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Estimation of the extreme value index for non necessarily

identically distributed observations

Laurent Gardes

Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,

67084 Strasbourg cedex, France.

Abstract

It is well known that the tail behavior of a survival function S is controlled by the so-called

extreme value index. The aim of this paper is the estimation of this extreme value index

in the case where the observations are independent but not necessarily distributed from the

same distribution S. The proposed estimator only depends on a nonparametric estimator of

the survival function S and can be applied to many different situations such as conditional

extremes and heteroscedastic extremes. Its consistency is established under general conditions

and its finite sample behavior is investigated through a simulation study.

Keywords. Extreme value index, non-identically distributed, conditional extremes, het-

eroscedastic extremes.
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1 Introduction

In various applications, the behavior of large values (instead of central values) of a random

variable can be of high interest. For instance, in climatology, the study of high temperatures

or important precipitations is a key point to understand the effect of global warming. To make

inference on the tail of a distribution characterized by its survival function S, the common

departure point is to assume the existence of two sequences αn > 0 and βn and of a non

degenerate cumulative distribution function H such that

lim
n→∞

nS(αny + βn) = − logH(y). (1)

A result established by Fisher and Tippett [11] and Gnedenko [20] ensures that H is necessar-

ily of the form Hγ(y) := exp[−(1 + γy)
−1/γ
+ ] where (.)+ and (.)− are respectively the positive

and negative part functions. The parameter γ ∈ R is called the extreme value index of S. If

limit (1) holds, we say that S belongs to the maximum domain of attraction (MDA) of the

extreme value distribution Hγ . The class of survival functions that belongs to the MDA of

Hγ is denoted DA(Hγ). Clearly the knowledge of γ brings us important information on the

tail distribution. For this reason, the estimation of the extreme value index has been widely

studied essentially in the situation where observations of n independent copies of a random

value with survival function S are recorded. The most notable estimator is probably the Hill’s

estimator [24] dedicated to heavy tailed distributions (i.e. when γ > 0). For the general case

γ ∈ R, one can cite the estimator proposed by Pickands [27] and the moment estimator defined

by Dekkers et al. [6].
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In this paper, the estimation of the extreme value index is addressed in a more general setting.

More precisely, we consider the situation where we have at our disposal observations of inde-

pendent positive random variables Z1, . . . , Zn but not necessarily with the same distribution

S. We only assume the existence of a stochastic process {Ŝn(y) := Tn(y, Z1, . . . , Zn), y ≥ 0}

(where Tn is a known function) which is a consistent estimator (in a sense that will be spec-

ified later) of the survival function S. The aim of this paper is to estimate the extreme

value index by a function on this stochastic process. There are many practical situations

where the estimation of the extreme value index must be done without having observations of

a random sample from S. We list some examples below that will be more detailed in Section 3.

1) The first example is the situation of heteroscedastic extreme as introduced by Einmahl et

al. [10] and de Haan et al. [23]. In numerous applications, the observed data are not generated

from the same distribution. This is the case for instance in hydrology where the distribution

of the amount of rain can differ from a season to another. To handle this kind of data, a

model called heteroscedastic extremes was introduced in [10] and [23]. This model is defined

as follows. Let −∞ < b1 ≤ xn,1 < . . . < xn,n ≤ b2 < ∞ be deterministic points (for instance,

one can see these points as time points). For every point xn,i, we observe the realization

of a positive random variable Zn,i with survival function Sxn,i
. It is assumed that for all

i = 1, . . . , n, the survival function Sxn,i
is asymptotically proportional to a given survival

function S ∈ DA(Hγ), γ ∈ R (more details are given in Section 3). Hence, all the random

variables share the same extreme value index but have different scales in the tails and the

estimation of γ must bedone by using the independent but not identically distributed random

variables Zn,1, . . . , Zn,n.

The two following examples deal with the estimation of the extreme value index in presence

of a covariate (random or deterministic).

2) In a regression context, a positive random variable Y of interest is linked with a covariate

X ∈ R
p bringing an additional information on Y . This context can be encountered in various

situations like insure, finance, climatology to name but a few. For a fixed value x0 ∈ R
p, we

focus on the conditional distribution of Y given X = x0. The survival function of interest is

then given for all y ≥ 0 by S(y|x0) = P(Y > y|X = x0) and is supposed to belong to the

maximum domain of attraction of Hγ(x0). We are interested in the estimation of γ(x0) using

observations of n independent copies Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) of Z. The difficulty

here is that we do not have at our disposal independent and identically distributed observa-

tions from S(.|x0) to estimate γ(x0). In the literature, the function γ(.) is referred to as the

conditional extreme value index. Its estimation has already been considered in [3] and [15]

with an estimator inspired from the Refined Pickands estimator proposed by Drees [8], in [21]

and [30] with an adaption of the moment estimator [6] and a maximum likelihood approach

was considered by Wang and Tsai [32]. In the particular case of a positive conditional extreme

value index, Gardes and Stupfler [16] propose an adaption of the Hill estimator.

3) In some applications, the covariate is deterministic and belongs to a set E ⊂ R
p. This is

the case for instance in hydrology where the covariate is the geographical position of a rain-

gauge station and the variable of interest is the amount of rain. In this situation, one observe

positive independent random variables Zn,1, . . . , Zn,n with respective survival function Sxn,i

for i ∈ {1, . . . , n} where xn,i ∈ E is the value of the covariate associated to the i-th observa-

tion. The survival function of interest is, for a fixed x0 ∈ E, given by Sx0
∈ DA(Hγ(x0)) and

our goal is the estimation of γ(x0). This problem has already been addressed by Gardes and
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Girard using a moving window method [13] and a nearest neighbor approach [14] but only

for conditional heavy-tailed distributions (i.e for a positive function γ). One can also cite the

papers of [5] and [28] using a regression model, Chavez-Demoulin and Davison [2] for a method

using splines and Davison and Ramesh [4] for a local polynomial estimator.

These three situations are clearly not the only ones where the extreme value index should be

estimated without a sample of independent and identically distributed random variables. One

can also think for example on the estimation of γ under random censoring (see Einmahl et

al. [9]) or for truncated data (see Gardes and Stupfler [17]). The rest of the paper is organized

as follows. In Section 2, the definition of our extreme value index estimator is given and its

consistency is established under a general setting. The three specifics models introduced in

this introduction are treated in details in Section 3. The finite sample behavior of the proposed

estimator is illustrated through a simulation study in Section 4 and a short conclusion is given

in Section 5. Section 6 is devoted to the proofs.

2 Estimation of the extreme value index

Consider a survival function S ∈ DA(Hγ), γ ∈ R. The aim of this section is to estimate the

extreme value index γ by a function of a given nonparametric estimator of S. As we will see

in Section 3, this procedure of estimation allows us to consider situation where non necessarily

identically distributed random variables are observed. In the rest of the paper, it is assumed

that S(y) = 0 for all y < 0 (i.e. S is associated to a positive random variable). Denoting by

S←(u) = inf{t, S(t) ≤ u} the right-continuous inverse of S, it is well known (see [22, Theorem

1.1.6]) that the property S ∈ DA(Hγ) is equivalent to

lim
α→0

S←(uα)− S←(α)

a(α−1)
− Lγ(1/u) → 0, (2)

for all u ∈ (0, 1] where a is a positive function and for all v ≥ 1 and s ∈ R, Ls(v) =
∫ v

1
us−1du.

In the rest of the paper, a survival function S satisfying (2) is said to be of extended regular

variation with index γ ∈ R and positive auxiliary function a (we write S ∈ ERV(γ, a)). The

class of extended regular variation functions was also introduced in [22, Definition B.2.3] for

instance. Note that the auxiliary function a satisfies a(α−1)/S←(α) → γ+ as α → 0 (see

for instance [12, Lemma 3.1]). Furthermore, it is shown in Lemma 2 that convergence (2) is

uniform on u ∈ [η, 1] for all η ∈ (0, 1). In paragraph 2.1, our estimator of γ is defined and its

consistency is established in paragraph 2.2.

2.1 Definition of the estimator

Let S be a survival function of class ERV(γ, a). Assume that we have at our disposal an

estimator {S̃n(y), y ≥ 0} of the survival function S where S̃n is a non-increasing and right-

continuous funtion. The estimator of γ proposed in this paper is based on the following

statistics:

H(δ)
η,ϕ(S̃n) :=

∫ 1

η

ϕ(u)

(

log
S̃←n (uαn)

S̃←n (αn)

)δ

du

/

(
∫ 1

η

ϕ(u)L0(1/u)du

)δ

, (3)

where η ∈ (0, 1), δ ∈ N and ϕ is a positive and bounded function on (η, 1). In order to define

the estimator of γ, the following function is introduced: for s ≤ 0 let

Ψη,ϕ(s) :=

(
∫ 1

η

ϕ(u)Ls(1/u)du

)2/∫ 1

η

ϕ(u)L2
s(1/u)du . (4)
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It is shown in Lemma 1 that Ψη,ϕ is a decreasing function on (−∞, 0] and thus its inverse

Ψ←η,ϕ is well defined. We propose to estimate the extreme value index γ ∈ R by the function

of {S̃n(y), y ≥ 0} defined below:

γη,ϕ(S̃n;αn) := H(1)
η,ϕ(S̃n) + Ψ←η,ϕ

(

max

{

[H
(1)
η,ϕ(S̃n)]

2

H
(2)
η,ϕ(S̃n)

,Ψη,ϕ(0)

})

. (5)

Let us highlight that in the simplest situation where independent random variables Z1, . . . , Zn

with common survival function S ∈ DA(Hγ) are recorded, the natural choice for S̃n is the

empirical distribution function for which, S̃←n (α) = Z(n−⌊nα⌋) for α ∈ (0, 1), where ⌊x⌋ denotes

the integer part of x and Z(1) ≤ . . . ≤ Z(n) are the ordered statistics associated to the sample

Z1, . . . , Zn. Hence, in the limit case η = 0 (not allowed here) and if ϕ = cst is a constant

function, H
(δ)
0,cst(S̃n) = ⌊nαn⌋/(nαn)H

(δ)
n = H

(δ)
n (1 + o(1)) as n→ ∞ where

H(δ)
n :=

1

⌊nαn⌋

⌊nαn⌋
∑

i=1

(

log
Z(n−i+1)

Z(n−⌊nαn⌋)

)δ

.

Since Ψ←0,cst(s) = 1 − 1/2(1 − s)−1, the estimator γ0,tilde(Ŝn;αn) is thus, in presence of inde-

pendent and identically distributed random variables, asymptotically equivalent to the well

known moment estimator introduced by Dekkers et al. [6] and given by

γ̂M(αn) := H(1)
n − 1−

1

2

(

1−
(H

(1)
n )2

H
(2)
n

)−1

.

