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Rhythmic generation of trees and languages

Victor Marsault∗† Jacques Sakarovitch†

2014 – 05 – 05

Abstract

This work builds on the notion of breadth-first signature of infinite trees
and (prefix-closed) languages introduced by the authors in a previous work.
We focus here on periodic signatures, a case coming from the study of ra-
tional base numeration systems; the language of integer representations in
base p

q has a purely periodic signature whose period is derived from the
Christoffel word of slope p

q . Conversely, we characterise languages whose
signature are purely periodic as representations of integers in such number
systems with non-canonical alphabets of digits.

1 Introduction
In this work, we study a family of (infinite) trees and languages that are defined
by means of a new technique: the breadth-first search that we have introduced
in a recent paper [11]. In that paper, we have explained that an ordered tree of
finite degree T can be characterised by the infinite sequence of the degrees of its
nodes visited in the order given by the breadth-first search, called the signature s
of T . This signature s, together with an infinite sequence λ of letters taken in an
ordered alphabet characterises then a labelled tree T .

If the sequence λ is consistent with the signature s— we call the pair (s,λ) a
labelled signature — the breadth-first search of T corresponds to the enumeration
in the radix order of the prefix-closed language LT of branches of T . And we
have shown ([11, Th. 1]) that regular trees or (prefix-closed) regular languages are
characterised by those labelled signatures that are substitutive sequences.

Here, we consider and study the simplest possible signatures, and labelled
signatures, when seen as infinite words, namely the purely periodic ones. The
labelled tree — call it I 3

2
— shown at Fig.1 gives an example of a labelled tree

having such a periodic labelled signature. The nodes of I 3
2
are numbered by

integers in the order of a breadth-first search and, with exception of the root 0
for a reason that will be explained later, even nodes have two children and odd
nodes one, which results in the sequence 2,1,2,1, . . . = 21ω for the signature.
∗Corresponding author, victor.marsault@telecom-paristech.fr
†Telecom-ParisTech and CNRS, 46 rue Barrault, 75013 Paris, France
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Moreover, the sequence of labels of the arcs in the same breadth-first search is
0,2,1,0,2,1, . . . = 021ω .

The branch language of I 3
2
, that is, the set of words that label the paths from

the root to every node, is the language L 3
2
of the representations of the integers in

the so-called numeration system in base 3
2 that has been introduced and studied

in [1].
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Figure 1: The tree I 3
2
, representation of the language L 3

2

This language L 3
2
and more generally the languages L p

q
of the representations

of the integers in base p
q are indeed the starting point of this work. It is a challenge

to better understand their structure, both from a number theoretic point of view
— as we did in [1] — and from a formal language theory point of view as they seem
to be at the same time ‘very regular’ and completely orthogonal to all classification
and usual tools of classical formal language theory. In particular, none of them
are regular languages and they even defeat any kind of iteration lemma. In a
former work we have shown that these languages enjoy a kind of ‘autosimilarity
property’ [2]. Here, we show that they are somehow characterised by their periodic
labelled signature.

First, we show that the labelled signature of these languages are periodic (The-
orem 23). Stating the converse requires some more definitions.

We call rhythm of directing parameter (q, p) a q-tuple of integers whose sum
is p: r = (r0, r1, . . . , rq−1). We then describe how such rhythm r allows to generate a
tree such that the n-th node (in the breadth-first order) has rk successors, where k
is congruent to n modulo q (plus a special rule for the root).

The main result of this paper reads then (below we give the definition of FLIP
languages, which, roughly speaking, are languages that meet no kind of iteration
lemma):

Theorem 12.. Let Kr be the branch language of the tree generated by a rhythm r
of directing parameter (q, p).
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a. If p
q is an integer, then Kr is a regular language;

b. If p
q is not an integer, then Kr is a FLIP language.

In the general case, the rhythm of L p
q
corresponds to the most equitable way

of parting p objects into q cases (with a bias to the left when necessary). We call
it the Christoffel rhythm associated with p

q , as it can be derived from the more
classical notion of Christoffel word of slope p

q (cf. [3]), that is, the canonical way
to approximate the line of slope p

q on a Z ×Z lattice.

The proof of Theorem 12 is the purpose of Section 5 and consists of the re-
duction of any structure generated by a rhythm to the number system whose base
is the growth ratio of this rhythm. In fact, the language generated by a rhythm
is simply a non-canonical representation of the integers in this base, in the sense
that the integers are represented on a non-canonical alphabet. Using the existing
work on alphabet conversion in rational base number systems (cf. [1] or [6]) it
allows to conclude that both languages are basically as complicated (or as simple,
in the degenerate case where the growth ratio happens to be an integer).

This article is organised as follows. In the preliminaries, we present the three
notions used in the sequel: the numeration system in base p

q , the Finite Left
Iteration Property, and the trees and their signature. In Section 3 we give a
precise definition of the breadth-first generation of infinite trees and language by
a rhythm. Then in Section 4, we describe how this process can be used to generate
the language of the representation of integers in a rational base numeration system.
Finally, in Section 5, we prove that any language build by a rhythm is in some
sense a non-canonical representation of the integers in some underlying rational
base.

