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Abstract

We consider the problem of optimal vector quantization for random vectors
with one censored component and applications to clustering of censored ob-
servations. We introduce the definitions of the empirical distortion and of
the empirically optimal quantizer in presence of censoring and we establish
the almost sure consistency of empirical design. Moreover, we provide a non
asymptotic exponential bound for the difference between the performance of
the empirically optimal k-quantizer and the optimal performance over the
class of all k-quantizers. As a natural application of the new quantization
criterion, we propose an iterative two-step algorithm allowing for clustering
of multivariate observations with one censored component. This method is
investigated numerically through applications to real and simulated data.
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1 Introduction

Vector quantization and k-clustering are the two closely related issues. The for-
mer corresponds to a probabilistic problem of finding the optimal way to represent
a continuous distribution of random vector by a discrete distribution with a k-
point support. Some general references on the subject are [Gersho and Gray, 1992],
[Graf and Luschgy, 1994] and [Linder, 2002]. The latter is a statistical problem
of partitioning a set of i.i.d. observations of a random vector into k groups
as homogeneous and as compact as possible (see, for example, [Lloyd, 1982] or
[MacQueen, 1967]). The existing methodology in both settings supposes the avail-
ability of an i.i.d. complete data sample of the random vector of interest. That
is commonly not the case in the context of survival analysis where observations
include a lifetime variable, which may not be directly observed for the reason of
censoring. For a complete introduction to survival analysis, we refer the reader to
[Fleming and Harrington, 1991]. Due to this specificity, the multivariate survival
data cannot be analyzed by means of the standard clustering methods.

In the present article, we first introduce a new optimal quantization procedure
for random vectors with one censored component. Then, we consider its impor-
tant practical application, that is a new k-clustering algorithm valid in presence of
censored observations. To facilitate the discussion, we now fixe some notation. In
the sequel, we will be concerned with a random vector of the form (T,X), where
T is a univariate random variable subjected to right random censoring and X is a
d-dimensional observed vector of quantitative covariates. In presence of censoring,
instead of observing T directly, one observes a couple

(Y, δ) = (min(T,C),1T ≤C),

where C is a censoring random variable. Therefore, the available observations are
composed of i.i.d. replications

(Yi, δi, Xi)1≤i≤n (1)

of the random vector (Y, δ,X). Our first aim is to define the optimal quantization
procedure for (T,X) given the incomplete sample (1). Next, we will propose a clus-
tering algorithm detecting groups among n subjects with respect to their character-
istics (Ti, Xi)1≤i≤n, having at the input only their censored versions (Yi, δi, Xi)1≤i≤n.
We outline that we focus on a non supervised learning task, hence the variable T is
not considered as the response.

Before explaining the difficulties of the quantization and clustering in the de-
scribed setting, let us discuss some of their relevant applications. In the medical
domain, finding subtypes of a disease is an important task for the personalization of
the treatment. To illustrate the point, let us consider n patients suffering from the
same type of cancer. This same type of the disease is often represented by several
unknown subtypes which differ through biological features and clinical characteris-
tics. Identifying such subtypes permits to clinicians to make their diagnostics more
precise. For each patient, the available information include the survival time T (may
be censored) and the observed vector X of biological and/or clinical characteristics.
From the point of view of the statistical methodology, clustering methods are the
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best adapted to the situation of unknown cancer subtypes. In this context, some
of the existing approaches are discussed in [Bair and Tibshirani, 2004]. In partic-
ular, it is mentioned that an approach by clustering only with respect to X may
lead to groups differing through the biological features but unrelated to patient sur-
vival, which are not of prime interest for clinicians. Therefore, it is desirable to
perform clustering taking into account the censored survival time. To that aim, in
the context of genetic data, [Bair and Tibshirani, 2004] propose to select among the
components of X only the variables correlated with T (having a large Cox score)
and to apply then a non supervised clustering method with respect to the selected
covariates. The approach that we propose in this paper may be an alternative way
to detect groups related to the survival time without excluding covariates. The idea
is that our algorithm performs clustering with respect to the whole vector (T,X)
using as the input the available set of incomplete observations. As the variable T
participates in the procedure directly, the constitution of groups takes naturally into
account the survival time.

We note that the field of applications of our method is not confined to the medical
domain. For instance, in life insurance the population of policyholders is commonly
heterogeneous. When it comes to optimize the mortality management, a relevant
task consists in segmenting risks into classes that are homogenous. Insurers are
then able to price taking into account the specific mortality risk of each class. The
standard information available for performing such a partition composes of the resid-
ual lifetimes of policyholders and their associated geographical, socio-professional,
etc. characteristics. The lifetimes of subjects are subjected to censoring (for exam-
ple, in case of the cancellation of their insurance contract) and the issue of finding
homogeneous risk classes brings us back to the initial mathematical problem.

The rest of the article is organized as follows. Next section summarizes some basic
results from the vector quantization theory. In Section 3, we propose a generalized
definition of the empirical distortion adapted to the presence of censoring and we
define the empirically optimal quantizer as its minimizer. Section 4 deals with the
asymptotic results for the distortion of the empirically optimal quantizer. The new
clustering algorithm is presented in Section 5. Section 6 proceeds with applications
on simulated an real life data sets.

2 Vector quantization

We now come back to the quantization problem and we start by giving some pre-
liminary definitions. As we have already mentioned, the k-quantization consists
in summarizing the distribution P of the random vector (T,X) of Rd+1 by a dis-
crete distribution with a k-point support. The classical way to do that consists in
replacing (T,X) with q(T,X), where q is a k-point quantizer, that is a mapping
q : Rd+1 → C, where

C = {(c1, . . . , ck), ci ∈ R
d+1, for i = 1, . . . , k}

is a k-point subset of Rd+1 called a codebook.
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Let Qk be the set of all k-point quantizers. The error (distortion) of an arbitrary
k-point quantizer representing (T,X) by q(T,X) may be defined by

D(P, q) = EP ||(T,X) − q(T,X)||2. (2)

The optimal performance over the class of k-point quantizers is given by

D∗
k(P ) = inf

q∈Qk

D(P, q).

