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Abstract. The mathematical description of the interaction between a plasma
and a solid surface is a major issue that still remains challenging. In this paper,

we model this interaction as a stationary and bi-kinetic Vlasov-Poisson-Ampère

boundary value problem with boundary conditions that are consistent with the
physics. In particular, we show that the wall potential can be determined from

the ampibolarity of the particle flows as the unique solution of a non linear

equation. Based on variational techniques, our analysis establishes the well-
posedness of the model, provided that the incoming ion distribution satisfies

a moment condition that generalizes the historical Bohm criterion of plasma

physics. Quantitative estimates are also given, together with numerical illus-
trations that validate the robustness of our approach.

1. Introduction. The description of the plasma-wall interaction is a challenging
issue with many practical applications, be it in the modeling of Tokamak walls or
ionic engines for satellites. Thus, the mathematical study and the numerical sim-
ulation of physically consistent models is of interest. When a plasma is in contact
with an isolated and partially absorbing wall, a thin net-charge layer develops spon-
taneously between the wall and the plasma. This layer of several Debye lengths is
called a sheath [6, 8, 24] and it is usually understood as the way by which the plasma
preserves its global neutrality. Indeed, because the electrons are a lighter species
they are prone to exit the plasma at a higher rate than the heavier ions. As this
phenomenon alone would result in an unstable situation, namely a positive charge
built up in the core plasma, the negative charge accumulated at the isolated wall
causes the electric potential to drop and repel a significant fraction of the electrons.
The magnitude of the drop is then such that the flow is ambipolar, in the sense that
positive and negative charges exit the core plasma at the same rate [8, 24].

Plasma-sheaths have been extensively studied in the last decades [6, 15, 8, 25,
22, 7], however several important questions do not have fully satisfactory answers
on the mathematical level. For instance, we are not aware of a simple model that
describes in a unified way the physical processes at play between the sheath and
the core of the plasma. Nevertheless, a common observation that is supported by
both theoretical and empirical evidence is that at the sheath entrance the average
ion velocity must exceed its sound speed cs,

ui > cs :=

√
kTe
mi

(1)

Key words and phrases. Kinetic equation, Plasma sheath, Bohm criterion, Ambipolarity,
Vlasov-Poisson system.
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where k is the Boltzmann constant, Te is the electronic temperature and mi is the
ion mass [8]. This definition of the ion sound velocity corresponds to the case where
the ion temperature Ti is much smaller than the electron one. Another possible

definition for the ion sound velocity is c′s :=

√
k(Te + Ti)

mi
. This inequality is often

referred to as the original Bohm criterion and several variants have been developed
in the scope of more general models [21, 4]. For instance, in the case of a plasma
consisting of a Poisson equation to define the electrostatic potential φ coupled to
differential equations to define the ion and electron density ni and ne, it has been
shown that these densities can both be expressed as functions of φ, and that at the
sheath entrance (which is commonly defined as the limit between the non neutral
region and the neutral region), the value φse of the potential must be such that

d

dφ
(ni − ne) (φse) ≤ 0. (2)

The sheath-edge xse, namely the entrance of the sheath, is then often defined as
the position where φ(xse) = φse, even though it is commonly admitted that the
sheath-edge is a difficult place to define [21]. Overall, the inequality expresses the
idea that at the entrance of the sheath the electron density decreases more rapidly
than the ion density as the electric potential drops.

ne(φ)
TO WALL

n

φ φse

ni(φ)

Figure 1. Schematic variations of the ion and electron densities
with respect to some normalized potential φ ≤ 0 decreasing toward
the wall. Here the plasma is supposed to be neutral at the sheath-
edge xse.

As for the boundary condition on the wall, most models describe the potential as
having a “floating” value that adjusts itself according to the dynamics of the system.
However no clear definition of a self consistent wall potential seems available. On
the mathematical side some models have been proposed but they do not fully answer
the above questions, see e.g. [16, 10].

In the present work we address this problem by considering a simple plasma-wall
interaction model with a self-consistent potential and we show that it is well posed
under the assumption that the incoming ion distribution satisfies a moment con-
dition which generalizes the usual kinetic Bohm criterion. Moreover, our solutions
share most of the properties of plasma sheaths, such as a decreasing potential and a
positive charge density. In our model the ion and electron densities are solutions to
one dimensional stationary Vlasov equations coupled with a self consistent Poisson
equation. Boundary conditions are determined to reflect the physical properties of
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this simplified model: in particular, the wall potential is determined so that the
Ampère equation holds for the stationary solutions. A surprising result is that the
resulting potential is only well-defined for incoming ions satisfying an upper bound
on their average velocity. This constraint is shown to be compatible with the Bohm
criterion thanks to the large mass ratio between ions and electrons.

To allow some generality, we consider that electrons are re-emitted with prob-
ability α ≤ 1 while ions are totally absorbed. Ions and electrons are assumed to
enter the plasma with given velocity distributions. Since the core of the plasma is
well described by a full Maxwellian, we have chosen to consider (semi-) Maxwellian
distributions for the incoming electrons. At the numerical level we then observe
that the resulting velocity distribution is very close to a full Maxwellian when far
from the wall, in good qualitative agreement with the results from [24, p. 75].

The plan of the paper is as follows. In section 2 we begin with a presentation of
the model and write down its mathematical structure. Under a decreasing assump-
tion on φ, we prove the formal equivalence between the Vlasov-Poisson system and
a non linear Poisson equation. An important result of this section is a necessary
and sufficient condition for the wall potential to be uniquely determined by the
physical parameters of the problem. We also give an a priori lower bound for the
wall potential. The result holds for re-emission coefficient α < 1. The case of total
electron re-emission (α = 1) corresponds to a Boltzmannian electron density and
turns out to be degenerate.

In section 3 we set up the mathematical framework that is used in the rest of the
paper and state the main result (well posedness under a condition that generalizes
the usual kinetic Bohm criterion, and quasi-neutrality estimates). The proof relies
on reformulating the non linear Poisson equation as a minimization problem, and
our generalized Bohm inequality appears naturally as a local convexity condition
for the energy functional.

In section 4, we briefly describe the numerical method employed to solve the
problem. Then we illustrate the main result with a physically based sheath problem.

Final comments about the range of applicability of this work are provided as a
conclusion in section 5.

2. Description of the model.

2.1. Physical setting. We consider a plasma at equilibrum made of one species
of ions and electrons. This plasma is assumed to be contained in a one dimen-
sional chamber. This model only describes a portion of the chamber of length L.
Physical quantities will often be denoted with upper case while normalized ones
will be denoted with lower case. Our system is subject to the following physical
considerations:

1. The plasma is assumed to be non-collisional.
2. The effect of the self-consistent magnetic field is neglected.
3. The physical quantities that describe the plasma state such as, the ionic dis-

tribution, the electronic distribution and the electric potential (that we will
denote Fi,Fe and Φ) depend (in space) exclusively on the longitudinal variable
denoted X.

4. At X = 0 we consider:
(a) that the potential Φ is arbritrarily set to zero;
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(b) ions and electrons entering the domain with non negative velocities which
are described through velocity distributions denoted respectively F ini and
F ine ;

(c) an arbitrary charge imbalance denoted P0 (normalized value ρ0);
5. At the wall, that is at X = L (or x = 1 in normalized variables), we consider:

(a) purely absorbing conditions for ions, i.e, ions are not re-emitted from the
wall;

(b) electrons re-emitted with probability α ∈ [0, 1].
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+

+
-

-

+

+
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-

+

metallic wall

L

Figure 2. Schematic illustration. Ions and electrons are going
toward the wall, some electrons reaching the wall are re-emitted
with a probability α ∈ [0, 1] while ions are totally absorbed.

2.2. Kinetic modeling of the stationary plasma wall interaction. We first
write the equations in physical variables and then derive a dimensionless model.
The unknowns are respectively the electric potential Φ : [0, L] → R, the ion
distribution function Fi : [0, L] × R → R+ and the electron distribution func-

tion Fe : [0, L] × R → R+. We denote by Ni(X) :=

∫
R
Fi(X,V )dV (respec-

tively Ne(X) :=

∫
R
Fe(X,V )dV ) the ionic (respectively the electronic) density at

X ∈ [0, L] and Γi(X) :=

∫
R
Fi(X,V )V dV (respectively Γe(X) :=

∫
R
Fe(X,V )V dV )

the ionic (respectively the electronic) flux at X ∈ [0, L]. The equations governing

the ion and electron transport in the plasma, with an electric field E = − d

dX
Φ are

assumed to be stationary Vlasov equations and write

V ∂XFe(X,V ) +
q

me

d

dX
Φ(X)∂V Fe(X,V ) = 0 ∀(X,V ) ∈ (0, L)× R, (3)

V ∂XFi(X,V )− q

mi

d

dX
Φ(X)∂V Fi(X,V ) = 0 ∀(X,V ) ∈ (0, L)× R, (4)

with the boundary conditions

Fe(0, V ) = F ine (V ) for V > 0, (5)



A MINIMIZATION FORMULATION OF A BI-KINETIC SHEATH 5

Fe(L, V ) = αFe(L,−V ) for V < 0, (6)

Fi(0, V ) = F ini (V ) for V > 0, (7)

Fi(L, V ) = 0 for V < 0. (8)

Here q is the electric charge and mi (respectively me) denotes the ionic (respec-
tively the electronic) mass. Furthermore, a formal integration of equations (3)-
(4) with respect to the velocity variable shows that the current density J(X) :=
q (Γi(X)− Γe(X)) must be constant in space, and so J(X) = J(L) = J(0) for all
X ∈ [0, L]. It is therefore natural to require

J(X) = 0 ∀X ∈ [0, L], (9)

since (by ambipolarity) the current has to be zero at the wall. We further stress that
equation (9) is necessary if one wants to construct stationary solutions compatible
with the Maxwell-Ampère equation. The electric potential is determined from the
densities through the Gauss law

− d2

dX2
Φ(X) =

q

ε0
(Ni(X)−Ne(X)) ∀X ∈ (0, L) (10)

with boundary conditions

Φ(0) = 0, Φ(L) = ΦW . (11)

Here the vacuum permittivity is ε0 and ΦW denotes the wall potential. Its value
will be determined so that equation (9) holds. As far as our model is concerned,
we will show in Section 2.5 that ΦW can be determined from the previous physical
parameters.