2 Preliminaries and Notation
Given two positive integers n and m, we denote by n

m their division in Q; by n÷m
and n%m respectively the quotient and the remainder of the Euclidean division
of n by m, that is, n = (n ÷m)m + (n%m) and 0 ⩽ (n%m) < m. Additionally,
we denote by Jn,mK the integer interval {n, (n + 1), . . . ,m}.

2.1 Rational Base Numeration Systems

Let p be an integer, p ⩾ 2, and Ap = J0, p−1K the alphabet of the p first digits. Every
word w = an an−1⋯a0 of A ∗

p is given a value in N by the evaluation function πp:

πp(an an−1⋯a0) =
n

∑
i=0
ai p

i ,

and w is a p-development of n. Every n in N has a unique p-development without
leading 0’s in A ∗

p : it is called the p-representation of n and is denoted by ⟨n⟩p. The
p-representation of n can be computed from left-to-right by a greedy algorithm,
and also from right-to-left by iterating the Euclidean division of n by p, the digits ai
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being the successive remainders. The language of the p-representations of the
integers is the rational language Lp = {⟨n⟩p ∣ n ∈ N} = (Ap / 0) A ∗

p .

Let p and q be two co-prime integers, p > q > 1. In [1], we have generalised
these classical, and obvious, statements to the the more exotic case of numeration
system with rational base p

q . Given a positive integer n, let us define N0 = N and,
for all i > 0,

qNi = pN(i+1) + ai , (1)

where ai is the remainder of the Euclidean division of qNi by p, hence
in Ap = J0, p − 1K. Since p > q, the sequence (Ni)i∈N is strictly decreasing and
eventually stops at Nk+1 = 0. Moreover, it holds that

N =
k

∑
i=0

ai
q

(
p

q
)
i

.

The evaluation function π p
q

is derived from this formula. Given a
word anan−1⋯a0 over Ap, and indeed over any alphabet of digits, its value is
defined by

π p
q
(anan−1⋯a0) =

n

∑
i=0

ai
q

(
p

q
)
i

. (2)

Conversely, a word u in A ∗
p is called a p

q -representation of an integer x

if π(u) = x. Since the representation is unique up to leading 0’s (see [1, Theo-
rem 1]) the p

q -representation of x which does not starts with a 0 is is denoted
by ⟨x⟩ p

q
and can be computed with the modified Euclidean division algorithm

above. By convention, the representation of 0 is the empty word ε. The set of
p
q -representations of integers is denoted by L p

q
:

L p
q
= {⟨n⟩ p

q
∣ n ∈ N} .

It is immediate that L p
q
is prefix-closed (since, in the modified Euclidean

division algorithm ⟨N⟩ = ⟨N1⟩.a0) and right-extendable (for every representa-
tion ⟨n⟩, there exists (at least) an a in Ap such that q divides (np + a) and
then ⟨

np+a
q ⟩ = ⟨n⟩.a). As a consequence, L p

q
can be represented as an infinite tree;

it is shown at Figure 1, in the introduction. By abuse of language, in the following
we will write that n u

Ð→
L p

q

m (or n u
Ð→ m, for short) if ⟨m⟩ = ⟨n⟩.u; it should be

noted that, with this notation, the following equation hold.

∀n ∈ N , ∀m ∈ N , ∀a ∈ Ap n
a
Ð→m ⇐⇒ a = qm − pn . (3)

It is known that L p
q
is not rational and not even context-free (cf. [1]). In

fact L p
q
defeats any reasonable kind of pumping lemma; it possesses the Finite

Left Iteration Property, discussed in the next Section 2.2.

Remark 1. Even though we separated the notions of rational and integer base
number systems in order to give specific statements, it should be noted that the
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former extends naturally the latter. Indeed, in the case where q = 1, the definitions
of π p

q
, ⟨ ⋅ ⟩ p

q
and L p

q
respectively coincide with those of πp, ⟨ ⋅ ⟩p and Lp. In the

sequel, we will consider the base p
q such that p > q ⩾ 1, that is indifferently one

number system or the other.

Remark 2. It should be noted that a rational base number systems is not a β-
numeration — where the representation of a number is computed by the (greedy)
Rényi algorithm (cf. [8, Chapter 7]) — in the special case where β is a ratio-
nal number. In such a system, the digit set is {0,1, . . . , ⌈pq ⌉} and the weight of
the i-th leftmost digit is (

p
q )

i; whereas in the rational base number system, they
are {0,1 . . . (p − 1)} and 1

q (
p
q )

i respectively.

2.2 The Finite Left Iteration Property (FLIP)

We define here a strong ‘non-iteration’ property of languages that will be closely
related to the breadth-first generation process (by rhythm) later on.1

Definition 3. A language L of A∗ has the Finite Left Iteration Property, or is
a FLIP language for short, if for all u, v in N, ∣v∣ ⩾ 1,

uvi is prefix of a word of L for only finitely many i in N.

Clearly, a FLIP language is neither regular, nor context-free. In [1], it has been
shown that the languages L p

q
, for all coprime p and q, are FLIP languages.