A quantizer q∗ is called optimal if D(P, q∗) = D∗
k(P ). It was shown (see

[Linder, 2002]), that such quantizer exists. Moreover, q∗ is a nearest neighbor quan-
tizer, that is,

q∗(t, x) = arg min
ci∈C

||(t, x) − ci||2,

with the distortion

D(P, q∗) = inf
C∈(Rd+1)k

Emin
ci∈C

||(T,X) − ci||2. (3)

The last assertion means that the task of determining the optimal quantizer is re-
duced to the class of the nearest neighbor quantizers, which are entirely characterized
by their codebooks.

In practice, the distribution P of (T,X) is unknown and the optimal quantizer
q∗ cannot be calculated. However, if one has access to an i.i.d. sample (Ti, Xi)1≤i≤n

of (T,X), it is possible to replace the distortion with respect to P with the distor-
tion with respect to the empirical measure Pn induced by the sample. Therefore,
the minimization of (2) is replaced by the minimization, with respect to C, of the
empirical distortion

D(Pn, q) =
1

n

n
∑

i=1

min
cj∈C

||(Ti, Xi) − cj||2. (4)

A quantizer q∗
n ∈ Qk, minimizing (4) is called to be empirically optimal. We recall

that the optimal quantization is closely connected to k-clustering. Indeed, given
a set of i.i.d. observations of (T,X), the codevectors of the optimal codebook are
the coordinates of the optimal cluster centers. Unfortunately, the task of numerical
minimization of (4) over all codebooks of size k is NP-hard, therefore C can only be
approximated using k-means type iterative algorithms.

In presence of censoring, the observed vector is no longer (T,X) but (Y, δ,X) =
(min(T,C),1T ≤C , X), as T is not directly observed. Therefore, the classical defini-
tion of the empirical distortion involves unobserved quantities (Ti)1≤i≤n and can not
be used in our setting. From the point of view of clustering, the specificity of cen-
sored data is that the distances between censored observations and other points are
not observed and the standard iterative clustering algorithms based on the distances
between the observations fail to work.
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3 Quantization under censoring

In this section, we are concerned with the quantization of the random vector (T,X)
taking its values in R

d+1, in presence of censoring acting on the variable T . As we
have already seen, in this setting, we dispose only of i.i.d. replications

(Yi, δi, Xi)1≤i≤n

of the observed vector (Y, δ,X). Therefore, the unknown distribution P of (T,X) can
not be estimated by the empirical distribution function and the classical definition
of the empirical distortion is not appropriate. The basic idea of our approach is to
estimate P by another random measure arising from the available observations. This
measure is associated with the estimator of the distribution function of (T,X) due
to [Stute, 1993]. Its consistency requires the following identifiability assumptions
which will supposed to be satisfied throughout the paper:

• T and C are independent

• P (T ≤ C|X, Y ) = P (T ≤ C|Y )

This set of assumptions is standard in survival analysis. For more details, we refer
to [Stute, 1993], [Stute, 1996], [Stute, 1999], [Gannoun et al., 2007], [Lopez, 2009]
and [Sánchez Sellero et al., 2005].

Let Y[i:n] be the i-th order statistics of the sample (Y1, . . . , Yn). We will denote by
δ[i:n] and X[i:n] the corresponding realizations of the indicator and of the covariate.
With this notation, the estimator of [Stute, 1993] takes the following form:

F̂n(t, x) =
n
∑

i=1

W[i:n]1Y[i:n]≤t,X[i:n]≤x, t ∈ R, x ∈ R
d, (5)

where W[i:n] is the weight assigned to Y[i:n] by the univariate Kaplan-Meier estimator
(see [Kaplan and Meier, 1958]) evaluated from the sample (Yi, δi)1≤i≤n. It has the
following expression (see [Stute and Wang, 1993]):

W[i:n] =
δ[i:n]

n− i+ 1

i−1
∏

j=1

(

n− j

n− j + 1

)δ[j:n]

, i = 1, . . . , n. (6)

We will adopt here an alternative form of the estimator (5) which was derived by
[Satten and Datta, 2001]. Let Win denote the weight attributed to the i-th obser-
vation and let Ĝ be a Kaplan-Meier estimator of the distribution function G of
the censoring variable C. Using this notation, the estimator (5) can be written as
follows:

F̂n(t, x) =
n
∑

i=1

Win1Yi≤t,Xi≤x, with Win =
δi

n(1 − Ĝ(Yi−))
, (7)

where G(y−) denotes the left-hand limit of G at y.
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In presence of censoring, the lack of large observations creates some difficulties for
estimating tails of distributions and can make estimators inconsistent in the neigh-
borhood of the upper bound of support. A common approach for overcoming this
difficulty (see for instance [Heuchenne, 2008]) consists in truncating the distribution
by a compact set [0, τ ] strictly included in its support. However, the truncation
τ may be chosen arbitrarily close to the upper bound of the support. This choice
seems to be the best adapted to our theory. In what follows, we will deal with the
truncated distribution P τ := P(T,X)|T ≤τ .

Let us consider now the corresponding distribution function F τ (t, x) and the
following estimator of it:

F τ
n (t, x) =

∑n
i=1 Win1Yi≤t,Xi≤x1Yi≤τ
∑n

i=1 Win1Yi≤τ

, t ∈ R, x ∈ R
d. (8)

We note that (8) is an adaptation of the estimator (5) by introducing truncation
and by normalizing a sum of its weights by 1. This estimator induces a probability
measure

Pτ
n =

n
∑

i=1

W τ
inδ(Yi,Xi), with W τ

in =
Win1Yi≤τ

∑n
i=1 Win1Yi≤τ

.