Our estimator (5) can thus be seen as a weighted version of the moment estimator adapted to

more general settings.

2.2 Consistency

We are now interested in proving the consistency of the estimator defined in (5). As usual

in extreme value theory, second-order condition is required in order to precise the rate of

convergence in (2). In what follows, for sequences τn and αn converging to 0, a survival

function S is said to be of class ERV2(γ, a, τn, αn) if S ∈ ERV(γ, a) with

lim
n→∞

τ−1
n max

{

sup
u∈(η,1)

∣

∣

∣

∣

S←(uαn)− S←(αn)

a(α−1
n )

− Lγ(1/u)

∣

∣

∣

∣

,

∣

∣

∣

∣

a(α−1
n )

S←(αn)
− γ+

∣

∣

∣

∣

}

= 0.

Note that the class ERV2(γ, a, τn, αn) of second-order extended regular varying functions

is considered in most of the papers dealing with the estimation of γ ∈ R (see for instance [6],

[21], [30]). Our main result is given below.

Theorem 1. Let (τn) and (αn) be sequences converging to 0 as n→ ∞. Let {S̃n(y), y ≥ 0}

be a stochastic process such that

S←(αn)

a(α−1
n )

τ−1
n sup

u∈(η,1)

∣

∣

∣

∣

∣

Ŝ←n (uαn)

S←(uαn)
− 1

∣

∣

∣

∣

∣

= OP(1). (6)

If S ∈ ERV2(γ, a, τn, αn) then
∣

∣

∣
γη,ϕ(S̃n;αn)− γ

∣

∣

∣
= OP(τn).

The previous result ensures that for every uniformly consistent estimator of S, the extreme

value index estimator defined by (5) is consistent. We now focus on a particular family of

estimators of the survival function S.

Ŝn(y) =

n
∑

i=1

Rn,i(y)

/

n
∑

i=1

Rn,i(0) , (7)
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where {{Rn,i(y), y ≥ 0}, i = 1, . . . , n} are n independent stochastic processes with Rn,i pos-

itive, non-increasing and right-continuous and such that sup{Rn,i(y), y ≥ 0} ≤ CR almost

surely for some positive constant CR. Note that, as a survival function, Ŝn is a [0, 1]-valued

function which is right-continuous and non-increasing. Clearly this family of estimators en-

compasses the empirical distribution function and all the estimators that are considered in

Section 3 can be written as in (7). Before establishing the consistency of the associated esti-

mator of γ, the following notations are introduced: for a sequence (αn) converging to 0,

yκn(u;αn) := S←(uαn) + κna(α
−1
n ) and µκn(u;αn) := E

(

n
∑

i=1

Rn,i (yκn(u;αn))

)

,

where (κn) is a sequence converging to 0. The consistency of γη,ϕ(Ŝn;αn) is established in the

following result.

Theorem 2. Let (σn) and (αn) be sequences converging to 0 as n→ ∞. Let {Ŝn(y), y ≥ 0} be

a stochastic process defined as in (7). For τn = σn(log(σ
−1
n ))1/2, if S ∈ ERV2(γ, a, τn, αn)

and if there exits a constant r0 > 0 such that for every sequence κn → 0,

sup
u∈(η,1)

∣

∣

∣

∣

r0αnσ
2
nµκn(u;αn)

S(yκn(u;αn))
− 1

∣

∣

∣

∣

= o(τn) and sup
u∈(η,1)

∣

∣

∣

∣

∣

αnσ
2
n

n
∑

i=1

Rn,i(0)− r0

∣

∣

∣

∣

∣

= oP(τn), (8)

then
∣

∣

∣
γη,ϕ(Ŝn;αn)− γ

∣

∣

∣
= OP(τn).

To prove this result, it suffices to show that under the assumptions of Theorem 2, the right-

continuous inverse of the estimator Ŝn given in (7) is a uniform consistent estimator of the

quantile function S← i.e. such that (6) holds. In the next section, some examples where an

estimator Ŝn satisfying the assumptions of Theorem 2 can be constructed are presented.

3 Applications

3.1 Heteroscedastic extremes

In various applications, the observed data do not generally satisfy the independence assumption

and/or are not identically distributed. This is obviously the case for instance when we are

interested in the study of daily rainfall over time. To handle the case when observations

are independent but drawn from different distributions, Einmahl et al. [10] and de Haan

et al. [23] assume that the distribution tails are proportional, situation which is called by

authors heteroscedastic extremes. The framework considered here is mostly the same as the

one considered in [10]. For −∞ < b1 < b2 < ∞, let {Sx, x ∈ [b1, b2]} be a family of survival

functions satisfying the heteroscedasticity condition given by:

(M) For all x ∈ [b1, b2], the survival functions Sx share the same right endpoint z∗. Fur-

thermore, there exist a survival function S in the maximum domain of attraction of Hγ ,

γ ∈ R with S←(0) = z∗ and a continuous positive function c defined on [b1, b2] such that:

lim
z→z∗

sup
x∈[b1,b2]

∣

∣

∣

∣

Sx(z)

S(z)
− c(x)

∣

∣

∣

∣

= 0 with

∫ b

a

c(s)ds <∞.

Note that the survival function S and the function c in (M) are not uniquely defined. To

ensure unicity, we impose from now on that
∫ b2
b1
c(x)dx = b2 − b1.

For every deterministic points −∞ ≤ b1 < xn,1 < . . . < xn,n ≤ b2 < ∞, we observe a real-

ization of a positive random variable Zn,i with survival function Sxn,i
. The random variables

Zn,1, . . . , Zn,n are supposed positive and independent. Let us highlight that in [10], the points
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{xn,i, i = 1, . . . , n} are assumed to be regularly distributed on [0, 1] (i.e. xn,i = i/n). This as-

sumption can be too restrictive for an application purpose like for instance in hydrology since

the times for which a certain non null amount of rain is observed are clearly not regularly

distributed. In this paper, letting xn,0 = b1 and xn,n+1 = b2, it is only assumed that

(A.1) there exists d > 0 such that max{xn,i − xn,i−1, i = 1, . . . , n+ 1} ≤ d/n.

Under model (M), it is easy to see that for all i ∈ {1, . . . , n}, Sxn,i
is in the maximum domain

of attraction of Hγ . Thus, the random variables Zn,1, . . . , Zn,n share the same extreme value

index but differ asymptotically in scale. As a consequence, the associated quantiles depend

on the value of the function c and thus, the model of heteroscedastic extremes permits us to

take into account the effect of the point of observation (for example the time) on extremal

events. As mentioned in the introduction we focus in this paper on the estimation of γ. To

reach this goal, only an estimator of the survival function S is required. We propose here to

use the estimator

Ŝ(1)
n (z) =

n
∑

i=1

xn,i − xn,i−1

xn,n − b1
I{Zn,i>z}, (9)

where I{.} is the indicator function. Clearly, Ŝ
(1)
n is of the form (7) with for i ∈ {1, . . . , n}

Rn,i(z) =: R
(1)
n,i(z) = n

xn,i − xn,i−1

xn,n − b1
I{Zn,i>z} ≤

2d

b2 − b1
, (10)

under condition (A.1). An asymptotic property of the associated extreme value index esti-

mator γη,ϕ(Ŝ
(1)
n ;αn) is established in the following result.

Corollary 1. For a sequence (αn) converging to 0, let σn = (nαn)
−1/2 and τn = σn(log(σ

−1
n ))1/2.

Under model (M), suppose that condition (A.1) holds and that

sup
{

|c(u)− c(u′)|, (u, u′) ∈ [b1, b2]
2 with |u− u′| ≤ d/n

}

= o(τn). (11)

If σn → 0, if there exist a positive function a1 such that S ∈ ERV2(γ, a1, τn, αn) and if there

exists δ > 1 such that

sup

{
∣

∣

∣

∣

Sx(z)

S(z)
− c(x)

∣

∣

∣

∣

, x ∈ [b1, b2],
z

S←(αn)
∈ [δ−1, δ]

}

= o(τn), (12)

then, |γη,ϕ(Ŝ
(1)
n ;αn)− γ| = OP(τn).

Conditions (11) and (12) are very similar to the ones used in [10]. Condition (11) is a regularity

condition on the function c involved in model (M). It is satisfied for instance if the function

c is Lipschitz continuous of order at least 1/2. Condition (11) is also a regularity condition

but on the function Sx(z) considered as a function of x. The sequence (αn) represents the

proportion of largest observations used in the estimation procedure and thus kn := nαn is the

number of kept observations. Conditions αn → 0 and nαn → ∞ (or equivalently kn/n → 0

and kn → ∞) are standard hypothesis for the estimation of the extreme value index. Finally

note that in Corollary 1 (and also in the two following corollaries), we do not find the classical

rate of convergence in extreme value theory (namely (nαn)
1/2). This is mainly due to the fact

that Corollary 1 requires the uniform consistency result (6). Using others theoretical tools in

the proof of Corollary will probably permit us to obtain the classical rate of convergence but

this is beyond the scope of this paper.

3.2 Conditional extreme value index estimation for a random

covariate

This example takes place in a regression context where a positive response variable Y is

measured with a random explanatory variable X ∈ R
p. More specifically, we are interested in
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the influence of X on the large values of the response variable Y or, in other words, on the

conditional tail distribution of Y given X. This can be of high interest in many applications

like insurance [1], finance [31], climatology [28] to name a few. In what follows, we consider

n independent copies Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) of a random vector Z = (X,Y ) ∈

R
p × [0,∞). The probability density function of X is denoted by g and it assumed that

(A.2) there exits a constant cg > 0 such that |g(x)− g(x′)| ≤ cg‖x− x′‖∞.

Note that the uniform norm was used in condition (A.2) but obviously, any norm on R
p can

be also considered. For a given x0 ∈ R
p such that g(x0) > 0, we suppose that the conditional

distribution of Y given X = x0 belongs to the maximum domain of attraction of Hγ(x0),

γ(x0) ∈ R and we are interested in the estimation of this extreme value index. To reach this

goal, we consider the estimator of the survival function S(.|x0) := P(Y > y|X = x0) defined

by:

Ŝ(2)
n (y|x0) =

n
∑

i=1

I{Yi>y}KHn(x0 −Xi)

/

n
∑

i=1

KHn(x0 −Xi) , (13)

which is the kernel estimator introduced by Nadaraya [25] and Watson [33] where Hn is a

positive-definite matrix. For the sake of shortness, we have introduced the notation KHn(t) :=

|Hn|
−1K(H−1

n t), t ∈ R
p where K(.) is called the kernel function and, for all square matrix M ,

|M | denotes the determinant of M . In what follow, we consider kernel functions satisfying:

(A.3) K is a bounded density on R
p with support Up, the unit ball of Rp.