It is convenient to rescale the equations and to this end we introduce the dimen-
sionless variables x, v and the dimensionless functions φ, fi and fe defined as:

x :=
X

L
, v :=

V

cs
,

fi(x, v) := LcsFi(Lx, csv), fe(x, v) := LcsFe(Lx, csv), φ(x) :=
q

kTe
Φ(Lx),

where k is the Boltzmann constant, Te is a reference electron temperature and

cs :=

√
kTe
mi

the ion sound speed. We also define the dimensionless quantities

ni(x) :=

∫
R
fi(x, v)dv, ne(x) :=

∫
R
fe(x, v)dv,

γi(x) :=

∫
R
fi(x, v)vdv, γe(x) :=

∫
R
fe(x, v)vdv,

f ine (v) := LcsF
in
e (csv), f ini (v) := LcsF

in
i (csv).



6 BADSI, CAMPOS PINTO AND DESPRÉS

The coupled boundary value problem (3)-(11) is then equivalent to the following
boundary value problem:

v∂xfe(x, v) +
mi

me

d

dx
φ(x)∂vfe(x, v) = 0 ∀(x, v) ∈ (0, 1)× R, (12)

v∂xfi(x, v)− d

dx
φ(x)∂vfi(x, v) = 0 ∀(x, v) ∈ (0, 1)× R, (13)

−ε2 d
2

dx2
φ(x) = ni(x)− ne(x) ∀x ∈ (0, 1), (14)

complemented with the boundary conditions
fe(0, v) = f ine (v) ∀v > 0, fe(1, v) = αfe(1,−v) ∀v < 0, (15)

fi(0, v) = f ini (v) ∀v > 0, fi(1, v) = 0 ∀v < 0, (16)

φ(0) = 0, φ(1) = φw (17)

and the additional constraint (derived from the Ampère equation)

γi(x)− γe(x) =: j(x) = 0 ∀x ∈ [0, 1]. (18)

We remind that the value of φw = qΦw

kTe
will be determined later, see Section 2.5.

Here, we have set ε := λD

√
N0

L
where N0 :=

∫
R+

F ine (V )dV denotes an electron

reference density and λD :=

√
ε0kTe
q2N0

is the Debye length.

The set of equations (12)-(18) is the model problem and we will refer to it as the
Vlasov-Poisson-Ampère problem. It contains the main physical parameters ε, α, ρ0,
f ine and f ini . The Vlasov-Poisson problem is made of equations (12)-(17) which can
be considered as the main equations while the Ampère equation (18) can be consid-
ered as an additionnal constraint. To our knowledge, this stationary and bi-kinetic
boundary-value problem has never been studied in full details. For example in [20],
a model of plane diode is studied. It is consists of a one single stationary Vlasov
equation for electrons coupled with the Poisson equation for the electrostatic poten-
tial, the well-posedness is studied for a large class of electron boundary conditions.
In [12], the non-stationary version of the plane diode is studied.

2.3. Reformulation as a non-linear Poisson equation. Thanks to the one-
dimensional structure of the Vlasov-Poisson problem (12)-(17), it is possible to
reformulate as a non linear Poisson equation. When the potential φ is given both
Vlasov equations for ions and electrons are linear advection equations, and their
solutions are determined by transport along the characteristics of the (incoming)
boundary conditions. In this section we assume φ ∈W 2,∞(0, 1) to be given which is
a sufficient condition for the characteristics curves to be well-defined [1]. Moreover,
we assume φ(0) = 0, φ(1) = φw and φ′ < 0. In such a configuration, we have the
following formal result.

Proposition 1 (Formal equivalence). Let φ ∈W 2,∞(0, 1) be such that φ′ < 0 with
φ(0) = 0 and φ(1) = φw. Then there exists fi,fe such that the Vlasov-Poisson
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system holds if and only if φ is a solution to

(NLP) :



−ε2 d
2

dx2
φ(x) = (ni − ne)(x) ∀x ∈ (0, 1)

φ(0) = 0, φ(1) = φw

with

ni(x) =

∫
R+

f ini (v)v√
v2 − 2φ(x)

dv

ne(x) = 2

∫ +∞√
− 2mi

me
φ(x)

f ine (v)v√
v2 + 2mi

me
φ(x)

dv

−(1− α)

∫ +∞√
− 2mi

me
φw

f ine (v)v√
v2 + 2mi

me
φ(x)

dv.

(19)

We will give a formal proof of the above proposition. Especially, we do not
want to discuss regularity and integrability issues. The proof is decomposed in two
parts. The necessary condition is shown in Section 2.3.1 and the sufficient one is
established in Section 2.3.2.

2.3.1. Necessary condition. We assume that there is φ with φ′ < 0, fi and fe
solutions of (12)-(17) . Let us show that φ is solution of (NLP). To this effect, we
determine an explicit representation of fi and fe by means of the characteristics
curves.
Electrons trajectories. The characteristics trajectories of electrons (12) are the curves
which satisfy the ordinary differential system of equations

(Ce) :


Ẋ (t) = V(t)

V̇(t) = mi

me

d
dxφ(X (t))

X (s) = x

V(s) = v

for t ≥ s and for an arbitrary initial data (s, x, v) ∈ R × [0, 1] × R. A geometry of
the characteristics is illustrated in Figure 3.
Under the decreasing assumption on φ, one can identify the solutions to (Ce) with

the curves
{

(x, v) ∈ [0, 1]× R | v
2

2 −
mi

me
φ(x) = k

}
for k ≥ 0. The phase-space

[0, 1] × R is then splitted into two subdomains which are separated by the char-
acteristic curve of equation

1

2
v2 − mi

me
φ(x) = −mi

me
φw ⇔ v2 =

2mi

me
(φ(x)− φw) .

One can write [0, 1] × R = D1 ∪ D2 with D1 := {(x, v) ∈ [0, 1] × R | v ≥
−
√

2mi

me
(φ(x)− φw)} and D2 := {(x, v) ∈ [0, 1] × R | v < −

√
2mi

me
(φ(x)− φw))}.

For (x, v) ∈ D1 there exists w > 0 and a characteristic curve passing through (x, v)
which originates from (0, w). Conversely, for (x, v) ∈ D2 there exists w < 0 and
a characteristic curve passing through (x, v) which originates from (1, w). Since
the electron distribution function fe is constant along the characteristics we can
determine fe(x, v) for every (x, v) ∈ [0, 1] × R. To this end, consider the two fol-
lowing cases. If (x, v) ∈ D1 one has 1

2v
2 − mi

me
φ(x) = 1

2w
2 for some w > 0. Then

w =
√
v2 − 2mi

me
φ(x) and fe(x, v) = fe(0, w) = f ine

(√
v2 − 2mi

me
φ(x)

)
. Conversely
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v

x

metallic wall

D1

D2

0 1

Figure 3. Schematic characteristic electron trajectories associ-
ated with a decreasing potential φ. The dashed line corresponds to
a characteristic curve which originates at the wall with a negative
velocity. Because of the boundary condition at the wall, particles
following this curve were originally at x = 0 with a positive velocity.

if (x, v) ∈ D2 one has 1
2v

2 − mi

me
φ(x) = 1

2w
2 − mi

me
φw for some w < 0. Then w =

−
√
v2 − 2mi

me
(φ(x)− φw) and fe(x, v) = fe(1, w) = αfe

(
1,
√
v2 − 2mi

me
(φ(x)− φw)

)
= αfe

(
0,
√
v2 − 2mi

me
φ(x)

)
= αf ine

(√
v2 − 2mi

me
φ(x)

)
. We thus obtain that the so-

lution of (12) is given by

fe(x, v) =

f
in
e

(√
v2 − 2mi

me
φ(x)

)
if (x, v) ∈ D1

αf ine

(√
v2 − 2mi

me
φ(x)

)
if (x, v) ∈ D2.

(20)

For x ∈ [0, 1] we split R = (−∞,−
√

2mi

me
(φ(x)− φw))∪ [−

√
2mi

me
(φ(x)− φw),+∞).

Making the change of variable w =
√
v2 − 2mi

me
φ(x) and integrating in velocity (20)

leads to

ne(x) = 2

∫ +∞√
− 2mi

me
φ(x)

f ine (w)w√
w2 + 2mi

me
φ(x)

dw

− (1− α)

∫ +∞√
− 2mi

me
φw

f ine (w)w√
w2 + 2mi

me
φ(x)

dw. (21)
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Ion trajectories. The characteristics trajectories of ions (13) are the curves which
satisfy the ordinary differential system of equations

(Ci) :


Ẋ (t) = V(t)

V̇(t) = − d
dxφ(X (t))

X (s) = x

V(s) = v

for t ≥ s and for an arbitrary initial data (s, x, v) ∈ R× [0, 1]×R. A geometry of the
characteristics is illustrated in Figure 4. Again, under the decreasing assumption

0 x

metallic wall

1

v

D3

D4

Figure 4. Schematic characteristic ions trajectories associated
with a decreasing potential φ. Here the dashed lines correspond
to characteristic curves originating from the wall with negative ve-
locities, and they span the darker gray region D4. Because of the
boundary condition at the wall, no particles travel on these curves
and hence fi vanishes outside D3 (lighter gray).

on φ the solutions to (Ci) are the curves
{

(x, v) ∈ [0, 1]× R | v
2

2 + φ(x) = k
}

for

k ≥ φw. The phase space [0, 1]× R is then splitted into two subdomains which are
separated by the characteristic curve of cartesian equation

1

2
v2 + φ(x) = 0.

One can write [0, 1]×R = D3 ∪D4 with D3 := {(x, v) ∈ [0, 1]×R | v >
√
−2φ(x)}

and D4 := {(x, v) ∈ [0, 1] × R | v ≤
√
−2φ(x)}. For (x, v) ∈ D3 there exists w > 0

and a characteristic curve which originates from (0, w). Conversely for (x, v) ∈ D4

there exists w < 0 and a characteristic curve passing through (x, v) which originates
from (1, w). Since the ion distribution function fi is constant along the characteristic
curves we can determine fi(x, v) for every (x, v) ∈ [0, 1]×R. Again consider the two
following cases. If (x, v) ∈ D3 one has 1

2v
2 +φ(x) = 1

2w
2 for some w > 0. Then w =√

v2 + 2φ(x) and fi(x, v) = fi(0, w) = f ini (
√
v2 + 2φ(x)). Conversely if (x, v) ∈ D4
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1
2v

2 + φ(x) = 1
2w

2 + φw for some w < 0. Then w = −
√
v2 + 2 (φ(x)− φw) and

fi(x, v) = fi(1, w) = 0. We thus obtain that the solution of (13) is given by

fi(x, v) =

{
f ini (

√
v2 + 2φ(x)) if (x, v) ∈ D3

0 if (x, v) ∈ D4.
(22)

For each x ∈ [0, 1] we split R = (−∞,
√
−2φ(x)) ∪ [

√
−2φ(x),+∞). Making the

change of variable w =
√
v2 + φ(x) and integrating in velocity (22) leads to

ni(x) =

∫
R+

f ini (v)v√
v2 − 2φ(x)

dv. (23)

Formulas (21)-(23) show that φ is indeed a solution to (NLP), which ends the proof
of the necessary condition.

