
HAL Id: hal-01075650
https://hal.science/hal-01075650v1

Preprint submitted on 19 Oct 2014 (v1), last revised 13 Aug 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomized Message-Passing Test-and-Set
Emmanuelle Anceaume, François Castella, Achour Mostefaoui, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, François Castella, Achour Mostefaoui, Bruno Sericola. Randomized Message-
Passing Test-and-Set. 2014. �hal-01075650v1�

https://hal.science/hal-01075650v1
https://hal.archives-ouvertes.fr

Randomized Message-Passing Test-and-Set

Emmanuelle Anceaume∗, François Castella†, Achour Mostéfaoui‡ and Bruno Sericola§

∗IRISA / CNRS Rennes (France), emmanuelle.anceaume@irisa.fr
†IRMAR / Université de Rennes 1 (France), francois.castella@univ-rennes1.fr
‡LINA / Université de Nantes (France), achour.mostefaoui@univ-nantes.fr
§INRIA Rennes – Bretagne Atlantique (France), bruno.sericola@inria.fr

Abstract—This paper presents a solution to the well-known
Test&Set operation in an asynchronous system prone to process
crashes. Test&Set is a synchronization operation that, when
invoked by a set of processes, returns yes to a unique process
and returns no to all the others. Recently many advances in
implementing Test&Set objects have been achieved, however
all of them target the shared memory model. In this paper
we propose an implementation of a Test&Set object in the
message passing model. This implementation can be invoked
by any number p ≤ n of processes where n is the total
number of processes in the system. It has an expected individual
step complexity in O(log p) against an oblivious adversary,
and an expected individual message complexity in O(n). The
proposed Test&Set object is built atop a new basic building
block, called selector, that allows to select a winning group
among two groups of processes. We propose a message-
passing implementation of the selector whose step complexity
is constant. We are not aware of any other implementation of
the Test&Set operation in the message passing model.

Keywords-Test&Set, agreement problem, asynchronous
message-passing system, crash failures, randomized algorithm,
synchronization.

I. INTRODUCTION

The Test&Set problem is a classical synchronization

service in shared-memory centralized systems classically

provided by a unique hardware atomic instruction. It allows

us to solve competition problems. When invoked by a set

of processes, it returns yes to a unique process (the winner)

and returns no to all the others (the losers). According to

the hierarchy of agreement problems based on consensus

numbers given by Herlihy in [11], consensus is harder to

solve than Test&Set, that is a solution to Test&Set does not

allow us to solve consensus, but Test&Set is still too hard

to be solved in a pure asynchronous system [4]. Indeed,

Test&Set has a consensus number equal to two, just like

renaming and queues for example, whereas the consensus

number of the consensus problem is infinite [11].

Contributions : In this paper we propose a random-

ized implementation of the Test&Set operation. Indeed,

Herlihy [11] has shown that this operation does not have

a deterministic implementation as soon as one crash may

occur, and thus in order to implement it in an asynchronous

system, it is necessary to add synchrony assumptions or to

use randomization. We focus on the latter option. For ran-

domized solutions, the relations between random decisions

and the scheduling of processes (i.e., read/write operations

in the shared memory model, and send/receive operations

on messages in the message passing model) are taken into

account through the definition of the adversary. In this paper

we consider the oblivious adversary model, that is, the model

in which the adversary makes all its scheduling decisions at

the beginning of the execution independently of the random

values tossed by the processes in the course of the execution.

In contrast, the adaptive adversary model supposes that the

adversary makes its decisions based on the full history of the

events. This model, while stronger than the oblivious one,

has so far led to space expensive known implementations [3]

or non adaptive ones [1] in the shared memory model.

In this paper, we propose to implement the Test&Set

operation in the message-passing model. So far all the

efficient solutions have been implemented with shared reg-

istered [1]–[3], [9]. Our implementation can be invoked

by any number p ≤ n of processes where n is the total

number of processes in the system. This implementation

has an expected individual step complexity in O(log p)
and an expected individual message complexity in O(n)
against an oblivious adversary. The expected step complexity

(respectively the expected message complexity) represents

the maximum number of steps (respectively the maximum

number of messages) needed by any process in expectation

to complete its execution, assuming the scheduling of the

worst adversary taken from its family (i.e., the oblivious

or adaptive adversary family). Having a step or message

complexity that depends on p and not on the number of

processes n of the system makes our solution adaptive.

We are not aware of any adaptive implementation of the

Test&Set object. This makes our solution interesting from

both the theoretical aspect but also from the practical one,

as the cost of the implementation depends uniquely on the

number of processes that concurrently invoke this operation.

Finally, the proposed Test&Set object is built atop a

new basic building block, called selector. A selector is a

distributed service, invoked by a set of processes, that allows

to select a winning group among at most two competing

ones. We propose a message-passing implementation of the

selector whose step complexity is constant.

Road map: In the remaining of the paper, Section II

presents the underlying computation model and specifies

the Test&Set problem. Section III presents a randomized

implementation to this problem. Section IV shows the cor-

rectness of the implementation, and both its message and

step complexity. Section V proposes a randomized solution

to the selector operation and shows the correction of this

operation. Finally Section VI concludes.

II. COMPUTATION MODEL AND PROBLEM DEFINITION

A. Computation Model

We consider an asynchronous system consisting of a set Π
of n processes, namely, Π = {p1, p2, . . . , pn}. A process can

fail prematurely by crashing. A process behaves according

to its specification until it (possibly) crashes. After it has

crashed a process executes no step. A process that never

crashes is said to be correct; otherwise it is faulty. Let t
denote the maximum number of processes that may crash.

We assume that a majority of processes is correct, namely

t < n/2. We focus on a message-passing solution, that

is processes communicate and synchronize by sending and

receiving messages through reliable but not necessarily FIFO

channels. Specifically, every pair of processes is connected

by a channel that cannot create, alter, or lose messages

however can duplicate them. Hence if both the sender and

the receiver are correct then any sent message is eventually

received but no spurious messages are generated. As the

system is asynchronous, there are no assumption regarding

the relative speed of processes nor the message transfer

delays. The communication system offers two types of

communication primitives. A broadcast primitive bcast that

allows a process to send a same message to all the processes.

This operation is not atomic, it can be implemented as a

multi-send statement; if the sender of a message is faulty

some processes can receive it and others not. Moreover, if

a process knows the identity of another process with which

it wants to communicate, it can send a message directly to

it using a point-to-point communication primitive send.