Although, or because, the Finite Left Iteration Property is the strongest way
of contradicting any kind of iteration lemma, it is difficult to find natural examples
of FLIP languages in the classical formal language theory.

The set of the prefixes of any infinite aperiodic word is a FLIP language, but
this is rather trivial an example (as a language) since the number of words of every
length is 1.

Example 4. Let Lfibo = {ϕi(0) ∣ i ∈ N} be the language of Fibonacci words, defined
by the Fibonacci morphism ϕ: ϕ(0) = 01 and ϕ(1) = 0. As the (infinite) Fibonacci
word is power 4-free, Lfibo has no prefix of the form uv4 and is a FLIP language.
Since the power, that is 4, is independent of u and v, Lfibo a fortiori possess the
Bounded Left Iteration Property.

The Finite Left Iteration Property is related by the following statement to an-
other property of language theory called ‘IRS’ (for Infinite Regular Subset, cf. [7]):
a language is IRS if it does not contains any rational sublanguage.

Proposition 5. For a language L, the following statements2 are equivalent:
(i) L is a FLIP language.
(ii) Pre (L) is IRS.

1We have introduced this property in [10] under the name of Bounded Left Iteration Property,
or BLIP for short. The term ‘bounded’ is indeed improper according to usual terminology and
was a mistake.

2Pre (L) denotes the closure of L by prefix: Pre (L) = {u ∈ A∗ ∣ ∃v ∈ A∗ uv ∈ L}.
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(iii) The topological closure of L contains aperiodic (infinite) words only.

Proof. (i) ⇒ (ii) If Pre (L) contains an infinite rational sublanguage, it contains
a subset uv∗w for some words u, v and w, hence, for infinitely many integers i, uvi
is a prefix of some words of L, a contradiction.

(ii)⇒ (iii) Let us assume that w = uvω belongs to the topological closure of L.
It implies that, for every integer i, uvi is the prefix of a word of L, hence uv∗ is
a sublanguage of Pre (L), a contradiction.

The proof of the implication (iii) ⇒ (i) is analogous.

Lemma 6. The class of FLIP languages is stable by finite union, arbitrary inter-
section, sublanguage, concatenation and inverse morphism image.

Proof for concatenation. Let L and M be two FLIP languages. Let u and v be
two words, and J the set of integers j such that the prefix wj of length j of uvω
is in L. Since L is FLIP language, J is finite. For every j in J , the ultimately
periodic word (wj)

−1uvω is not in the topological closure of M , hence there are
only finitely many k such that (wj)

−1uvk is a prefix of a word of M . Summing up
for all j in J , there are only finitely many k such that uvk is a prefix of a word
of LM .

It is easy to give examples showing that the class of FLIP languages is not
closed under complementation, star, transposition and direct morphism image.

2.3 On Trees and Signatures

Classically, trees are undirected graphs in which any two vertices are connected
by exactly one path (cf. [4], for instance). Our view differs in two respects.

First, a tree is a directed graph T = (V,Γ) such that there exist a unique
vertex, called root, which has no incoming arc, and there is a unique (oriented)
path from the root to every other vertex. Elements of the tree T gets particular
names: vertices are called nodes ; if (x, y) is an arc, y is called a child of x and x
the father of y; a node without children is a leaf. We draw trees with the root on
the left, and arcs rightwards.

Second, our trees are ordered, that is, that there is a total order on the set
of children of every node. The order will be implicit in the figures, with the
convention that lower children are smaller (according to this order).

It will prove to be extremely convenient to have a slightly different look at
trees and to consider that the root of a tree is also a child of itself that is, bears a
loop onto itself. This convention is sometimes taken when implementing tree-like
structures (for instance the unix/linux file system). We call such a structure an
i-trees. It is so close to a tree that we pass from tree to i-tree (or conversely) with
no further ado. Fig.1 shows a tree and Fig.4 shows the associated i-tree.

The degree of a node is the number of its children. In the sequel, we consider
infinite ordered (i-)trees of finite degree, that is, all nodes of which have finite
degree. The breadth-first search of such a tree defines a total ordering of its
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nodes. We then consider that the set of nodes of an (i-)tree is always the set of
integers N. The root is 0 and n is the (n + 1)-th node visited by the search.

Let T be an ordered (i-)tree of finite degree. The sequence s of the degrees
of the nodes of T visited in the breadth-first search of T is called the signature
of T and is characteristic of T , that is, one can compute, or build, T from s. By
convention, and whether T be a tree or an i-tree, the signature is always that of
the i-tree.

3 Rhythmic trees and languages

3.1 Rhythms and their geometric representation

Definition 7. Let p and q be two integers with p > q ⩾ 1.
1. We call rhythm of directing parameter (q, p), a q-tuple r of non-negative

integers whose sum is p:

r = (r0, r1, . . . , rq−1) and
q−1
∑
i=0
ri = p .

2. We say that a rhythm r is valid if it satisfies the following equation:

∀j ∈ J0, q − 1K
j

∑
i=0
ri > j+1 . (4)

3. We call growth ratio of r the rational number z =
p
q , also written z =

p′

q′

where p′ and q′ are the quotients of p and q by their greatest common divisor
(gcd), hence coprime.

