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We determine the skew fields of fractions of the enveloping algebra of the Lie superalgebra osp(1, 2) and of some significant subsuperalgebras of the Lie superalgebra osp(1, 4). We compare the kinds of skew fields arising from this "super" context with the Weyl skew fields in the classical Gelfand-Kirillov property.

Introduction

This paper deals with the question of a possible analogue of the Gelfand-Kirillov property for the enveloping algebras of Lie superalgebras. Let us recall that a finite dimensional complex Lie algebra g satisfies the Gelfand-Kirillov property when its enveloping skew field, that is the skew field of fractions of the enveloping algebra U (g), is isomorphic to a Weyl skew field over a purely transcendental extension of C. A rich literature has developed on this topic from the seminal work [START_REF] Gelfand | Sur les corps liés aux algèbres enveloppantes des algèbres de Lie[END_REF] and we refer to the papers [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF], [START_REF] Premet | Modular Lie algebras and the Gelfand-Kirillov conjecture[END_REF] and their bibliographies for an overview on it.

A natural starting point for the same problem for a finite dimensional complex Lie superalgebra g is the classification of the classical simple Lie superalgebras (see [START_REF] Kac | Lie superalgebras[END_REF], [START_REF] Musson | Lie superalgebras and enveloping algebras[END_REF]) and more precisely the study of the orthosymplectic Lie superalgebra osp (1, 2n) since this is the only case in the classification whose enveloping algebra is a domain (see [START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF], [START_REF] Gorelik | The annihilation theorem for the Lie superalgebra osp(1,2ℓ)[END_REF]). This topic is introduced and discussed by Musson in [START_REF] Musson | On the Goldie quotient ring of the enveloping algebra of a classical simple Lie superalgebra[END_REF] who proves in particular that Frac (U (osp(1, 2n))) is not isomorphic to a Weyl skew field over a purely transcendental extension of C when n = 1. We show here that the same is true for any n describing explicitely some classes of skew fields arising from this context. The even part g 0 of g = osp(1, 2n) is the Lie algebra sp(2n) of the symplectic group, for which the Gelfand-Kirillov property remains an open question (see [START_REF] Premet | Modular Lie algebras and the Gelfand-Kirillov conjecture[END_REF]). Therefore we concentrate in this exploratory paper on the case of osp(1, 2) and on some significant subsuperalgebras of osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF]. We consider in osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] the Lie subsuperalgebras n + , b + and p + which have as even parts respectively the nilpotent positive part, the associated Borel subalgebra and the associated parabolic subalgebra in the triangular decomposition of the even part g 0 = sp(4). Determining their enveloping skew fields is the content of sections 2 and 3 of the paper.

The skew fields appearing in this "super" context are skew fields of rational functions mixing classical Weyl relations xyyx = 1 and "fermionic" relations xy + yx = 1 (or equivalently xy = -yx up to rational equivalence) between the generators. A noteworthy fact is that these relations are braided and not necessarily pairwise separable up to isomorphism as in the case of the classical Weyl skew fields. The main properties of these skew fields, which already appeared in [START_REF] Alev | Corps de Weyl mixtes[END_REF] and [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF], are given in section 1.

We end this introduction by a short reminder on the para-Bose definition of the Lie superalgebra osp(1, 2n) and its enveloping algebra (see [START_REF] Ch | A Lie superalgebraic interpretation of the para-Bose statistics[END_REF], [START_REF] Palev | The quantum superalgebra Uq[osp(1|2n)]: deformed para-Bose operators and root of unity representations[END_REF]). The basefield is C. We fix an integer n ≥ 1. We have osp(1, 2n) = g 0 ⊕ g 1 where the even part g 0 is the Lie algebra sp(2n) of the symplectic group and g 1 is a vector space of dimension 2n. As a Lie superalgebra, osp(1, 2n) is generated by the 2n elements b

± i (1 ≤ i ≤ n) of a basis of the odd part g 1 . The 2n 2 + n elements {b ± j , b ± k } (1 ≤ j ≤ k ≤ n) and {b + j , b - k } (1 ≤ j, k ≤ n) form a basis of g 0 . The dimension of the vector space osp(1, 2n) is 2n 2 + 3n.
The brackets are given by the so called "parabose" relations:

[{b ξ j , b η k }, b ǫ ℓ ] = (ǫ -ξ)δ jℓ b η k + (ǫ -η)δ kℓ b ξ j (1) 
[{b ξ i , b η j }, {b ǫ k , b ϕ ℓ }] = (ǫ -η)δ jk {b ξ i , b ϕ ℓ } + (ǫ -ξ)δ ik {b η j , b ϕ ℓ } + (ϕ -η)δ jℓ {b ξ i , b ǫ k } + (ϕ -ξ)δ iℓ {b η j , b ǫ k }. (2) 
By the PBW theorem (see [START_REF] Musson | Lie superalgebras and enveloping algebras[END_REF]), the enveloping algebra U (osp(1, 2n)) is generated by the 2n 2 + n elements:

b ± i , k i := 1 2 {b - i , b + i } for 1 ≤ i ≤ n, (3) 
a ± ij := 1 2 {b ± i , b ± j }, s ij := 1 2 {b - i , b + j }, t ij := 1 2 {b + i , b - j } for 1 ≤ i < j ≤ n, (4) 
with commutation relations deduced from (1) and (2) taking {x, y} = xy+yx if x, y ∈ g 1 , and [x, y] = xy-yx otherwise. The enveloping algebra U (sp(2n)) of the even part is the subalgebra of U (osp(1, 2n)) generated by the 2n

2 + n elements (b ± i ) 2 , k i for 1 ≤ i ≤ n, and a ± ij , s ij , t ij for 1 ≤ i < j ≤ n.
1. Some skew fields 1.1. Definitions and notations. We fix the basefield to be C. As usual A 1 is the Weyl algebra, that is the algebra generated over C by two generators x, y satisfying the commutation law xyyx = 1. We also define A 1 as the algebra generated over C by two generators u, v satisfying the commutation law uv + vu = 1. For any nonnegative integers r, s, we denote by A s r the C-algebra:

A s r = A 1 ⊗ A 1 ⊗ • • • ⊗ A 1 r factors ⊗ A 1 ⊗ A 1 ⊗ • • • ⊗ A 1 s factors
This is clearly a noetherian domain, so we can define D s r = Frac A s r . For any integer t ≥ 0, we consider the polynomial algebra C[z 1 , . . . , z t ], the noncommutative noetherian domain A s r,t = A s r ⊗ C[z 1 , . . . , z t ] and its skew field of fractions D s r,t = Frac A s r,t . In particular D s r = D s r,0 . If s = 0 and r ≥ 1, D 0 r,t is the classical Weyl skew field usually denoted by D r (C(z 1 , . . . , z t )) or D r,t (C). The following lemma asserts that the D s r,t are a particular case of the mixed Weyl skew fields considered in [START_REF] Alev | Corps de Weyl mixtes[END_REF].

1.2. Lemma. The skew field D s r,t is isomorphic to the skew field of fractions of the algebra A s r,t generated over C by 2r + 2s + t generators x 1 , . . . , x r , y 1 , . . . y r , u 1 , . . . , u s , w 1 , . . . , w s , z 1 , . . . , z t satisfying the commutation relations:

[x i , y i ] = 1, [x i , y j ] = [x i , x j ] = [y i , y j ] = 0 (1 ≤ i = j ≤ r), u i w i = -w i u i , [u i , w j ] = [u i , u j ] = [w i , w j ] = 0 (1 ≤ i = j ≤ s), [x i , u j ] = [x i , w j ] = [y i , u j ] = [y i , w j ] = 0 (1 ≤ i ≤ r, 1 ≤ j ≤ s) [x i , z k ] = [y i , z k ] = [u j , z k ] = [w j , z k ] = [z k , z ℓ ] = 0 (1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k, ℓ ≤ t).
Proof. For any 1 ≤ i ≤ s, let us consider the copy of A 1 generated by u i , v i with relation

u i v i + v i u i = 1. The element w i := u i v i -v i u i = 2u i v i -1 of A 1 satisfies w i u i = -u i w i and w i v i = -v i w i .
In the skew field of fractions, the subfield generated by u i , v i is isomorphic to the subfield generated by

u i , w i since v i = 1 2 u -1 i (w i + 1)
. Hence the proof is complete. We sum up in the following proposition some basic facts about the skew fields D s r,t . It shows in particular that for s = 0 the skew fields D s r,t are not isomorphic to classical Weyl skew fields. 1.3. Proposition. Let r, s, t be any nonnegative integers. Then:

(i) the Gelfand-Kirillov transcendence degree of D s r,t equals to 2r+2s+t; (ii) the center of D s r,t is C(u 2 1 , . . . , u 2 s , w 2 1 , . . . , w 2 s , z 1 , . . . , z t ), with the no- tations of lemma 1.2; (iii) D s r,t is isomorphic to a classical Weyl skew field D 0 r ′ ,t ′ if and only if s = 0, r = r ′ and t = t ′ .
Proof. The algebra A s r,t of lemma 1.2 is a particular case of the algebras S Λ n,r studied in [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF]. Explicitly A s r = S Λ n,r for n = r + 2s + t and Λ = (λ ij ) the n × n matrix with entries in C defined by λ r+2k-1,r+2k = λ r+2k,r+2k-1 = -1 for any 1 ≤ k ≤ s, and λ i,j = 1 in any other case. Then points (i) and (ii) follow respectively from proposition 1.1.4 and proposition 3.3.1 of [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF]. Suppose now that D s r,t is isomorphic to The argument used in the proof of point (iii) of the previous proposition allows to show the following proposition, as predicted in [START_REF] Musson | On the Goldie quotient ring of the enveloping algebra of a classical simple Lie superalgebra[END_REF]. 1.5. Proposition. For any integer n ≥ 1, Frac (U (osp(1, 2n))) is not isomorphic to a classical Weyl skew field D 0 r,t for any r ≥ 1, t ≥ 0. More generally, for any subsuperalgebra g of osp(1, 2n) containing the generators b + i and b - i for some

D 0 r ′ ,t ′ for some r ′ ≥ 1, t ′ ≥ 0. Denote G(L) = (L × ) ′ ∩ C × the
1 ≤ i ≤ n, Frac (U (g)) is not isomorphic to a classical Weyl skew field D 0 r,t for any r ≥ 1, t ≥ 0. Proof. If g contains b + i and b - i , it contains the element k i = 1 2 {b + i , b - i }. Then U (g) contains the element z i = b + i b - i -b - i b + i + 1 = 2b + i b - i -2k i + 1. Using relation (1), we have [k i , b + i ] = b + i . An obvious calculation gives z i b + i = -b + i z i . It follows that -1 ∈ G(Frac (U (g)))
; as at the end of the proof of proposition 1.3 we conclude that Frac (U (g)) cannot be isomorphic to a classical Weyl skew field.

The skew fields D s r,t are the most simple and natural way to mix classical Weyl skew fields D r,t (C) with "fermionic" relations uw = -wu. However we will see in the following that they are not sufficient to describe the rational equivalence of enveloping algebras of Lie superalgebras. Some "braided" versions of mixed skew fields are necessary. The low dimensional examples useful for the following results are introduced in [START_REF] Alev | Corps de Weyl mixtes[END_REF]. Their generalization in any dimension are the subject of a systematic study in the article [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF]. We recall here their definitions and main properties.

1.6. Definitions and notations. Let S 3 be the algebra generated over C by three generators x, y, z satisfying:

xy -yx = 1, xz = -zx, yz = -zy.
Crossing two copies of S 3 , we define S 4 as the algebra generated over C by four generators x 1 , x 2 , y 1 , y 2 satisfying:

x 1 y 1 -y 1 x 1 = 1, x 1 y 2 = -y 2 x 1 , x 1 x 2 = -x 2 x 1 x 2 y 2 -y 2 x 2 = 1, x 2 y 1 = -y 1 x 2 , y 1 y 2 = -y 2 y 1 .
The algebras S 3 and S 4 are obviously noetherian domains. We denote F 3 = Frac S 3 and F 4 = Frac S 4 .

The algebra S 4 is the case n = 2 of the family of quantum Weyl algebras A q,Λ n introduced in [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF] when all nontrivial entries λ ij of Λ are equal to -1 and all entries q i of q are equal to 1. They have been intensively studied (we refer to [START_REF] Giaquinto | Quantum Weyl algebras[END_REF] and to section 1.3.3 of [START_REF] Richard | Hochschild homology and cohomology of some classical and quantum noncommutative polynomial algebras[END_REF] for a survey and references), are simple of center C and have the same Hochschild homology and cohomology as the classical Weyl algebra A n (C). A similar study for S 3 lies in sections 5 and 7 of [START_REF] Richard | Hochschild homology and cohomology of some classical and quantum noncommutative polynomial algebras[END_REF]. 1.7. Proposition. The following holds for the skew fields F 3 and F 4 :

(i) the Gelfand-Kirillov transcendence degrees of F 3 and F 4 are 3 and 4 respectively ; (ii) the center of F 3 is C(z 2 ), and the center of F 4 is C; (iii) F 3 and F 4 are not isomorphic to D s r,t , for any r, s, t ≥ 0.