B. Problem Definition

Test&Set is usually a hardware operation offered by the

processor. In the case of distributed computing, the Test&Set

problem is a coordination problem where a set of processes

invoke Test&Set and return a binary value yes or no such

that exactly one returns yes (the winner) and all the others

return no (the losers). From an operational point of view,

the Test&Set operation is attached to distributed objects. Let

o be a Test&Set object that can be accessed through the

method t&s, which can be invoked by any process pi using

o.t&s(). An invocation returns a binary result yes or no. A

protocol that solves the randomized Test&Set problem must

satisfy the following four properties:

• TS-Validity: A process, invoking the o.t&s primitive,

that returns a value must return either yes or no.

• TS-Obligation: If no process crashes then, exactly one

process returns yes.

Output Meaning

(yes,yes) The group of pi wins and pi is the winner in the
group

(yes,no) The group of pi wins but there is no winner in the
group

(no,no) Either the group of pi looses or there is a winner
in the group of pi and the winner is not pi

(no,yes) Impossible, pi cannot be a winner if its group does
not win

Table I
THE POSSIBLE OUTPUTS OF A SELECTOR OBJECT INVOKED BY A SET OF

p ≥ 1 PROCESSES, pi BELONGS TO.

• TS-Agreement: At most one process returns yes and

in this case, all the other returning processes return no.

• TS-Termination: An invocation by a correct process

of the o.t&s primitive terminates with probability 1.

Moreover, the different calls to the Test&Set operation

need to be linearisable. It has been proved in [10] that

any object that satisfies the properties cited above can be

used together to implement a linearisable Test&Set object.

Consequently, we will not worry about linearisability.

III. A RANDOMIZED TEST&SET OBJECT

This section presents a Test&Set object that can be

invoked by any number of competing processes. We imple-

ment this object by having competing processes go through a

series of accesses to a basic agreement service object called

selector.

A. A selector Object

A selector object proposes a unique access primitive

play() that is invoked with a boolean parameter g (0 or

1). Each of the two binary values represents a group. A

process randomly chooses its group (0 or 1) before invoking

play(). This basic object is in charge of selecting the

winning group g′, and the winning process within this

group, if any. Consequently the primitive play() returns

two boolean values to each invoking process. The first one

says if the group of the invoking process is the winner one,

and the second one indicates whether the invoking process

is also the winner in its group. Table I shows the three

possible responses process pi can receive upon invocation of

primitive play. More formally, let s be a selector object,

invoked by any process pi using s.play(g) with g equal

to 0 or 1. A protocol that implements such an object must

satisfy the following six properties:

• S-Validity: A process, invoking the s.play primi-

tive, that does not crash must return either (yes,yes),

(yes,no) or (no,no).

• S-Obligation-solo: If a process invokes s.play alone

(solo execution) and does not crash then, it returns

(yes,yes).

2

Function o.Test&Set()
(1)stepi = 1;
(2)repeat forever

(3) (b1, b2)← selector[stepi].play(rnd(0, 1));
(4) if (b1 = yes ∧ b2 = yes) ∨ (b1 = no) then

(5) return(b1 = yes ∧ b2 = yes)
(6) endif;
(7) stepi ← stepi + 1;
(8)endrepeat;

Figure 2. Randomized Test&Set Object

• S-Obligation: If no process crashes then, at least one

process returns (yes,-).

• S-Agreement: At most one process returns (yes,yes),

and in this case, all the other returning processes return

(no,no).

• S-Exclusion: If an invocation of s.play with parame-

ter g returns (yes,-) then, no invocation with parameter

¬g can return (yes,-).

• S-Termination: An invocation of s.play by a correct

process terminates with probability 1.

Section III-A proposes a message-passing implementation

of the selector object.

B. Implementing the Randomized Test&Set Object

As aforementioned, implementation of the Test&Set ob-

ject relies on instances of the selector object as illustrated

in Figure 1.

Pseudo-code of the Test&Set algorithm, given in Figure 2,

can be seen as a process elimination by dichotomy. At the

first step, each of the p competing processes pi flips a local

coin (we suppose that each process uses an unbiased local

coin) and invokes the first instance of the selector object

with this coin as parameter. This parameter represents pi
group for this instance of the selector object. The selector

object selects the winning group (set of processes) allowed

to continue the competition, and eliminates all the processes

of the other group (if any). Specifically, any process pi that

exits with (yes,no) from the current instance of the selector

object triggers a new step of the Test&Set algorithm by

invoking the next instance of the selector object by flipping

again a local coin. On the other hand, any process pi that

exits from the current instance of the selector object with

(no,no) also exits from the Test&Set invocation with no.

The last step of the Test&Set algorithm occurs when one of

the remaining competing processes pi exits from the selector

object invocation with (yes,yes). This winning process exits

with yes from the Test&Set invocation. As it will be proven

in the sequel, any invocation by a process that does not crash

terminates with probability 1. As said in the introduction, our

algorithm does not need to know how many processes access

the Test&Set object. Remaining of the paper will clarify all

these points.

IV. ANALYSIS OF THE TEST&SET IMPLEMENTATION

This section proves the correction of the algorithm of

Figure 2 by proving the four properties of a Test&Set object,

namely the TS-Validity, TS-Obligation, TS-Agreement

and TS-Termination properties and then shows the com-

plexity both in terms of steps and messages of the algorithm.

A. Proof of Correctness of the Test&Set Implementation

The TS-Validity property is a direct consequence of line 4

of the algorithm, while the TS-Obligation property is a

consequence of the S-Obligation of the selector underly-

ing object. Indeed, if none of the processes that execute

o.Test&Set() crash, then necessarily they execute line 3 of

the algorithm. By the S-Obligation property of the selector

object, at least some process will exit with (yes,-). If some

process returns (yes,yes) then by the S-Agreement of the

selector object, all the other processes will return (no,no).

Now if only (yes,no) is returned, then all these processes

will execute a new instance of the selector. The same

argument applies until exactly one process executes a solo

execution in which case it will return (yes,yes), and by the

S-Agreement of the selector object, all the other processes

will return (no,no).

To prove the TS-Agreement property, let us consider the

first process that exits with yes at line 5 at some step stepi.
Necessarily this process invoked selector[stepi].play()
and this invocation returned (yes,yes). Consequently, by

the S-Agreement property of a selector, all the other

processes that invoke the selector will exit with (no,no) and

consequently, these processes will return no at line 5 at the

same step stepi.
Property TS-Termination is more tricky to prove. By the

S-Validity of a selector, returned values are pairs of boolean,

consequently, the Test&Set algorithm is properly executed

(no type errors). Moreover, by the S-Termination property

of a selector, a correct process terminates the call of line

3 with probability 1. Saying this, we conclude that if the

Test&Set algorithm does not terminate, it will execute an

infinity of times the repeat loop. Section IV-B proves that

this loop terminates after no more than 2 log2(p) invocations

of the selector object in expectation for large values of the

contention p of the Test&Set execution (see Theorem 2).