The growth ratio of a rhythm is always greater than 1. Examples of rhythms
of growth ratio 5

3 are (2,2,1), (3,0,2), (1,2,2), (2,2,1,2,2,1), (2,1,3,0,0,4); all
but the third one are valid; the directing parameter is (3,5) for the first three, and
(6,10) for the last two.

Rhythms are given a very useful geometric representation as paths in the Z×Z-
lattice and such paths are coded by words of {x, y}

∗ where x denotes a unit
horizontal segment and y a unit vertical segment. Hence the name path given to
a word associated with a rhythm.

Definition 8. With a rhythm r = (r0, r1, . . . , rq−1) of directing parameter (q, p),
we associate the word path(r) of {x, y}

∗:

path(r) = yr0xyr1xyr2⋯xyrq−1x

which corresponds to a path from (0,0) to (q, p) in the Z×Z-lattice.

Fig.2 shows the paths associated with three of the above rhythms. It then
appears clearly that Definition 7.2 can be restated as ‘a rhythm is valid if the
associated path is strictly above the line of slope 1’.

7
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Figure 2: Words and paths associated with rhythms of directing parameter (5,3)

3.2 Generating trees by rhythm

As said above, we have describe in [11] the procedure that reconstructs a tree T
from its signature s. We present here this construction in the case where s is a
purely periodic word s = rω. First, a static description of the result.

Definition 9. Let r = (r0, r1, . . . , rq−1) be a (valid) rhythm. The tree Ir generated
by r is defined by:

• the root 0 has (r0 − 1) children: the nodes 1, 2,. . . , and (r0 − 1);
• for every n > 0, the node n has rn% q children: the nodes (m + 1), (m + 2),
. . . , and (m + rn% q), where m is the greatest child of the node (n − 1).

Fig.3a shows I(3,1,1), Fig.1 shows I(2,1) (if one forgets the labels on the arcs).
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(b) The language K(3,1,1)

Figure 3: Tree and language generated by the rhythm (3,1,1)

If we had treated the root 0 in the same way as the other nodes, we would
have said that 0 has r0 children: the nodes 0, 1, 2,. . . , and (r0 − 1) and we would
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Figure 4: The i-tree associated with I 3
2

have defined the i-tree (associated with) Ir. For instance, the i-tree I(2,1) is shown
at Fig.4.

The description of a procedure that builds Ir from r gives a more dynamical
view on the process. The procedure maintains two integers, n and m, both ini-
tialised to 0: n is the node to be processed and m is the next node to be created.
At every step of the procedure, r(n% q) nodes are created: the nodes m, (m + 1),
. . . , and (m + r(n% q) − 1) and r(n% q) arcs are created, from n to every new node.
Then n is incremented by 1, and m by r(n% q).

This procedure indeed builds the i-tree Ir since its first step creates a
loop 0 Ð→ 0. The tree Ir is obtained by removing this loop, and the root 0
has then (r0 − 1) children only. Fig.5 shows the first five and the tenth steps of
the procedure for the rhythm (3,1,1). It is an easy verification that the tree built
by that procedure meets the tree defined at Definition 9.

The validity of the rhythm is the necessary and sufficient condition for m
always be greater than n in the course of the execution of the procedure, that is,
a node is always ‘created’ before being ‘processed’, or, equivalently, for the tree
described at Definition 9 be infinite.

A direct consequence of the building of Ir by the procedure is that q consecutive
nodes of Ir (in the breadth-first search) have p (consecutive) children, hence the
name growth given to the ratio p

q . More precisely, the following holds.
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Figure 5: Building I(3,1,1) from the rhythm (3,1,1)

Lemma 10. Let Ir be the tree generated by the rhythm r of directing parame-
ter (q, p). Then, for all n, m in N:

nÐ→
Ir
m ⇐⇒ (n + q)Ð→

Ir
(m + p) .

3.3 Labelling of Rhythmic Trees

An ordered tree T defines its signature s, and we have seen how to reconstruct T
from s (at least in the case where s = rω). In the same way, a labelled ordered
tree T defines the sequence λ of the labels of the arcs as they are visited in the
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breadth-first search, and T , and hence its branch language LT , will be determined
by the pair (s,λ).

The (finite) alphabet of labels is ordered as well — we consider the case of
digit alphabets only. Of course, we want the labelling of T be consistent with
the order of T , that is, the breadth-first search of T yield the radix order on LT ,
which is equivalent to the condition that the children of every node n are in the
same order as the labels of the arcs that come from their father n.

We consider here periodic signatures s = rω where r is a rhythm of directing
parameter (q, p). We then will consider pairs (s,λ) with λ = γω where γ is
a sequence of letters (digits) of length p. And we say that T , and its branch
language LT , are determined by the pair (r,γ).

It follows from Lemma 10 that the labelling is consistent on the whole tree if
and only if it is consistent on the first q nodes, hence on the first p arcs, in which
case we say that γ is valid. A first, and obvious, valid labelling is the sequence γp

of the first p digits: γp = (0,1, . . . , p − 1) , which we call the naive labelling.