This condition is classical in local estimation (see for instance [3, 21]). It is easy to check that

Ŝ
(2)
n (.|x0) is of the form (7) with

Rn,i(y) =: R
(2)
n,i(y|x0) = |Hn|KHn(x0 −Xi)I{Yi>y} ≤ ‖K‖∞, (14)

under (A.3). We propose to estimate the extreme value index γ(x0) by the associated es-

timator γn,ϕ(Ŝ
(2)
n (.|x0);αn) (see equation (5)). Its asymptotic behavior is established in the

next result. Before, the following notation is required: for a positive-definite matrix M of size

p and c ∈ R
p, B(c,M) := {x ∈ R

p | ‖M−1(c − x)‖∞ ≤ 1} denotes the ball of center c and

radius M .

Corollary 2. For a sequence (αn) converging to 0, let σn = (n|Hn|αn)
−1/2 and τn =

σn(log(σ
−1
n ))1/2. For x0 ∈ R

p such that g(x0) > 0, assume that (A.2) and (A.3) hold.

If there exist of a positive function a2(.|x0) such that S(.|x0) ∈ ERV2(γ(x0), a2(.|x0), τn, αn),

if σn → 0, τ−1
n ‖Hn‖∞ → 0 and if there exists δ > 1 such that

sup

{
∣

∣

∣

∣

S(y|x)

S(y|x0)
− 1

∣

∣

∣

∣

, x ∈ B(x0, Hn),
y

S←(αn|x0)
∈ [δ−1, δ]

}

= o(τn), (15)

then |γη,ϕ(Ŝ
(2)
n (.|x0);αn)− γ(x0)| = OP(τn).

Note that the conditions used in the previous corollary are similar to the ones considered

in [3] where the asymptotic normality of (Ŝ
(2)
n )←(.|x0) is established. Recall that under the

assumptions of Corollary 2, it can be shown that (Ŝ
(2)
n )←(.|x0) is a uniform consistent estimator

in the sense given by (6). The expected number of points kept for the estimation is given by

n|Hn|αn and thus conditions αn → 0 and n|Hn|αn → ∞ are classical in extreme value theory.

Finally, condition (15) controls the oscillations of the conditional survival function S(.|x0). An

interesting discussion on this condition can be found in [30].

3.3 Conditional extreme value index estimation for a fixed de-

sign

In this last example, we are interested in large values of a response variable recorded with

a nonrandom explanatory variable. A motivating example is the study of extreme rainfalls
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at different geographical positions. In this paragraph, the following framework is considered:

let E be a compact subset of R
p, p ∈ N

∗ and {Sx, x ∈ E} a family of survival functions.

Associated to nonrandom covariates xn,1 ∈ E, . . . , xn,n ∈ E, we have positive and independent

random variables Zn,1, . . . , Zn,n, where for all i ∈ {1, . . . , n}, the survival function of Zn,i is

given by Sxn,i
. For a given x0 ∈ E̊ where E̊ denotes the interior of E, it is assumed that

Sx0
∈ DA(Hγ(x0)) and our goal is the estimation of the extreme value index γ(x0) ∈ R using

estimator (5). To this end, only the estimation of the survival function Sx0
is required. We

propose here to use the estimator introduced by Stone [29] with the Gasser and Müller [18]

weights. For a positive-definite matrix Hn it is given by:

Ŝ(3)
n,x0

(z) =

n
∑

i=1

I{Zn,i>z}

∫

An,i

KHn(x0 − t)dt, (16)

where An,i are sets that partition the subset E with xn,i ∈ An,i and where KHn is defined as

in paragraph 3.2. The following notation will be used: for i ∈ {1, . . . , n}, let Vn,i the volume

of An,i and let V̄n := max(Vn,1, . . . ,Vn,n). We assume that

(A.4) There exists a positive constant CV such that nV̄n ≤ CV .

Since E is a compact subset, this condition is reasonable and classical in nonparametric re-

gression for the fixed design case (see for instance [19]). Now let

Rn,i(y) =: R
(3)
n,i,x0

(y) = n|Hn|I{Zn,i>z}

∫

An,i

KHn(x0 − t)dt. (17)

Under (A.3) and (A.4), R
(3)
n,i,x0

(y) ≤ n‖K‖∞Vn,i ≤ CV‖K‖∞ and, since x0 ∈ E̊,

∫

E

KHn(x0 − t)dt = 1 and thus
n
∑

i=1

R
(3)
n,i,x0

(0) = n|Hn|.

Thus, estimator Ŝ
(3)
n,x0

admits the same form as (7). We now give an asymptotic property of

the extreme value index estimator γη,ϕ(Ŝ
(3)
n,x0

;αn).

Corollary 3. For a sequence (αn) converging to 0, let σn = (n|Hn|αn)
−1/2 and τn =

σn(log(σ
−1
n ))1/2. Under (A.3) and (A.4), if there exist a positive function a3,x0

such that

Sx0
∈ ERV2(γ(x0), a3,x0

, τn, αn), if Hn converges to the zero matrix, if σn → 0 and if there

exist δ > 1 such that

sup

{
∣

∣

∣

∣

Sx(z)

Sx0
(z)

− 1

∣

∣

∣

∣

, x ∈ B(x0, 2Hn),
z

S←x0
(αn)

∈ [δ−1, δ]

}

= o(τn), (18)

then |γη,ϕ(Ŝ
(3)
n,x0

;αn)− γ(x0)| = OP(τn).

The conditions in Corollary 3 are very similar to the ones of Corollary 2. The only difference

is that condition τ−1
n ‖Hn‖∞ is not required here since this condition was used in Corollary 2

to ensure the consistency of the probability density estimator.

Link with heteroscedastic extremes In the special case where E = [b1, b2] and where

the family of survival functions {Sx, x ∈ E} satisfy the heteroscedasticity condition (M) (see

Section 3.1) with an extreme value index γ then, under the assumptions of Corollary 3 and for

all x0 ∈ [b1, b2], γη,ϕ(Ŝ
(3)
n,x0

;αn) and γη,ϕ(Ŝ
(1)
n ;αn) are consistent estimators of γ. Hence, given

a sample Zn,1, . . . , Zn,n associated to nonrandom covariates b1 ≤ xn,1 < . . . < xn,n ≤ b2, one

way to check the validity of model (M) is to plot the ratio γη,ϕ(Ŝ
(3)
n,x0

;αn)/γη,ϕ(Ŝ
(1)
n ;αn) as

a function of x0 ∈ [b1, b2]. If this ratio seems to be very different from 1, it is unreasonable

to accept the validity of model (M). In presence of heavy-tailed distribution (i.e. γ > 0), a

similar idea can be found in [10] where a statistical test for the validity of (M) is proposed.
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This test is based on the ratio of two different Hill’s estimators. Establishing a statistical test

is beyond the scope of the present paper and will be part of a future work. If model (M) is

assumed, the function c can be estimated using the statistics

ĉn(x0) := Ŝ(3)
n,x0

(

Z(n,n−⌊nαn⌋)

)

/

Ŝ(1)
n

(

Z(n,n−⌊nαn⌋)

)

,

where (αn) is a sequence on (0, 1) converging to 0 and Z(n,1) ≤ . . . ≤ Z(n,n) are the order

statistics deduced from the sample Zn,1, . . . , Zn,n. Note that taking An,i = (xn,i−1, xn,i] in

the expression of Ŝ
(3)
n,x0

, it is easy to check that

∫ b2

b1

ĉn(x)dx = xn,n − b1 = b2 − b1 +O(1/n).

In [10], a slightly different estimator of function c is proposed. The behavior of the estimator

ĉn is briefly illustrated in the simulation study.

4 Simulations

The behavior of the estimators presented in this paper is examined through Monte Carlo sim-

ulations. The data are generated using one of the two following processes:

P1 - For i = 1, . . . , n, let xn,i = G(i/n) where G is the distribution function of a beta

distribution with parameters a = b = 2. For a given function c̃ : [0, 1] 7→ [1,∞), we generate

n independent random variables Zn,1, . . . , Zn,n where the survival function of Zn,i is one of

the three following:

P1-1: Heteroscedastic Fréchet distribution: for z ≥ 0,

Sxn,i
(z) = 1− exp

(

−
c̃(xn,i)

z

)

.

P1-2: Heteroscedastic uniform distribution: for z ∈ [1− 1/c̃(xn,i), 1],

Sxn,i
(z) = (1− z)c̃(xn,i).

P1-3: Heteroscedastic Weibull distribution: for θ ∈ (0, 1] and z ≥ log c̃(xn,i),

Sxn,i
(z) = exp

[

−(z − log c̃(xn,i))
θ
]

.

P2 - Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y ) where X

is uniformly distributed on [0, 1] and, for a positive function γ defined on [0, 1] and a function

c̃ : [0, 1] 7→ [1,∞), the conditional survival function of Y given X = x is one of the three

following:

P2-1 Conditional Fréchet distribution: for y ≥ 0,

S(y|x) = 1− exp(−c̃(x)y−1/γ(x))

P2-2: Conditional beta distribution: let G(.|x) be the distribution function of a beta

distribution with parameters a = b = −1/γ(x), for y ∈ [G←(1− 1/c̃(x)|x), 1],

S(y|x) = (1−G(y|x))c̃(x).

P2-3: Conditional Weibull distribution: for a function θ : [0, 1] 7→ (0, 1] and y ≥ log c(x),

S(y|x) = exp
[

−(y − log c̃(x))θ(x)
]

.

Note that process P1 corresponds to the situation of heteroscedastic extremes as described

in Section 3.1. Indeed, the three survival functions given in P1-1, P1-2 and P1-3 satisfy
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model (M) with b1 = 0 and b2 = 1 and where the common extreme value index and right

endpoint are given by γ = 1 and z∗ = +∞ for P1-1, γ = −1 and z∗ = 1 for P1-2 and γ = 0

and z∗ = +∞ for P1-3. The function c is given by c̃/
∫ 1

0
c(s)ds for processes P1-1 and P1-2.

For process P1-3, it is easy to check that if θ ∈ (0, 1), c = 1 and if θ = 1, c = c̃/
∫ 1

0
c(s)ds.

Process P2 corresponds to a conditional extreme value framework with a random covariate

(see Section 3.2) where the conditional extreme value index is given by the function γ.