Moreover, the average number of selector invocations done

by any of the competing processes during a Test&Set

execution is constant (2 invocations per process as shown

in Corollary 1).

B. Complexity Analysis of the Test&Set Implementation

We now analyse the complexity of our implementation

with respect to both the number of exchanged messages and

the number of execution steps.

Theorem 1 (Message complexity of Test&Set()): The

total number of messages exchanged by the randomized

3

t&s() play(a=rnd(0,1))
selector[1] selector[2] selector[..]

play(a=rnd(0,1)) play(a=rnd(0,1))

(no,no)

no

(yes,yes)

(no,no) (no,no)

(yes,yes) (yes,yes)

yes

(yes,no) (yes,no)

Figure 1. Test&Set object using selector objects as building blocks.

implementation of the Test&Set object when concurrently

invoked by p processes is O(np).

Proof: Consider a Test&Set execution with contention

p. From Theorem 4 (see Section V-C), the message complex-

ity of each invocation of the selector object requires O(np)
messages. By Corollary 1 (see below) each competing pro-

cess invokes s.play() twice in expectation. Consequently,

the expected total number of messages exchanged by the

Test&Set algorithm with contention p is O(np), and thus

O(n) messages are needed per competing process.

To carry out the step complexity analysis, we consider

the worst-case execution, namely that the Test&Set protocol

terminates at the latest when there is only one process

executing the protocol. Indeed, the protocol may terminate

before, that is, as soon as a process succeeds in being the

winner of the winning group. However, as this situation may

or may no happen, the analysis supposes the worst case

execution, where the Test&Set protocol executes until there

is a unique competing process. Consequently, for the worst

case analysis, only the first boolean returned by the selector

object is relevant. Recall that this boolean indicates whether

the invoking process belongs to the winning group or not.

Now, when competing processes invoke a selector, each

one chooses a group at random (line 3 of Figure 2). By the

S-Exclusion property of a selector, only one group will win.

The identity of the winning group (0 or 1) depends on the

actual scheduling and the adversary. Hence, as the choice of

the group is done at random and this is not a priori known

by the oblivious adversary, we assume that the two events

”group 0 wins” and ”group 1 wins” occur with the same

probability 1/2 and that the behaviours of the processes at

each instant are independent of each other.

We suppose that p ≤ n processes concurrently access

the Test&Set object. The behaviour of the algorithm can be

modelled by a Markov chain X = {Xℓ, ℓ ≥ 1}, where Xℓ

represents the number of processes in competition at the ℓ-
th transition, i.e., the number of processes that execute the

ℓ-th step. Hence, the state of the Markov chain is an integer

value i (1 ≤ i ≤ p). The initial state of X is state p, with

probability 1, that is P{X0 = p} = 1 and we denote by P
the transition probability matrix of X . The probability Pi,j

to go from state i to state j in one transition is equal to 0

5 4 3 2 1

Figure 3. Transition graph of Markov chain X when p = 5

if i < j. Indeed, a process that returns b1=no cannot any

more continue the competition (see line 5 in Figure 2). Now,

when all the i competing processes choose the same group

(either 0 or 1) then they all restart the competition in the

same state. It follows that, for i = 1, . . . , p,

Pi,i =
1

2i
+

1

2i
=

1

2i−1
.

Finally, for 1 ≤ j < i ≤ p, Pi,j is the probability that exactly

j processes among i choose the same group and that this

group wins. We thus have, in this case,

Pi,j =
1

2

[
1

2i

(
i

j

)
+

1

2i

(
i

i− j

)]
=

1

2i

(
i

j

)
.

The states 2, 3 . . . , p are thus transient states and state 1 is

absorbing since P1,1 = 1. Figure 3 shows the graph of X
in the case where p = 5.

In the following we evaluate the average number of

steps to reach state 1, and the average total contention

before termination, i.e., before reaching state 1. By total

contention we mean the following: Let us consider the

series n1, n2, n3, . . . , nk where nℓ represents the number

of processes that execute step ℓ of the Test&Set protocol

(contention on step ℓ). By assumption n1 = p. We call

the total contention on the whole selector objects the sum

n1 + n2 + n3 + . . . + nk. The evaluation shows that the

average total contention is linear in p.

When p processes are initially competing, the worst case

time needed by the Test&Set protocol to terminate is the

hitting time of state 1 by Markov chain X . If we denote by

Tp such a time, we have

Tp = inf{ℓ ≥ 0 | Xℓ = 1}.

4

It is well-known, see for instance [13], that the expected

value of Tp is given by

❊{Tp} = α(I −Q)−1
✶,

where Q is the matrix of dimension p − 1 obtained from

P by deleting the row and the column corresponding to

absorbing state 1, α is the row vector containing the initial

probabilities of the transient states, that is αp = 1 and

αi = 0 for i = 2, . . . , p− 1, and ✶ is the column vector of

dimension p−1 with all its entries equal to 1. The expected

value ❊{Tp | X0 = p} can also be evaluated using the

well-known recurrence relation, see for instance [13],

❊{Tp | X0 = p} = 1 +

p∑

k=2

Pp,k❊{Tk | X0 = k}. (1)

Theorem 2 (Step Complexity of Test&Set()): The ex-

pected time ❊{Tp | X0 = p} needed to terminate the

Test&Set protocol when p processors are initially competing

satisfies

❊{Tp | X0 = p} = O(log(p)).

More precisely, there exists a positive integer p0 such that,

for every p ≥ p0, we have

❊{Tp | X0 = p} ≤ 2 log(p),

where log denote the logarithm function to the base 2.

Proof: (Sketch.) Introducing the notation up = ❊{Tp |
X0 = p} and replacing Pp,k by its value, Formula 1 can be

written as

up = 1 +

p−1∑

k=2

2−p

(
p

k

)
uk +O(2−p).

The key idea lies in the fact that
(
p
k

)
is maximal when k =

p/2, and decreases rapidly away from the value k = p/2,

so that the above recursion formula for up very roughly

asserts that up ≈ 1 + up/2. Would this simplified recursion

formula hold true exactly, the bound up = O(log(p)) would

be obvious. Based on this rough idea, the proof is split into

three main steps.

First, given a small α > 0, Stirling formula implies

2−p
(
p
k

)
= O(exp(−2p2α)) uniformly in k whenever |k −

p/2| ≥ p1/2+α. This provides the simplified recursion

formula

up = 1 +
∑

k: |k−p/2|≤p1/2+α

2−p

(
p

k

)
uk +O(2−2pα

).