Now, it is natural to define the empirical distortion under censoring as the distortion
with respect to the empirical distribution Pτ

n :

D(Pτ
n , q) =

∑n
i=1 Win||(Yi, Xi) − q(Yi, Xi)||21Yi≤τ

∑n
i=1 Win1Yi≤τ

=
n
∑

i=1

W τ
in||(Yi, Xi) − q(Yi, Xi)||2. (9)

In this context, a quantizer q∗
n ∈ Qk will be called empirically optimal when

it minimizes the empirical distortion (9). This quantizer always exist due to
[Pollard, 1982b]. The next section will be concerned with the asymptotic prop-
erties of q∗

n, that is with the convergence of its distortion D(Pτ , q∗
n) towards the

optimal distortion D∗
k(P τ ) and with its rate.

4 Consistency of the empirical design

This section studies the asymptotic behavior of the empirically optimal quantizer q∗
n.

Theorem 1 establishes the almost sure convergence of the distortion of q∗
n towards

the minimal distortion D∗
k(P τ ). Theorem 2 provides an exponential inequality for

the difference between these two distortions. Corollary 1 gives the rate of the almost
sure convergence.

4.1 Almost sure convergence

The following Theorem 1 establishes the almost sure convergence of the distortion of
the empirically optimal quantizer. The proof is based on the fact that the absolute
value of the difference between two distortions is bounded by a Wasserstein distance
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between the probability measure Pτ
n =

∑n
i=1 W

τ
inδ(Ti,Xi) and the conditional distri-

bution P τ of (T,X), given T ≤ τ . We show that the indicated distance converges
almost surely to zero.

Theorem 1. For all k ≥ 1, the empirically optimal k-quantizer satisfies

D(P τ , q∗
n)

a.s.−→
n→∞ D∗

k(P τ ). (10)

Proof. We recall that the Wasserstein distance between two probability measures µ
and ν is defined by

ρ(µ, ν) = inf
X∼µ,Y ∼ν

(E||X − Y ||2)1/2,

where the infinium is taken over all random vectors (X, Y ) having marginal dis-
tributions µ and ν, respectively. Any nearest neighbor quantizer satisfies (see
[Linder, 2002]):

|D(µ, q)1/2 −D(ν, q)1/2| ≤ ρ(µ, ν),

and
|D∗

N(µ)1/2 −D∗
N(ν)1/2| ≤ ρ(µ, ν).

Applying these inequalities to the probability measures Pτ
n and P τ , we obtain

|D(Pτ
n , q

∗
n)1/2 −D(P τ , q∗)1/2| ≤ ρ(Pτ

n , P
τ ). (11)

By the following, we will show that the right-hand side of (11) converges to zero
almost surely, which implies the assertion of the theorem. To this aim, we recall
that ρ(Pτ

n , P
τ )

a.s.→
n→∞

0 is equivalent to

P
[

Pτ
n ⇒

n→∞ P τ
]

= 1 and P
[
∫

||(t, x)||2dPτ
n(t, x) →

n→∞

∫

||(t, x)||2dP τ (t, x)
]

= 1,

(12)
where ⇒ denotes the weak convergence (see, for example,
[Rachev and Rüschendorf, 1998]). We will prove that both conditions of (12)
are satisfied. At first, let us recall ([Stute, 1993]) that, for any measurable function
φ(t, x) : Rd+1 → R, we have

∫

φ(t, x)dFn(t, x)
a.s.−→

n→∞ EP [φ(T,X)]. (13)

The same property is true for the modified estimator. Indeed,

∫

φ(t, x)dF τ
n (t, x) =

∑n
i=1 Winφ(Yi, Xi)1Yi≤τ
∑n

i=1 Win1Yi≤τ

=

∫

φ(t, x)1t≤τdFn(t, x)
∫

1t≤τdFn(t, x)
−→
n→∞

EP τ (φ(T,X)) a.s.

Now, take φ(t, x) = ||(t, x)||2. This leads to

P
(
∫

||(t, x)||2dPτ
n(t, x) −→

n→∞

∫

||(t, x)||2dP τ (t, x)
)

= 1. (14)
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Thus, it remains to prove that P (Pτ
n ⇒

n→∞ P τ ) = 1. To that aim, we invoke argu-

ments similar to [Varadarajan, 1958], who showed the weak convergence of empirical
measure on the set of probability one. By Lévy criterium, all we need to obtain is

P
(

∀u ∈ R
d+1 : ψn(u) → ψ(u)

)

= 1,

where ψ(u) =
∫

exp(i〈(t, x), u〉)dP τ (t, x) and ψn(u) =
∫

exp(i〈(t, x), u〉)dP τ
n (t, x) are

the Fourrier transforms of P τ and P τ
n . Remark that the event

Ω(u) = {ω : ψn(u) → ψ(u)}

satisfies P τ (Ω(u)) = 1 for all u, because of property (13) applied to φ(u) =
exp (i〈(t, x), u〉). Let T be a countable dense subset of Rd+1 and consider an event

Ω0 =
⋂

u∈T

Ω(u)
⋂

{Pτ
n ||(t, x)|| → P τ ||(t, x)||} ,

which is of probabilty equal to one. For any u ∈ R
d+1 and ω0 ∈ Ω0, consider a

sequence {uk}∞
k=1, such that uk ∈ T and uk → u. For any fixed k, we have:

|ψn(ω0, u) − ψ(u)| ≤ |ψn(ω0, u) − ψn(ω0, uk)| + |ψn(ω0, uk) − ψ(uk)| +

|ψ(uk) − ψ(u)|
≤ ||u− uk||

(

EP τ
n
||(T,X)|| + EP τ ||(T,X)||

)

+|ψn(ω0, uk) − ψ(uk)|,

with EP τ
n
||(T,X)|| →

n→∞
EP τ ||(T,X)||, as ω0 ∈ Ω0. Moreover, ω0 ∈ Ω(uk) implies

that, for any k,

lim
n→∞ sup |ψn(ω0, u) − ψ(u)| ≤ 2||u− uk||EP τ ||(T,X)||.