2.3.2. Sufficient condition. Assume there is φ decreasing and solution of (NLP ).
Then φw ≤ φ(x) ≤ 0 for all x ∈ [0, 1], fe and fi defined in (20), (22) are well defined.
We can check that (φ, fi, fe) is a weak solution of the Vlasov-Poisson system in the
sense of A.1 provided f ini and f ine are regular enough.

Remark 1. It is easy to see there is a little change in the geometry of the charac-
teristics when φ′ is permitted to vanish on some interval. However, when φ is not
non increasing, it is possible that the characteristics curves are closed and never
intersect the boundaries. This can lead to the presence of trapping sets of non zero-
measure (see [3] for a definition of trapping sets) which results in (12)-(17) being
ill-posed.

2.4. Semi-Maxwellian electron boundary condition and charge imbalance.
As mentioned in the introduction, electrons in the core of the plasma are well
described by a full Maxwellian distribution. As a matter of fact, in this work we
shall consider Maxwellian boundary conditions for electrons which takes the form

F ine (V ) := N0

√
2me

πkTe
e
−meV

2

2kTe for V > 0. (24)

It gives in terms of dimensionless variables

f ine (v) := n0

√
2me

πmi
e
−mev

2

2mi for v > 0 (25)

where n0 :=

∫
R+

f ine (v)dv = N0L is an electron reference density. The electron

density (21) is then given for all x ∈ [0, 1] by

ne(x) =
2n0√

2π

(
√

2πeφ(x) − (1− α)

∫ +∞

√
−2φw

e−
v2

2 v√
v2 + 2φ(x)

dv

)
. (26)

The electron flux is constant in space and given for all x ∈ [0, 1] by

γe(x) = γe(0) = γe = (1− α)

∫ +∞√
− 2mi

me
φw

f ine (v)vdv = (1− α)

√
2mi

πme
n0e

φw . (27)

Notice that the electron density is close to a Boltzmannian density but not equal.
It contains a perturbation that represents the truncation of the Maxwellian distri-
bution due to the electron loss at the wall. The Boltzmannian density corresponds



A MINIMIZATION FORMULATION OF A BI-KINETIC SHEATH 11

to the case α = 1. In this case, the Ampère equation will be shown to be degenerate
see Proposition 2 and Remark 3, below.

It will be convenient for the mathematical discussion to denote by ρ0 the charge
imbalance at x = 0. By definition it writes

ρ0 := ni(0)−ne(0) =

∫
R+

f ini (v)dv− 2n0√
2π

(√
2π − (1− α)

∫ +∞

√
−2φw

e−
v2

2 dv

)
. (28)

We observe that n0 can be expressed as

n0 =

√
π

2

∫
R+

f ini (v)dv − ρ0(√
2π − (1− α)

∫ +∞

√
−2φw

e−
v2

2 dv

) . (29)

Remark 2. In the mathematical analysis Section 3, we will study the well-posedness
of the above problems and consider ρ0 as a given parameter. The value of n0 will
then be defined by (29). In order that n0 be positive we observe that ρ0 and f ini

must be chosen such that ρ0 <

∫
R+

f ini (v)dv. Also in the next section, we will show

that φw only depends on ρ0, α and f ini and hence, so does n0. Also remark that∫ +∞√
−2φw

e−
v2

2 dv =
√

π
2 (1− erf(

√
−φw)) where erf denotes the error function.

2.5. Equation of the wall potential. In general the potential at the wall cannot
be a priori specified as a physical parameter. Therefore it is important to understand
how it is determined in this model from other physical parameters. As mentioned
in the introduction, the wall potential adjusts itself so that equal numbers of ions
and electrons reach the wall per second. Following the idea in [24] Section 2.6 page
79, its value is determined from the ambipolarity of the flow which can be also seen
as a consequence of the stationary Maxwell-Ampère equation (18). Using (22) the
ion flux is constant in space and given for all x ∈ [0, 1] by

γi(x) = γi(0) = γi =

∫
R+

f ini (v)vdv, (30)

and the electron flux is given in (27). Then for all ρ0 ∈ R and α ∈ [0, 1) the
ambipolarity γi = γe (18) yields

(1− α)

√
2mi

πme
n0e

φw =

∫
R+

f ini (v)vdv. (31)

Substituting the expression (29) of n0 in (31) leads to the equivalent non linear
relation

W(φw) = b (32)

where W : R− → R is defined by

W(ψ) :=

√
mi

me
eψ
(∫

R+

f ini (v)dv − ρ0

)
+

∫
R+

f ini (v)vdv

∫ +∞

√
−2ψ

e−
v2

2 dv (33)

and b =

√
2π

1− α

∫
R+

f ini (v)vdv. Note that here we have considered α < 1, see Remark

3 below. Then for all ρ0 ∈ R and α ∈ [0, 1), φw must be solution of the non linear
equation (32). We remember that due to the definition of n0 one has of course
ρ0 <

∫
R+ f

in
i (v)dv. Therefore using standard arguments one has the following
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Proposition 2. Let ρ0 ∈ R and α ∈ [0, 1). The equation (32) has a unique non
positive solution φw = φw(ρ0, α) if and only if

0 <

∫
R+

f ini (v)vdv∫
R+

f ini (v)dv − ρ0

≤ (1− α)

(1 + α)

√
mi

me

√
2

π
. (34)

Moreover the solution is in the interval,

ln


√

2π

(1− α)

√2 +
√

mi

me


∫
R+

f ini (v)dv − ρ0∫
R+

f ini (v)vdv





≤ φw ≤ 0. (35)

Proof. Since

∫
R+

f ini (v)dv − ρ0 > 0, the function W is continuous and increasing

with lim
−∞
W = 0. Consequently, W is a bijection from (−∞, 0] to (0,W(0)] and the

equation (32) admits a unique solution if and only if b =

√
2π

1− α

∫
R+

f ini (v)vdv ∈

(0,W(0)] which leads to the inequality (34). Now we prove the bounds (35). The
upper bound is straightforward from the definition of the domain of W. For the

lower bound, after a change of variable in

∫ +∞

√
−2φw

e−
v2

2 dv we obtain

W(φw) =

√
mi

me
eφw

(∫
R+

f ini (v)dv − ρ0

)
+
√

2

∫
R+

f ini (v)vdv

∫ +∞

√
−φw

e−v
2

dv.

Then using the inequality

∫ +∞

√
−φw

e−u
2

du ≤ eφw

√
−φw + 1

(see [19] page 163) we obtain

W(φw) ≤ eφw

√mi

me

(∫
R+

f ini (v)dv − ρ0

)
+

√
2

∫
R+

f ini (v)vdv

√
−φw + 1

 .

A simpler and easily computable bound is then given by

W(φw) ≤ eφw

(√
mi

me

(∫
R+

f ini (v)dv − ρ0

)
+
√

2

∫
R+

f ini (v)vdv

)

and we conclude using the equality W(φw) =

√
2π

1− α

∫
R+

f ini (v)vdv.

Let us make a list of remarks about this result.

Remark 3. When α = 1 (which corresponds to a total re-emission of electrons at
the wall) the only integrable boundary condition that satisfies (31) is f ini ≡ 0 and
the model is of no interest.
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Remark 4. The inequality (34) also re-writes γi ≤
(1− α)

(1 + α)

√
mi

me

√
2

π
ne(0) and

since γi = γe this means that ion and electrons flow must be bounded and cannot

exceed the upper bound γlimit :=
(1− α)

(1 + α)

√
mi

me

√
2

π
ne(0).

Remark 5. The case of equality

∫
R+

f ini (v)vdv∫
R+

f ini (v)dv − ρ0

=
(1− α)

(1 + α)

√
mi

me

√
2

π
is equiv-

alent to φw = 0 is the solution to (32).

For the sake of simplicity and from now, we omit to precise the dependence of
φw(ρ0, α) on ρ0 and α and simply denote φw = φw(ρ0, α).

2.6. A variational approach to the non linear Poisson problem. We re-
member that (NLP) is formally equivalent to the Vlasov-Poisson system when the
electrostatic potential is decreasing, see Proposition 1. In the following section we
will study the well posedness of (NLP) in the case of an incoming Maxwellian elec-
tron distribution. To this end, we will consider that ρ0 ∈ R, α ∈ [0, 1) and f ini
satisfying (34) are given parameters as well as the normalized Debye length ε. The
wall potential φw ≤ 0 will then be the solution of (32) and the electron boundary
condition will be of the form (25) where the reference density n0 is defined by (29).
In particular, the (NLP) problem reformulates as follows : Let ρ0 ∈ R, α ∈ [0, 1),
f ini satisfying (34) and ε > 0. Find φ : [0, 1]→ R solution of

(NLP-M) :



−ε2 d
2

dx2
φ(x) = (ni − ne)(x) for all x ∈ (0, 1)

with Dirichlet boundary conditions

φ(0) = 0 and φ(1) = φw

where

ni(x) =

∫
R+

f ini (v)v√
v2 − 2φ(x)

dv,

ne(x) =
2n0√

2π

√
2πeφ(x)

− 2n0√
2π

(1− α)

∫ +∞

√
−2φw

e−
v2

2 v√
v2 + 2φ(x)

dv.

(36)

From a mathematical point of view, one would notice the analogy between the
non linear Poisson equation and classical motion equations of a single particle in
a potential force field. Indeed, the opposite of the right hand side of (36) derives
from an abstract potential function U : [φw, 0]→ R given by

U(ψ) :=

∫
R+

f ini (v)v
√
v2 − 2ψdv

+
2n0√

2π

(√
2πeψ − (1− α)

∫ +∞

√
−2φw

e−
v2

2 v
√
v2 + 2ψdv

)
. (37)

The non linear Poisson equation (36) rewrites in the form

− ε2 d
2

dx2
φ(x) = −U ′(φ(x)) ∀x ∈ (0, 1), (38)
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indeed for all x ∈ [0, 1] −U ′(φ(x)) = (ni − ne)(x). Moreover, it can eventually be
re-written into a variational form. Indeed, solutions to (36) are critical point of the
energy functional

Jε(φ) =

∫ 1

0

(
ε2

2
|φ′(x)|2 + U(φ(x))

)
dx (39)

defined on the adequate functional space. Namely critical points of Jε are solutions
of dJε(φ) ≡ 0 where dJε denotes the Fréchet derivative of Jε. Then variational
techniques constitute a convenient mathematical tool to solve the non linear Poisson
equation. Historically speaking, variational methods to treat stationary transport
problems were used in [18] to deal with neutron diffusion problems such as the Milne
problem.