The rest of this section is organized as follows: first, the role of parameter η and of function ϕ

in the estimator γn,ϕ(Ŝn;αn) are illustrated on data generated by process P1. Next, always for

data generated by process P1, our estimator γn,ϕ(Ŝ
(1)
n ;αn) defined in section 3.1 is compared

to the classical moment estimator proposed by Dekkers et al. [6]. Recall that the consistency of

moment estimator has been proved only in presence of independent and identically distributed

random variables but, using similar techniques as in [10], the consistency must be also true

for heteroscedastic extremes. Finally, with data generated by the process P2, we compare our

estimator γn,ϕ(Ŝ
(2)
n ;αn) defined in section 3.2 with the estimator proposed by Stupfler [30].

4.1 Influence of parameter η and of function ϕ

The estimator proposed in this paper mainly depends on a parameter η ∈ (0, 1), a bounded

function ϕ and a sequence (αn). Here, αn is fixed to n−1/3 and we focus on the influence

that both η and ϕ have on the behavior of γn,ϕ(Ŝ
(1)
n ;αn). We generate N = 500 samples

of size n ∈ {50, 100, 200, 400} using the generating processes P1-1, P1-2 and P1-3 with

c̃(.) = 1+log(1/.) and, for P1-3, with θ = 1. For each values of η ∈ {0.005×2j , j = 0, 1, . . . , 5}

and for the two functions ϕ = 1 and ϕ(.) = log(1/.), the empirical mean squared error of the

estimator γn,ϕ(Ŝ
(1)
n ;αn) is computed. Recall that for any estimator γ̂n of γ, denoting by γ̂

(r)
n ,

r = 1, . . . , N the values of γ̂n observed on each replications, the empirical mean squared error

of γ̂n is given by:

EMSE (γ̂n) =
1

N

N
∑

r=1

(γ̂n − γ)2 .

The results are collected in Table 1 (for ϕ = 1) and Table 2 (for ϕ(.) = log(1/.)). The bold

numbers are the best results obtained for each values of n. Concerning the function ϕ, one

can see that the choice ϕ = 1 provides slightly better results for the Fréchet distribution (i.e

process P1-1) but, for the two other generating processes, the choice ϕ(.) = log(1/.) is clearly

better (especially for the uniform distribution (P1-2)). For the choice of η, it seems that taking

η small provides better results (except for the Fréchet distribution with ϕ(.) = log(1/.)). Let

us also highlight that taking η = 0.02 for each values of n and each generating process leads

to mean squared errors quite close to the bold numbers. In conclusion, the choice η = 0.02

and ϕ(.) = log(1/.) seem reasonable and will be used in the rest of this simulation study.

4.2 Behavior of the estimator for heteroscedastic data

We generate N = 500 samples of size n = 100 using the generating processes P1-1, P1-2

and P1-3 with c̃ = 1 and c̃(.) = 1 + log(1/.) and, for P1-3, with θ = 1. Note that when

c̃ = 1, the observations are independent and identically distributed. In order to appreciate

the effect of the sequence αn, the estimator is computed for αn ∈ {n−1/a, a = 2, . . . , 6} while

η is fixed to 0.02 and ϕ = log(1/.). Using the empirical mean squared error, our estimator

γn,ϕ(Ŝ
(1)
n ;αn) is compared to the moment estimator γ̂M(αn). More precisely, the ratio

R1(αn) := EMSE
(

γn,ϕ(Ŝ
(1)
n ;αn)

)/

EMSE (γ̂M(αn)) ,

is computed for each values of αn and each functions c̃. Clearly, a ratio lower than 1 means

that our estimator provides better results (in term of mean squared error) than the moment
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estimator. The results are presented in Table 3. It appears that, for the Fréchet distribution

(process P1-1), the moment estimator is slightly better than our estimator but for the two

other generating processes, our method provides better results in term of mean squared error.

One can also notice that the function c̃ has not a strong influence on the estimation of γ.

As mentioned at the end of Section 3.3, the function c = c̃/
∫ 1

0
c(s)ds can be estimated for

every x0 ∈ [0, 1] by

ĉn(x0) := Ŝ(3)
n,x0

(

Z(n,n−⌊nαn⌋)

)

/

Ŝ(1)
n

(

Z(n,n−⌊nαn⌋)

)

.

The finite sample behavior of this estimator is illustrated for data generated by P1-3 with

c̃(.) = 1+ log(1/.), θ = 1/2 (and thus c = c̃/2) and θ = 1 (and thus c̃ = 1). To compute Ŝ
(3)
n,x0

,

we take An,i = (xn,i−1, xn,i] and a bandwidth Hn = h(x0) with:

h(x0) := 2n(h∗)2
/

n
∑

i=1

I{|xn,i−x0|≤h∗} ,

where h∗ = 0.05. Note that the bandwidth depends on x0 and takes into account the reparti-

tion of the xn,i’s on [0, 1]. The sequence αn is fixed to n−1/3. The estimator ĉn(x0) is computed

for N = 500 samples of size n = 1000 and for x0 ∈ {10(i− 1)/n, i = 1, . . . , ⌊n/10⌋+ 1}. For

each x0 and each θ, we represent on Figure 1 the quantiles of order 0.1, 0.5 (median) and 0.9.

4.3 Behavior of the estimator in presence of random covariates

We are now interested in the behavior of the estimator γn,ϕ(Ŝ
(2)
n (.|x0);αn) in the situation

where a variable of interest Y is recorded with a random covariate X ∈ [0, 1]. We generate

N = 500 samples of size n = 500 using process P2. The function c̃ is taken equal to log(1/.)+1

and the conditional extreme value index is given by γ(x) = 2/3 + 1/3 sin(2πx). For the

process P2-3, we choose θ(x) = γ(x) for all x ∈ [0, 1]. As before, the value of η is fixed to 0.02

and ϕ(.) = log(1/.). The couple of sequences (αn, Hn) required to compute our estimator are

picked in the set {(n−1/i, n(1−i)/(ij)), i, j = 2, . . . , 6}. Not that taking (αn, Hn) is this set

ensures that log(nHnαn) = (i− 1)(j− 1)/(ij) log(n) → ∞ as n→ ∞. The value of x0 is fixed

to 1/4 for which the maximum of the function γ is reached (γ(1/4) = 1).

We compare the estimator γn,ϕ(Ŝ
(2)
n (.|x0);αn) to the estimator proposed by Stupfler [30] and

defined as follows: for δ ∈ N, let kn(x0) := ⌊αnM(x0, Hn)⌋ and

H
(δ)
n,S(x0) :=

1

kn(x0)

kn(x0)
∑

i=1

(

log
Y ∗(M(x0,Hn)−i+1)(x0)

Y ∗(M(x0,Hn)−kn(x0))
(x0)

)δ

,

where

M(x0, Hn) :=

n
∑

i=1

I{|Xi−x0|≤Hn},

and, given M(x0, Hn) = p, Y ∗1 (x0), . . . , Y
∗
p (x0) are the response variables whose associated

covariate Xi is such that |Xi − x0| ≤ Hn. As previously mentioned, Y ∗(1)(x0) ≤ . . . ≤ Y ∗(p)(x0)

are the associated ordered statistics. The estimator introduced in [30] is then given by:

γ̂S(αn, Hn|x0) := H
(1)
n,S − 1−

1

2

(

1−
(H

(1)
n,S)

2

H
(2)
n,S

)−1

.

To make the comparison, we compute for each values of αn and Hn the ratio

R2(αn, Hn) := EMSE
(

γn,ϕ(Ŝ
(2)
n (.|x0);αn)

)/

EMSE (γ̂S(αn, Hn|x0)) .

The results are gathered in Table 4. For the conditional Fréchet and Weibull distributions

(processes P2-1 and P2-3), the estimator γ̂S(αn, Hn|x0) provides, for some couples (αn, Hn)

slightly better results than our estimator. For the conditional beta distribution, our estimator

is clearly better for all couples (αn, Hn).

11



5 Conclusion

In this paper, an estimator of the extreme value index γ associated to a survival function S

was proposed. It is defined as a deterministic function of a nonparametric estimator of S

and can be used even in the situation where the observations are not identically distributed

from S. Its consistency was established under mild conditions and, through a simulation study,

it appears that our estimator performs quite well in different situations. For a future work, we

are interested in establishing the asymptotic normality and also treat the problem of extreme

quantile estimation.

6 Proofs

6.1 Preliminary results

The first lemma is dedicated to the function Ψη defined in (4) and its derivative. We first

introduce the integral,

I(δ)η (s, t) :=

∫ 1

η

ϕ(u)Lδ
s(1/u)u

−tdu <∞,

where (s, t) ∈ [0,∞)2 and δ ∈ N. We thus have Ψη(s) = [I
(1)
η (s, 0)]2/I

(2)
η (s, 0).

Lemma 1. For all η ∈ (0, 1), the function Ψη is decreasing on (−∞, 0] with Ψη(s) → I
(0)
η (0, 0)

as s → −∞. Furthermore, the function Ψη is continuously differentiable on (−∞, 0] with

Ψ′η(s) → 0− as s→ −∞ and Ψ′η(s) → {[I
(2)
η (0, 0)]2I

(1)
η (0, 0)−[I

(1)
η (0, 0)]2I

(3)
η (0, 0)}/[I

(2)
η (0, 0)]2

as s→ 0−.

Proof − First, remark that

Ψη(s) =

(
∫ 1

η

ϕ(u)sLs(1/u)du

)2/∫ 1

η

ϕ(u)(sLs(1/u))
2du .

Since ϕ is a positive bounded function, 0 ≤ −sLs(1/u) ≤ 1 for all s ≥ 0 and sLs(1/u) → −1

as s→ −∞, the dominated convergence entails that

I(δ)η (s, 0) = −
1

sδ

∫ 1

η

ϕ(u)du(1 + o(1)), (19)

as s→ 0 and hence, Ψη(s) → I
(0)
η (0, 0) as s goes to zero.

We now compute the derivative of the function Ψη. Since ϕ is a positive bounded function,

0 ≤ Ls(1/u) ≤ log(1/η) and 0 ≤ u−s ≤ 1 for all s ≥ 0, the functions I
(δ)
η (s, 0) and I

(δ)
η (0, s)

are continuous on s ∈ (−∞, 0] and one can interchange the derivative and the integral sign.

Hence, for s < 0,

A′(s) :=
d

ds
I(1)η (s, 0) =

1

s

(

I(1)η (0, s)− I(1)η (s, 0)
)

=

∫ 1

η

ϕ(u)

s

(

log(1/u)u−s − Ls(1/u)
)

du.

