑
i=1

R̂n,i(yn(u)).

Let µn(u|x0) = E(Φ̂n(u|x0)). Straightforward calculus leads to:

µn(u|x0)

n|Hn|g(x0)S(yn(u)|x0)
=

∫
Up

(
S(yn(u)|x0 −Hnt)

S(yn(u)|x0)
− 1

)
K(t)

g(x0 −Hnt)
g(x0)

dt

+

∫
Up
K(t)

g(x0 −Hnt)
g(x0)

dt.

Let us first focus on the second term. Under condition (B.1),∫
Up
K(t)

g(x0 −Hnt)
g(x0)

dt− 1 ≤ cg‖Hn‖∞
g(x0)

∫
Up
K(t)‖t‖∞dt = O(‖Hn‖∞) = o(τn), (39)

since τ−1
n ‖Hn‖∞ → 0. Now, since S(·|x0) satisfies (A.1), it is easy to check that there exists

δ > 1 such that for all u ∈ [η, 1], yn(u)/S←(αn|x0) ∈ [δ−1, δ]. Hence, from condition (5) and
using (39) ∫

Up

(
S(yn(u)|x0 −Hnt)

S(yn(u)|x0)
− 1

)
K(t)

g(x0 −Hnt)
g(x0)

dt = o(τn). (40)

Collecting (39) and (40), the first part of condition (33) is satisfied. Proposition 1 concludes
the proof.

Proof of Corollary 2 − It is easy to check that the estimator Ŝn,x0(·) defined in (6) is of
the form (32) with

R̂n,i(z) = n|Hn|I{Yxi>z}
∫
An,i

KHn(x0 − t)dt. (41)

Under (B.2) and (C), R̂n,i(z) ≤ n‖K‖∞Vn,i ≤ CV‖K‖∞ and, since x0 ∈ E̊,∫
E

KHn(x0 − t)dt = 1 and thus
n∑
i=1

R̂n,i(0) = n|Hn|.

As a consequence, the second part of condition (33) is satisfied. Let zn(u) be a sequence such
that a−1

x0 (α−1
n )(zn(u)− S←x0(uαn))→ 0 as n→∞. Let

Φ̂n,x0(u) =

n∑
i=1

R̂n,i(zn(u)),

and denote by µn,x0(u) its expectation. Recalling that
n∑
i=1

∫
Ai

KHn(x0 − t)dt = 1,

it is easy to check that,

µn,x0(u)

n|Hn|Sx0(zn(u))
= 1 +

n∑
i=1

∫ (
Sxi(zn(u))

Sx0(zn(u))
− 1

)
I{t∈Ai∩B(x0,Hn)}KHn(x0 − t)dt.

Since nV̄n ≤ CV , for all i ∈ {1, . . . , n}, Ai ⊂ B(xi, rn,pIp) with 2rn,p := (CV/n)1/p. Thus if
Ai ∩B(x0, Hn) 6= ∅, xi ∈ B(x0, 2Hn). Indeed, if there exists t ∈ Ai ∩B(x0, Hn),

‖H−1
n (xi − x0)‖∞ ≤ ‖H−1

n (xi − t)‖∞ + ‖H−1
n (t− x0)‖∞ ≤ ‖H−1

n ‖∞rn,p + 1.
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By assumption n|Hn| → ∞ and since for all positive-definite matrix M of size p, |M |1/p ≤
‖M‖∞, one has for n large enough that ‖H−1

n ‖∞rn,p ≤ 1 and thus, ‖H−1
n (xi − x0)‖∞ ≤ 2

i.e. xn,i ∈ B(x0, 2Hn). Furthermore, since Sx0(·) satisfies condition (A.1), it is easy to check
that there exists δ > 1 such that for all u ∈ [η, 1] zn(u)/S←x0(αn) ∈ [δ−1, δ]. Hence, from
condition (7),

µn,x0(u) = n|Hn|Sx0(zn(u)) (1 + o(τn)) ,

proving the first part of condition (33). Proposition 1 concludes the proof.

Proof of Corollary 3 − Clearly, the estimator Ŝn(·) given in (9) is of the form (32) with for
i ∈ {1, . . . , n}

R̂n,i(z) = n
xi − xi−1

xn − b1
I{Yxi>z} ≤

2d

b2 − b1
, (42)

under condition (D). It is easy to check that

n∑
i=1

R̂n,i(0) = n,

and thus the second part of condition (33) of Proposition 1 is clearly satisfied with r0 = 1.
Let zn(u) be a sequence such that a−1(α−1

n )(zn(u)− S←(uαn))→ 0 as n→∞ and let

Φ̂n(u) :=

n∑
i=1

R̂n,i(zn(u)).

Our goal is to provide an expansion of µn(u) := E(Φ̂n(u)) in order to check the validity of the
first part of condition (33) in Proposition 1. We start with

µn(u)

nS(zn(u))
=

n∑
i=1

xi − xi−1

xn − b1

(
Sxi(zn(u))

S(zn(u))
− c(xi)

)
(43)

+

n∑
i=1

xi − xi−1

xn − b1
c(xi). (44)

Since S(·) satisfies (A.1), it is easy to check that there exists δ > 1 such that for all u ∈ [η, 1],
zn(u)/S←(αn) ∈ [δ−1, δ]. Hence, from condition (11), the term (43) is a o(τn) uniformly on
u ∈ [η, 1]. Furthermore,

1 =
1

b2 − b1

∫ b2

b1

c(s)ds =
xn − b1
b2 − b1

n∑
i=1

xi − xi−1

xn − b1
c(xi) + c(b2)

xn − b1
b2 − b1

(b2 − xn)

+
1

b2 − b1

n+1∑
i=1

∫ xi

xi−1

(c(s)− c(xi))ds.