3. Mathematical analysis. In this section, we study the well-posedness of the
non linear Poisson problem (NLP-M) which corresponds to the Vlasov-Poisson-
Ampère problem in the case where the incoming electron distribution is Maxwellian.
We will use variational principles and the theory of Nemytskii’s operator to study
the functional Jε. The results we need are reminded in the appendix.

3.1. Mathematical setting and main result. Let us define for all α ∈ [0, 1)

s1(α) :=
(1− α)

(1 + α)

√
mi

me

√
2

π
, (40)

which is the upper bound in (34). In the case α = 1 the problem has no interest (see
Remark 3). The physically interesting case corresponds to φw < 0, so we shall only
consider distributions f ini satisfying (34) with a strict inequality. Let us therefore
define the functional framework that will be used in the following. We shall consider
ion boundary conditions that are bounded, integrable and of finite kinetic energy
so that U is well defined. We denote the set of such functions

I :=

{
h ∈

(
L1 ∩ L∞

)
(R+;R+) such that

∫
R+

h(v)v2dv < +∞
}
. (41)

For ρ0 ∈ R and α ∈ [0, 1) given, we define the set of admissible ion boundary
conditions

Iad(ρ0, α) :=

h ∈ I such that 0 <

∫
R+

h(v)vdv∫
R+

h(v)dv − ρ0

< s1(α)

 , (42)

as well as the set of admissible potential

V := V (ρ0, α) = {φ ∈ V0 | φw ≤ φ ≤ 0 with φ(1) = φw} , (43)

where V0 :=
{
φ ∈ H1(0, 1) | φ(0) = 0

}
is a Hilbert space equipped with the inner

product (φ, ϕ)V0 :=

∫ 1

0

φ′(x)ϕ′(x)dx for any (φ, ϕ) ∈ V0 × V0 and with the induced

norm defined by ‖φ‖V0
=
√

(φ, φ)V0
= ‖φ‖H1

0
for all φ ∈ V0. We also denote H−1

the dual space of H1
0 (0, 1), and we remind that the norm on H−1 is defined by

‖L‖H−1 := sup
ϕ∈H1

0 ,ϕ6=0

|〈L,ϕ〉|
‖ϕ‖

H1
0

for all L ∈ H−1.
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Remark 6. It is important to notice that in the definition of V the decreasing
assumption on φ does not appear. It is not necessary for U to be well-defined,
hence we decide to relax it. It will be shown in Theorem 3.2 that the solution φ of
(NLP-M) is non increasing.

Finally, since the mass ratio always satisfies
me

mi
<

2

π
we define a critical re-

emission coefficient

αc :=

1−
√
π

2

√
me

mi

1 +

√
π

2

√
me

mi

(44)

which is such that s1(αc) = 1 and 0 < αc < 1.

Definition 3.1. (Sheath solutions) Let (fi, fe, φ) be a solution to the Vlasov-
Poisson-Ampère system (12)-(18). We say that it is a sheath-type solution on
(x∗, 1] with 0 ≤ x∗ < 1 if on that interval φ is decreasing and ni > ne, and if
ni(x

∗) = ne(x
∗).

We are now in position to state our main result.

Theorem 3.2. Let α ∈ [0, αc], ρ0 = 0, f ini ∈ Iad(0, α) and ε > 0. Let φw be the
unique solution of (32). Assume the kinetic Bohm criterion∫

R+

f ini (v)

v2
dv∫

R+

f ini (v)dv

<

(
√

2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2

v2
dv

)
(√

2π − (1− α)

∫ +∞

√
−2φw

e−
v2

2 dv

) . (45)

Then the Vlasov-Poisson-Ampère system (12)-(18) is well-posed, with a Maxwellian
incoming electron distribution f ine defined by (25), (29). More precisely, there is a
unique φε ∈ V solution of (NLP-M). In addition,

1. The densities fe and fi defined in (20) and (22) belong to
(L1 ∩ L∞)([0, 1] × R;R+) and are weak solutions of the Vlasov equations in
the sense of Definition A.1.

2. There exists x∗ ∈ [0, 1) such that (fe, fi, φε) is a sheath-type solution on (x∗, 1]
in the sense of Definition 3.1.

3. At the wall the values of ni, ne, φw and the velocity distributions fi, fe do
not depend on the normalized Debye length ε.

4. φε is C2[0, 1], concave and we have the quantitative estimates

‖φε‖V0 = O
(

1

ε

)
and ‖ni − ne‖H−1 = O(ε). (46)

The proof of this theorem is proved in Section 3.2.2. Let us make a list of general
but somewhat useful remarks about this theorem.

Remark 7. A sufficient condition for (45) is∫
R+

f ini (v)

v2
dv <

∫
R+

f ini (v)dv.

This inequality still re-writes in physical variables∫
R+

F ini (V )

V 2
dV <

1

c2s

∫
R+

F ini (V )dV.
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It coincides with the standard kinetic Bohm criterion, see [24, Section 2.4].

Remark 8. The re-emission coefficient αc is said to be critical because when α > αc
we are not able to prove the existence of admissible boundary condition satisfying
the kinetic Bohm criterion (45). On the contrary when α ≤ αc we are able to do so
(see theorem 3.7 and corollary 1).

Remark 9. In practice αc is close to 1 and it allows to consider a wide range
of material, even those with a high re-emission coefficient. As an example, for a

Deuterium plasma
mi

me
= 3672 and the critical re-emission coefficient is αc ≈ 0.95.

Remark 10. In the theorem we have considered ρ0 = 0 which corresponds to
the neutrality ni(0) = ne(0). It is an usual assumption in the physics literature.
In the case ρ0 6= 0 and f ini ∈ Iad(ρ0, α) for some α ∈ [0, 1) and ε > 0, we are
able to establish the existence of a non increasing minimizer for Jε see theorem 3.8
and proposition 8. However, since V is a strict and closed convex subset of V0,
minimizers are not necessarily critical points.

Remark 11. The kinetic Bohm criterion (45) expresses the strict convexity of U
in the vicinity of ψ = 0. Moreover, we have seen that (ni − ne)(x) = −U ′(φ(x)). It
follows that ni − ne is a function of the electrostatic potential and we can verify

d

dφ
(ni − ne)(x = 0) = −U ′′(φ(0)).

In particular (45) is equivalent to d
dφ (ni − ne)(0) < 0 which is an usual sheath

criterion [8, 21].

Remark 12. The kinetic Bohm criterion implies that v 7→ f ini (v)

v2
∈ L1(R+;R+).

This means there is essentially no ions with null velocity at x = 0. In such a
configuration, minimizers of Jε are concave and non increasing solutions of the
non linear Poisson equation. Thus fe and fi defined in (20) and (22) are weak
solutions of the Vlasov equations and the Vlasov-Poisson-Ampère system is well
posed. The uniqueness for the Poisson equation is proven by a reduction to a first
order differential equation.

Remark 13. In the limit ε → 0, the estimates (46) are mathematical expression
of the quasi-neutrality.

3.2. Well posedness of the Vlasov-Poisson-Ampère problem. Here we use
the variational formulation of (NLP-M) and treat the following minimization prob-
lem. 

Let ρ0 ∈ R, α ∈ [0, 1), f ini ∈ Iad(ρ0, α) and ε > 0.

Find φ∗ε ∈ V such that

φ∗ε = arg min
φ∈V

Jε(φ).
(47)

This minimization problem is a constrained problem and we can see it is a non
linear variant of the obstacle problem [23]. Let us remember that

Jε(φ) =

∫ 1

0

(
ε2

2
|φ′(x)|2 + U(φ(x))

)
dx
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where the real valued function U is defined for all ψ ∈ [φw, 0] by

U(ψ) :=

∫
R+

f ini (v)v
√
v2 − 2ψdv

+
2n0√

2π

(√
2πeψ − (1− α)

∫ +∞

√
−2φw

e−
v2

2 v
√
v2 + 2ψdv

)
.

This function belongs to C1[φw, 0] and the Nemytskii operator associated with U is
denoted TU and defined for all φ ∈ V by TU (φ)(x) := U(φ(x)) for all x ∈ [0, 1] see
A.4. To prove the Theorem (3.2), we shall need some preliminary results.

3.2.1. Preliminary part. Notice that Jε is made of strictly convex part

φ ∈ V 7→ Eε(φ) =
ε2

2
‖φ‖2V0

(48)

plus a perturbation that is not necessarily convex

φ ∈ V 7→ F (φ) =

∫ 1

0

TU (φ)(x)dx. (49)

All the analysis is based on the properties of the perturbation (49). Using the theory
of Nemytskii operators and more precisely Theorem A.6 we have the following.

Proposition 3. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α).
Then TU : V → C0[0, 1] is of class C1. Its Fréchet derivative is given by

dTU (φ)(h) = U ′(φ)h ∀(φ, h) ∈ V × V0.

Moreover the perturbation (49) is compact as we prove in the following.

Proposition 4. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). Then TU is compact.

Proof. We endow C0[0, 1] with the norm φ 7→ ‖φ‖∞ := max
x∈[0,1]

|φ(x)|. One has

TU = T̃U ◦ i where i : V → C0([0, 1]; [φw, 0]) is the Rellich compact embedding

and T̃U is the restriction to C0([0, 1]; [φw, 0]) of TU . Since i is compact and T̃U is
continuous, we conclude that TU is compact.

A direct consequence of the above proposition which results from Lemma A.3 is
the following.

Proposition 5. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). Then TU is (sequen-
tially) weakly lower semicontinuous.

Lemma 3.3. Let ρ0 ∈ R, α ∈ [0, 1), f ini ∈ Iad(ρ0, α) and ε > 0. Then Jε : V → R
is well-defined, of class C1 and (sequentially) wealky lower semicontinuous. Its
Fréchet derivative is given by

dJε(φ)(h) =

∫ 1

0

ε2φ′(x)h′(x) + U ′(φ(x))h(x)dx for all (φ, h) ∈ V × V0. (50)

Proof. First notice that for all φ ∈ V
Jε(φ) = Eε(φ) + F (φ)

where Eε and F were given in (48)-(49). From Proposition 3 we deduce that
F is C1 over V and since Eε is also C1 over V thus Jε is also. For the weak
lower semicontinuity, we notice that Eε is convex and continuous for the strong
topology, consequently applying the Mazur lemma [9, p. 562] we deduce that Eε is
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sequentially weakly lower semicontinuous. Applying Proposition 5 we also deduce
that F is weakly lower semicontinuous and thus Jε is.

We shall also need techniqual inequalities that will be useful to study the mo-
tonicity of U . In a general manner, the two following inequalities are obtained by a
convexity argument.