(20)

Furthermore, remarking that

I(2)η (s, 0) =
2

s

(

I(1)η (2s, 0)− I(1)η (s, 0)
)

,

one has for s < 0;

B′(s) =
d

ds
I(2)η (s, 0) =

2

s2

(

I(1)η (0, 2s)− I(1)η (0, s) + 2
(

I(1)η (s, 0)− I(1)η (2s, 0)
))

=

∫ 1

η

2ϕ(u)

s
Ls(1/u)

[

log(1/u)u−s − Ls(1/u)
]

du. (21)
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Since the functions A′ and B′ are continuous, the derivative

Ψ′η(s) =
2A′(s)I

(1)
η (s, 0)I

(2)
η (s, 0)− [I

(1)
η (s, 0)]2B′(s)

[I
(2)
η (s, 0)]2

,

is also a continuous function on s ∈ (−∞, 0).

We now compute the limit of Ψ′η(s) as s→ 0. First, we focus on the function A′. Since for all

u ∈ (0, 1], Ls(1/u) is a non-decreasing function in s ∈ R, the following inequalities hold:

Ls(1/u) ≤ log(1/u) if s ≤ 0 and Ls(1/u) ≥ log(1/u) if s ≥ 0. (22)

A straightforward consequence is that for all s < 0, 0 ≤
[

log(1/u)u−s − Ls(1/u)
]

/s ≤

log2(1/u). Remarking that log(1/u)u−s − Ls(1/u) → log2(1/u)/2 as s → 0, the dominated

convergence theorem lead to

lim
s→0

A′(s) =
1

2

∫ 1

η

ϕ(u) log2(1/u)du =
1

2
I(2)η (0, 0). (23)

We now focus on the function B′. Using the inequalities (22) leads to

0 ≤
1

s
Ls(1/u)

[

log(1/u)u−s − Ls(1/u)
]

≤ log3(1/u),

for all s < 0. Remarking that Ls(1/u)
[

log(1/u)u−s − Ls(1/u)
]

/s → log3(1/u)/2 as s → 0

and using the dominated convergence theorem leads to

lim
s→0

B′(s) =

∫ 1

η

ϕ(u) log3(1/u)du = I(3)η (0, 0). (24)

Collecting (23) and (24) and since I
(δ)
η (s, 0) and I

(δ)
η (0, s) are continuous on (−∞, 0], the limit

of Ψ′η as s→ 0 is given by {[I
(2)
η (0, 0)]2I

(1)
η (0, 0)− [I

(1)
η (0, 0)]2I

(3)
η (0, 0)}/[I

(2)
η (0, 0)]2.

We are now interested in the limit of the derivative of Ψη as s→ −∞. Collecting (20) and (21),

Ψ′η(s) =
I
(1)
η (s, 0)

(

2I
(1)
η (0, s)I

(1)
η (2s, 0)− I

(1)
η (0, s)I

(1)
η (s, 0)− I

(1)
η (0, 2s)I

(1)
η (s, 0)

)

2
(

I
(1)
η (2s, 0)− I

(1)
η (s, 0)

)2 , (25)

for s < 0. Using (19) and remarking that I
(1)
η (0, s) → 0 as s→ −∞ shows that Ψ′η(s) → 0 as

s→ −∞.

It remains to prove that ψ′η(s) < 0 for all s < 0 or equivalently, in view of (25) that

∆η(s) := 2I(1)η (0, s)I(1)η (2s, 0)− I(1)η (0, s)I(1)η (s, 0)− I(1)η (0, 2s)I(1)η (s, 0) < 0,

since I
(1)
η (s, 0) > 0 for s ≤ 0. Furthermore, using the fact that 2L2s(1/u) = Ls(1/u)(u

−s +1),

one has
I
(1)
η (2s, 0)

I
(1)
η (s, 0)

=
1

2

(

1 +
I
(1)
η (s, s)

I
(1)
η (s, 0)

)

,

Hence,

∆η(s) = I(1)η (s, 0)I(1)η (0, s)

(

2
I
(1)
η (2s, 0)

I
(1)
η (s, 0)

− 1−
I
(1)
η (0, 2s)

I
(1)
η (0, s)

)

= I(1)η (s, s)I(1)η (0, s)− I(1)η (s, 0)I(1)η (0, 2s)

=

∫ 1

η

∫ 1

η

ϕ(u)ϕ(v)Ls(1/u)v
−s log(1/v)(u−s − v−s)dvdu

Next, using the decomposition
∫ 1

η
=
∫ u

η
+
∫ 1

u
and Fubini’s Theorem (which can be applied

because the function involved is of constant sign),

∆η(s) =

∫ 1

η

∫ u

η

ϕ(u)ϕ(v)(u−s − v−s)κ(u, v)dvdu,

13



where κ(u, v) := Ls(1/u)v
−s log(1/v)− Ls(1/v)u

−s log(1/u). Remark now that for v ∈ (η, u)

and s < 0,

∂

∂v
κ(u, v) = v−(s+1) (u−s log(1/u)− Ls(1/u)(s log(1/v) + 1)

)

≥ v−(s+1)(log(1/u)− Ls(1/u)) > 0.

Hence, for all u ∈ (η, 1) and v ∈ (η, u), κ(u, v) < κ(u, u) = 0 and the proof is complete since

ϕ(u)ϕ(v)(u−s − v−s) > 0 when u ∈ (η, 1) and v ∈ (η, u).

The next two lemmas are general results on extended regular varying functions. The first

result shows that the convergence characterizing a function of extended regular variation is

locally uniform.

Lemma 2. Let S a survival function of class ERV(γ, a) then for all η > 0,

lim
α→0

sup
u∈[η,1]

∣

∣

∣

∣

S←(uα)− S←(α)

a(α−1)
− Lγ(1/u)

∣

∣

∣

∣

= 0.

Proof of Lemma 2 − From [22, Theorem B.2.18], for all ε ∈ (0, 1), there exists α0(ε) such

that for all α < α0(ε) and all u ∈ [η, 1],

∆S←(α, u) :=

∣

∣

∣

∣

S←(uα)− S←(α)

a0(α−1)
− Lγ(1/u)

∣

∣

∣

∣

≤
ε

η
max{1, η−γ},

where for y ≥ 0,

a0(y) =











γS←(1/y) if γ > 0,

−γ(S←(0)− S←(1/y)) if γ < 0,

S←(1/y)− y−1
∫ y

0
S←(1/s)ds if γ = 0.

Clearly, a(y)/a0(y) → 1 as y goes to infinity. Hence, there exists α1(ε) such that for α < α1(ε),

|1− a(α−1)/a0(α
−1)| ≤ ε. For α < α0(ε) ∧ α1(ε), we thus have the inequality

∆S←(α, u) ≤
a0(α

−1)

a(α−1)

∣

∣

∣

∣

S←(uα)− S←(α)

a0(α−1)
− Lγ(1/u)

∣

∣

∣

∣

+ |Lγ(1/u)|

∣

∣

∣

∣

1−
a(α−1)

a0(α−1)

∣

∣

∣

∣

≤ (1 + ε)
ε

η
max{1, η−γ}+ Lγ(1/η)ε ≤

(

2max{1, η−γ}

η
+ Lγ(1/η)

)

ε,

which concludes the proof.

Lemma 3. If there exist positive sequences (αn) and (τn) converging to 0 as n → ∞ such

that the survival function S is of class ERV2(γ, a, τn, αn) then for all η ∈ (0, 1),

lim
n→∞

τ−1
n sup

u∈[η,1]

∣

∣

∣

∣

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
− Lγ−(1/u)

∣

∣

∣

∣

= 0, (26)

and

lim
n→∞

τ−1
n sup

v∈[0,Lγ(1/η)]

∣

∣

∣

∣

αn

S(S←(αn) + va(α−1
n ))

− L←γ (v)

∣

∣

∣

∣

= 0. (27)

Proof of Lemma 3 − We first focus on (26). Let us introduce the notations

∆n(u) :=
S←(uαn)− S←(αn)

a(α−1
n )

− Lγ(1/u) and ∆̄n := sup
u∈[η,1]

|∆n(u)|.

We start with the following equality:

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
=
S←(αn)

a(α−1
n )

log

[

1 +
a(α−1

n )

S←(αn)
(Lγ(1/u) + ∆n(u))

]

.
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We consider the case γ > 0. A straightforward calculus leads to

log

[

1 +
a(α−1

n )

S←(αn)
(Lγ(1/u) + ∆n(u))

]

− log(u−γ) = log(1 +Dn,1(u)),

where

|Dn,1(u)| = uγ

∣

∣

∣

∣

γ∆n(u) +

(

a(α−1
n )

S←(αn)
− γ

)

(Lγ(1/u) + ∆n(u))

∣

∣

∣

∣

≤ γ∆̄n +

∣

∣

∣

∣

a(α−1
n )

S←(αn)
− γ

∣

∣

∣

∣

(Lγ(1/η) + ∆̄n) → 0.

Hence, using inequality | log(1 + x)| ≤ 3|x|/2 for x ∈ [−1/2, 1/2], one has for n large enough

and γ > 0

τ−1
n sup

u∈[η,1]

∣

∣

∣

∣

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
− log(1/u)

∣

∣

∣

∣

≤
S←(αn)

a(α−1
n )

3τ−1
n

2
sup

u∈[η,1]

|Dn,1(u)|

+ log(1/η)τ−1
n

∣

∣

∣

∣

S←(αn)

a(α−1
n )

γ − 1

∣

∣

∣

∣

, (28)

which converges to 0 by assumption. Now, assume that γ ≤ 0, since

|Dn,2(u)| :=

∣

∣

∣

∣

a(α−1
n )

S←(αn)
(Lγ(1/u) + ∆n(u))

∣

∣

∣

∣

≤
a(α−1

n )

S←(αn)
(Lγ(1/η) + ∆̄n) → 0

and using the inequality x(1− x) ≤ log(1 + x) ≤ x for x ∈ [−1/2, 1/2], one has:

−Lγ(1/u)Dn,2(u) + ∆n(u)(1−Dn,2(u)) ≤
S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
− Lγ(1/u) ≤ ∆n(u).

Since τ−1
n sup |Dn,2(u)| → 0 and τ−1

n ∆̄n → 0, it is clear that

τ−1
n sup

u∈[η,1]

∣

∣

∣

∣

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
− Lγ(1/u)

∣

∣

∣

∣

→ 0. (29)

Collecting (28) and (29) conclude the proof of (26). The proof of equation (27) is a direct

consequence of Vervaat’s Lemma (see [22, Lemma A.0.2]).

The following lemma is a technical result that will be useful in the proof of Lemma 5. A proof

of this result can be found in [17, Lemma 6].

Lemma 4. Let (Xn) be a sequence of positive real-valued random variables such that for every

positive nonrandom sequence δn converging to 0, the random sequence δnXn converges to 0 in

probability. Then Xn = OP(1).