Definition 11. Let r be a rhythm of directing parameter (q, p) and γp the naive
labelling. We denote by Kr the branch language of the labelled tree determined by
the pair (r,γp), that is, the tree Ir labelled by:

∀n,m ∈ N n
a
Ð→
Ir

m with a =m%p .

Fig.3b shows the language K(3,1,1) while K(3,1) is shown at Fig.6a.
All elements of the main result of this paper are now defined: it states that

the language built by a rhythm and the naive labelling is either regular or FLIP,
according to whether the growth ratio of the rhythm is an integer or not.

Theorem 12. Let r be a rhythm of directing parameter (q, p).
a. If p

q is an integer, then Kr is a regular language.
b. If p

q is not an integer, then Kr is a FLIP language.

The proof of the whole statement consists in a reduction to the case of the
representation language of rational base numeration systems and occupies indeed
the remainder of the paper (Theorem 23 and Theorem 27). However, Theorem 12.a
can be established by a direct and simpler proof given below; it is also a corollary
of the main result of [11].

Proof of Theorem 12a. The proof consists in considering the underlying tree Ir
of Kr as an infinite automaton and then proving that it has a finite number
of classes in the Nerode equivalence. More precisely, we prove that two states n
and m, with n and m strictly positive, are Nerode-equivalent if they are congruent
modulo q.

For every integer i, we denote by ∼i the following equivalence relation: given
two states n and m, we write that n ∼i m if, for all word u of A ∗

p of length i, n ⋅ u
exists ⇐⇒ m ⋅ u exists. Of course two states n and m are Nerode-equivalent if
and only if n ≡i m for all integers i.

11



Let us consider two integer n and m such that n ≡ m [q]. By induction. The
relation ∼0 is trivial and has only one equivalency class, hence n ∼0 m.

Let now be i an integer strictly greater than 0. Since n ≡ m [q], it fol-
lows from Lemma 10 that for every n′ such that n

a
Ð→ n′, then there ex-

ists an integer m′ such that m b
Ð→ m′ and n′ ≡ m′ [p]. Hence, from Defini-

tion 11, a = (n′%p) = (m′%p) = b.
Moreover, by hypothesis q ∣ p, hence n′ ≡ m′ [q]. By induction hypothe-

sis, n′ ∼(i−1) m′, hence n ∼i m.

The automaton accepting Kr has then q + 1 states: one for each congruency
class modulo q for positive integers, plus one special state for 0 which is initial.
Figure 6 shows the case of rhythm (3,1).
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Figure 6: The case of the rhythm (3,1) with integral growth ratio
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Remark 13. If one considers the i-tree generated by rhythm r (instead of the
tree) then the special case for the state 0 of the previous proof is unnecessary,
there are only q states and the congruency class (0%q) is initial. For instance,
in Figure 6c, if there were a self-loop on the state 0, this state would be Nerode-
equivalent to the state even.

More generally, if r is a rhythm of directing parameter (q, p) and γ =

(γ0, γ1, . . . , γp−1) a valid labelling, the language generated by (r,γ) is the branch
language of Ir labelled by

∀n,m ∈ N n
a
Ð→
Ir

m with a = γm% p .

Of course, the naive labelling can be mapped onto any other (valid) labelling:

Proposition 14. Let L be the language of B∗ generated by (r,γ). There exists
a strictly alphabetic morphism ϕ∶A ∗

p → B∗ such that ϕ(Kr) = L.

We now define a labelling that will play a crucial role in the sequel.

Definition 15. Let r be a rhythm of directing parameter (q, p) and p′, q′ the
coprime integers such that p′

q′ =
p
q . Let Ir be the index set of the partial sums

of r, that is, Ir = {r0 + r1 +⋯ + rk ∣ ⩽ k < q − 1}. We call special labelling associated
with r, and denote by γr, the p-tuple γr = (γ0, γ1, . . . , γp−1) defined by

γ0 = 0 , ∀i /∈ Ir γi = γ(i−1) + q′ , ∀i ∈ Ir γi = γ(i−1) + q′ − p′ .

Example 16. For instance, if r = (3,1,3,3), its directing parameter is (4,10),
p′ = 5, q′ = 2, Ir = {3,4,7} and

γr = (

3
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
0 , 2 , 4 ,

1
©
1 ,

3
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
−2 , 0, 2 ,

3
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
−1 , 1 , 3 ) .

As other examples: γ(3,1) = (0,1,2,1) and γ(3,1,1) = (0,3,6,4,2) .

It directly follows from the definition that the special labelling is valid.