Lemma 3.4. For all η > 0 and t∗ ∈ (− 1
2η ,+∞) we have

et√
1 + 2ηt

≥ et
∗

√
1 + 2ηt∗

+
et

∗
(t− t∗)√

1 + 2ηt∗
− ηet

∗
(t− t∗)

(1 + 2ηt∗)
3
2

, ∀t ∈ (− 1

2η
,+∞). (51)

Proof. For all η > 0, the function h : t ∈ (− 1
2η ,+∞) 7→ et√

1+2ηt
is convex over

(− 1
2η ,+∞). Indeed one has h′′(t) = et

(1+2ηt)
5
2

(
4η2t2 + 4η(1− η)t+ 3η2 − 2η + 1

)
.

The polynomial t 7→ 4η2t2+4η(1−η)t+3η2−2η+1 has for discriminant ∆ = −32η4,
hence if η > 0 then ∆ < 0 and h′′(t) > 0. The conclusion follows from

h(t) ≥ h(t∗) + (t− t∗)h′(t∗) for all t, t∗ ∈ (− 1

2η
,+∞).

Lemma 3.5. For all η > 0 and t∗ ∈ (−∞, 1
2η ), , we have

et√
1− 2ηt

≥ et
∗

√
1− 2ηt∗

+
et

∗
(t− t∗)√

1− 2ηt∗
+
ηet

∗
(t− t∗)

(1− 2ηt∗)
3
2

∀t ∈ (−∞, 1

2η
) (52)

Proof. The proof is similar to the previous one. For all η > 0, the function

h : t ∈ (−∞, 1
2η ) 7→ et√

1−2ηt
is convex over (−∞, 1

2η ). Indeed one has h′′(t) =

et

(1−2ηt)
5
2

(
4η2t2 − 4η(η + 1)t+ 3η2 + 2η + 1

)
.

The polynomial t 7→ 4η2t2−4η(η−1)t+3η2+2η+1 has for discriminant ∆ = −32η4,
hence if η > 0 then ∆ < 0 and h′′(t) > 0. The conclusion follows from

h(t) ≥ h(t∗) + (t− t∗)h′(t∗) for all t, t∗ ∈ (−∞, 1

2η
).

Lemma 3.6. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). Then U is positive.

Proof. Let ψ ∈ [φw, 0]. Making the change of variable w :=
√
v2 + 2ψ leads to∫ +∞

√
−2φw

e−
v2

2 v
√
v2 + 2ψdv = eψ

∫ +∞

√
−2(φw−ψ)

e−
w2

2 w2dw

and

∫ +∞

√
−2(φw−ψ)

e−
w2

2 w2dw ≤
∫ +∞

0

e−
w2

2 w2dw =

√
2π

2
. We obtain finally

U(ψ) ≥
∫
R+

f ini (v)v2dv + n0(1 + α)eφw > 0.
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Proposition 6. Let ρ0 ∈ R+, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). If

ρ0 >

∫
R+

f ini (v)

v2
dv − 2n0√

2π

(
√

2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2

v2
dv

)
(53)

then U is decreasing. If the inequality is large then U is non increasing.

Remark 14. When ρ0 = 0 the inequality (53) is nothing but the kinetic Bohm
criterion (45).

Proof. It is convenient to make the change of variable u := −ψ and to define the
function u ∈ [0,−φw] 7→ Ũ(u) := U(−u). We have Ũ ∈ C1[0,−φw] and for all
u ∈ [0,−φw]

d

du
Ũ(u) = e−u


∫
R+

f ini (v)eu√
1 + 2u

v2

dv

︸ ︷︷ ︸
:=A



+ e−u

−
2n0√

2π

√
2π +

2n0√
2π

(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu√
1− 2u

v2

dv

︸ ︷︷ ︸
:=B



 .

We shall give a lower bound for A and B. Applying respectively inequalities (51)
and (52) to the integrands of A and B with u∗ = 0 and η = 1

v2 , we obtain

d

du
Ũ(u) ≥e−u

(∫
R+

f ini (v)

(
1 + u(1− 1

v2
)

)
dv − 2n0√

2π

√
2π

)
+

e−u
(

2n0√
2π

(1− α)

∫ +∞

√
−2φw

e−
v2

2

(
1 + u(1 +

1

v2
)

)
dv

)
we therefore obtain

d

du
Ũ(u) ≥ e−uρ0

+ e−uu

[
ρ0 +

2n0√
2π

(
√

2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2

v2
dv

)
−
∫
R+

f ini (v)

v2
dv

]
.

By hypothesis ρ0 ≥ 0 hence for all u ∈ (0,−φw] we have that d
du Ũ(u) is positive if

the bracket is positive and non negative if the bracket vanishes.

For the self-consistency of the analysis we investigate the existence of admissible
ion boundary conditions f ini that satisfy the kinetic Bohm criterion (45). Let us
define for all α ∈ [0, 1) and f ini ∈ Iad(0, α)

s2(α) :=

(
√

2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2

v2
dv

)
(√

2π − (1− α)

∫ +∞

√
−2φw

e−
v2

2 dv

) . (54)
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Notice that s2(α) > 1 for all α ∈ [0, 1). We have the following characterization of
existence result.

Theorem 3.7. Let α ∈ [0, 1). There exists f ini ∈ Iad(0, α) satisfying the kinetic
Bohm criterion (45) if and only if s1(α)2s2(α) > 1.

Proof. Let α ∈ [0, 1). We begin with showing the necessary condition. Assume
there exists f ini ∈ I satisfying∫

R+

f ini (v)vdv∫
R+

f ini (v)dv

< s1(α) and

∫
R+

f ini (v)

v2
dv∫

R+

f ini (v)dv

< s2(α). (55)

Applying twice the Cauchy Schwarz inequality yields∫
R+

f ini (v)dv ≤
(∫

R+

f ini (v)vdv

) 1
2
(∫

R+

f ini (v)

v2
dv

) 1
4
(∫

R+

f ini (v)dv

) 1
4

.

Using the previous inequalities (55) we obtain 1 < s1(α)2s2(α). Let us now prove
the sufficient condition. Assume s2

1(α)s2(α) > 1. Then we claim that the function
f ini defined for all v ∈ R+ by f ini (v) = 1(vmin,vmax)(v) with vmin = 1√

s2(α)
and

vmax = s1(α) is a solution.

A direct consequence of the previous result is the following.

Corollary 1. Let α ∈ [0, αc]. Then there exists f ini ∈ Iad(0, α) satisfying the
kinetic Bohm criterion (45).

Proof. For all α ∈ [0, αc], s1(α) ≥ 1. Since s2(α) > 1 we deduce s2
1(α)s2(α) > 1

and Theorem 3.7 applies.

We are now equipped to prove the main result, Theorem 3.2.

3.2.2. Proof of the main result.

Theorem 3.8 (Existence of minimizers). Let ρ0 ∈ R, α ∈ [0, 1), f ini ∈ Iad(ρ0, α)
and ε > 0. There is φ∗ε ∈ V such that Jε(φ

∗
ε) ≤ Jε(φ) for all φ ∈ V . Moreover, the

following estimate holds

‖φ∗ε‖V0 = O
(

1

ε

)
. (56)

Proof. We apply Theorem A.2. By definition V0 is a reflexive Banach space and V
is a closed convex subset. By Lemma 3.3, Jε is sequentially weakly lower semicon-
tinuous and since U is positive (Lemma 3.6) for all φ ∈ V we have

ε2

2
‖φ‖2V0

≤ Jε(φ).

By comparison Jε(φ) → +∞ as ‖φ‖V0 → +∞ and thus Jε is coercive. Therefore,
there is φ∗ε ∈ V such that Jε(φ

∗
ε) ≤ J(φ) for all φ ∈ V. Finally, taking

x ∈ [0, 1] 7→ φ(x) := xφw which belongs to V we obtain

‖φ∗ε‖V0
≤

√
φ2
w +

2

ε2

∫ 1

0

U(xφw)dx = O
(

1

ε

)
. (57)
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This theorem states the existence of global minimizers but does not ensure they
are criticial point of Jε. Let us give more properties of minimizers that will be
useful in the sequel.

Proposition 7 (First order condition). Let ρ0 ∈ R, α ∈ [0, 1), f ini ∈ Iad(ρ0, α)
and ε > 0. Let φ∗ := φ∗ε ∈ V be a minimizer of Jε. Then the following variational
inequality holds

dJε(φ
∗)(h) ≥ 0 for all h ∈ V0 such that φ∗ + h ∈ V. (58)

Moreover, we have φ∗ ∈W 2,∞(0, 1) ∩ C1[0, 1] and

− ε2 d
2

dx2
φ∗(x) = −U ′(φ∗(x)) a.e in O := {x ∈ (0, 1) | φw < φ∗(x) < 0}, (59)

− ε2 d
2

dx2
φ∗(x) ≤ −U ′(φ∗(x)) a.e in F1 := {x ∈ (0, 1) | φ∗(x) = 0}, (60)

− ε2 d
2

dx2
φ∗(x) ≥ −U ′(φ∗(x)) a.e in F2 := {x ∈ (0, 1) | φ∗(x) = φw}. (61)

Proof. Since φ∗ is a minimizer it is straightforward from the C1-regularity of Jε
that we have the variational inequality (58). Then the regularity property φ∗ ∈
W 2,∞(0, 1)∩C1[0, 1] is obtained following exactly the same ideas as in [23, p. 113].
The equality (59) is obtained as follows. Choose h ∈ H1

0 (0, 1) with supp(h) ⊂ O
then there is |τ | sufficiently small such that φ∗ + τh ∈ V and τdJε(φ

∗)(h) ≥ 0 for
both positive and negative τ . Then dJε(φ

∗) ≡ 0 and the result then follows from
(50) and the regularity property φ∗ ∈ W 2,∞(0, 1). Inequalities (60) and (61) can
also be obtained from the first order condition (58) using adequate test functions
h ∈ H1

0 (0, 1) with a support included respectively in F1 and F2.

Proposition 8 (Non increasing property). Let ρ0 ∈ R, α ∈ [0, 1), f ini ∈ Iad(ρ0, α)
and ε > 0. The minimizers of Jε are non increasing functions. More precisely, if
φ ∈ V is a minimizer and 0 ≤ x ≤ y ≤ 1 then φ(y) ≤ φ(x).

Proof. Based on Theorem 1.1 of [5], we observe that the monotone decreasing re-

arrangement φ̂ : [0, 1] → R of φ (that is the unique non increasing function such

that for all t ∈ R meas ({x ∈ (0, 1) | φ(x) ≥ t}) = meas
(
{x ∈ (0, 1) | φ̂(x) ≥ t}

)
)

belongs to V and satisfies F (φ̂) = F (φ) and Eε(φ̂) ≤ Eε(φ). In particular, if φ is

not non increasing then the previous inequality is strict and Jε(φ̂) < Jε(φ) which
contradicts the minimality of φ.