The second step consists in introducing a dyadic partition,

so we define Uj = max2≤k≤2j uk. A detailed analysis of

the above recursion formula provides, roughly

Uj+1 ≤ 1 +
Uj + Uj+1

2
+O(2−2pα

),

where p = 2j .

The last argument consists in proving that the above

bound provides Uj ≤ 2j + C, for some constant C that

does not depend on j. This completes the proof. For space

reasons, the full proof appears in Appendix A.

Using this result and the Markov inequality, we obtain,

for the positive integer p0 of Theorem 2, for every m ≥ 1
and p ≥ p0,

P{Tp > 2m log(p)} ≤ 1/m.

We consider now the total contention before termination.

For ℓ ≥ 0, we denote by Wℓ(p) the number of processes

that executed step ℓ of the protocol when p processes are

initially competing. This random variable is defined by

Wℓ(p) =
∑p

i=2 i1{Xℓ=i}. Since the initial state is state p,

we have W0(p) = p with probability 1. W0(p) represents

the contention of the Test&Set and also the contention

of the first invocation of the selector object. The total

contention before termination is denoted by N(p) and given

by N(p) =
∑∞

ℓ=0Wℓ(p). Note that N(p) is also the total

contention of the whole invocations of the selector object.

The next theorem gives the expectation of N(p).

Theorem 3 (Total Contention): For every p ≥ 2 and

ℓ ≥ 0, we have

❊{Wℓ(p)} =
p

2ℓ
and ❊{N(p)} = 2p.

Proof: Since the initial state is state p, we have, for

ℓ ≥ 0, ❊{Wℓ(p)} =
∑p

i=2 iP{Xℓ = i | X0 = p} =∑p
i=2 i

(
Qℓ
)
p,i
. For ℓ = 0, we have ❊{W0(p)} = p. For

ℓ ≥ 1,

❊{Wℓ(p)} =

p∑

i=2

i

p∑

j=i

Qp,j

(
Qℓ−1

)
j,i

=

p∑

j=2

Qp,j

j∑

i=2

i
(
Qℓ−1

)
j,i

=

n∑

j=2

Qp,j❊{Wℓ−1(j)}.

We pursue by recurrence over index ℓ. The result being

true for ℓ = 0, suppose that for every j ≥ 2, we have

❊{Wℓ−1(j)} = j/2ℓ−1.

5

Then, for every p ≥ 2,

❊{Wℓ(p)} = Qp,p❊{Wℓ−1(p)}+
p−1∑

j=2

Qp,j❊{Wℓ−1(j)}

=
1

2p−1

p

2ℓ−1
+

1

2p

p−1∑

j=2

(
p

j

)
j

2ℓ−1

=
p

2p2ℓ−1
+

1

2p

p∑

j=2

(
p

j

)
j

2ℓ−1

=
1

2p2ℓ−1

p∑

j=1

j

(
p

j

)

=
p

2p2ℓ−1

p∑

j=1

(
p− 1

j − 1

)

=
p

2ℓ
.

We then have ❊{N(p)} =
∑∞

ℓ=0❊{Wℓ(p)} = 2p, which

completes the proof.

Corollary 1: Each process competing for the Test&Set

object invokes 2 instances of the selector object in expecta-

tion.

Proof: Straightforward from Theorem 3 as

❊{N(p)}/p = 2.

V. MESSAGE-PASSING IMPLEMENTATION OF THE

SELECTOR OBJECT

The implementation of the selector object, whose proper-

ties appear in Section III, falls under the impossibility result

of many agreement problems in the context of asynchronous

distributed systems prone to process failures [8]. We thus

consider an asynchronous message-passing distributed sys-

tem augmented with a random oracle (see Section V-A) to

circumvent the impossibility result. Note that the problem

we want to solve is an adaptation of Ben-Or consensus

algorithm [5], and is close to the one solved by Tromp

and Vitany [14] in the context of shared memory systems.

Tromp and Vitany’s problem is the same as the classical

Test&Set problem except that it can be invoked by at

most two different processes. Operationally, the selector is

attached to distributed objects. Let us consider a selector

s. As previously described in Section III, selector s can be

concurrently invoked by p processes, 1 ≤ p ≤ n, however

all the n processes of the system have to participate. Indeed,

as there is no shared memory and processes may fail by

crashing, the participation of all processes is required to

serve as arbiters and as collective memory [4].

A. Common Coin

In the implementation of the selector object, we assume

that processes have access to a function common_coin()

which provides all the processes the same value (0

or 1) with probability 1/2. Each process invokes func-

tion common_coin() at the beginning of each round

of the protocol. Thus the values returned by function

common_coin() to all the processes are identical.

B. Implementing the Selector Object

The algorithm is round based. It is presented in Figure 4. It

goes through a series of rounds each one composed of two

communication phases. The algorithm is divided into two

parts. The first one is executed by the invoking processes

(that is the processes that have invoked method play on

object s), while the second part (called Relay Task in

Figure 4) is executed by all processes including the invoking

ones. This is done for generality since the messages sent by a

process to itself are directly delivered to it. The Relay Task

serves as a relay to the messages sent by the competing

processes and implements some kind of shared memory.

We will respectively call these two groups of processes the

invoking processes and the relaying processes.

The goal of the method play is to determine the winning

value among the proposed ones and the winner of the

competition, if any. A process pi wins the competition if

either pi is the only process that invoked the primitive play

or pi has invoked the primitive play with the winning

boolean value g′ and pi has no evidence that another process

did the same. If none of both conditions hold, then all

the processes that have proposed the winning value will

compete in a new execution of primitive play, while

all the other ones stop the competition. This is achieved

as follows. Each invoking process pi handles a variable

g esti representing its estimation of the winning group (0
or 1). Variable g esti is initially set to the value gi that

pi proposed when it invoked the method play. Then, this

estimate will evolve according to what pi will learn during

the protocol. Similarly each invoking process pi manages a

variable id esti representing its estimation of the possible

winning process inside the winning group (initially id esti
is set to pi).

At the beginning of each round, each invoking process pi
tosses a common coin c (as said in Section V-A this value

is common to all invoking processes in the current round).

During the first phase of the current round, pi broadcasts

its estimates g esti and id esti in a PHASE message to all

processes, and waits for their echo (Line 5 in Figure 4).

As several processes may play during a same round, some

relaying processes may first receive the PHASE message

from some invoking process pi and thus will only echo pi
estimate while other relaying processes may first receive a

PHASE message from another invoking process pj possibly

endorsing the group ¬g and will echo pj estimate. Each

relaying process manages two variables g[r, x], id[r, x] for

each of the two phases x of each round r. They are used to

store the estimates (g and id) received in the PHASE message

received from an invoking process. Thereafter, these same

6

estimates are echoed to all invoking processes from which

a PHASE message was received for the same phase of the

same round.