Let {Ŝn(y), y ≥ 0} be a [0, 1]-valued stochastic process where Ŝn is a non-increasing and

right-continuous function. In the next result it is shown that if for large values of y, Ŝn(y) is

a consistent estimator of S(y) then Ŝ←n (α) is also a consistent estimator of S←(α) for small

values of α. This result is a cornerstone in the proof of Theorem 2.

Lemma 5. Let (αn) and (τn) be sequences converging to 0 as n→ ∞ and such that the survival

function S is of class ERV2(γ, a, τn, αn). If for every sequence κn → 0, {Ŝn(y), y ≥ 0} is

such that for all η ∈ (0, 1),

τ−1
n sup

u∈(η,1)

∣

∣

∣

∣

∣

Ŝn(S
←(uαn) + κna(α

−1
n ))

S(S←(uαn) + κna(α
−1
n ))

− 1

∣

∣

∣

∣

∣

= OP(1),

then
S←(αn)

a(α−1
n )

τ−1
n sup

u∈(η,1)

∣

∣

∣

∣

∣

Ŝ←n (uαn)

S←(uαn)
− 1

∣

∣

∣

∣

∣

= OP(1). (30)
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From equation (27) in Lemma 3, it is easy to see that uniformly on u ∈ (η, 1), S(S←(uαn) +

κna(α
−1
n )) = uαn(1 + o(1)) ≥ ηαn/2 > 0 for n large enough. Hence, the division by

S(S←(uαn) + κna(α
−1
n )) is allowed for every sequence κn → 0 at least for n large enough.

Proof of Lemma 5 − Let us introduce the sequence mn := ⌊τ−1
n ⌋. For j = 1, . . . ,mn,

let θn(j) := η + j(1 − η)/(mn + 1) ∈ (η, 1). Clearly, for all u ∈ (η, 1), there exists ju ∈

{1, . . . ,mn − 1} such that θn(ju) ≤ u < θn(ju + 1). Since S← and Ŝ←n are non-increasing and

right-continuous functions, it is easy to check that for all u ∈ (η, 1),

∣

∣

∣
Ŝ←n (uαn)− S←(uαn)

∣

∣

∣
≤ 2

∣

∣

∣
Ŝ←n (θn(ju)αn)− S←(θn(ju)αn)

∣

∣

∣

+
∣

∣

∣
Ŝ←n (θn(ju + 1)αn)− S(θn(ju + 1)αn)

∣

∣

∣

+ 2 (S←(θn(ju)αn)− S←(θn(ju + 1)αn)) .

Hence,

sup
u∈(η,1)

∣

∣

∣
Ŝ←n (uαn)− S←(uαn)

∣

∣

∣
≤ 3(Tn,1 + Tn,2),

with

Tn,1 := max
j=1,...,mn−1

[S←(θn(j)αn)− S←(θn(j + 1)αn)] ,

and

Tn,2 := max
j=1,...,mn

∣

∣

∣
Ŝ←n (θn(j)αn)− S←(θn(j)αn)

∣

∣

∣
.

Let us first focus on the term Tn,1. Since S is of class ERV2(γ, a, τn, αn), a straightforward

calculus entails that

S←(θn(j)αn)− S←(θn(j + 1)αn) = a(α−1
n ) [Lγ(1/θn(j))− Lγ(1/θn(j + 1)) + o(τn)] ,

where the term o(τn) converges to 0 uniformly on u ∈ (η, 1).

Since the derivative of the function Lγ(1/.) is bounded on (η, 1), a first order Taylor expansion

leads to S←(θn(j)αn)−S
←(θn(j+1)αn) = a(α−1

n )
(

O(m−1
n ) + o(τn)

)

, uniformly on u ∈ (η, 1)

and thus

Tn,1 = a(α−1
n )O(τn). (31)

Let us now consider the term Tn,2. Our goal is to show that

τ−1
n

a(α−1
n )

Tn,2 = OP(1). (32)

To this end, it suffices, from Lemma 4, to show that for every sequence δn → 0 and for every

ε > 0,

pn(ε) := P

[

δnτ
−1
n

a(α−1
n )

max
j=1,...,mn

∣

∣

∣
Ŝ←n (θn(j)αn)− S←(θn(j)αn)

∣

∣

∣
> ε

]

→ 0.

Note that it is sufficient to consider sequences δn → 0 such that δ−1
n τn → 0 as n goes to

infinity. Introducing the sequence

y±n (θn(j)) := S←(θn(j)αn)± ετn
a(α−1

n )

δn
,

one has

pn(ε) ≤ P

[

mn
⋃

j=1

{

Ŝ←n (θn(j)αn) > y+j,n

}

∪
{

Ŝ←n (θn(j)αn) ≤ y−j,n

}

]

≤ 1− P

[

mn
⋂

j=1

{

Ŝ←n (θn(j)αn) ≤ y+j,n

}

]

+ P

[

mn
⋃

j=1

{

Ŝ←n (θn(j)αn) ≤ y−j,n

}

]

.
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Since Ŝ←n is a non-increasing and right-continuous function, it is easy to see that

pn(ε) ≤ P

[

mn
⋃

j=1

{

W+
n (θn(j)) > b+n,j(ε)

}

]

+ P

[

mn
⋃

j=1

{

W−n (θn(j)) ≤ b−n,j(ε)
}

]

,

where

W±n (θn(j)) := τ−1
n

(

Ŝn(y
±
n (θn(j)))

S(y±n (θn(j)))
− 1

)

and b±n,j(ε) := τ−1
n

(

θn(j)αn

S(y±n (θn(j)))
− 1

)

.

By assumption,W±n (u) = OP(1) uniformly on u ∈ [η, 1]. Since S is of class ERV2(γ, a, τn, αn),

y±n (θn(j))(ε) = S←(αn) + a(α−1
n )

[

Lγ(1/θn(j)) + ζ±n (ε)
]

,

where ζ±n (ε) = τn(±εδ
−1
n + o(1)), the term o(1) converging to 0 uniformly on u ∈ (η, 1). Thus,

from Lemma 3, equation (27), one has for all j ∈ {1, . . . ,mn},

b+n,j(ε) = τ−1
n

[

θn(j)L
←
γ

(

Lγ(1/θn(j)) + ζ+n (ε)
)

− 1 + o(τn)
]

.

Since for v ∈ [0, Lγ(1/η)] the derivative of L←γ is larger than 1 ∧ ηγ−1, a Taylor expansion

leads to, for n large enough:

b+n,j ≥
ηε(1 ∧ ηγ−1)

2δn
.

Similarly, for n large enough, one can show that

b−n,j ≤ −
ηε(1 ∧ ηγ−1)

2δn
.

Hence,

pn(ε) ≤ P

[

mn
⋃

j=1

{

δnW
+
n (θn(j)) >

ηε(1 ∧ ηγ−1)

2

}

]

+ P

[

mn
⋃

j=1

{

δnW
−
n (θn(j)) ≤ −

ηε(1 ∧ ηγ−1)

2

}

]

≤ P

[

sup
u∈[η,1]

δn|W
+
n (u)| >

ηε(1 ∧ ηγ−1)

2

]

+ P

[

sup
u∈[η,1]

δn|W
−
n (u)| ≥ −

ηε(1 ∧ ηγ−1)

2

]

→ 0,

proving (32). Finally, since S← is a non-increasing function and collecting (31) and (32),

S←(αn)

a(α−1
n )

τ−1
n sup

u∈[η,1]

∣

∣

∣

∣

∣

Ŝ←n (uαn)

S←(αn)
− 1

∣

∣

∣

∣

∣

≤
3τ−1

n

a(α−1
n )

(Tn,1 + Tn,2) = OP(1),

which conclude the proof.

The next lemma establishes a uniform convergence result on processes of the form:

Φ̂n(u) :=

n
∑

i=1

Xn,i(u),

where, for η ∈ (0, 1), {Xn,i(u), u ∈ (η, 1)}, i = 1, . . . , n are n independent stochastic processes

with Xn,i non-decreasing and positive. The expectation of Φ̂n(u) is denoted µn(u). This

lemma will be used to study the numerator of (7).

Lemma 6. Let τn = (log(µn(1))/µn(1))
1/2. If µn(η) → ∞ as n goes to infinity, if there exist

positive constants CX and Cµ such that for all i ∈ {1, . . . , n} and u ∈ [η, 1], Xn,i(u) ≤ CX ,

µn(η)/µn(1) ≥ Cµ for n large enough and

sup

{
∣

∣

∣

∣

µn(u)

µn(u′)
− 1

∣

∣

∣

∣

, u ∈ (η, 1) with |u− u′| ≤ (µn(1))
−1/2

}

= O (τn) , (33)

then,

sup
u∈(η,1)

∣

∣

∣

∣

∣

Φ̂n(u)

µn(u)
− 1

∣

∣

∣

∣

∣

= OP (τn) .
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Proof of Lemma 6 − Let Cε := (3CX/Cµ)
1/2. Using a multiplicative form of the Chernoff’s

inequality for bounded variables (see for instance [7, Theorem 1.1]), one has for all u ∈ (η, 1)

P

[

τ−1
n

∣

∣

∣

∣

∣

Φ̂n(u)

µn(u)
− 1

∣

∣

∣

∣

∣

> Cε

]

≤ 2 exp

(

−
C2

ε

3CX

µn(u)

µn(1)
log(µn(1))

)

≤
2

µn(1)
. (34)

Let us now introduce the sequence mn := ⌈(µn(1))
1/2⌉ + 1 → ∞, and, for j = 1, . . . ,mn, let

θn(j) := η + (j − 1)(1− η)/(mn − 1) ∈ [η, 1]. Here ⌈.⌉ is the notation for the ceiling function.

Clearly, for all u ∈ (η, 1), there exists ju ∈ {1, . . . ,mn − 1} such that θn(ju) ≤ u < θn(ju + 1)

and then, since Xn,i, i = 1, . . . , n are non-increasing,

∣

∣

∣

∣

∣

Φ̂n(u)

µn(u)
− 1

∣

∣

∣

∣

∣

≤
1

µn(η)

[

∣

∣

∣
Φ̂n(θn(ju + 1))− µn(θn(ju + 1))

∣

∣

∣
+ 2

∣

∣

∣
Φ̂n(θn(ju))− µn(θn(ju))

∣

∣

∣

+ 2 (µn(θn(ju + 1))− µn(θn(ju)))

]

,

leading to

sup
u∈(η,1)

∣

∣

∣

∣

∣

Φ̂n(u)

µn(u)
− 1

∣

∣

∣

∣

∣

≤
3

µn(η)
(Tn,1 + Tn,2),

with

Tn,1 := max
j=1,...,mn−1

(

µn(θn(j+1))−µn(θn(j))
)

and Tn,2 := max
j=1,...,mn

∣

∣

∣
Φ̂n(θn(j))− µn(θn(j))

∣

∣

∣
.