Proposition 9. Let ρ0 ≤ 0, α ∈ [0, 1), f ini ∈ Iad(ρ0, α) and ε > 0.
Let φ∗ := φ∗ε ∈ V a minimizer of Jε. Assume U ′(φw) ≤ 0. Then φ∗ ∈ C2[0, 1] and
is solution of (NLP-M).

Proof. Let φ∗ ∈ V a minimizer of Jε, we will show that (59) holds on the all
interval (0, 1). To do so we note that since φ∗ is continuous and non increasing (see
Proposition 8) there is 0 ≤ δ < δ′ ≤ 1 such that F1 = (0, δ] and F2 = [δ′, 1) (where
F1 and F2 are the sets of Proposition 7). If F1 is non-empty then d

dx2φ
∗ ≡ 0 and

(60) implies 0 ≤ −U ′(0). Since U ′(0) = −ρ0 ≥ 0 by hypothesis, it follows that

necessarily 0 = −U ′(0). Hence, if ρ0 = 0 then −ε2 d2

dx2φ
∗ = −U ′(φ∗) on F1, else if

ρ0 < 0 then F1 is empty. The same argument holds for F2 using (61). We deduce

−ε2 d2

dx2φ
∗(x) = −U ′(φ∗(x)) for almost every x ∈ (0, 1). Since x 7→ U ′(φ∗(x)) ∈

C[0, 1] we deduce from the Poisson equation that φ∗ ∈ C2[0, 1].
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Unfortunately, when ρ0 > 0 we are not able to conclude to the existence of a
solution to (NLP-M), however we are able to describe the behavior of U , see Section
3.2.3 and Theorem 3.10. Let us now prove the main result 3.2.

Proof of theorem 3.2. Let α ∈ [0, αc], ρ0 = 0, f ini ∈ Iad(0, α) and ε > 0. Moreover,
assume the kinetic Bohm criterion∫

R+

f ini (v)

v2
dv∫

R+

f ini (v)vdv

<

(
√

2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2

v2
dv

)
(√

2π − (1− α)

∫ +∞

√
−2φw

e−
v2

2 dv

) .

The proof is splitted into two parts. Mainly, the first part deals with the existence
of a solution the Vlasov-Poisson-Ampère system and the second part deals with the
uniqueness.
Existence part. We apply the proposition 6, so that the function φ ∈ [φw, 0] 7→ U(φ)
is decreasing and U ′(φ) < 0 for all φ ∈ [φw, 0). Combining theorem 3.8 and corollary
9 we obtain there is φε ∈ V ∩ C2[0, 1] non increasing solution of (NLP-M). Since
ε2 d
dx2φε(x) = U ′(φε(x)) ≤ 0 for all x ∈ (0, 1) we deduce that φε is concave on [0, 1].

Now considering fe and fi defined in (20) and (22), it is easy to see that they belongs
to (L1∩L∞)([0, 1]×R;R+). We can also check they are weak solution of the Vlasov
equations in the sense of definition A.1. Now it easy to observe that (fi, fe, φε) is
a sheath type solution on (x∗, 1] where x∗ = max{x ∈ [0, 1] / φε(x) = 0}. Besides,
the Ampère equation (9) is satisfied by definition of φw and we therefore deduce
that the Vlasov-Poisson-Ampère system (12)-(18) is well posed. In addition, it is
straightforward from the equation (32) that φw does not depend on ε and so do
v 7→ (fi(1, v), fe(1, v)), ni(1) and ne(1). We shall now prove the estimates (46).
The first one is obtained from (56). The second one is obtained as follows. Since
ni−ne is a continuous function and by the canonical injection C0[0, 1] ↪→ H−1(0, 1),
it defines a linear and continuous form on the space H1

0 (0, 1) and we have for all
ψ ∈ H1

0 (0, 1)

〈ni − ne, ψ〉H−1,H1
0

=

∫ 1

0

(ni − ne)(x)ψ(x)dx = ε2

∫ 1

0

d

dx
φε(x)

d

dx
ψ(x)dx.

Using the Cauchy-Schwarz inequality and the estimate (57) we obtain∣∣∣〈ni − ne, ψ〉H−1,H1
0

∣∣∣ ≤ ε2‖φε‖V0
‖ψ‖H1

0
≤ ε2

√
φ2
w +

2

ε2
F (xφw)‖ψ‖H1

0

which leads to ‖ni − ne‖H−1 ≤ ε2
√
φ2
w + 2

ε2F (xφw) = O(ε).

Uniqueness part. The proof of the uniqueness result relies on a reduction of the non
linear Poisson equation to a first order differential equation. We shall also need the
following lemma whose proof is a consequence of the Cauchy-Lipschitz theorem.

Lemma 3.9. Let 0 ≤ x1 < x2 ≤ 1 and φ ∈ C1([x1, x2]; [φw, 0]) solution of the
initial Cauchy problem{

d
dxφ(x) = −

√
g(φ(x)) where g : [φw, 0] 7→ (0,+∞) is C1[φw, 0]

φ(x2) = φ2 ∈ R.

then it is unique.
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Proof. Since g is C1 and g > 0, the function φ ∈ [φw, 0] 7→ −
√
g(φ) is Lipschitz in

φ and it suffices to apply the Cauchy-Lipschitz theorem to conclude.

We are now able to prove the uniqueness result. To this effect, let us multiply the
non linear Poisson equation (38) by d

dxφε and integrate over an arbritrary segment
[x, y] ⊂ [0, 1] with 0 ≤ x < y ≤ 1. Then we obtain

ε2

2

((
d

dx
φε(y)

)2

−
(
d

dx
φε(x)

)2
)

= U(φε(y))− U(φε(x)). (62)

Further assume there is a solution ψε ∈ V ∩ C2[0, 1] concave, non increasing and
different of φε. Since φε and ψε have the same boundary conditions and are
continuous, there exist x1, x2 ∈ [0, 1] such that x1 < x2, φε < ψε on (x1, x2),
and φε(x1) = ψε(x1), φε(x2) = ψε(x2) < 0. Then d

dxφε(x1) ≤ d
dxψε(x1) ≤ 0

and d
dxψε(x2) ≤ d

dxφε(x2) < 0. Since the previous relation (62) is valid for any
0 ≤ x < y ≤ 1, chosing x = x1 and y = x2 leads to(

d

dx
ψε(x2)

)2

−
(
d

dx
ψε(x1)

)2

=

(
d

dx
φε(x2)

)2

−
(
d

dx
φε(x1)

)2

,

and by a comparison argument we obtain d
dxψε(x1) = d

dxφε(x1) and d
dxφε(x2) =

d
dxψε(x2). Eventually using the relation (62) for y = x2 and x1 ≤ x ≤ x2 it is easy
to notice that φε and ψε are both solutions of the Cauchy problem

ε√
2

d

dx
w(x) = −

√
U(w(x))− U(φε(x2)) +

ε2

2

d

dx
φε(x2)2 for x ≥ x1

w(x1) = φε(x1).

Notice that U(w(x))−U(φε(x2))+ ε2

2
d
dxφε(x2)2 = U(w(x))−U(φε(x1))+ ε2

2
d
dxφε(x2)2

and also that U(w(x)) ≥ U(φε(x1)) because U and w are non increasing. Finally

remark that U(w(x))− U(φε(x1)) + ε2

2
d
dxφε(x2)2 ≥ ε2

2
d
dxφε(x2)2 > 0 and conclude

by invoking lemma 3.9.

3.2.3. Complementary study when the Bohm criterion is violated. In the theorem
3.2 we have considered ρ0 = 0 and the kinetic Bohm criterion (45). In this section,
we consider more general cases where either the kinetic Bohm criterion is violated
or ρ0 6= 0. We remember that for ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α) given, U
is defined for all ψ ∈ [φw, 0] by

U(ψ) :=

∫
R+

f ini (v)v
√
v2 − 2ψdv

+
2n0√

2π

(√
2πeψ − (1− α)

∫ +∞

√
−2φw

e−
v2

2 v
√
v2 + 2ψdv

)
.

We intend to prove that the general situation is that U admits at most two local
minima and two local maxima. Ultimately, it shows that whenever the Vlasov-
Poisson-Ampère is well posed with φ non increasing, the charge density
x ∈ [0, 1] 7→ (ni − ne)(x) = −U ′(φ(x)) can change sign at most in three distinct
regions. This section is thus devoted to the study of the monotonicity of U . It
is convenient to make the change of variable u := −ψ and to define the function
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u ∈ [0,−φw] 7→ Ũ(u) := U(−u). We will assume in this section that∫
R+

f ini (v)

v2
dv < +∞ so that Ũ ∈ C1[0,−φw]∩C2(0,−φw) and for all u ∈ (0,−φw),

Ũ(u) =

∫
R+

f ini (v)v
√
v2 + 2udv

+
2n0√

2π

(√
2πe−u − (1− α)

∫ +∞

√
−2φw

e−
v2

2 v
√
v2 − 2udv

)
, (63)

d

du
Ũ(u) =

∫
R+

f ini (v)v√
v2 + 2u

dv

+
2n0√

2π

(
−
√

2πe−u + (1− α)

∫ +∞

√
−2φw

e−
v2

2 v√
v2 − 2u

dv

)
, (64)

d2

du2
Ũ(u) = −

∫
R+

f ini (v)v

(v2 + 2u)
3
2

dv

+
2n0√

2π

(
√

2πe−u + (1− α)

∫ +∞

√
−2φw

e−
v2

2 v

(v2 − 2u)
3
2

dv

)
. (65)

Proposition 10. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). If Ũ has a local

minimum at u∗ ∈ (0,−φw) then Ũ is non decreasing over [u∗,−φw].

Proof. Assume Ũ attains a minimum at u∗ ∈ (0,−φw) then one has the first and

second order conditions d
du Ũ(u∗) = 0 and d2

du2 Ũ(u∗) ≥ 0 that is∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv +
2n0√

2π

(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu
∗√

1− 2u∗

v2

dv −
√

2π

 = 0 (66)

and∫
R+

f ini (v)eu
∗

v2
(
1 + 2u∗

v2

) 3
2

dv ≤ 2n0√
2π

√2π + (1− α)

∫ +∞

√
−2φw

e−
v2

2 eu
∗

v2
(
1− 2u∗

v2

) 3
2

dv

 . (67)

One has the decomposition for all u ∈ [0,−φw]

d

du
Ũ(u) = e−u


∫
R+

f ini (v)eu√
1 + 2u

v2

dv

︸ ︷︷ ︸
:=A



+ e−u

−
2n0√

2π

√
2π +

2n0√
2π

(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu√
1− 2u

v2

dv

︸ ︷︷ ︸
:=B



 .
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Let us now give a lower bound for A. Applying the inequality (51) we have

A ≥
∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv + (u− u∗)
∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv

− (u− u∗)
∫
R+

f ini (v)eu
∗

v2
(
1 + 2u∗

v2

) 3
2

dv

then we use the second order condition (67) and obtain for all u ≥ u∗

A ≥
∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv

+ (u− u∗)

∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv − 2n0√
2π

√
2π − 2n0√

2π
(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu
∗

v2
(
1− 2u∗

v2

) 3
2

dv

 .