Now, let k tend to infinity. This concludes the proof.

4.2 Exponential inequality

From now on, we will assume that the support of the random variable (T,X) is
bounded, i.e. there exists some constant R > 0 such that, P (||(T,X)|| ≤ R) = 1.
In the previous section, we established the almost sure consistency of the empirical
design when n → ∞. This section deals with some finite sample result. More
precisely, the following theorem provides a non asymptotic exponential bound for
the difference between the distortion of the empirically optimal quantizer and the
minimal distortion.

Theorem 2. There exist some positive universal constants K,K1, K2, L1, L2 such
that, for any z > 4K/F T

τ , with F T
τ = P (T ≤ τ), the following inequality holds:

P (
√
n|D(P τ , q∗

n) −D(P τ , q∗)| > z) ≤ 5 exp (−L1z
2 + L2z)

+ 2
[

exp(−K1z
2) + exp(−

√
nK2z)

]

+ O
(

e−√
n
)

.
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We note that the remainder term O
(

e−√
n
)

does not depend on z. It arises from

the control of the difference between the distribution functions of (T,X) and C and
their respective estimators on sets, which are not depending on z.

For the sake of clarity, the proof of Theorem 2 is postponed to Section 7. It
is based on the empirical process theory applied to classes of functions indexed
by k-point quantizers. The main idea is to bound the difference between the dis-
tortions by a deviation of the supremum of some empirical process indexed by a
Donsker functional class. The exponential inequality follows then from a concentra-
tion inequality of [Talagrand, 1994]. One of the main technical difficulties is that
the quantizer q∗

n is optimal with respect to the empirical measure Pτ
n with random

weights, depending on the Kaplan-Meier estimator Ĝ(y) of the censoring variable.
In order to handle such measure, we need to replace Ĝ(y) with its deterministic
limit G(y). To that aim, it is necessary to control supy |√n(Ĝ(y) − G(y))|, where
the supremum is taken over sets which are not depending on z. This is done through
an exponential inequality of [Bitouzé et al., 1999] for the Kaplan-Meier estimator.

The following corollary provides a rate of the almost sure convergence in Theo-
rem 1.

Corollary 1. For every probability measure P and τ > 0, as n → ∞

|D(P τ , q∗
n) −D(P τ , q)| = O

(

log n√
n

)

a.s. (15)

Proof. The result is a corollary of Theorem 2 and Borel-Cantelli Lemma applied to
the sequence of events Ωn = {|D(P τ , q∗

n) −D(P τ , q)| > zn} with zn = log n.

5 Clustering algorithm under censoring

Motivated by the examples given in the introduction, we are considering the fol-
lowing set up. Suppose that (Ti, Xi)1≤i≤n are the realizations of the lifetime and
of its covariates for n subjects. In presence of censoring, we do not have access to
these realizations but we do observe their censored versions (Yi, δi, Xi)1≤i≤n. The
aim of this section is to propose a way for partitioning the n subjects into k groups
with respect to their unobserved realizations (Ti, Xi)1≤i≤n having at hand only the
corresponding censored data set. If we come back to the example of cancer patients,
this task means that we want to group them with respect to their survival times
and covariates, although for some of them we only know that the survival time is
greater than the observed value of the censoring variable.

In Section 3 we proposed an empirical quantification criterion (9). Similarly to
the non censored case, the idea consists in evaluating the coordinates of the centers of
clusters by minimization of this criterion. Then, each cluster is to be composed of the
observations for which its center is the nearest. However, we have to overcome several
difficulties due to the presence of censoring. The first of them is that, in our case as
well as in absence of censoring, the corresponding numerical minimization problem
is NP-hard. Therefore, we need to define an iterative procedure which approximates
the coordinates of the unknown centers and which is compatible with the censored
data. The main issue in carrying out this task is that all euclidean distances related
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to censored observations are unobserved. Hence, the classical k-means algorithm
breaks down. Step 1 of our algorithm provides its generalization in our framework
and allows for finding the centers of clusters. In contrast to the standard clustering
setting, that is not sufficient for assigning labels to all observations. Indeed, each
non censored observation still can be affected to cluster with the nearest center. In
contrast, for censored observations, the distances to the centers are not observed
and one is not able to assign them labels. Step 2 of our algorithm is a way of
overcoming this difficulty by estimating the unknown distances between censored
observations and the cluster centers. Based on this estimation, we assign to each
censored observation the label of the center which is nearest with respect to the
estimated distance.

5.1 Finding centers of clusters

At each iteration of a standard k-means algorithm, a center of cell S is actualized
by the empirical mean of the composing it observations. This quantity represents a
consistent estimator of

E [(T,X)|(T,X) ∈ S] . (16)

In non censored case, all observations contribute to the estimation of this expectation
with the same weight. In presence of censoring, the empirical mean of the non
censored observations of S is a biased estimator of (16). Its consistent version
is given by a weighted sum of uncensored observations, where the corresponding
weights are defined in (7) and compensate for censoring. Following this idea, we
propose to actualize at each iteration the center c of cell S by

c =

∑n
i=1(Yi, Xi)

TWin1{(Yi,Xi)∈S,δi=1}
∑n

i=1 Win1{(Yi,Xi)∈S,δi=1}
. (17)

The rest of the iterative procedure is analogous to the classical k-means. The corre-
sponding pseudocode is presented in the frame Step 1. At the end of this step, the
centers of k clusters are evaluated and all non censored observations received their
labels.