Under (33), since for all j ∈ {1, . . . ,mn − 1}, θn(j)− θn(j + 1) = (mn − 1)−1 ≤ (µn(1))
−1/2,

the following holds for n large enough:

Tn,1 = O
(

(µn(1) log(µn(1)))
1/2
)

. (35)

Furthermore, using (34)

P

[

(µn(1) log(µn(1)))
−1/2 Tn,2 > Cε

]

≤ P

[

(

µn(1)

log(µn(1))

)1/2 mn
⋃

j=1

{
∣

∣

∣

∣

∣

Φ̂n(θn(j))

µn(θn(j))
− 1

∣

∣

∣

∣

∣

> Cε

}]

≤ 2(µn(1))
−1/2 → 0,

since µn(b) → ∞. Hence,

Tn,2 = OP

(

(µn(1) log(µn(1)))
1/2
)

. (36)

From (35) and (36), since µn(1)/µn(η) ≤ C−1
µ , τ−1

n Tn,1/µn(η) = O(1) and τ−1
n Tn,2/µn(η) =

OP(1), which conclude the proof.

6.2 Proofs of main results

Proof of Theorem 1 − We start by showing the following equation:
∣

∣

∣

∣

∣

(

S←(αn)

a(α−1
n )

)δ

H(δ)
η,ϕ(S̃n)−

∫ 1

η

ϕ(u)Lδ
γ−(1/u)du

/(
∫ 1

η

ϕ(u)L0(1/u)du

)δ
∣

∣

∣

∣

∣

= OP (τn) , (37)

Let us first introduce the following notations: for u ∈ [η, 1],

∆n(u) =

(

S̃←n (uαn)

S←(uαn)
− 1

)

, Rn(u) = log
1 + ∆n(u)

1 + ∆n(1)
,

and bn(u) =
S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)
− Lγ−(1/u).
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One has

(

S←(αn)

a(α−1
n )

log
S̃←n (uαn)

S̃←n (αn)

)δ

=

(

S←(αn)

a(α−1
n )

)δ (

log
S←(uαn)

S←(αn)
+Rn(u)

)δ

=

(

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)

)δ

+

δ−1
∑

j=0

Cj
δ

(

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)

)j (
S←(αn)

a(α−1
n )

Rn(u)

)δ−j

Since S̃n satisfies (30),

∆̄n := sup
u∈(η,1)

|∆n(u)| = OP

(

a(α−1
n )

S←(αn)
τn

)

= oP(1),

and thus, |Rn(u)| = OP(∆̄n) = oP(1). Remark that

δ−1
∑

j=0

Cj
δ

(

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)

)j

≤
δ
∑

j=0

Cj
δ

(

Lγ−(1/u) + bn(u)
)j

≤ (1 + Lγ−(1/η) + b̄n)
δ,

with b̄n = sup{|bn(u)|, u ∈ [η, 1]} which converges to 0 from the first part of Lemma 3. Hence,

δ−1
∑

j=0

Cj
δ

(

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)

)j

= O(1),

and thus,

(

S←(αn)

a(α−1
n )

)δ
[

(

log
S̃←n (uαn)

S̃←n (αn)

)δ

−

(

log
S←(uαn)

S←(αn)

)δ
]

= OP (τn) ,

uniformly on u ∈ (η, 1). Since

(

S←(αn)

a(α−1
n )

log
S←(uαn)

S←(αn)

)δ

− Lδ
γ−(1/u) = (Lγ−(1/u) + bn(u))

δ − Lδ
γ−(1/u) = O(b̄n),

we have, as a first conclusion that, uniformly on u ∈ (η, 1),

(

S←(αn)

a(α−1
n )

log
S̃←n (uαn)

S̃←n (αn)

)δ

= Lδ
γ−(1/u) +OP (τn) , (38)

since, from Lemma 3, τ−1
n b̄n → 0. Multiplying equation (38) by ϕ(u) and integrating between

η and 1 lead to (37).

The rest of the proof is based on the decomposition

γη,ϕ(S̃n)−γ =
(

H(1)
η,ϕ(S̃n)− γ+

)

+

(

Ψ←η,ϕ

(

max

{

[H
(1)
η,ϕ(S̃n)]

2

H
(2)
η,ϕ(S̃n)

,Ψη,ϕ(0)

})

− γ−

)

=: D+
n+D

−
n .

Let us first consider the term D+
n . From (37), one has

D+
n =

a(α−1
n )

S←(αn)
OP(τn) +

a(α−1
n )

S←(αn)

∫ 1

η

ϕ(u)Lγ−(1/u)du

/
∫ 1

η

ϕ(u)L0(1/u)du− γ+.

Since S is of class ERV2(γ, a, τn, αn) and remarking that if γ ≥ 0,

∫ 1

η

ϕ(u)Lγ−(1/u)du

/
∫ 1

η

ϕ(u)L0(1/u)du = 1,

it is clear that D+
n = OP(τn). Now, using again (37), it is easy to check that

[H
(1)
η,ϕ(S̃n)]

2

H
(2)
η,ϕ(S̃n)

= Ψη,ϕ(γ−) (1 +OP(τn)) .
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Since Ψη,ϕ is a decreasing function (see Lemma 1) and τn → 0,

max

{

[H
(1)
η,ϕ(S̃n)]

2

H
(2)
η,ϕ(S̃n)

,Ψη,ϕ(0)

}

= Ψη,ϕ(γ−) (1 +OP(τn)) .

Finally, since from Lemma 1, the derivative of Ψ←η,ϕ is bounded in a neighborhood of Ψη,ϕ(γ−),

D−n = Ψ←η,ϕ

(

max

{

[H
(1)
η,ϕ(S̃n)]

2

H
(2)
η,ϕ(S̃n)

,Ψη,ϕ(0)

})

−Ψ←η,ϕ (Ψη,ϕ(γ−)) = OP(τn),

which concludes the proof.

Proof of Theorem 2 − From Theorem 1, it suffices to show that

S←(αn)

a(α−1
n )

τ−1
n sup

u∈(η,1)

∣

∣

∣

∣

∣

Ŝ←n (uαn)

S←(uαn)
− 1

∣

∣

∣

∣

∣

= OP(1), (39)

where Ŝn is given by (7). From Lemma 5, letting yκn(u;αn) := S←(uαn) + κna(α
−1
n ), it

suffices to prove that for every sequence κn → 0,

τ−1
n sup

u∈(η,1)

∣

∣

∣

∣

∣

Ŝn(yκn(u;αn)

S(yκn(u;αn))
− 1

∣

∣

∣

∣

∣

= OP(1). (40)

First, let us consider the numerator of Ŝn(yκn(u;αn) given by:

Φ̂n(u) :=

n
∑

i=1

Rn,i(yκn(u;αn)).

Recall that, by assumption,

µκn(u;αn) = E

(

Φ̂n(u)
)

= r−1
0

S(yκn(u;αn))

αnσ2
n

(1 + o(τn)),

uniformly on u ∈ (η, 1). Since the survival function S is of class ERV2(γ, a, τn, αn),

Lemma 3, equation (27) entails that, uniformly on u ∈ (η, 1)

S(yκn(u;αn)) = αn

[

1
/

L←γ (Lγ(1/u) + κn + o(τn)) + o(τn)
]

= uαn(1 + o(1)),

and thus, uniformly on u ∈ (η, 1),

µκn(u;αn) = r−1
0 σ−2

n

[

1
/

L←γ (Lγ(1/u) + κn + o(τn)) + o(τn)
]

.

As a first conclusion, (µκn(1;αn)/ log(µκn(1;αn)))
−1/2 is asymptotically proportional to τn

and, for n large enough,
µκn(η;αn)

µκn(1;αn)
≤ 2η. (41)

We now show that µκn(u;αn) satisfies condition (33) of Lemma 6. For (u, u′) ∈ (η, 1)2 such

that |u − u′| ≤ (µκn(1;αn))
−1/2, since the derivatives of 1/L←γ and Lγ(1/.) are bounded on

(η, 1), a Taylor expansion leads to |µκn(u;αn)− µκn(u
′;αn)| = O

(

σ−2
n τn

)

. Thus,

∣

∣

∣

∣

µn(u)

µn(u′)
− 1

∣

∣

∣

∣

≤
1

µn(η)
|µn(u)− µn(u

′)| = O (τn) . (42)

Hence, collecting (41) and (42), Lemma 6 entails that

sup
u∈(η,1)

∣

∣

∣

∣

∣

Φ̂n(u)r0αnσ
2
n

S(yκn(u;αn))
(1 + o(τn))− 1

∣

∣

∣

∣

∣

= OP(τn).

Finally, since by assumption,

αnσ
2
n

n
∑

i=1

Rn,i(0) = r0 + oP(τn),
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uniformly on u ∈ (η, 1), one has

sup
u∈(η,1)

∣

∣

∣

∣

∣

Ŝn(yκn(u;αn))

S(yκn(u;αn))
(1 + oP(τn))− 1

∣

∣

∣

∣

∣

= OP(τn).

It is easy to check that the factor 1 + oP(τn) can be removed proving (40) for every sequence

κn → 0 and consequently (39) is established. This concludes the proof.

Proof of Corollary 1 − Let zκn(u;αn) = S←(uαn) + κna1(α
−1
n ), where κn is a sequence

converging to zero as n → ∞. Keeping in mind the notation of equation (10), it is easy to

check that
n
∑

i=1

R
(1)
n,i(0) = n,

and thus the second part of condition (8) of Theorem 2 is clearly satisfied with r0 = 1. Now,

let

Φ̂(1)
n (u) :=

n
∑

i=1

R
(1)
n,i(zκn(u;αn)).

Our goal is to provide an expansion of µ
(1)
κn (u;αn) := E(Φ̂

(1)
n (u)) in order to check the validity

of the first part of condition (8) in Theorem 2. We start with

µκn(u;αn)

nS(zκn(u;αn))
=

n
∑

i=1

xn,i − xn,i−1

xn,n − b1

(

Sxn,i
(zκn(u;αn))

S(zκn(u;αn))
− c(xn,i)

)

(43)

+

n
∑

i=1

xn,i − xn,i−1

xn,n − b1
c(xn,i). (44)

Since S is of class ERV2(γ, a1, τn, αn), it is easy to check that there exists δ > 1 such that

for all u ∈ (η, 1), zκn(u;αn)/S
←(αn) ∈ [δ−1, δ]. Hence, from condition (12), the term (43) is

a o(τn) uniformly on u ∈ (η, 1). Furthermore,

1 =
1

b2 − b1

∫ b2

b1

c(s)ds =
xn,n − b1
b2 − b1

n
∑

i=1

xn,i − xn,i−1

xn,n − b1
c(xn,i) + c(b2)

xn,n − b1
b2 − b1

(b2 − xn,n)

+
1

b2 − b1

n+1
∑

i=1

∫ xn,i

xn,i−1

(c(s)− c(xn,i))ds

From conditions (A.3) and (11), since nσn → ∞, we deduce from the previous equation that

the term (44) is equal to 1 + o(τn) uniformly on u ∈ (η, 1). Hence, condition (8) is satisfied

and the conclusion follows applying Theorem 2.