Proof. These properties are proved under slightly different assumptions in section 3 of [START_REF] Alev | Corps de Weyl mixtes[END_REF]. With the notation of [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF], we have S 3 = S Λ 2,1 and S 4 = S Λ 2,2

for Λ = 1 -1 -1 1 . Then points (i) and (ii) follow respectively from proposition 1.1.4 and proposition 3.3.1 of [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF]. Suppose that F 3 is isomorphic to some D s r,t . Comparing the Gelfand-Kirillov transcendence degree, we necessarily have (r, s, t) = (0, 0, 3), (1, 0, 1) or (0, 1, 1). The first case is obviously excluded since F 3 is not commutative. The second case is impossible because, with the notation G(L) recalled in the proof of proposition 1.3, we know that G(D 0 1,1 ) = {1} by theorem 3.10 of [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF], while it is clear that -1 ∈ G(F 3 ). The third case is also impossible because, denoting E(L) = [L, L] ∩ C the trace on C of the subspace generated by the commutation brackets for any skew field L over C, we have E(D 1 0,1 ) = {0} by proposition 3.9 of [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF], and E(F 3 ) = C since D 1 (C) ⊂ F 3 . Suppose now that F 4 is isomorphic to D s r,t . Since the transcendence degree of the center of D s r,t is at least t, it follows from point (ii) that s = t = 0. Therefore F 4 would be isomorphic to the usual Weyl skew field D 0 2,0 . One more time this is impossible because G(D 0 2,0 ) = {1} and -1 ∈ G(F 4 ).

1.8. Remarks. Let us consider the algebra A s r,0 with the notations of lemma 1.2. If r ≥ 1 and s ≥ 1, the subfield of D s r generated by x 1 w 1 , y 1 w -1 1 and u 1 is isomorphic to F 3 . If r ≥ 2 and s ≥ 1, the subfield of D s r generated by

x 1 w 1 , y 1 w -1 1 , x 2 u 1 and y 2 u -1 1 is isomorphic to F 4 .
In other words, F 3 can be embedded in any D s r such that r ≥ 1, s ≥ 1 and F 4 can be embedded in any D s r such that r ≥ 2, s ≥ 1. More deeply it follows from proposition 5.3.3 of [START_REF] Richard | Équivalence rationnelle d'algèbres polynomiales classiques et quantiques[END_REF] that F 4 cannot be embedded in some D s r,t for r ≤ 1.

1.9. Illustration. We illustrate the definitions of the skew fields under consideration by the following graphs, stressing the particular nature of the relevant relations. The vertices are parametrized by some system of generators.

A directed edge a• / / • b between two generators a and b means that abba = 1, an undirected edge a•

• b means that ab = -ba, and no edge between two generators means that they commute.

D s r,t x 1 • • y 1 x 2 • • y 2 • • • xr • • yr u 1 • • w 1 u 2 • • w 2 • • • us • • ws z 1 • z 2 • • • • zt • F 3 •z x• / / •y F 4 x 1 • / / •y 1 x 2 • / / •y 2 2.
The enveloping skew field of the Lie superalgebra osp(1, 2)

2.1. Notations. Applying ( 1) and ( 3) for n = 1, the algebra U (osp(1, 2)) is generated by b + , b -, k with relations:

kb + -b + k = b + , kb --b -k = -b -, b -b + = -b + b -+ 2k. (5) 
It is clearly an iterated Ore extension

U (osp(1, 2)) = C[b + ][k ; δ][b -; τ, d],
where δ is the derivation b Proof. By obvious calculations using (5), the element (i) With the notations used in the proof of the previous proposition, we have in U ′ the identities f = 1 4 e -1 (ω -k 2 +2k) and [ 1 2 e -1 k, e] = 1. Therefore Frac U (sl(2)) is the subfield of Frac U (osp(1, 2)) generated by e = 1 2 (b + ) 2 , y ′ := (b + ) -2 k = (b + ) -1 y and ω with relations y ′ eey ′ = 1, ωe = eω and ωy ′ = y ′ ω. We recover the well known Gelfand-Kirillov property that Frac U (sl(2)) is a classical Weyl skew field D 1 over a center C(ω) of transcendence degree one. With the conventions of 1.9, we can illustrate this skew fields embedding by:

+ ∂ b + in C[b + ], τ
z := b + b --b -b + + 1 = 2b + b --2k + 1 satisfies zb + = -b + z and zk = kz. Since b -= 1 2 (b + ) -1 (z + 2k -1) in the algebra U ′ := C(b + )[k ; δ][b -; τ, d], we have U ′ = C(b + )[k ; δ][z ; τ ′ ] with kb + -b + k = b + , zk = kz and zb + = -b + z. Set- ting y := (b + ) -1 k, we obtain U ′ = C(b + )[y; ∂ b + ][z ; τ ′ ] with yb + -b + y = 1, zb + = -b + z and zy = -yz. Hence Frac U ′ = Frac U (osp(1, 2)) is isomorphic to F 3 . 2.3. Remarks. We know that U (sl(2)) is the subalgebra of U (osp(1, 2 
• ω y ′ • / / •e Frac (U(sl(2))) ⊂ •z y• / / •b + Frac (U(osp(1, 2)))
(ii) By previous proposition 2.2 and point (ii) of proposition 1.7, the center of Frac (U (osp(1, 2))) is C(z 2 ). The element z lying in U (osp(1, 2)), it follows that the center of U (osp(1, 2)) is C[z 2 ]. A straightforward calculation shows that z 2 = 4ω -2z + 3 = 4ω -2(z -1) + 1, or equivalently (z + 1) 2 = 4(ω + 1). Since z -1 = b + b -b -b + by definition of z, we recover the well known property, see [START_REF] Pinczon | The enveloping algebra of the Lie superalgebra osp(1,2)[END_REF], that the center of

U (osp(1, 2)) is C[θ] for θ the super Casimir operator θ := ω -1 2 (b + b --b -b + ), (6) 
with ω the usual Casimir operator of the even part U (sl( 2)). On one hand the above expression of z 2 becomes z 2 = 4θ + 1. On the other hand, (6) implies z -1 = 2ω -2θ. We deduce that (2ω -2θ + 1) 2 = 4θ + 1, or equivalently:

ω 2 -(2θ -1)ω + θ(θ -2) = 0. ( 7 
)
This relation of algebraic dependance between θ and ω is exactly the one given in proposition 1.2 of [START_REF] Pinczon | The enveloping algebra of the Lie superalgebra osp(1,2)[END_REF] up to a normalization of the coefficients.

3.

Enveloping skew fields of some Lie subsuperalgebras of osp(1, 4) 3.1. Definitions and notations. We apply for n = 2 the description of osp(1, 2n) recalled at the end of the introduction. We have osp(1, 4) = g 0 ⊕g 1 where g 1 is a vector space of dimension 4 with basis b

+ 1 , b + 2 , b - 1 , b - 2 
and g 0 is the Lie algebra sp(4) of dimension 10 with basis:

c + 1 = 1 2 {b + 1 , b + 1 }, c + 2 = 1 2 {b + 2 , b + 2 }, c - 1 = 1 2 {b - 1 , b - 1 }, c - 2 = 1 2 {b - 2 , b - 2 }, a + = 1 2 {b + 1 , b + 2 }, a -= 1 2 {b - 1 , b - 2 }, s = 1 2 {b - 1 , b + 2 }, t = 1 2 {b + 1 , b - 2 }, k 1 = 1 2 {b - 1 , b + 1 }, k 2 = 1 2 {b - 2 , b + 2 }. (8) 
The brackets between these 14 generators of osp(1, 4) are computed by the relations (1) et [START_REF] Alev | Corps de Weyl mixtes[END_REF]. By ( 3) and ( 4) the algebra U (osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF]) is generated to k 1 , k 2 , that is :

[k 1 , b + 1 ] = b + 1 , [k 1 , b + 2 ] = 0, [k 2 , b + 1 ] = 0, [k 2 , b + 2 ] = b + 2 , [k 1 , c + 1 ] = 2c + 1 , [k 1 , c + 2 ] = 0, [k 2 , c + 1 ] = 0, [k 2 , c + 2 ] = 2c + 2 , [k 1 , a + ] = a + , [k 1 , t] = t, [k 2 , a + ] = a + , [k 2 , t] = -t, [k 1 , k 2 ] = 0. (11) 
It follows that b + is a Lie subsuperalgebra of osp(1, 4) and that b + 0 is a Lie subalgebra of g 0 containing as direct summands the nilpotent Lie subalgebra n + 0 and the abelian Lie subalgebra h. The change of basis [START_REF] Kac | Lie superalgebras[END_REF] in n + 0 and the change of basis

h 1 := k 2 , h 2 := k 1 -k 2 , (12) 
in h allow to rewrite the action of h on n + 0 as:

[h 1 , x 1 ] = -x 1 , [h 1 , x 2 ] = 2x 2 , [h 1 , x 3 ] = x 3 , [h 1 , x 4 ] = 0, [h 2 , x 1 ] = 2x 1 , [h 2 , x 2 ] = -2x 2 , [h 2 , x 3 ] = 0, [h 2 , x 4 ] = 2x 4 . (13) 
We conclude that in the Lie subsuperalgebra b + of g = osp(1, 4), the even part b + 0 is isomorphic to the positive Borel subalgebra in the triangular decomposition of g 0 = sp(4), and the abelian Lie subalgebra h is isomorphic to the corresponding Cartan subalgebra.

3.1.3. The parabolic subsuperalgebra p + . We introduce in the odd part g 1 of osp(1, 4) the subspace p + 1 := g + 1 ⊕ Cb - 2 = Cb + 1 ⊕ Cb + 2 ⊕ Cb - 2 and in the even part g 0 the subspace p + 0 := b + 0 ⊕ Cc - 2 = n + 0 ⊕ h ⊕ Cc - 2 . We define p + := p + 0 ⊕ p + 1 . We calculate in osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] the 48 brackets between the 10 generators of p + , adding to the 30 brackets of ( 9) and ( 11) the 18 brackets related to b - 2 , c - 2 , that is :

{b - 2 , b + 2 } = 2k 2 , [b - 2 , k 1 ] = 0, [b - 2 , a + ] = b + 1 , {b - 2 , b + 1 } = 2t, [b - 2 , k 2 ] = b - 2 , [b - 2 , t] = 0, [c - 2 , c + 2 ] = 4k 2 , [c - 2 , k 1 ] = 0, [c - 2 , a + ] = 2t, [c - 2 , c + 1 ] = 0, [c - 2 , k 2 ] = 2c - 2 , [c - 2 , t] = 0, [c - 2 , b + 1 ] = 0, [c - 2 , b + 2 ] = 2b - 2 , [c - 2 , b - 2 ] = 0, {b - 2 , b - 2 } = c - 2 , [b - 2 , c + 1 ] = 0. [b - 2 , c + 2 ] = 2b + 2 . ( 14 
)
It follows that p + is a Lie subsuperalgebra of osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] and that p + 0 is a Lie subalgebra of g 0 containing as direct summands the Borel subalgebra b + 0 and the line Cc - 2 . The changes of basis [START_REF] Kac | Lie superalgebras[END_REF] and ( 12) allow to rewrite the

  trace on C × of the commutator subgroup of the group of nonzero elements of L for any skew field L over C. It follows from theorem 3.10 of[START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF] that G(D 0 r ′ ,t ′ ) = {1} while it is clear by lemma 1.2 that -1 ∈ G(D s r,t ) if s ≥ 1.Hence s = 0. Then comparing the centers we deduce t = t ′ and comparing the Gelfand-Kirillov transcendence degrees we conclude r = r ′ . 1.4. Remark. Each copy in D s r,t of the algebra A 1 generated over C by two generators u, w satisfying uw = -wu can be viewed as the enveloping algebra of the nilpotent Lie superalgebra f = f 0 ⊕ f 1 where f 0 = Cz ⊕ Ct and f 1 = Cu ⊕ Cw with brackets {u, u} = z, {w, w} = t, {u, w} = 0.

2 . 2 .

 22 is the automorphism of C[b + ][k ; δ] defined by τ (b + ) = -b + and τ (k) = k + 1, and d is the τ -derivation of C[b + ][k ; δ] defined by d(b + ) = 2k and d(k) = 0. Proposition. Frac U (osp(1, 2)) is isomorphic to F 3 .

1 2

 1 )) generated by (b + ) 2 , (b -) 2 and k. Actually up to a change of notations e := (b + ) 2 and f := -1 2 (b -) 2 it follows from (5) that [k, e] = 2e, [k, f ] = -2f et [e, f ] = k. We introduce ω := 4ef + k 2 -2k the usual Casimir in U (sl(2)).
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by the 10 elements b

a + , a -, s, t. The enveloping algebra U (sp(4)) of the even part of osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] is the subalgebra generated by (b + 1 ) 2 , (b + 2 ) 2 , (b - 1 ) 2 , (b - 2 ) 2 , k 1 , k 2 , a + , a -, s, t.