Each invoking process pi collects in set Gi the echoed

values received from a majority of processes including itself.

Upon receipt of a majority of echoes, if Gi contains a single

value then pi keeps this value in g auxi otherwise, it knows

that there is contention between two groups of processes

each one championing for the two possible values (0 and

1). Process pi sets variable g auxi to a value ⊥ reflecting

such a contention. Process pi applies the same argument for

the echoed identifiers.

To summarize, the first phase ensures that for any pair

of invoking processes pi and pj , if g auxi and g auxj are

both different from ⊥ then they necessarily contain the same

value g and if id auxi and id auxj are both different from

⊥ then they necessarily contain the same process identity

id.

During the second phase of the round, pi broadcasts both

g auxi and id auxi and collects in Gi and Idi the echoes

from a majority of processes. By construction of the first

phase, if Gi contains a value g and possibly ⊥ then pi is

sure that any other invoking process pj will receive either g
or ⊥ values. Moreover, if Gi contains a unique value, pi is

certain that any other invoking process pj will receive at least

this value (two majorities always intersect). In particular, if

Gi contains only the ⊥ value, pi knows that no winning

values has been exhibited during the round, thus pi triggers

a new round by setting its estimate to the random value c
picked at the beginning of the round, and id auxi to ⊥
(Line 14). Now, if Gi only contains a non bottom value g
then g is the winning value of the round. Process pi must

then determine whether the echoed values it has received

reflect a contention among the potential winners or not. Such

a contention exists if Idi contains at least the bottom value.

If pi does not observe such a contention and if it considers

itself as the winner of the competition (i.e., Idi = {pi})

then it successfully leaves the competition by returning

(yes,yes), see Line 15. Meanwhile, for any other process

pj , if pj suspects that pi may have won the competition

(Lines 15, 17 and 19) then pj abandons the competition by

returning (no,no) (Lines 15, 18 and 20). Now, if pi observes

a contention among the potential winners but there is no hint

of the potential winner, i.e., Idi = {⊥} (Line 16), then if

pi is among the processes that initially proposed g it starts

a new competition by returning (yes,no). It abandons the

competition otherwise. If, on the other hand, pi knows that

that a majority of processes have seen its estimate in the first

Phase (id = pi at Line 19) but not necessarily in the second

Phase (⊥ ∈ Idi), then pi triggers a new round by specifying

that there is a winning group value, but there is no hint on the

potential winner. This will allow all the processes involved in

this new round to return (yes,no). Finally, the last possible

scenario occurs when pi sees a contention on the group value

(i.e., ⊥ ∈ Gi) but one group g has nevertheless been seen

by a majority of processes (Line 19 and 21). If pi knows

that a majority of processes have seen its estimate in the

first Phase (id = pi at Line 19) but not necessarily in the

second Phase, then it triggers a new round by specifying that

there is a winning group value, but there is no hint on the

potential winner. This will allow all the processes involved

in this new round to return (yes,no). On the other hand, in

Line 21, there is a hint on the potential winning group but

no hint about the winning process thus pi triggers a new

round with g esti = g and id esti = ⊥.

It is easy to see that if there is a unique invoking process

pi during some round r, it will return (yes,yes) at line 15

of round r as pi can only received echoes of its own value.

C. Correctness proofs of the Selector object implementation

In this section, we show that the randomized implemen-

tation of the selector object presented in Figure 4 is correct,

that is guarantees the properties given in Section III-A. We

start by showing the following lemmata prior to prove the

properties of the Selector implementation. Let s be a selector

object.

Lemma 1 (Non-blocking): No correct process blocks

forever in a round.

Proof: Let us first note that no relaying process can

block forever at lines 24 or 25 and will respond to any

message sent by any invoking process. By assumption,

there is a majority of correct processes. Thus any invoking

process that broadcasts a message at lines 4 or 10 will

receive at least a majority of associated echoes (i.e., PHASE

messages). Consequently, no invoking process can remain

blocked forever at lines 5 or 11.

Lemma 2: If all the invoking processes start a round r
with the same estimate g, all the invoking processes that do

not crash return either in round r or in round r + 1.

Proof: Let g be the winning group estimate proposed

by all invoking processes at the beginning of round r.

The invoking processes will broadcast the same value g
at line 4, and thus will get only value g in their buffer

G. Consequently, each invoking process pi executes Line 8

by setting g auxi to g and will receive (a majority of)

RELAY messages with g aux = g. Thus each of the three

cases at Lines 15, 16, and 17 need to be considered. When

considering the code of these lines, one can see that whatever

is the returned value, the executing process always returns.

Lemma 3 (S-Validity): A process, invoking the s.play
primitive, that returns a value, must return (yes,yes),

(yes,no) or (no,no).

Proof: Straightforward from Lines 15, 16, 18, and 20.

Lemma 4 (S-Obligation-solo): If a process invokes the

s.play primitive alone and does not crash then, it returns

(yes,yes).

7

Function s.play(gi)
(1)ri ← 0; g esti ← gi; id esti ← pi;
(2)while true do // Sequence of rounds

(3) ri ← ri + 1; c← common coin();
———————— Phase 1 of round ri —————————————————-

(4) bcast PHASE(ri, 1, g esti, id esti);
(5) wait until (PHASE(ri, 1, g est, id est) messages have been received from a majority of

processes);
(6) let Gi be the set of g est values received at line 5;
(7) let Idi be the set of id est values received at line 5;
(8) if (Gi = {g} then g auxi ← g else g auxi ← ⊥ endif;
(9) if (Idi = {id} then id auxi ← id else id auxi ← ⊥ endif;

———————— Phase 2 of round ri —————————————————-
(10) bcast PHASE(ri, 2, g auxi, id auxi);
(11) wait until (PHASE(ri, 2, g aux, id aux) messages have been received from a majority of

processes);
(12) let Gi be the set of g aux values received at line 11;
(13) let Idi be the set of id aux values received at line 11;
(14) case (Gi = {⊥}): g esti ← c; id esti ← ⊥;
(15) (Gi = {g}) ∧ (Idi = {id}): if (id = pi) then return (yes,yes) else return (no,no);
(16) (Gi = {g}) ∧ (Idi = {⊥}): if (g = gi) then return (yes,no) else return (no,no);
(17) (Gi = {g}) ∧ (Idi = {id,⊥}): if (id = pi) then g esti ← g; id esti ← ⊥;
(18) else return (no,no);
(19) (Gi = {g,⊥}) ∧ (Idi = {id,⊥}): if (id = pi) then g esti ← g; id esti ← ⊥;
(20) else return (no,no);
(21) (Gi = {g,⊥}) ∧ (Idi = {⊥}): g esti ← g; id esti ← ⊥;
(22) endcase;
(23)endwhile