Remark. Our theoretical results need to introduce a truncation bound τ which
can be chosen arbitrarily close to the upper bound of the support of distribution.
In practice, τ can be chosen equal to the former without significant impact on the
results.

5.2 Assigning labels to censored observations

If the i-th observation is censored, one only observes that δi = 0 and that Ti > Yi.
The best approximation of the unobserved euclidean distance d ((Ti, Xi); c) from this
observation to center c is given by:

E [d ((Ti, Xi); c) |Xi, Ti > Yi, δi = 0] .

10



Step 1 Evaluation of k centers

• Initialize the centers by c
(0)
1 , . . . , c

(0)
k

• Evaluate the weights Win of Kaplan-Meier estimator based on the sample
(Yi, δi)1≤i≤n

• Repeat until nothing changes: for the iteration ℓ

• Calculate Voronoï cells Sℓ
1, . . . , S

ℓ
k corresponding to centers c

(ℓ)
1 , . . . , c

(ℓ)
k for the

set of non censored observations {(Yi, Xi) : δi = 1, i = 1, . . . , n}

• For j = 1, . . . , k calculate new centers (c
(ℓ+1)
j )1≤j≤k as

c
(ℓ+1)
j =

∑n
i=1(Yi, Xi)

TWin1{(Yi,Xi)∈Sl
j
,δi=1}

∑n
i=1 Win1{(Yi,Xi)∈Sl

j
,δi=1}

.

• The algorithm stoppes in a finite number ℓ∗ of iterations. For j = 1, . . . , k attribute
to observation (Yi, Xi) with δi = 1 a label j if (Ti, Xi) ∈ Sℓ∗

j .

Therefore, for each i = 1, . . . , n, such that δi = 0 we estimate the distance between
(Ti, Xi) and the center c

(ℓ∗)
j by the following estimator of this conditional expectation:

d̂ij =

∫∞
Yi

||(t,Xi) − c
(ℓ∗)
j ||2dF̂ (t|Xi)

∫∞
Yi
dF̂ (t|Xi)

, (18)

where F̂ (t|x) is an estimator of F (t|X = x) = P (T ≤ t|X = x) given by

F̂ (t|x) =
1

n

n
∑

i=1

Win

k(x−Xi

h
)

∑n
j=1 k

(

x−Xj

h

)1Yi≤t, (19)

where x ∈ R
d and k(x) is a kernel, that is a positive integrable function such that

∫

Rd k(x)dx = 1. Combining (18) and (19), we obtain

d̂ij =

∑n
m=1 Wmn||(Ym, Xi) − c

(l∗)
j ||2k

(

Xi−Xm

h

)

1Ym≥Yi

∑n
m=1 Wmnk(Xi−Xm

h
)1Ym≥Yi

. (20)

We present now the second step of our algorithm.

Step 2 Assigning labels to censored observations

• For each censored observation (Yi, Xi) evaluate the estimated distances d̂ij accord-
ing to Equation (20).

• Assign to (Yi, Xi) a label j∗ = arg minj d̂ij.

5.3 Number of clusters

Similarly to the other k-means type algorithms, our procedure uses the number k
of clusters as the input value. However, in practice k is unknown and is to be

11



chosen adaptively. This issue was extensively studied in absence of censoring. A lot
of criterions were proposed in the literature, a complete review and a comparative
Monte Carlo study of most of them can be found in [Milligan and Cooper, 1985].
Several of these criterions can be adapted in presence of censoring. We propose here
a rule for choosing the number of clusters, which is an adaptation of the criterion of
[Krzanowski and Lai, 1988] proposed for non censored data. In absence of censoring,
one have to calculate, for some range of values of k, the pooled within-cluster sum
of squares Sk and a quantity

DIFF (k) = (k − 1)2/(d+1)Sk−1 − k2/(d+1)Sk,

where d+1 is the total number of the variables. [Krzanowski and Lai, 1988] proposed
to chose k maximizing

KL(k) =

∣

∣

∣

∣

∣

DIFF (k)

DIFF (k + 1)

∣

∣

∣

∣

∣

. (21)

In our case, we propose to replace Sk by the weighted sum of squares involving only
non censored observations:

Dk =
n
∑

i=1

Win min
cj∈C

‖(Yi, Xi) − cj‖2,

where C = {c1, . . . , ck} are the centers of k clusters resulting from our iterative
algorithm. Similarly to (21), the optimal number of clusters is to be chosen as the
value of k maximizing

∣

∣

∣

∣

∣

(k − 1)2/(d+1)Dk−1 − k2/(d+1)Dk

k2/(d+1)Dk − (k + 1)2/(d+1)Dk+1

∣

∣

∣

∣

∣

.

6 Simulations and a real data analysis

6.1 Simulation study

In this section, we evaluate the performance of our algorithm on simulated data sets.
We proceed in the following way. At the first step, a complete data sample with
known clusters is created and a k-means algorithm is applied, in order to obtain a
partition of the data into k clusters. The accuracy of this partition is then compared
to that of the partition produced by our algorithm, having as the input the censored
version of the initial sample.

This comparison is done through the corrected Rand’s statistics (see [Rand, 1971]
and [Hubert and Arabie, 1985]). Rand’s index permits to compare two partitions
P1 and P2 in order to know how close they are. In the set of all possible pairs of
observations let A (for “agreement”) denote the number of pairs which are of one of
the following types:

• Pairs of observations belonging to the same class in P1 and P2

• Pairs of observations belonging to a different class in P1 and to a different class
in P2

12



The total number of pairs being n(n− 1)/2, Rand’s statistics is defined by RP1P2 =
2A/(n(n− 1)). The closer RP1P2 is to one, the closer are the two partitions.