We also have a lower bound for B. Indeed, using the inequality (52) we have

B ≥
∫ +∞

√
−2φw

e−
v2

2 eu
∗√

1− 2u∗

v2

dv

+(u− u∗)
∫ +∞

√
−2φw

e−
v2

2 eu
∗√

1− 2u∗

v2

dv + (u− u∗)
∫ +∞

√
−2φw

e−
v2

2 eu
∗

v2
(
1− 2u∗

v2

) 3
2

dv.

Combining A and B one finally obtains

d

du
Ũ(u) ≥ e−u

∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv +
2n0√

2π
(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu
∗√

1− 2u∗

v2

dv − 2n0√
2π

√
2π


+e−u(u− u∗)

∫
R+

f ini (v)eu
∗√

1 + 2u∗

v2

dv +
2n0√

2π
(1− α)

∫ +∞

√
−2φw

e−
v2

2 eu
∗√

1− 2u∗

v2

dv − 2n0√
2π

√
2π


and the right hand side is exactly zero so that

d

du
Ũ(u) ≥ 0 for all u ≥ u∗.

From Proposition 10 one can establish the following result.

Proposition 11. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α) such that Ũ is not

locally constant. If Ũ attains a local minimum over (0,−φw) then it is unique.

Similarly, if Ũ attains a local maxima in (0,−φw) then it is unique.

Proof. We do the proof by contradiction. Assume Ũ has at least two local minima
at some points u1 and u2 belonging to (0,−φw). Without loss of generality we can

assume u1 < u2. Since Ũ is not locally constant there exists u1 < δ < u2 such that
Ũ is decreasing over (δ, u2) which is contradiction with Proposition 10. We can also

prove that if Ũ has a local maxima in (0,−φw) then it is unique.

Theorem 3.10. Let ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α) such that Ũ is not

locally constant. Then Ũ admits at most two local minima over [0,−φw] and it also
admits at most two local maxima over [0,−φw].
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Proof. We begin with showing that Ũ has at most two local minima. First of all,
it is clear that Ũ admits a local minimum (which is in fact a global one) since it
is continuous over the compact set [0,−φw]. We shall now distinguish two cases.
Suppose U attains a local minimum at u1 ∈ (0,−φw) then from corollary 11 it is

unique in the interval (0,−φw) and from proposition 10 Ũ is non decreasing over
[u1,−φw] and necessarily any other local minimum is attained at u2 = 0. On the

contrary if Ũ does not have any local minimum in (0,−φw) this implies that Ũ has
at most two local minima attained at u1 = 0 and u2 = −φw. We can also show
that Ũ has at most two local maxima.

It results from the above analysis that we can describe the variation of Ũ de-
pending on where local minima/maxima are located in [0,−φw]. Moreover since

U(ψ) = Ũ(−ψ) for all ψ ∈ [φw, 0], we are able to deduce the variation of U . Finally,

one has the illustrated possible behavior for Ũ see Figure 5.

4. Numerical illustrations.

4.1. Description of a numerical method. The velocity integrals are computed
by means of quadrature formulas. More precisely, for a given integrand g : R+ → R
our numerical strategy consists in splitting the integral of g as follows,∫

R+

g(v)dv =

∫
(0,vmin)

g(v)dv +

∫
(vmin,vmax)

g(v)dv +

∫
(vmax,+∞)

g(v)dv

where 0 ≤ vmin < vmax are chosen such that |g| is small out of the interval
(vmin, vmax). Then, we treat each of these integrals with adapted quadrature for-
mulas, typically Gauss-Legendre and Gauss-Laguerre quadratures. This splitting
strategy is also convenient when the integrand is not smooth, typically if g is piece-
wise defined, it suffices to split the integral conveniently, so that a possible loss of
precision due to a loss of regularity is avoided.

It is straight from the derivation of our problem, that before employing a numer-
ical method to solve the non linear Poisson equation, one has to compute the wall
potential solution of the non linear equation (32). The numerical method consists
in two main steps : a preprocessing step and a solving step.
Pre-processing step. Consider ρ0 ∈ R, α ∈ [0, 1) and f ini ∈ Iad(ρ0, α). We use a
standard Newton method to solve numerically the non linear equation (32). More

precisely, we define W̃(ψ) = W(ψ) −
√

2π

1− α

∫
R+

f ini (v)vdv for all ψ ≤ 0. We then

choose δ > 0 and compute iteratively (φnw)n∈N as follows
φ0
w ≤ 0 well chosen

φn+1
w = φnw −

W̃(φnw)

W̃ ′(φnw)
n ∈ N

and stop as
∣∣∣W̃(φnw)

∣∣∣ < δ.

Solving step. For an implementation reason, we lift the boundary condition and

define φ̄ = φ − xφw. For ε > 0, we solve the equivalent to (NLP-M) Poisson
problem −

ε2

2

d

dx2
φ̄(x) = − d

dψ
Ū(x, φ̄(x)) ∀x ∈ (0, 1)

φ̄(0) = 0 and φ̄(1) = 0.
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−φw

u

Ũ

(a) Ũ admits a unique
local minimum and two

local maxima.

−φw

u

Ũ

(b) Ũ admits a unique
local minimum and

unique local maximum.

−φw

Ũ

u

(c) Ũ has a unique local
maximum and two local

minima.

−φw

Ũ

u

(d) Ũ has one local
maxima and one local

minima in (0,−φw).

It also has one lo-
cal maximum at u =
−φw and one local

minimum at u = 0.

Figure 5. Plots of all possible behavior of the function u ∈
[0,−φw] 7→ Ũ(u). The function studied in the scope of theorem
3.2 corresponds to the dashed line of Figure (B).

where Ū(x, ψ) := U(ψ+ xφw) for all x ∈ [0, 1] and ψ ∈ [(1− x)φw,−xφw]. We then
look for φ̄∗ ∈W = W (ρ0, α) :=

{
φ̄ ∈ H1

0 (0, 1) | (1− x)φw ≤ φ̄ ≤ −xφw a.e in (0, 1)
}

minimizing the functional

J̄(φ̄) =

∫ 1

0

(
ε2

2
|φ̄′(x)|2 + Ū(x, φ̄(x))

)
dx. (68)

Let N ∈ N∗, the discretization consists of a mesh (xi := i
(N+1) )i=0,...,N+1 with

h = 1
N+1 and the approximation of the Hilbert space H1

0 (0, 1) by a standard and
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conformous P1 finite element space V h0 . More precisely

V h0 :=

{
φ̄h ∈ C0[0, 1], φ̄h(0) = φ̄h(1) = 0 | ∀i = 0, ..., N φ̄h ∈

|[xi,xi+1]
P1,

}
(69)

and the admissible potential set is approximated by

Wh :=
{
φ̄h ∈ V h0 | (1− x)φw ≤ φ̄h ≤ −xφw∀x ∈ [0, 1]

}
. (70)

We finally solve the minimization problem associated with J̄ using a fixed step
gradient algorithm. Namely, given η > 0 and δ > 0, we compute iteratively{

φ̄0
h ∈Wh

φ̄n+1
h = φ̄nh − η∇J̄(φ̄nh)

and stops when ‖∇J̄(φ̄nh)‖H1
0 (0,1) < δ. We have denoted ∇J̄(φ̄nh) ∈ V h0 the gradient

of J̄ at φ̄nh. It is the unique solution of the variational problem
(∇J̄(φ̄nh), ψh)H1

0
= dJ̄(φ̄nh)(ψh) for all ψh ∈ V h0 where (., .)H1

0
is the H1

0 (0, 1) inner
product and

dJ̄(φ̄nh)(ψh) =

∫ 1

0

(
ε2 d

dx
φ̄nh(x)

d

dx
ψh(x) +

d

dψ
Ū(x, φ̄nh(x))ψh(x)

)
dx.

4.2. Numerical results. We carry out two numerical experiments. In the first
one we perform numerical simulations that are in the scope of Theorem 3.2, that
is in the case of a satisfied kinetic Bohm criterion. For these simulations we vary
the parameters ε and α. In the second one, we perform numerical simulations with
fixed values of ε and α but with an incoming ion boundary condition that violates
the kinetic Bohm criterion (45). The data are :

• We set the mass ratio
me

mi
=

1

3672
for a Deuterium plasma. It results in

αc ≈ 0.95.

• We choose α ∈ [0, αc] and f ini (v) = min(1,
v2

η
)
e

−(v − Z)2

2σ2

√
2πσ

for all v > 0,

where η is a small parameter, σ2 = Ti

Te
is the temperature ratio and Z is a

macroscopic velocity adjusted with respect to the kinetic Bohm criterion (45).
In the following simulations η = 10−1 and σ = 1

2 . We also remember that f ine
is given in (25).

• We set the neutrality ρ0 = 0.
• We choose a mesh size h = 2−11 and a tolerance parameter for our gradient

algorithm δ = 10−6.

4.2.1. The case of a satisfied Bohm criterion. In this part we present the numerical
solutions we obtained with a fixed value of Z chosen equal to 3

2 . The moments are
computed numerically and we obtain :∫

R+

f ini (v)dv ≈ 0.99,

∫
R+

f ini (v)vdv ≈ 1.4, and

∫
R+

f ini (v)

v2
dv ≈ 0.74.

We can check numerically that both the admissibility condition (34) and the kinetic
Bohm criterion (45) are satisfied. In figure 6 we have represented the ion incoming
boundary condition f ini . We are now going to illustrate the behavior of the solution
with respect to ε and α. We know from Theorem 3.2 that ni(x) ≥ ne(x) for all
0 ≤ x ≤ 1. The general intuition is that when ε > 0 is small, one would expect ni
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Figure 6. Plot of the incoming ion boundary condition for posi-
tive velocities with Z = 3

2 .

to be very close to ne and φε to be almost linear over some interval [0, x∗(ε)] with
x∗(ε) > 0. Then because of the potential drop the difference ni − ne must become
larger and larger as we approach the wall.
Case α = 0 and varying ε. We fix the re-emission coefficient α = 0, the results are
presented in figures 7,8,9, 10 and 11. The a priori bound (35) on φw gives φw ≥
−2.80 and the numerically computed wall potential is φw ≈ −2.78. The electron
reference density is n0 ≈ 0.50. If figure 7 we have represented the graph of U over its
definition domain [φw, 0]. In agreement with the theory it is a decreasing function.
For the data we have chosen it also seems to be convex, however notice that from
its expression (37) it is not straightforward.