—————————— Relay Task ——————————————————-
Task s.relay // Launched by any process pi that receives the first message related to object s

// It maintains four variables g[r, 1], g[r, 2] id[r, 1] and id[r, 2] per round r
upon the reception of PHASE(r, x, g, id) from pj

(24) If (this message is the first for round r, phase x) then g[r, x]← g; id[r, x]← id; endif;
(25) send PHASE(r, x, g[r, x], id[r, x]) to pj ;

Figure 4. A randomized protocol implementing a selector run by process pi (t < n/2)

Proof: If an invoking process pi executes alone then

necessarily the echoes it will receive during the first round at

lines 5 and 11 contain a single value g and a single identifier

pi both broadcast by itself. Consequently, Gi and Idi will

contain one non-⊥ value each, respectively the group and

the id of pi, leading process pi to decide (yes,yes).

Lemma 5 (S-Agreement): At most one process returns

(yes,yes), and in this case, all the other returning processes

return (no,no).

Proof: Let pi be the first process that returns (yes,yes)

at round r. By construction of the algorithm, this can only

occur at Line 15, that is Gi = {g} and Idi = {id},

with id = pi. Thus, by the majority argument, for any

other process pk, variables Gk and Idk must respectively

contain at least g and id at round r. Consequently, process

pk necessarily executes one of the three cases at lines 15,

17 and 19, and in all three cases pk returns (no,no) at round

r as id 6= pk.

Lemma 6 (S-Exclusion): If an invocation of s.play
with parameter g returns (yes,-) then, no invocation with

parameter ¬g can return (yes,-).

Proof: Let r be the smallest round at which some

invoking process pi returns (yes,-). By construction, it can

only happen at Line 15 or 16. If pi returns (yes,yes)

(Line 15) then by Lemma 5 all the other processes, that

return a value, return (no,no) whatever is their group. Now,

suppose that pi returns (yes,no) at Line 16, and gi = g.

By construction, this means that for any other processes

pk, Gk must contain at least g at round r (two majorities

always intersect) and consequently if pk does not crash, it

will execute one of the lines 16, 17, 19 and 21. Process pk
returns (yes,no) (at Line 16) if gk = g and thus the lemma

holds. If pk executes lines 17 or 19 it abandons the execution

if id 6= pk and thus g is not the group of pk and the lemma

also holds. In the last case, pk triggers round r + 1 with

g estk = g. This applies for all processes executing round

r + 1. By Lemma 2, for all these processes that return a

value, they return, at round r + 1. The only group estimate

value being g and hence pk returns (yes,-) only if gk = g
(g being the group of pi, the process that returns (yes,no))

proving the lemma.

Lemma 7 (S-Obligation): If no process crashes then, at

least one process returns (yes,-).

Proof: By contradiction. Suppose that no correct pro-

cess returns (yes,-). By Lemma 1, no correct process blocks

forever in a round. By Lemma 4, at least two processes

must invoke play otherwise the solo execution returns

(yes,yes). Let pi and pk be any two of these processes

such that pi invokes play(g) and pk invokes play(g′) with

g, g′ ∈ {0, 1}. Two cases need to be considered.

8

1) Suppose first that for all the invoking processes, we

have g = g′. Thus all the processes execute either

Line 15, Line 16, or Line 17 in Phase 2 of the pro-

tocol. By assumption, all the processes have initially

proposed the same value g. Thus, none of them can

return (no,no) at line 16. Now, not all of them can

return (no,no) at line 18 because the process whose

id matches id should trigger round 2, in which case it

would execute Line 16 and return (yes,no). In all the

other cases, processes return (yes,no) or (yes,yes) in

round 1, which also contradicts the assumption of the

lemma.

2) Suppose now that g = ¬g′.

a) If some process pk returns (no,no) at Line 16,

then its initial value gk = g′ is not the potential

winning value g and none of the other processes

can execute line 14 (by the majority argument,

g must belong to all the Gjs). Thus all the

processes that have invoked play with g′ return

(no,no). Now, all the processes that have invoked

play with g (by construction there must be at

least one such process) cannot all return (no,no)

at Lines 18 or 20 because the process whose

id matches id must necessarily have executed

any of the cases (except the one at Line 14 by

assumption of the case). Thus such a process

must have either returned (yes,-) in this round

or triggered the next round with g esti = g and

id esti = ⊥, and thus shall return (yes,no) in

round 2. This contradicts the assumption of the

lemma.

b) If some process pk returns (no,no) at Line 15

or Line 18, then a similar argument as above

applies.

c) If some process pk returns (no,no) during round

r at Lines 20, then a similar argument as the

above one also applies, although the case at

Line 14 may also hold. Thus, as previously, all

the processes that have invoked play with g
and that trigger round r + 1 do it with either

g est = g and id est = ⊥, or g est = ¬g
and id est = ⊥ if c = ¬g. Suppose that at

least two processes pi and pj execute round

r + 1 and one does it with g est = g and

id est = ⊥ and the other one does it with

g est = ¬g and id est = ⊥ (the case where

a single process executes round r + 1 trivially

returns (yes,no)). By construction, only cases

at Line 14, 16 and 21 may hold. If all these

processes execute Line 14 then they all trigger a

new round with the same estimate during which

they will return (yes,no). Suppose now, that at

Lines 16 and 21, the potential winning value is

¬g (this may happen because some process has

triggered round r + 1 with ¬g). Note however

that all the processes involved in round r + 1
have initially invoked play with g. Thus all the

processes that run Line 16 will return (no,no),

and those that execute Line 21 will trigger a

new round with g est = g, and will finally

return in Line 16 with (yes,no). All the scenario

contradict the assumption of the lemma, which

completes its proof.

Lemma 8 (S-Termination): An invocation of s.play
by a correct process terminates with probability 1.

Proof: Suppose by contradiction that some correct

process pi does not terminate. It must be the case that either

pi blocks forever in an execution or pi never stops from

triggering new rounds. By Lemma 1, pi cannot block forever.

Now, by Lemma 2, if all the competing processes in a given

execution start a round r with the same estimate g, all the

invoking processes that do not crash return either in round r
or in round r+1. By the proof of Lemma 5, if some process

wins the competition at round r, that is returns (yes,yes),

then all the other processes stop the execution, by returning

(no,no), at round r. By Lemma 7 if all processes are correct

then at least one returns (yes,-). Thus it must be the case

that pi and possibly some other processes end Phase 2 of

some round r by either executing Lines 14, 17, 19 or 21.