4 Rational Base Numeration Systems are Rhyth-
mic

In this section, p and q are two coprime integers, p > q ⩾ 1, which define the nu-
meration system with base p

q . We introduce a special, and canonical, rhythm of
directing parameter (q, p), r p

q
, hence of growth ratio z =

p
q , which relates to the

classical notion of Christoffel words. We then characterise the special labelling γr p
q

as the permutation γ p
q
resulting from the generation of Z/pZ by q. The remark-

able fact is then that the representation language in the p
q -numeration system is

generated by the labelled rhythm (r p
q
,γ p

q
) (Theorem 23).
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4.1 Christoffel words, Christoffel rhythms

Christoffel words code some kind of ‘best approximation’ of segments the Z ×Z-
lattice and have been studied in the field of combinatorics of words (cf. [3]). We
translate them into rhythms. More precisely (Definition 17.a is taken from [3]):

Definition 17. Let p and q be two coprime positive integers.
(a) The (upper) Christoffel word associated with p

q , and denoted by w p
q
, is the

label of the path from (0,0) to (q, p) on the Z×Z lattice, such that
• the path is above the line of slope p

q passing through the origin;
• the region enclosed by the path and the line contains no point of Z×Z.

(b) The Christoffel rhythm associated with p
q , and denoted by r p

q
, is the rhythm

whose path is w p
q
: path(r p

q
) =w p

q
, hence its directing parameter is (q, p).

Fig.2b shows the path of w 5
3
= y y x y y x y x , the Christoffel word associated

with 5
3 ; then, r 5

3
= (2,2,1). Other Christoffel words and their paths are shown at

Fig.7.

y

y
x

y
x

(a) 3
2
∶ yy xy x

y

y

y
x

y

y
x

(b) 5
2
∶ yyy xyy x

y

y
x

y

y
x

y
x

(c) 5
3
∶ yy xyy xy x

Figure 7: Christoffel words associated with three rational numbers

Proposition 18. Given a base p
q of rhythm r p

q
= (r0, r1,⋯, rq−1), and an inte-

ger 0 < k ⩽ q, the partial sum r0 + r1 + ⋯ + rk−1, of the first k components of r is
equal to the smallest integer greater than k p

q .

Proposition 18 is a direct consequence of the following technical lemma which
is basically a translation of the proposition into the Christoffel words and their
geometric interpretation universe.

Lemma 19. Let us denote by w p
q
the Christoffel word of slope p

q . If ux is prefix
of w p

q
then it corresponds to a path from (0,0) to (k, ⌈k p

q ⌉) in the Z × Z lattice,
where k is the number of x’s in ux.

Proof. From Definition 17 of Christoffel word, there is no integer point between
the path and the line of slope p

q and passing through the origin.

14



Since the point (k, k p
q ) is part of this line, the Christoffel path must pass

through the point (k, ⌈k p
q ⌉). Besides, the prefix of the Christoffel word reaching

this point must end with an x; were it ending with an y it would mean that the
Christoffel path pass through the point (k, ⌈k p

q ⌉ − 1) which is below the line of
slope p

q , a contradiction.

Lemma 20. Given a base p
q , we denote the associated Christoffel rhythm by r and

an integer k ∈ J0, q − 1K, ∑k−1
i=0 r(q−1−k) = ⌊k p

q ⌋

We define the sequence of integers e0, e1, . . . , eq−1 such that ej is the difference
between the approximation (r0+r1+⋯+rk−1) and the point of the associated line of
the respective abscissa, that is (k p

q ). This difference is a rational number smaller
than 1 and whose denominator is q, in order to obtain an integer we multiply it
by q:

∀k ∈ J0, q − 1K ek = q (
k−1
∑
i=0
ri) − k p . (5)

We describe on the example of the base 5
3 shown at Figure 8 a more dia-

grammatic way of characterising Christoffel rhythms. We associate p segments
of length q (at the top in the figure) with q segments of length p such that each
top segment is associated to the bottom segment in which it starts. The inte-
ger ei is then the difference of length between the i left-most bottom segments
(of length p × i) and the total number of top segments associated with them (of
length q ×∑i−1

j=0 rj).

b

e0 e1 e2

p(= 5) segments
of length q(= 3)

q(= 3) segments
of length p(= 5)

r0 = 2 r1 = 2 r2 = 1

Figure 8: Diagrammatic interpretation of the rhythm (2,2,1) of base 5
3

The next lemma compiles basic properties of the rj’s and ej’s.

Lemma 21. Let r p
q
= (r0, r1, . . . , rq−1) be the Christoffel rhythm of slope p

q . For
every integer j in J0, q − 1K, it holds:

(a) ej belongs to J0, q − 1K;

(b) rj is the smallest integer such that q rj + ej ⩾ p ;

(c) ej+1 = ej + q rj − p ;

(d) all ej’s are distinct;

15



(e) q
j−1
∑
k=i
rk + ei = (j − i)p + ej ;

(f) for every i in J1, qK, i > j, it holds:

j−1
∑
k=i
rk = ⌈

(j − i)p − ei
q

⌉ = ⌊
(j − i)p − ej

q
⌋ .

Proof. Statements (a), (b), and (c) are simple consequences of the definition.
(d) Let i and j be in J0, q − 1K and suppose that ei = ej. It follows from (b)

and (c) that ri = rj and then ei+1 = ej+1. By iterating this process, it follows that
the rhythm r is periodic of period ∣j − i∣, a contradiction.

(e) Follows from the iteration of (c).