Plan of the simulation study:

For each of three different levels of censoring (15%, 30%, 45%), we generated 1000
bivariate data sets of n = 200 observations. For each j = 1, . . . , 1000, the j-th data
set is composed of k = 3 clusters (clusters are supposed to be known), forming
the partition denoted by P0

j . Data are simulated using a Gaussian mixture, in two
following cases: groups are close (see Figure 1, (a)) and groups are well separated
(see Figure 1, (b)). Censoring variable is chosen to have a uniform distribution.

0 5 10 15

0
2

4
6

8

(a) Case 1: groups are close

0 2 4 6 8 10 12 14

0
2

4
6

8
1

0

(b) Case 2: groups are well separated

Figure 1: Examples of simulated data.

The exact scheme of simulations is the following. For each level of censoring, k = 3
and j = 1, . . . , 1000,

• Simulate a complete data sample (T
(j)
i , X

(j)
i )1≤i≤n. Apply a k-means algo-

rithm, leading to a partition of these data into k clusters. Denote this partition
by Pc

j .

• Simulate a sample (C
(j)
i )1≤i≤n from censoring variable and get the censored

data set as (min(T
(j)
i , C

(j)
i ), δ

(j)
i , X

(j)
i )1≤i≤n. Apply our algorithm described in

Section 5 and denote the resulting partition into k clusters by Pj.

• Calculate Rand’s statistics RPc
j

P0
j

and RPc
j

P0
j
.

The value of RPc
j

P0
j

shows how accurate is the partition created by k-means (applied

to sample before censoring) with respect to the known “true” partition P0
j , and

RPc
j

P0
j

have the same meaning for our algorithm.

Results. In Table 1 (case of close groups) and Table 2 (case of well separated
groups), we present the mean values of the corrected Rand’s statistics over N = 1000

13



data sets, that is

RN
PP0 = 1/N

n
∑

j=1

RPjP0
j
,

and

RN
PcP0 = 1/N

n
∑

1

RPc
j

P0
j
.

Not surprisingly, both methods perform better for the well separated groups than

Level of censoring 15% 30% 45%
RN

PcP0 0.931 0.929 0.930
RN

PP0 0.905 0.878 0.851
RN

PcP0 −RN
PP0 0.026 0.051 0.079

Table 1: Corrected Rand’s statistics for simulated data, close groups

Level of censoring 15% 30% 45%
RN

PcP0 0.993 0.994 0.994
RN

PP0 0.972 0.942 0.923
RN

PcP0 −RN
PP0 0.021 0.052 0.071

Table 2: Corrected Rand’s statistics for simulated data, separated groups

for the closed ones. We remark also that the agreement between the partition
by our method and the true partition decreases when the proportion of censored
observations increase and the difference between the accuracy our method (having
at the entry the censored sample) and that of the procedure based on its full version
(which is unavailable in practice) becomes more important. However, this difference
does not rise drastically and the agreement for our method remains relatively good
even at 45% of censoring.

6.2 Real data analysis: PBC data

In this section, we illustrate our results by an application to a real data set. We
consider the data from the Mayo Clinic trial in primary biliary cirrhosis (PBC)
of the liver which is a rare and fatal chronic liver disease. The study had been
conducted between 1974 and 1984. For a total number of 418 patients the recorded
measurements are the time at risk (censored), censored indicator and 17 covariates
such as a patient age, sex, clinical, biochemical and histological measurements. After
excluding the participants with missing values of some covariates, we obtained a data
set of 258 observations, 111 of which are non censored. The detailed description of
the data set can be found in [Fleming and Harrington, 1991].

For the easier interpretability of the results we performed clustering using only
variables which were shown to be important for the survival (see the study of the
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same data in the regression setting conducted by [Grambsch et al., ]). These co-
variates are the patients’ age, total serum bilirubin mentioned as one of the most
important factors influencing the lifetime, serum albumin concentration and the pro-
thrombin time. We excluded the severity of edema variable as our method permits
to take into account only the quantitative covariates.

Before clustering, the observations of each variable were normalized by dividing
by the corresponding range. Our algorithm has detected four clusters of patients.
Table 3 presents the mean values of the survival time and of the covariates for
each group and for all of the patients. The results show that the discriminative

Survival Age Bilirubin Prothrombin Albumin
Group 1 3001.66 47.11 2.16 10.70 3.54
Group 2 2394.97 51.77 3.88 11.23 3.54
Group 3 1746.10 53.57 5.41 11.14 3.38
Group 4 1145.09 58.49 8.21 11.30 3.49

Overall means 2180.26 50.42 3.34 10.75 3.51

Table 3: Clusters found in PBC data

variables seem to be the survival time, the bilirubin level and the age. Group 1 is
characterized by the most important survival time associated with the low level of
bilirubin and the lowest age of patients. In contrast, Group 4 is represented by the
lowest survival, a very high bilirubin level and the most important age. Groups 2
and 3 are the medium cases between 1 and 4. One can see clearly that the survival
is strongly associated with the bilirubin level. This fact is in concordance with the
recognized importance of the factor. The mean prothrombin and albumin levels
seem to be rather close for the different groups.

In conclusion, the group of the highest risk is composed of patients with the most
important level of bilirubin and great ages while the lowest risk corresponds to the
youngest patients with the lowest level of bilirubin.

7 Proof of Theorem 2

In this section, we are giving the proof of the exponential inequality announced in
Section 4.

Proof. We have

P (
√
n|D(P τ , q∗

n) −D(P τ , q∗)| > z) ≤ P (
√
n sup

q∈QN

|D(P τ , q) −D(Pτ
n , q)| > z/2).