Once again, by Lemma 2, if Line 14 is executed and c = g
then all processes return either in round r or in round r+1.

Thus let p′ be the number of processes that trigger round

r+1, such that some of them propose g and the other ones

propose ¬g. In this last case, there is a probability p = 1/2
that the value kept by the process that executes Line 3 is

equal to g. So, there is a probability pℓ ≥ 1− 1/2ℓ that all

non-crashed processes have the same estimate after at most ℓ
rounds. As limα→∞ pℓ = 1, it follows that, with probability

1, both invoking processes will start a round with the same

estimate. Then, according to Lemma 2, they will return.

Theorem 4 (Message complexity of play()): The to-

tal number of messages exchanged by the randomized imple-

mentation of the selector object when concurrently invoked

by p processes is O(np).
Proof: As explained above, if there is a unique process

that invokes the selector, it will return within a unique round.

The number of messages needed is at most 2(n+1) (n+1
messages for each phase). If p processes invoke the selector,

they will go through a constant number of rounds as it

is the case for randomized consensus [6], [7]. During a

phase, each invoking process broadcasts a message and each

process responds once to each of the invoking processes.

Thus, during one phase a maximum of p(n + 1) messages

are exchanged. As there are two phases per round and the

9

total number of rounds is constant, the message complexity

is O(np).

VI. CONCLUSION

This paper has presented a randomized solution to the

Test&Set operation in fully asynchronous systems. This

solution is built using a basic building block, called selector,

whose specification, message-passing implementation and

analysis are presented in this paper. The Test&Set imple-

mentation has a step complexity of O(log p) which makes

it adaptive, that is our implementation does not require to

know at any time the number of processes that concurrently

invoke the Test&Set object. We are not aware of any such

work.

REFERENCES

[1] Afek Y., Gafni E., Tromp J. and Vitnyi P., Wait-free Test-and-Set.
Proc. 6th Workshop on Distributed Algorithms (WDAG, now DISC),
pages 85-94, 1992.

[2] Alistarh D. and Aspnes J., Sub-Logarithmic Test-and-Set Against a
Weak Adversary. Proc. 25th Int. Symposium on Distributed Comput-

ing (DISC’11), Springer Verlag LNCS, pp.97-109, 2011.

[3] Alistarh D., Attiya H., Gilbert S., Giurgiu A., Guerraoui R., Fast
Randomized Test-and-Set and Renaming. 24th Int. Symposium DISC,
LNCS 6343, pp. 94-108, September, 2010.

[4] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R.,
Renaming in an Asynchronous Environment. Journal of the ACM,
37(3):524-548, 1990.

[5] Ben-Or M., Another Advantage of Free Choice: Completely Asyn-
chronous Agreement Protocols. Proc. 2nd ACM Symp. PODC, pp.
27-30, 1983.

[6] Chor B., Merritt M. and Shmoys D.B., Simple Constant-Time Con-
sensus Protocols in Realistic Failure Models. Journal of the ACM,
36(3):591-614, 1989.

[7] Canetti R. and Rabin T., Fast Asynchronous Byzantine Agreement
with Optimal Resilience. Proc. 25th ACM Symposium STOC, pp. 42-
51, 1993.

[8] Fischer M., Lynch N. and Paterson M., Impossibility of distributed
commit with one faulty process. Journal of the ACM, 32(5):374-382,
1985.

[9] Giakkoupis G., Woelfel P., On the time and space complexity
of randomized test-and-set. PODC 2012: 19-28 Proc. 31st ACM

Symposium on Principles of Distributed Computing (PODC’12), ACM

Press, pp. 19-28, 2012.

[10] Golab W.M., Hendler D. and Woelfel P., An O(1) RMRs Leader
Election Algorithm. SIAM J. Comput. vol. 39(7):2726-2760, 2010.

[11] Herlihy M., Wait-free Synchronization. ACM TOPLAS, 13 (1):124-
149, 1991.

[12] Mostéfaoui A., Raynal M. and Tronel F., From Binary Consensus to
Multivalued Consensus in asynchronous message-passing systems.
Information Processing Letters, vol 73(5-6): 207-212, 2000.

[13] Sericola, B. Markov Chains: Theory, Algorithms and Applications.
Iste Series, Wiley, 2013

[14] Tromp J. and Vitanyi P., A Protocol for Randomized Anonymous
Two-process Wait-free Test-and-Set with Finite-state Verification.
Proc. 9th Int. Colloquium SIROCCO, pp. 275-291, 2002.

10

APPENDIX A

Theorem 2 The expected time ❊{Tp | X0 = p} needed to terminate the Test&Set protocol when p processors are initially

competing satisfies

❊{Tp | X0 = p} = O(log(p)).

More precisely, there exists a positive integer p0 such that, for every p ≥ p0, we have

❊{Tp | X0 = p} ≤ 2 log(p).

Proof: Introducing the notation up = ❊{Tp | X0 = p} and γp,k =
(
p
k

)
/2p, Relation (1) becomes

u2 = 2

up =
2p−1

2p−1 − 1

(
1 +

p−1∑

k=2

γp,kuk

)
, for p ≥ 3.

(2)

Consider first the coefficients γp,k. Using the Stirling formula, we have for all p ≥ 1,

√
2π

√
pppe−p ≤ p! ≤ e

√
pppe−p.

We then have, for 1 ≤ k ≤ p,

γp,k = 2−p

(
p

k

)
≤ e2−p

√
pppe−p

√
kkke−k

√
p− k(p− k)(p−k)e−(p−k)

= eδp,k,

where

δp,k =

√
p√

k(p− k)
2−pppk−k(p− k)−(p−k)

=

√
p√

k(p− k)
exp (p ln(p/2)− k ln(k)− (p− k) ln(p− k)) .

Now, taking any fixed value of p ≥ 3, the two functions φp and ψp, defined by

x ∈ [1, p− 1] 7−→ φp(x) =
√
x(p− x),

x ∈ [1, p− 1] 7−→ ψp(x) = p ln(p/2)− x ln(x)− (p− x) ln(p− x)

both are increasing on [1, p/2] and decreasing on [p/2, p − 1] (this is obvious for function φp, while the derivative of ψp

with respect to x is ψ′
p(x) = − ln(x) + ln(p − x) = − ln(x/(p − x)) which is ≥ 0 when 1 ≤ x ≤ p/2, and ≤ 0 when

p/2 ≤ x ≤ p− 1).