From conditions (D) and (10), since nσn → ∞, we deduce from the previous equation that
the term (44) is equal to 1 + o(τn) uniformly on u ∈ [η, 1]. Hence, condition (33) is satisfied
and the conclusion follows applying Proposition 1.
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P1-1 P1-2
η n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

0.005 0.194 0.098 0.056 0.035 0.682 0.320 0.176 0.112

0.01 0.195 0.100 0.057 0.035 0.700 0.330 0.182 0.116
0.02 0.210 0.102 0.059 0.037 0.735 0.349 0.193 0.123
0.04 0.229 0.112 0.067 0.044 0.804 0.390 0.218 0.139
0.08 0.303 0.133 0.093 0.056 0.960 0.478 0.276 0.172
0.16 0.438 0.200 0.158 0.088 1.338 0.699 0.419 0.259

P1-3
η n = 50 n = 100 n = 200 n = 400

0.005 0.108 0.077 0.044 0.030

0.01 0.112 0.082 0.048 0.034
0.02 0.121 0.091 0.056 0.040
0.04 0.143 0.110 0.068 0.050
0.08 0.201 0.166 0.096 0.069
0.16 0.360 0.292 0.159 0.112

Table 1: Values for different values of η and n of EMSE(T (Ŝ←n |n−1/3, η, ϕ)) in the case ϕ(·) = 1

using the generating processes P1-1, P1-2 and P1-3 with c̃(·) = 1 + ln(1/·).

P1-1 P1-2
η n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

0.005 0.242 0.129 0.074 0.047 0.268 0.151 0.085 0.054

0.01 0.228 0.125 0.073 0.046 0.278 0.158 0.089 0.057
0.02 0.224 0.122 0.070 0.045 0.299 0.171 0.096 0.063
0.04 0.221 0.124 0.069 0.050 0.341 0.197 0.113 0.075
0.08 0.265 0.140 0.090 0.057 0.440 0.256 0.148 0.100
0.16 0.373 0.193 0.134 0.080 0.634 0.404 0.241 0.166

P1-3
η n = 50 n = 100 n = 200 n = 400

0.005 0.094 0.063 0.034 0.024

0.01 0.095 0.066 0.038 0.027
0.02 0.100 0.072 0.044 0.031
0.04 0.112 0.082 0.053 0.039
0.08 0.149 0.124 0.076 0.056
0.16 0.273 0.221 0.122 0.097

Table 2: Values for different values of η and n of EMSE(T (Ŝ←n |n−1/3, η, ϕ)) in the case ϕ(·) =

ln(1/·) using the generating processes P1-1, P1-2 and P1-3 with c̃(·) = 1 + ln(1/·).
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P1-1 P1-2 P1-3
αn c̃ = 1 c̃(·) = 1 + ln(1/·) c̃ = 1 c̃(·) = 1 + ln(1/·) c̃ = 1 c̃(·) = 1 + ln(1/·)
n−1/2 1.018 0.725 0.195 0.141 0.484 0.534
n−1/3 1.211 1.070 0.402 0.352 0.809 0.735
n−1/4 1.232 1.151 0.428 0.380 0.835 0.930
n−1/5 1.210 1.177 0.400 0.252 0.933 0.865
n−1/6 1.274 1.172 0.433 0.284 1.000 0.811

Table 3: Comparison of T (Ŝ←n |αn, η, ϕ) and the moment estimator: values of the ratio R1(αn) with
ϕ(·) = ln(1/·) and τ = 0.02 using the generating processes P1-1, P1-2 and P1-3 with different
values of αn and different functions c̃(·).

P2-1 P2-2
(αn,i, Hn,i,j) j = 2 j = 3 j = 4 j = 5 j = 6 j = 2 j = 3 j = 4 j = 5 j = 6

i = 2 0.390 0.713 0.653 1.051 1.066 0.055 0.139 0.179 0.312 0.327
i = 3 0.666 1.089 1.130 1.078 1.036 0.109 0.288 0.571 0.600 0.698
i = 4 0.789 1.079 1.268 1.136 1.132 0.208 0.435 0.617 0.692 0.833
i = 5 0.936 1.121 1.352 1.286 1.297 0.295 0.454 0.557 0.596 0.642
i = 6 0.885 1.256 1.400 1.371 1.355 0.223 0.470 0.580 0.622 0.686

P2-3
(αn,i, Hn,i,j) j = 2 j = 3 j = 4 j = 5 j = 6

i = 2 0.018 0.315 0.423 0.407 0.494
i = 3 0.214 0.586 0.802 1.058 0.882
i = 4 0.457 0.842 1.065 1.167 1.118
i = 5 0.354 1.062 1.355 1.172 1.103
i = 6 0.532 1.148 1.300 1.148 1.077

Table 4: Comparison of T (Ŝ←n (·|x0)|αn, η, ϕ) and the estimator γ̂S(αn, Hn|x0): values of the ratio
R2(αn, Hn) with ϕ(·) = ln(1/·) and τ = 0.02 using the generating processes P2-1, P2-2 and P2-3
for (αn,i = n−1/i, Hn,i,j = n(1−i)/(ij)), i, j = 2, . . . , 6.
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