Using notation fq(y, x) = ||(y, x) − q(y, x)||2, F T
τ = P (T ≤ τ), P̂n =

∑n
i=1 Winδ(Yi,Xi)
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and F T
τ,n = P̂n(T ≤ τ), we obtain

|D(P τ , q) −D(P τ
n , q)| =

∣

∣

∣

∣

∣

∫

fq(y, x)1y≤τ
dP (y, x)

P (T ≤ τ)
−
∫

fq(y, x)1y≤τ
dP̂n(y, x)

P̂n(T ≤ τ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

F T
τ

∫

fq(y, x)1y≤τd(P − P̂n)

+
F T

τ,n − F T
τ

F T
τ F

T
τ,n

∫

fq(y, x)1y≤τdP̂n

∣

∣

∣

∣

∣

.

Therefore,
P (

√
n sup

q∈QN

|D(P τ , q) −D(Pτ
n , q)| > z/2) ≤ T1 + T2,

where

T1 := P

(√
n sup

q∈QN

∣

∣

∣

∣

∫

fq(y, x)1y≤τd(P − P̂n)
∣

∣

∣

∣

>
z

4
F T

τ

)

,

T2 := P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

F T
τ,n − F T

τ

F T
τ F

T
τ,n

∫

fq(y, x)1y≤τdP̂n

∣

∣

∣

∣

∣

>
z

4

)

.

In the following we will consider separately the terms T1 and T2.

1. The first term T1. Let us denote by Pn(y, x, δ) = 1
n

∑n
i=1 δ(Yi,Xi,δi) the

empirical measure of the available observations. For any function φ(y, x), we have

E

[

δ

1 −G(Y−)
φ(Y,X)

]

= E

[

E[1Y ≤C |Y,X]φ(Y,X)

1 −G(Y−)

]

= E [φ(T,X)] .

Therefore, the term T1 can be written as

T1 = P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

∫

fq(y, x)
δ1y≤τdP (y, x, δ)

1 −G(y−)

−
∫

fq(y, x)
δ1y≤τdPn(y, x, δ)

1 − Ĝn(y−)

∣

∣

∣

∣

∣

>
z

4
F T

τ

)

≤ T11 + T12,

where

T11 := P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

∫

fq(y, x)
δ1y≤τ

1 −G(y−)
d(P − Pn)

∣

∣

∣

∣

∣

>
z

4
F T

τ

)

,

T12 := P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

∫

fq(y, x)δ1y≤τ

[

Ĝn(y−) −G(y−)

(1 − Ĝn(y−))(1 −G(y−))

]

dPn

∣

∣

∣

∣

∣

>
z

4
F T

τ

)

.

Term T11. In order to handle the term T11, let us first introduce first a class of
functions

F1 =

{

gq : gq =
δ1t≤τ

1 −G(t−)
fq(t, x), q ∈ QN

}

, (22)
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indicated by N -quantizers. For any u > 0, we have the following majoration:

P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

∫

fq(y, x)
δ1y≤τ

1 −G(y−)
d(P − Pn)

∣

∣

∣

∣

∣

> u

)

≤ P

(√
n sup

f∈F1

|(Pn − P )f | > u

)

,

where we used the notation Pf =
∫

fdP and Pnf =
∫

fdPn. The expo-
nential inequality for T11 follows from a concentration inequality proposed by
[Talagrand, 1994] in the form, used by [Einmahl and Mason, 2005]. Let us first
remark that,

F1 = hτ (t, δ) × F2, (23)

where

F2 := {fq(t, x), q ∈ QN} and hτ (t, δ) =
δ1t≤τ

1 −G(t−)
.

The class F2 is P−Donsker. Indeed, as proved e.g. in [Linder, 2002], the col-
lection of sets {{(t, x) : fq(t, x) > u}, u > 0, q ∈ QN} forms a VC-class.
Therefore, the class F2 is VC-major by definition given in Section 2.6.4 of
[van der Vaart and Wellner, 1996], and is P−Donsker by Theorem 2.6.14 of Section
2.6.4.

Moreover, the function h : (t, δ) → δ1t≤τ

1−G(t−)
is bounded. Consequently,

F1 is P−Donsker as the pointwise product of the P−Donsker class F2 and
the bounded function (see the permanence property in Example 2.10.10 of
[van der Vaart and Wellner, 1996]).

We are now ready to apply the inequality of [Talagrand, 1994]. It states that,
for any pointwise measurable class F , satisfying ||f ||F := supf∈F ||f || ≤ M for some
constant 0 < M < ∞, we have for all u > 0,

P

(√
n sup

f∈F
|(Pn − P )f | ≥ A1√

n

(

E||P 0
nf ||F + u

)

)

≤ 2
[

exp(−A2u
2/nσ2

F)

+ exp(−A2u/M)] , (24)

where P 0
nf =

∑n
i=1 εif(Yi, Xi, δi), with i.i.d. Rademacher random variables (εi)1≤i≤n,

σ2
F = supf∈F V ar(f(Y,X, δ)) and A1, A2 are universal constants. For any function
f ∈ F1, we have ||f ||F1 ≤ 4R2(1 −G(τ−))−1. The application of the inequality (24)
to the class of functions F1 gives

P

(√
n sup

f∈F1

|(Pn − P )f | ≥ A1u+
A1E||P 0

nf ||F1√
n

)

(25)

≤ 2
[

exp(−A2u
2/σ2

F1
) + exp(−

√
nA2u/M)

]

,

where M := 4R2(1 −G(τ−))−1.
Using Propostion 1 of [Einmahl and Mason, 2005], we will show that the term

A1E||P 0
nf ||F1/

√
n is uniformly bounded by some constant B1. Indeed, as all func-

tions of the class F1 are uniformly bounded, the only condition to be verified is the
inequality N(ε,F1) ≤ Cε−ν on covering numbers, for some constants C, ν ≥ 1
and every ε ∈ (0, 1). This condition is satisfied. Indeed, by [Linder, 2002],
the considered class of functions is a VC class. Therefore, Theorem 2.6.7 of
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[van der Vaart and Wellner, 1996] applies and gives the required bound on the cov-
ering number.