We describe now some subsuperalgebras of osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] whose enveloping skew field we study in the following. The even part of each of them satisfies the usual Gelfand-Kirillov property.

3.1.1. The nilpotent subsuperalgebra n + . We define in g 1 the subspace g + 1 := Cb + 1 ⊕ Cb + 2 and in g 0 the subspace n + 0 := Cc + 1 ⊕ Cc + 2 ⊕ Ca + ⊕ Ct. We denote n + := n + 0 ⊕ g + 1 . We calculate in osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] the 17 brackets between the 6 generators of n + :

It follows that n + is a Lie subsuperalgebra of osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] and that n + 0 is a Lie subalgebra of g 0 . Moreover setting

we rewrite the relations of the first two rows of (9) as:

which are the relations between the Chevalley generators in the enveloping algebra of the nilpotent positive part corresponding to the root system of type B 2 . We conclude that in the Lie subsuperalgebra n + of g = osp(1, 4), the even part n + 0 is isomorphic to the nilpotent positive part in the triangular decomposition of g 0 = sp(4). 

We calculate in osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF] the 30 brackets between the 8 generators of b + , adding to the 17 brackets of (9) the 13 brackets related action of c - 2 on b + 0 as:

We conclude that in the Lie subsuperalgebra p + of g = osp(1, 4), the even part p + 0 is isomorphic to the positive parabolic subalgebra in the triangular decomposition of g 0 = sp(4).

3.1.4. Remark: the Levi subsuperalgebra l associated to p + . It follows from relations [START_REF] Musson | The enveloping algebra of the Lie superalgebra osp(1,2r)[END_REF] and ( 14) that the subspace l := l 0 ⊕ l 1 with l [START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF]. It is clear that l is isomorphic to osp(1, 2). The Lie algebra l 0 is the Levi subalgebra associated to p + 0 in g 0 and is isomorphic to sl(2).

This is a particular case of the more general theorem 2.1 of [START_REF] Musson | The enveloping algebra of the Lie superalgebra osp(1,2r)[END_REF]. In the algebra

, the elements:

satisfy

Hence by lemma 1.2 we conclude that Frac U (n

, a + , t with commutation relations coming from ( 9):

The element t ′ defined in [START_REF] Richard | Hochschild homology and cohomology of some classical and quantum noncommutative polynomial algebras[END_REF] lies in Frac U (n + 0 ) and the element y defined in (17) satisfies

is the subfield of Frac U (n + ) generated by (b + 1 ) 2 , y, a + , t ′ with more simple commutation relations:

We recover the well known Gelfand-Kirillov property that Frac

) with notations [START_REF] Kac | Lie superalgebras[END_REF]. Up to a normalization we recover the well known expressions for the generators of the center of U (n + 0 ) in terms of Chevalley generators.

The following theorem gives a decomposition of Frac U (b + ) into two commuting subfields respectively isomorphic to D 0 1 and F 4 .

)) by U (n + ) and U (h) with the commutation relations ( 16) and the action of k 1 and k 2 on b + 1 , b + 2 , a + , t coming from [START_REF] Musson | The enveloping algebra of the Lie superalgebra osp(1,2r)[END_REF]. Taking again the notations used in the proof of proposition 3.2, this action extends to

The change of variables:

gives:

We replace y by:

which satisfies:

We deduce with (20) that the subalgebra

We have now to formulate the commutation relations of the last generator t ′ with the generators of V. It is clear that

We try to replace t ′ by a generator of the form a + t ′ + p commuting with a + and k ′ 2 , with p ∈ W. A solution is given by p = -a + k ′ 2 . In other words, the

This relation becomes y ′ t ′′t ′′ y ′ = 1 with notation:

Since 2 and a + is isomorphic to the Weyl algebra A 1 , the subalgebra generated by k ′ 1 , b + 1 , y ′ and t ′′ is isomorphic to the algebra S 4 , each element of the first subalgebra commutes with each element of the second one, and Frac U (b + ) = Frac (A 1 ⊗ S 4 ). Hence the proof is complete. 