(f) From (e), ei+j = ei + q (

j−1
∑
k=i
rk) − (j − i)p , hence

j−1
∑
k=i
rk =

(j − i)p

q
−
ei
q
+
ej
q

.

Since the right-hand side of this equation is an integer and that ei and ej are
smaller than q, ei

q and ej
q are smaller than 1 and the whole statement follows.

4.2 Generation of Lp
q
by rhythm and labelling

Since p and q are coprime integers, q is a generator of the (additive) group Z/pZ.
We denote by γ p

q
the sequence induced by this generation process:

γ p
q
= (0, q%p, (2q)%p, . . . , ((p − 1)q)%p ) .

Proposition 22. Let p and q be two coprime positive integers, p > q ⩾ 1. The
sequence γ p

q
coincide with the special labelling γr p

q

.

Proof. We denote by (γ0, γ1, . . . , γq−1) the special labelling γr p
q

. By the very defini-

tion of special labelling, it is obvious that for all i ∈ J0, q−1K, γi ≡ i q [p]. It is then
enough to prove that for every integer i ∈ J0, q − 1K, 0 ⩽ γi < p. Given an integer k
we denote by mk = r0+r1+⋯+rk−1 and byMk = (mk+1−1) = r0+r1+⋯+rk−1+rk−1.

Let us fix an integer i in the following; there exists an integer k such
that mk ⩽ i ⩽ Mk. From the definition of special labelling, γmk

= (qmk) − (pk),
γi = (q i) − (pk) and γMk

= (qMk) − (pk), hence γmk
⩽ γi ⩽ γMk

.
From Proposition 18,mk is the smallest integer greater than k p

q , hencemk ⩾ k
p
q ,

hence γmk
⩾ 0. Using the same proposition for (k+1), mk+1 is the smallest integer

greater than (k + 1)p
q , hence Mk(=mk+1 − 1) is strictly smaller than (k + 1)p

q ; that
is, Mk < (k + 1)p

q , hence γMk
< p.

Therefore 0 ⩽ γmk
⩽ γi ⩽ γMk

< p.
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As an immediate consequence of Proposition 22, γ p
q
is a valid labelling.

Theorem 23. Let p and q be two coprime integers, p > q ⩾ 1. The language L p
q

of p
q -representations of the integers is generated by the rhythm r p

q
and labelling γ p

q
.

For instance, L 3
2
, shown at Fig.1, is built with the rhythm (2,1) and the la-

belling (0,2,1). The proof of Theorem 23 relies mostly on the following statement
itself being a consequence of the technical Lemma 21b.

Proposition 24. For every integer n > 0 (resp. n = 0), there is exacly r(n% q)
(resp. (r0 − 1)) letters a of Ap such that ⟨n⟩.a is in L p

q
.

Proof. We denote by j the congruency class of n modulo q. From Lemma 21b, rj
is the smallest integer such that q rj + ej > p. It follows that for all k in J0, rj − 1K
(ej + q k) < p and ej + q rj > p.

From Lemma 21b, ej is the smallest label of the state n, hence the state n has
exactly rj outgoing transitions, respectively labelled by ej, ej + q, . . . , (ej + q (rj − 1)).

Lemma 25. Given a base p
q and an integer n, the smallest letter a of Ap such

that ⟨n⟩.a is in L p
q
, is e(n% q).

Proof. Let us denote by n an integer and by j its congruency modulo q. Since ej
is in Aq (from Lemma 21a), it is enough to prove that ej is an outgoing label of n,
or (from Equation (3)) that np+ ej is a multiple of q; or, equivalently that j p+ ej
is a multiple of q. From Equation (5), j p + ej = (q ∑

j−1
i=0 ri ), that is, a multiple

of q.

To complete the proof of Theorem 23, it remains to prove that for every inte-
ger n, the last digit of ⟨n⟩ p

q
is (q n)%p, which directly results from the definition

of the modified Euclidean division algorithm (Equation (1)).

5 Reduction to Rational Base Numeration Sys-
tems

In this section, p and q are two integers, p > q ⩾ 1, not necessarily coprime, and r is
a rhythm of directing parameter (q, p). As in Definition 7, we denote by p′ and q′
their respective quotient by their gcd, that is, p′

q′ is the reduced fraction of p
q .

Definition 26. We denote by Lr the language generated by a rhythm r and the
associated special labelling γr.

If r happens to be a Christoffel rhythm, then Lr is by definition equal to L p
q

(which, in this case, is the same as L p′

q′
). The key result of this work states that Lr

is indeed of the same kind as L p′

q′
.
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Theorem 27. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, the language Lr is a set of representations of the integers in
the rational base p′

q′ .

Even though p and q are not coprime, the arcs of the tree Lr satisfies essen-
tially the same equation as L p′

q′
(cf. Equation (3)) as expressed by the following

statement.

Lemma 28. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, for every integers n and m it holds:

n
a
Ð→
Lr

m Ô⇒ a = q′m − p′n .

Proof. By induction on m. The implication obviously holds for the first arc of the
tree Lr as it is 0

q′

ÐÐ→
Lr

1.