According to Proposition 1 of [Einmahl and Mason, 2005], there exists some con-
stant B1, such that E||P 0

nf ||F ≤ B1

√
n. The inequality (25) takes form

P

(√
n sup

f∈F1

|(Pn − P )f | ≥ A1u+B1

)

≤ 2
[

exp(−A2u
2/σ2

F1
) + exp(−

√
nA2u/M)

]

,

(26)
for any u > 0 and some universal constantsA1, B1. For any v > K := min(A1+B1, 1)
(26) can be rewritten in the form

P

(√
n sup

f∈F1

|(Pn − P )f | ≥ v

)

≤ 2
[

exp(−K1u
2) + exp(−

√
nK2u)

]

, (27)

where K1 = A2(σF1(A1 + B1))
−2 and K2 = A2M

−1(A1 + B1)
−1. Therefore, for any

z > 4K/F T
τ ,

T11 ≤ 2
[

exp(−K1z
2) + exp(−

√
nK2z)

]

.

Term T12. Let us use the following decomposition,

T12 ≤ P

(√
n sup

q∈QN

∣

∣

∣

∣

∫

fq(y, x)1y≤τδdPn

∣

∣

∣

∣

× sup
y≤τ

∣

∣

∣

∣

∣

(Ĝn −G)(y−)

1 − Ĝn(y−)

∣

∣

∣

∣

∣

>
z

4
F T

τ (1 −G(τ))

)

≤ P

(√
n sup

y≤τ

∣

∣

∣

∣

∣

(Ĝn −G)(y−)

1 − Ĝn(y−)

∣

∣

∣

∣

∣

>
z

16R2
F T

τ (1 −G(τ))

)

≤ P (An) + P (Bn),

where

An : =

{√
n sup

y≤τ

∣

∣

∣

∣

∣

Ĝn(y−) −G(y−)

1 − Ĝn(y−)

∣

∣

∣

∣

∣

>
zF T

τ (1 −G(τ))

16R2

}

∩
{

sup
y≤τ

|Ĝn(y−) −G(y−)| ≤ 1 −G(τ)

2

}

,

and

Bn :=

{

sup
y≤τ

|Ĝn(y−) −G(y−)| > 1 −G(τ)

2

}

.

For the first term we have,

P (An) ≤ P

({√
n sup

y≤τ

∣

∣

∣Ĝn(y−) −G(y−)
∣

∣

∣ >
z

32R2
F T

τ (1 −G(τ))2

})

≤ 2.5 exp {−2λ2
1(τ)z2 + Cλ1(τ)z},

with λ1(τ) = F T
τ (1 −F T

τ )(1 −G(τ))2/(32R2), where the last inequality follows from
Theorem 2 of [Bitouzé et al., 1999]. The same theorem applied to the second term
gives,

P (Bn) ≤ P

(

sup
y≤τ

|(1 − F T (y−))(Ĝn(y−) −G(y−)| > (1 −G(τ))(1 − F T
τ )

2

)

≤ 2.5 exp {−
√
n(−2λ̃2

1(τ) + Cλ̃1(τ))},
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where λ̃1(τ) = (1 −G(τ))(1 − F T
τ ))/2.

2. The second term T2. The estimation of the second term T2 is similar to
that of T12. Indeed,

T2 = P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

F T
τ,n − F T

τ

F T
τ,n

∫

fq(y, x)1y≤τdP̂n

∣

∣

∣

∣

∣

>
z

4
F T

τ

)

= P

(√
n sup

q∈QN

∣

∣

∣

∣

∣

F T
τ,n − F T

τ

F T
τ,n

∫

fq(y, x)1y≤τ
δ

1 − Ĝn(y−)
dPn

∣

∣

∣

∣

∣

>
z

4
F T

τ

)

≤ P

(√
n

∣

∣

∣

∣

∣

F T
τ,n − F T

τ

F T
τ,n

∣

∣

∣

∣

∣

>
z

32R2
F T

τ (1 −G(τ))

)

+2.5 exp {−
√
n(−2λ̃2

1(τ) + Cλ̃1(τ))}
=: T21 + T22.

The first term can be decomposed as T21 = P (A′

n) + P (B′

n), where

A′

n =

{√
n

∣

∣

∣

∣

∣

F T
τ,n − F T

τ

F T
τ,n

∣

∣

∣

∣

∣

>
z

32R2
F T

τ (1 −G(τ))

}

∩
{

|F T
τ,n − F T

τ | ≤ F T
τ /2

}

,

and
B′

n =
{

|F T
τ,n − F T

τ )| > F T
τ /2

}

.

Using again [Bitouzé et al., 1999] we obtain,

P (A′

n) ≤ P

(√
n sup

y≤τ

∣

∣

∣(1 −G(y−))(F̂n(y) − F (y))
∣

∣

∣ >
z

64R2
(F T

τ )2(1 −G(τ))2

)

≤ 2.5 exp {−2λ2
2(τ)z2 + Cλ2(τ)z},

where λ2(τ) = (F T
τ )2(1 −G(τ))2/(64R2). Moreover,

P (B′

n) ≤ 2.5 exp {−
√
n(−2λ̃2

2(τ) + Cλ̃2(τ))},

with λ̃2(τ) = F T
τ (1 − G(τ−))/2. Bringing together all the inequalities, we obtain

the assertion of the theorem.
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