We now take a small α, 0 < α < 1/2, and we estimate γp,k for the k’s belonging to the set E = [2, p/2 − pα+1/2] ∪
[p/2 + pα+1/2, p − 1]. Taking 0 < α < 1/2, there exists a p1 such that for p ≥ p1, the two intervals forming E are non

empty. For this α and p ≥ p1, we have for all x ∈ E,

φp(x) ≥
√
p− 1 and ψp(x) ≤ ψp

(
p/2− pα+1/2

)
= ψp

(
p/2 + pα+1/2

)
,

with

ψp

(
p/2 + pα+1/2

)

= p ln(p/2)− (p/2− pα+1/2) ln(p/2− pα+1/2)− (p/2 + pα+1/2) ln(p/2 + pα+1/2)

= −(p/2− pα+1/2) ln(1− 2pα−1/2)− (p/2 + pα+1/2) ln(1 + 2pα−1/2).

Using the Taylor-Lagrange formula, we get

− ln(1 + 2pα−1/2) = −2pα−1/2 +K1

(
2pα−1/2

)2
, with 0 ≤ K1 ≤ 1/2 for p ≥ p2.

− ln(1− 2pα−1/2) = 2pα−1/2 +K2

(
2pα−1/2

)2
, with 0 ≤ K2 ≤ 1 for p ≥ p3,

11

This leads, for p ≥ max(p1, p2, p3), to

ψp

(
p/2 + pα+1/2

)

= (p/2− pα+1/2)
(
2pα−1/2 + 4K2p

2α−1
)
− (p/2 + pα+1/2)

(
2pα−1/2 + 4K1p

2α−1
)

= −4p2α + 2(K2 −K1)p
2α − (K2 +K1)p

3α−1

≤ −4p2α + 2(K2 −K1)p
2α

≤ −2p2α.

We thus obtain, for all k ∈ E,

γp,k ≤ e
√
p exp(ψp(k))

φp(k)
≤ e

√
p√

p− 1
exp(−2p2α) ≤ e

√
2 exp(−2p2α).

Using this bound and introducing

Mp = max
2≤k≤p

uk,

we obtain from Relation (2),

up ≤ 1

1− 2−(p−1)

1 + e

√
2pe−2p2α

Mp +
∑

k: |k−p/2|≤pα+1/2

γp,kuk

 .

Since 1/(1 − x) ≤ 1 + 2x, for 0 < x ≤ 1/2 and since e
√
2(1 + 2−(p−2))pe−p2α ≤ 1, for p large enough (i.e. p ≥ p4 for

some p4 whose precise value is irrelevant), we obtain

up ≤
(
1 + 2−(p−2)

)

1 +

∑

k: |k−p/2|≤pα+1/2

γp,kuk

+ e−pα

Mp. (3)

We introduce a dyadic partition of the indices p, and set, for any j ≥ 1, the notation

Uj = max
2≤k≤2j

uk.

We take a fixed index j ≥ 2, or j ≥ j0 for some j0 whose value is irrelevant, and estimate Uj+1 as a function of Uj . To

do so, we take p such that 2j < p ≤ 2j+1 and we write
∑

k: |k−p/2|≤pα+1/2

γp,kuk =
∑

k : |k − p/2| ≤ pα+1/2

k ≤ 2j

γp,kuk +
∑

k : |k − p/2| ≤ pα+1/2

2j < k < p

γp,kuk

≤ Uj

∑

0≤k≤2j

γp,k

+ Uj+1

∑

2j<k≤p

γp,k

= Ujsp,j + Uj+1(1− sp,j), (4)

where sp,j is defined by

sp,j =
∑

0≤k≤2j

γp,k,

and we have used the fact that
∑p

k=0 γp,k = 1. Note the obvious estimate 0 ≤ sp,j ≤ 1 and note also that, since p ∈ (2j , 2j+1],
we have

sp,j =
∑

0≤k≤2j

γp,k ≥
∑

0≤k≤p/2

γp,k,

while

1 =

p∑

k=0

γp,k =
∑

0≤k≤p/2

γp,k +
∑

p/2<k≤p

γp,k =
∑

0≤k≤p/2

γp,k +
∑

0≤k<p/2

γp,k ≤ 2
∑

0≤k≤p/2

γp,k,

from which it comes

sp,j ≥ 1/2.

12

Relations (3) and (4) eventually provide

Uj+1 ≤
(
1 + 2−(p−2)

)
(1 + Uj sp,j + Uj+1 (1− sp,j)) + e−pα

Mp

≤
(
1 + 2−(p−2)

)(
1 +

Uj + Uj+1

2

)
+ e−pα

Mp,

where we have used sp,j ≥ 1/2 together with Uj ≤ Uj+1. In other words, and taking into account p ∈ (2j , 2j+1], we have

Uj+1 ≤
(
1 + 2−(2j−2)

)(
1 +

Uj + Uj+1

2

)
+ e−2jαUj+1.

Hence we arrived at

Uj+1 ≤ 1 + 2−(2j−2)

1− 2−(2j−2) − 2e−2jα
(2 + Uj) . (5)

For later convenience, we rewrite (5) in a more convenient form. To do so, we fix some β such that 0 < β < α and we

introduce

βj = e−2jβ .

It is clear that for j large enough (j ≥ j1 for some j1), Relation (5) implies that

Uj+1 ≤ (1 + βj)(2 + Uj). (6)

We are now in position to conclude. Formula (6) implies that

Uj+1 ≤ 2
[
(1 + βj) + (1 + βj)(1 + βj−1) + · · ·+ (1 + βj)(1 + βj−1) · · · (1 + βj1)

]

+ (1 + βj)(1 + βj−1) · · · (1 + βj1)Uj1 .

Introducing the quantities

Πj :=

j∏

k=j0−1

(1 + βk),

the above bound rewrites

Uj+1 ≤ 2
[Πj

Πj−1
+

Πj

Πj−2
+ · · ·+ Πj

Πj1

]
+

Πj

Πj1

Uj1 .

Hence, since the infinite product
∏

j≥j1
(1 + βj) clearly converges, we have Πj → Π > 0 as j → ∞ and we may write,

Uj+1 ≤ 2Πj

j−1∑

ℓ=j1

1

Πℓ
+

Πj

Πj1

Uj1 .

We denote by Ũj the right hand side of this last inequality. It is clear, using a standard fact about diverging series, that

Πj

j−1∑

ℓ=j1

1

Πℓ
∼

j→∞
Π

j−1∑

ℓ=j1

1

Π
∼

j→∞
j,

Πj

Πj1

Uj1 ∼
j→∞

Π

Πj1

Uj1 .

We deduce that

Uj+1 ≤ Ũj with Ũj ∼
j→∞

2j. (7)

In particular, defining ũp = Ũj , for 2j < p ≤ 2j+1, we easily deduce that

up ≤ ũp with ũp ∼
p→∞

2 log(p). (8)

This completes the proof.

13