Proof of Corollary 2 − Let yκn(u;αn) = S←(uαn|x0) + κna2(α
−1
n |x0), where κn is a

sequence converging to zero as n → ∞. Let us first focus on the denominator of Ŝ
(2)
n (.|x0).

Let

ĝn(x0) =
1

n

n
∑

i=1

KHn(x0 −Xi) = (n|Hn|)
−1

n
∑

i=1

R
(2)
n,i(0|x0),

where R
(2)
n,i is defined in (14). Under (A.2) and (A.3), since n|Hn| → ∞, it is well known

that

ĝn(x0) = g(x0)
(

1 +OP(‖Hn‖∞) +OP

(

(n|Hn|)
−1/2

))

,

(see Parzen [26] for a proof). Then, since by assumption τ−1
n ‖Hn‖∞ and τ−1

n (n|Hn|)
−1/2

converge to 0, one has that ĝn(x0)/g(x0) = 1 + oP(τn). Thus the second part of condition (8)

in Theorem 2 is satisfied. Now, let

Φ̂(2)
n (u|x0) :=

n
∑

i=1

R
(2)
n,i(zκn(u;αn)|x0).
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Let µκn(u;αn|x0) = E(Φ̂
(2)
n (u|x0)). Straightforward calculus leads to:

µκn(u;αn|x0)

n|Hn|g(x0)S(yκn(u;αn)|x0)
=

∫

Up

(

S(yκn(u;αn)|x0 −Hnt)

S(yκn(u;αn)|x0)
− 1

)

K(t)
g(x0 −Hnt)

g(x0)
dt

+

∫

Up

K(t)
g(x0 −Hnt)

g(x0)
dt.

Let us first focus on the second term. Under condition (A.2),

∫

Up

K(t)
g(x0 −Hnt)

g(x0)
dt− 1 ≤

cg‖Hn‖∞
g(x0)

∫

Up

K(t)‖t‖∞dt = O(‖Hn‖∞) = o(τn), (45)

since τ−1
n ‖Hn‖∞ → 0. Now, since S(.|x0) is of class ERV2(γ, a2(.|x0), τn, αn), it is easy

to check that there exists δ > 1 such that for all u ∈ (η, 1), yκn(u;αn)/S
←(αn|x0) ∈ [δ−1, δ].

Hence, from condition (15) and using (45)

∫

Up

(

S(yκn(u;αn)|x0 −Hnt)

S(yκn(u;αn)|x0)
− 1

)

K(t)
g(x0 −Hnt)

g(x0)
dt = o(τn). (46)

Collecting (45) and (46), the first part of condition (8) is satisfied. Theorem 2 concludes the

proof.

Proof of Corollary 3 − Let zκn(u;αn) = S←x0
(uαn) + κna3,x0

(α−1
n ), where κn is a sequence

converging to zero as n→ ∞. First, recall that

n
∑

i=1

R
(3)
n,i,x0

(0) = n|Hn|,

and thus second part of condition (8) is obviously satisfied. Now let

Φ̂(3)
n,x0

(u) =
n
∑

i=1

R
(3)
n,i,x0

(zκn(u;αn)),

and denote by µκn,x0
(u;αn) its expectation. Recalling that

n
∑

i=1

∫

Ai

KHn(x0 − t)dt = 1,

it is easy to check that,

µκn,x0
(u;αn)

n|Hn|Sx0
(zκn(u;αn))

= 1 +

n
∑

i=1

∫
(

Sxn,i
(zκn(u;αn))

Sx0
(zκn(u;αn))

− 1

)

I{t∈Ai∩B(x0,Hn)}KHn(x0 − t)dt.

Since nV̄n ≤ CV , for all i ∈ {1, . . . , n}, Ai ⊂ B(xi, rn,pIp) with 2rn,p := (CV/n)
1/p. Thus if

Ai ∩B(x0, Hn) 6= ∅, xi ∈ B(x0, 2Hn). Indeed, if there exists t ∈ Ai ∩B(x0, Hn),

‖H−1
n (xi − x0)‖∞ ≤ ‖H−1

n (xi − t)‖∞ + ‖H−1
n (t− x0)‖∞ ≤ ‖H−1

n ‖∞rn,p + 1.

By assumption n|Hn| → ∞ and since for all positive-definite matrix M of size p, |M |1/p ≤

‖M‖∞, one has for n large enough that ‖H−1
n ‖∞rn,p ≤ 1 and thus, ‖H−1

n (xi − x0)‖∞ ≤ 2 i.e.

xn,i ∈ B(x0, 2Hn). Furthermore, since Sx0
is of class ERV2(γ, a3,x0

, τn, αn), it is easy to

check that there exists δ > 1 such that for all u ∈ (η, 1) zκn(u;αn)/S
←
x0
(αn) ∈ [δ−1, δ]. Hence,

from condition (18),

µκn,x0
(u;αn) = n|Hn|Sx0

(zκn(u;αn)) (1 + o(τn)) ,

proving the first part of condition (8). Theorem 2 concludes the proof.
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P1-1 P1-2

η n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

0.005 0.194 0.098 0.056 0.035 0.682 0.320 0.176 0.112

0.01 0.195 0.100 0.057 0.035 0.700 0.330 0.182 0.116

0.02 0.210 0.102 0.059 0.037 0.735 0.349 0.193 0.123

0.04 0.229 0.112 0.067 0.044 0.804 0.390 0.218 0.139

0.08 0.303 0.133 0.093 0.056 0.960 0.478 0.276 0.172

0.16 0.438 0.200 0.158 0.088 1.338 0.699 0.419 0.259

P1-3

η n = 50 n = 100 n = 200 n = 400

0.005 0.108 0.077 0.044 0.030

0.01 0.112 0.082 0.048 0.034

0.02 0.121 0.091 0.056 0.040

0.04 0.143 0.110 0.068 0.050

0.08 0.201 0.166 0.096 0.069

0.16 0.360 0.292 0.159 0.112

Table 1: Values for different values of η and n of EMSE(γn,ϕ(Ŝ
(1)
n ;n−1/3)) in the case ϕ = 1 using

the generating processes P1-1, P1-2 and P1-3 with c̃(.) = 1 + log(1/.).

P1-1 P1-2

η n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

0.005 0.242 0.129 0.074 0.047 0.268 0.151 0.085 0.054

0.01 0.228 0.125 0.073 0.046 0.278 0.158 0.089 0.057

0.02 0.224 0.122 0.070 0.045 0.299 0.171 0.096 0.063

0.04 0.221 0.124 0.069 0.050 0.341 0.197 0.113 0.075

0.08 0.265 0.140 0.090 0.057 0.440 0.256 0.148 0.100

0.16 0.373 0.193 0.134 0.080 0.634 0.404 0.241 0.166

P1-3

η n = 50 n = 100 n = 200 n = 400

0.005 0.094 0.063 0.034 0.024

0.01 0.095 0.066 0.038 0.027

0.02 0.100 0.072 0.044 0.031

0.04 0.112 0.082 0.053 0.039

0.08 0.149 0.124 0.076 0.056

0.16 0.273 0.221 0.122 0.097

Table 2: Values for different values of η and n of EMSE(γn,ϕ(Ŝ
(1)
n ;n−1/3)) in the case ϕ = log(1/.)

using the generating processes P1-1, P1-2 and P1-3 with c̃(.) = 1 + log(1/.).
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P1-1 P1-2 P1-3

αn c̃ = 1 c̃(.) = 1 + log(1/.) c̃ = 1 c̃(.) = 1 + log(1/.) c̃ = 1 c̃(.) = 1 + log(1/.)

n−1/2 1.018 0.725 0.195 0.141 0.484 0.534

n−1/3 1.211 1.070 0.402 0.352 0.809 0.735

n−1/4 1.232 1.151 0.428 0.380 0.835 0.930

n−1/5 1.210 1.177 0.400 0.252 0.933 0.865

n−1/6 1.274 1.172 0.433 0.284 1.000 0.811

Table 3: Comparison of γn,ϕ(Ŝ
(1)
n ;αn) and the moment estimator: values of the ratio R1(αn) with

ϕ(.) = log(1/.) and τ = 0.02 using the generating processes P1-1, P1-2 and P1-3 with different

values of αn and different functions c̃.
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Figure 1: Estimation of c(x0) for different values of x0 and for data generated by P1-3 with θ = 1

(left) and θ = 1/2 (right). The points o represent the median over the N = 500 replications while

the points - and + represent respectively the quantiles of order 0.1 and 0.9. The full line is the

true function c.

26



P2-1 P2-2

(αn,i, Hn,i,j) j = 2 j = 3 j = 4 j = 5 j = 6 j = 2 j = 3 j = 4 j = 5 j = 6

i = 2 0.390 0.713 0.653 1.051 1.066 0.055 0.139 0.179 0.312 0.327

i = 3 0.666 1.089 1.130 1.078 1.036 0.109 0.288 0.571 0.600 0.698

i = 4 0.789 1.079 1.268 1.136 1.132 0.208 0.435 0.617 0.692 0.833

i = 5 0.936 1.121 1.352 1.286 1.297 0.295 0.454 0.557 0.596 0.642

i = 6 0.885 1.256 1.400 1.371 1.355 0.223 0.470 0.580 0.622 0.686

P2-3

(αn,i, Hn,i,j) j = 2 j = 3 j = 4 j = 5 j = 6

i = 2 0.018 0.315 0.423 0.407 0.494

i = 3 0.214 0.586 0.802 1.058 0.882

i = 4 0.457 0.842 1.065 1.167 1.118

i = 5 0.354 1.062 1.355 1.172 1.103

i = 6 0.532 1.148 1.300 1.148 1.077

Table 4: Comparison of γn,ϕ(Ŝ
(3)
n (.|x0);αn) and the estimator γ̂S(αn, Hn|x0): values of the ratio

R2(αn, Hn) with ϕ(.) = log(1/.) and τ = 0.02 using the generating processes P2-1, P2-2 and

P2-3 for (αn,i = n−1/i, Hn,i,j = n(1−i)/(ij)), i, j = 2, . . . , 6.
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