Then Frac U (b + 0 ) is generated by k ′ 2 , a + , (b + 1 ) 2 , ℓ 1 , y ′′ , t ′′′ and the brackets between these generators are [k ′ 2 , a + ] = [ℓ 1 , (b + 1 ) 2 ] = [y ′′ , t ′′′ ] = 1 and 0 in all other cases. We recover the well known Gelfand-Kirillov property that Frac U (b + 0 ) is a classical Weyl skew field D 3 over a trivial center C.

The following theorem gives a decomposition of Frac U (p + ) into two commuting subfields respectively isomorphic to D 0 2 and F 3 .

Proof. By 3.1.3, U (p + ) is generated in U (osp [START_REF] Alev | Sur le corps de fractions de certaines algèbres quantiques[END_REF][START_REF] Aubry | Zero divisors in enveloping algebras of graded Lie algebras[END_REF]) by U (b + ) and b - 2 with commutation relations coming from ( 11), ( 14) and ( 16). We start replacing in Frac U (n + ) the generators t and a + by: 

We define 25), the same is true for ℓ 2 . Moreover we compute:

)) and we apply the method used in proposition 2.2 setting:

To sum up, the subfield L of Frac U (p

We can replace the generator b + 1 by w

In the last step we look at the action of k 1 on L. Technical calculations using (24) and (26) show that, on one hand

As in lemma 4 of [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF], the last change of variable k ′′ 1 := (k 1 + u 1 v 1 )w -1 1 doesn't change the first three relations and changes the last three into:

We conclude that in Frac U (p + ) the subalgebra generated by k ′′ 1 , w 1 is isomorphic to A 1 , the subalgebra generated by u 1 , v 1 is also isomorphic to A 1 , the subalgebra generated by u 2 , v 2 , z 2 is isomorphic to S 3 , and Frac U (p + ) is isomorphic to Frac (A 1 ⊗ A 1 ⊗ S 3 ).

Remark. The enveloping algebra

Computing the brackets between these generators we find exactly the table of the Lie algebra denoted by L 7,9 in [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF] p. 565 up to the following change of variables:

It is proved in [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF] that the Lie algebra p + 0 = L 7,9 satisfies the Gelfand-Kirillov property with Frac U (p + 0 ) = Frac (A 1 ⊗A 1 ⊗A 1 ⊗C[c]). The central generator c and the pairs of elements p i , q i (1 = 1, 2, 3) described in [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF] as generators of each copy of A 1 correspond with our notations in the proof of theorem 3.6 to:

which gives an explicite description of the embedding:

3.8. Illustration. With the conventions of remark 1.9, proposition 3.2, theorem 3.4 and theorem 3.6 can be represented by the following pictures: Proof. Suppose that Frac U (b + ) is isomorphic to some skew field D s r,t . Comparing the Gelfand-Kirillov transcendence degrees and the centers, we have 2r + 2s + t = 6 and 2s + t = 0, hence Frac U (b + ) would be isomorphic to the usual Weyl skew field D 0 3,0 = D 3 (C) which is impossible because, as at the end of the proof of proposition 1.7, we have G(D 3 (C)) = {1} and -1 ∈ G(Frac U (b + )). Suppose now that Frac U (p + ) is isomorphic to some skew field D s r,t . We obtain 2r + 2s + t = 7 and 2s + t = 1, hence Frac U (p + ) would be isomorphic to D 0 3,1 , which is impossible by the same argument.

3.11. Remark. The Lie algebra sp(4) contains two non isomorphic parabolic subalgebras corresponding to the cases denoted by L 7,7 and L 7,9 in the classification of [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF]. We have seen in 3.7 that the even part p + 0 of the parabolic subsuperalgebra p + is isomorphic to L 7,9 . But we can also define a subsuperalgebra q + of osp(1, 4) whose even part is the alternative parabolic subalgebra L 7,7 of sp(4). It is defined by q + = q + 0 ⊕ g + 1 with g + 1 = Cb + 1 ⊕ Cb + 2 and q + 0 = b + 0 ⊕ Cs, where s is defined in [START_REF] Giaquinto | Quantum Weyl algebras[END_REF]. A basis of q + 0 is {c + 1 , c + 2 , a + , t, k 1 , k 2 , s} and computing the brackets in osp(1, 4) we retrieve the table of L 7,7 in [START_REF] Alev | The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight[END_REF] up to the following change of notations: By a method similar to that of theorem 3.6, we can prove that Frac U (q + ) is also isomorphic to Frac (A 1 ⊗ A 1 ⊗ S 3 ).