Let us assume it holds for the m-th arc, that is, n a
Ð→
Lr

m with a = q′m − p′n.

The (m + 1)-th arc is either n b
Ð→
Lr

(m + 1) or (n + 1)
b
Ð→
Lr

(m + 1) .

● n
b
Ð→
Lr

(m + 1) corresponds to the case where (m + 1)%p <
n% q

∑
i=0

ri , hence

b = γ((m+1)% p) = γ(m% p) + q′ = q′(m + 1) − p′n .

● (n+1)
b
Ð→
Lr

(m+1) corresponds to the case where (m + 1)%p =
n% q

∑
i=0

ri , hence

b = γ((m+1)% p) = γ(m% p) + q′ − p′ = q′(m + 1) − p′(n + 1) .

In both cases, the second equality follows from the definition of the special la-
belling γr.

If we call r-representation of an integer n, and denote by ⟨n⟩r, the word that
labels the path from the root 0 to the node n in the labelled tree defined by Lr,
Theorem 27 is equivalent to the following statement that is established by induc-
tion on the length of the r-representation of n.

Proposition 29. Let r be a rhythm of directing parameter (q, p), p′

q′ the re-
duced fraction of p

q and πp’
q’
the evaluation function in the numeration system with

rational base p′

q′ . Then, for every integer n it holds:

πp’
q’
(⟨n⟩r) = n .

Proof. Let ⟨n⟩r = akak−1⋯a0 be the r-representation of n. We then want to prove
that

n =
k

∑
i=0

ai
q′

(
p′

q′
)

i

.
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By induction on the length of ⟨n⟩r. The equality obviously holds true for ⟨0⟩r =
ε.

Let m be an integer and ⟨m⟩r = ak+1 ak ak−1⋯a1 a0 its r-representation, that is,
a word of Lr. The word ak+1 ak ak−1⋯a1 is also in Lr; it is the r-representation of
an integer n strictly smaller than m, and such that:

n
a0
ÐÐ→
Lr

m .

By induction hypothesis, n =
k+1
∑
i=1

ai
q

(
p′

q′
)

i−1
. It follows from Lemma 28 that a0 =

q′m − p′n , or, equivalently, that m =
np′ + a0
q′

, hence

m =
p′

q′
(
k+1
∑
i=1

ai
q′

(
p′

q′
)

i−1
) +

a0
q

= (
k+1
∑
i=1

ai
q′

(
p′

q′
)

i

) +
a0
q

.

In other words, Lr seen as an abstract numeration system is indeed a positional
numeration system.

It has been shown in [1] that every numeration system in rational base p
q

has the remarkable property that even though the representation language L p
q

is not a regular language, the conversion from any digit-alphabet B into the
canonical alphabet Ap is realised by a finite transducer (indeed a letter-to-letter
right sequential transducer), exactly as in the case of the numeration system in
base p (cf. also [6]).

More precisely, let Br be the digit-alphabet of the special labelling γr. Let χr

be the function from B ∗
r into A ∗

p′ which maps every word of B ∗
r onto the word

of A ∗
p′ which has the same value in the numeration system in the base p′

q′ , that is,

∀w ∈ B ∗
r πp’

q’
(w) = πp’

q’
(χr(w)) .

Hence χr(Lr) = L p′

q′
. And we can then state:

Theorem 30 ([1]). The map χr is a rational function.

We can now complete the proof of Theorem 12.b. Since Kr is prefix-closed, it
is a FLIP language if and only if it contains no infinite regular subset. Suppose
that Kr contains an infinite regular subset R. There exists a morphism ϕr such
that ϕr(Kr) = Lr and a rational function χr such that χr(Lr) = L p′

q′
; hence the

FLIP language L p′

q′
contains the infinite regular subset χr(ϕr(R)), a contradiction.

6 Conclusion and future work
With this notion of labelled signature, we have somehow captured the ‘regularity’
of the representation languages in rational bases by showing that they have periodic
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labelled signatures and that this periodicity is to some extent characteristic of
these languages. A by-product of this characterisation is the remarkable fact that
periodic labelled signatures yield either very simple languages (when the growth
ration is an integer) or vey complex (when it is not).

It would be very tempting to get the same kind of results with periodic signa-
tures only, that is, without bringing labelling into play. On one hand, it is easy to
show that one gets a rational tree (that is, a tree with finite distinct subtrees) in
the case of an integral growth ratio. But on the other hand, and as it is related
to open problems in number theory, it would be certainly difficult to show, for
instance, that all subtrees are distinct in the case of a non-integral growth ratio,
although it is a reasonable conjecture. Hopefully, there are easier problems at
hand.

For sake of simplicity, we have considered here purely periodic signatures and
labelled signatures only. The generalisation to ultimately periodic ones raises no
special difficulties but technical details to be settled. And the results established
here readily extend.

The problem of the representation of negative integers in the p
q -numeration

systems was considered (among others) in [5]. The characterisation of these p
q -

numeration systems by the corresponding Christoffel words and the study of their
combinatorial properties allow a new approach to this problem and yield new proof
to some results of [5]; it is the purpose of forthcoming work of the first author [9].
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