Figure 7. Plot of the potential function U over [φw, 0] for α = 0.

Figures 8,9, 10 and 11 represent the computed solution : fεi , fεe , nεi , n
ε
e, φε and

uεi =
γεi
nεi

for ε ∈ {1, 0.1, 0.01}.
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(a) ε = 1.0 (b) ε = 0.1

(c) ε = 0.01

Figure 8. Ion distribution functions in the phase space for various
ε. Plot (a),(b) and (c) are represented in the phase space [0, 1] ×
[0, 5].

In addition, we observe that when ε is small a sheath of length of the order of ε de-
velops near the wall and the sheath-edge denoted x∗ varies with ε. In the simulations
the sheath-edge corresponds to the point where approximately |φε(x∗)| > 10−4|φw|.
We have x∗(1) ≈ 0, x∗(0.1) ≈ 0.5, x∗(0.01) ≈ 0.95. For x > x∗(ε), the plasma is
significantly positively charged and there is a non negligible electric field that accel-
erates ions and decelerates electrons. Sufficiently fast electrons reach the wall and
are absorbed. For x ≤ xε, the plasma is almost neutral and there is no appreciable
electric field, particles have constant velocities. These results are in good agreement
with the physics, and confirms the commonly made assumption of semi-Maxwellian
electron distribution function at the wall, see for example [17].
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(a) ε = 1.0 (b) ε = 0.1

(c) ε = 0.01

Figure 9. Electron distribution functions in the phase space for
various ε. Plot (a),(b) and (c) are represented in the phase space
[0, 1]× [−150, 150].

Case ε = 0.1 and varying α. We fix ε = 0.1 and vary α ∈ {0, 0.5, 0.9}. The results
are qualitatively the same with the difference that some electrons are re-emitted with
negative velocities, therefore we decide only to plot the electron and ion densities
nαe and nαi , see figure 12. We also gather the different values of the wall potential
φw and the electron reference density n0 with respect to α in the table 1. The ion

α φw n0

0 -2.7 0.5
0.5 -2.1 0.5
0.9 -0.48 0.5

Table 1. Values of the wall potential and the reference density
for various values of α.

and electron densities seem to be respectively increasing functions of α.
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(a) ε = 1.0 (b) ε = 0.1

(c) ε = 0.01

Figure 10. Ion and electron densities in space for various ε. Plot
(a),(b),(c) are represented in the space [0, 1].

(a) Electrostatic poten-

tial in space for various
ε.

(b) Ion mean velocity in

space for various ε.

Figure 11. Electrostatic potential and ion mean velocity in the
domain [0, 1] for various values of ε.

4.2.2. The case of a violated Bohm criterion. We present numerical results when
the kinetic Bohm criterion (45) is not satisfied. We mention that we are not in the
scope of Theorem 3.2, thus we cannot ensure the existence and the uniqueness of a
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Figure 12. Ion and electron densities for ε = 0.1 and α ∈
{0, 0.5, 0.9}. Pointed lines correspond to electron densities and
thick lines to ion densities.

solution to (NLP-M). However, we can still minimize the functional Jε and check a
posteriori that the (numerically) computed minimizer is indeed a solution to (NLP-
M). Consequently, for this numerical experiment we fix ε = 0.01, α = 0. We choose
Z = 0.5, for this value of Z the ion incoming boundary condition does not satisfy
the Bohm criterion (45). Consequently, we know a priori that U ′′(0) < 0 and thus
the potential function U is locally concave near φ = 0. In addition, because the
slope at φ = 0 is U ′(0) = −ρ0 = 0 the potential function U is locally increasing
near φ = 0. Therefore the profile of U corresponds to one of the figure 5-(A). In
figure 13 we have represented the function U over its domain of definition. The

Figure 13. Plot of the potential function U over [φw, 0] for α = 0.

figure 14 represents respectively the ion and electron distribution function in the
phase space. The figure 15 represents respectively the macroscopic densities and the
electrostatic potential. We see that when the Bohm criterion is violated, there is
two boundary layer, one is at x = 0 and the other one is at x = 1. The charge density
is negative near x = 0 while it is positive near x = 1. The physical interpretation of
this numerical experiment is not obvious. However we mention that since the point
x = 0 is assumed to represent a position somewhere in the (bulk) plasma, it seems
to us that the boundary layer at x = 0 is unphysical. Consequently, this unphysical
effect shows a limitation of our model. Lastly, we mention that for other values of
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(a) Ion phase space (b) Electron phase space

Figure 14. Ion and electron distribution functions in the phase
space. Plot (a) is represented in the phase space [0, 1]× [0, 5] while
plot (b) is represented in the phase space [0, 1]× [−150, 150].

(a) Ion and electron

densities in space.

(b) Electrostatic poten-

tial in space.

Figure 15. Macroscopic densities and electrostatic potential in
space. Plot (a),(b) are represented in the space [0, 1].

the macroscopic velocity Z which do not ensure the kinetic Bohm criterion (45) to
be satisfied, the results are qualitatively the same.

5. Conclusion. We have proposed and studied a stationary and one dimensional
plasma-wall interaction model, based on a bi-kinetic description of ions and elec-
trons. Due to the presence of the wall, the electron phase space density is repre-
sented by a truncated Maxwellian distribution. As for the ions, our model supports
a large class of incoming velocity distributions f ini and we have shown that it is
well posed under a moment condition on f ini which generalizes the usual Bohm
criterion. Furthermore, we have identified a second condition that must be satisfied
by f ini for the wall potential to be well-defined. Surprisingly enough, this second
condition takes the form of an upper bound on the average velocity of the incom-

ing ions but thanks to the large mass ratio
mi

me
we have verified that it is not in
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contradiction with the Bohm criterion. Our proof relies on a reformulation of the
Vlasov-Poisson system into a non linear Poisson equation that we next study as a
minimization problem. This approach also provides us with quantitative estimates
for the boundary layer.

A physically based sheath problem was then illustrated with numerical simu-
lations. Results show that when the neutrality is assumed at x = 0 and when
the incoming ion distribution is admissible and satisfies the kinetic Bohm criterion,
then for a vanishing normalized Debye length ε a sheath of length of the order of ε
develops at the wall. Out of the sheath the plasma is almost neutral while in the
sheath it is not, ions are accelerated and electrons decelerated. These results pro-
vide a strong numerical evidence for Theorem 3.2 and they are in good agreement
with the simulations presented in [11]. We should add that this work takes full
advantage of the one dimensional structure of our model. Although elementary, we
hope this approach to be generic enough to be used in more general cases, including
additional physics such as collision operators and magnetic fields [17, 14].
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A. Appendix. Some fundamental results are reminded here for the self consistency
of this work.

Definition A.1 (Weak solutions). 1. Let f ini ∈ I and fi ∈ (L1 ∩ L∞)([0, 1] ×
R;R+). We say that fi is a weak solution of the Vlasov equation (13) iff for
all ϕ ∈ C1

c ([0, 1]×R) such that ϕ(0, v) = 0 for v ≤ 0 and ϕ(1, v) = 0 for v ≥ 0∫ 1

0

∫
R
fi(x, v)Φ(x, v)dvdx =

∫
R+

f ini (v)vϕ(0, v)dv

where Φ is defined by Φ(x, v) = −v∂xϕ(x, v) + d
dxφ(x)∂vϕ(x, v).

2. Let α ∈ [0, 1], f ine ∈ I and fe ∈ (L1 ∩ L∞)([0, 1]× R;R+). We say that fe is
a weak solution of the Vlasov equation (12) iff for all ϕ ∈ C1

c ([0, 1]× R) such
that ϕ(0, v) = 0 for v ≤ 0 and ϕ(1, v) = −αϕ(1,−v) for v ≥ 0∫ 1

0

∫
R
fe(x, v)Φ(x, v)dvdx = −

∫
R+

f ine (v)vϕ(0, v)dv

where Φ is defined by Φ(x, v) = v∂xϕ(x, v) + mi

me

d
dxφ(x)∂vϕ(x, v).

Theorem A.2 (p. 135 [13]). Let X be a reflexive Banach space, C a closed convex
subset of X and F : C → R a map. Moreover, assume

1. F is coercive, i.e F (x)→ +∞ as ‖x‖ → +∞.
2. F is (sequentially) weakly lower semicontinuous, i.e for any sequences (xn)n∈N ⊂

C which converges to x ∈ C for the weak topology, one has xn ⇀ x⇒ F (x) ≤
lim inf F (xn).

then there exists u ∈ C such that F (u) := inf
v∈C

F (v).

Lemma A.3. Let X and Y be two Banach spaces. Suppose X reflexive and
F : X → Y is a compact mapping, then F is (sequentially) weakly-lower semi-
continuous.

The theory of Nemytskii operators provides continuity and differentiability re-
sults for some functional operators, see [2].

Definition A.4. Let be I a nonempty interval of R and f : I → R be a function.
The Nemytskii operator associated with f is the map which associates to any mea-
surable function u : (0, 1) → I the function v := Tf (u) defined by v(x) = f(u(x))
for all x ∈ (0, 1).

Theorem A.5. Let be I a nonempty interval of R and f : I → R be a continuous
function over I then the Nemytskii operator associated with f , Tf : C0([0, 1]; I) →
C0[0, 1] is continuous from C0([0, 1], I) to C0[0, 1].

Theorem A.6. Let be I an nonempty interval of R and f : I → R be a C1-function
over I then the Nemytskii operator associated with f , Tf : C0([0, 1], I) → C0[0, 1]
is a C1 mapping from C0([0, 1], I) to C0[0, 1] and its Fréchet derivative is given by

dTf (u)v = f ′(u)v ∀(u, v) ∈ C0([0, 1], I)× C0[0, 1].
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liptiques, Springer-Verlage, 1993.

[14] H. Kohno, J. R. Myra and D. A. D’Ippolito, Radio-frequency sheath-plasma interactions with
magnetic field tangency points along the sheath surface, Physics of Plasmas, 20, 082514,

2013.

[15] J.G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less,
Maxwellian plasma at rest, Institute for Aerospace Studies, University of Toronto, Report

No. 100, 1966.

[16] P.-H. Maire, Établissement et comparaison de modèles fluides pour un plasma faiblement
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