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We provide some sufficient mixing conditions on a strictly stationary sequence in order to guarantee the weak invariance principle in Hölder spaces. Strong mixing, ρ-mixing conditions are investigated as well as τ -dependent sequences. The main tools are deviation inequalities for mixing sequences.

1. Introduction 1.1. Context and notations. Let (X j ) j 0 be a strictly stationary sequence of real valued random variables with zero mean and finite variance, and for an integer n 1, S n := n j=1 X j denotes the n-th partial sum. Its variance is denoted by σ 2 n . Let us consider the partial sum process (1.1) S pl n (t) :=

[nt] j=1

X j + (nt -[nt])X [nt]+1 , n 1, t ∈ [0, 1].
We are interested in the asymptotic behavior of σ -1 n S pl n (•) viewed as a random function in some function spaces. Notation 1.1. If T : Ω → Ω is a bi-measurable measure preserving map, we define for f : Ω → R and a positive integer n the nth partial sum S n (f ) := n j=1 f • T j and σ 2 n (f ) := E[S 2 n (f )] -(E[S n (f )]) 2 denotes its variance. We shall also consider S pl n (f ) defined in a similar way as in (1.1), that is,

(1.2) S pl n (f, t) := S [nt] (f ) + (nt -[nt])f • T [nt]+1 ,
and W n (f, t) := n -1/2 S pl n (f, t).

In all the paper, the involved sequences of random variable are assumed to be strictly stationary.

When (X j ) j 0 is an independent identically distributed sequence, Donsker showed (cf. [START_REF] Donsker | An invariance principle for certain probability limit theorems[END_REF]) that (n -1/2 (E(X 2 1 )) -1/2 S pl n ) n 1 converges in distribution in the space of continuous functions on the unit interval to a standard Brownian motion W . An intensive research has then been performed to extend this result to stationary weakly dependent sequences. We refer the reader to [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF] for the main theorems in this area.

In this paper, we rather focus on the convergence in distribution of the partial sum in other function spaces.

1.2. Hölder spaces. It is well known that standard Brownian motion's paths are almost surely Hölder regular of exponent α for each α ∈ (0, 1/2), hence it is natural to consider the random function defined in (1.2) as an element of H α [0, 1] and try to establish its weak convergence to a standard Brownian motion in this function space.

Before stating the results in this direction, let us define for α ∈ (0, 1) the Hölder space H α [0, 1] of functions x : [0, 1] → R such that sup s =t |x(s) -x(t)| / |s -t| α is finite. The analogue of the continuity modulus in C[0, 1] is w α , defined by

w α (x, δ) = sup 0<|t-s|<δ |x(t) -x(s)| |t -s| α .
We then define

H 0 α [0, 1] by H 0 α [0, 1] := {x ∈ H α [0, 1], lim δ→0 w α (x, δ) = 0}.
We shall essentially work with the space H 0 α [0, 1] which, endowed with

• α : x → w α (x, 1) + |x(0)|, is a separable Banach space (while H α [0, 1] is not). Since the canonical embedding ι : H 0 α [0, 1] → H α [0, 1] is continuous, each convergence in distribution in H 0 α [0, 1] also takes place in H α [0, 1].
In order to prove such a convergence, we need a tightness criterion. Combining Theorem 14 in [START_REF] Ch | Tightness in Schauder decomposable Banach spaces[END_REF] in the particular case of the partial sum process (1.2) with Lemma 3.3 in [START_REF] Mikosch | The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution[END_REF], the condition (1.3)

∀ε > 0, lim δ→0 lim sup n→∞ 1 δ log[nδ] j=1 2 j µ max 1 k [nδ]2 -j |S k (f )| > σ n n α ε([nδ]2 -j ) α = 0
(where log denotes the binary logarithm) is sufficient for tightness of the sequence

(σ -1 n (f )S pl n (f )) n 1 in H 0 α [0, 1].
In the particular case of linear variance (that is, σ 2 n ∼ cn as n → ∞ for some constant c), we will normalize by √ n. Using the change of indexes k = log[nδ]-j (so that 2 -j = 2 k /[nδ]), this leads to the following tightness criterion for

(W n (f )) n 1 in H 0 α [0, 1]: (1.4) ∀ε > 0, lim δ→0 lim sup n→∞ n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| > ε2 kα n 1/p = 0,
where α = 1/2 -1/p. As mentioned before, the random function defined in (1.1) can be viewed as an element of H α [0, 1], α ∈ (0, 1/2) and we can try to establish the weak convergence of the sequence (σ -1 n S pl n (f )) n 1 to a standard Brownian motion in this function space. To the best of our knowledge, it seems that the study of this kind of convergence was not as intensive as in the space of continuous functions or the Skorohod space. The first result in this direction was established by Lamperti in [START_REF] Lamperti | On convergence of stochastic processes[END_REF]: if (X j ) j 0 is an i.i.d. sequence with E[X 0 ] = 0, E[X 2 0 ] = 1 and E |X 0 | p is finite, then the sequence (n -1/2 S pl n ) n 1 converges to a standard Brownian motion in H 0 γ [0, 1] for each γ < 1/2 -1/p. Later, Račkauskas and Suquet improved this result (cf. [START_REF] Račkauskas | Necessary and sufficient condition for the Lamperti invariance principle[END_REF]), showing that for an i.i.d. zero mean sequence, a necessary and sufficient condition to obtain the invariance principle in H 0 1/2-1/p [0, 1] is lim t→∞ t p µ {|X 0 | > t} = 0 (in [START_REF] Račkauskas | Necessary and sufficient condition for the functional central limit theorem in Hölder spaces[END_REF] they considered the case of more general Hölder spaces, where the role of t → t α is played by t → t α L(t) with some conditions on L).

Thus, establishing the weak convergence of the partial sum process in Hölder spaces requires, even in the independent case, finite moment of order greater than 2 and the moment condition depends on the exponent of the considered Hölder space. It is a natural question to ask about generalizations of the result by Račkauskas and Suquet for dependent sequences. In this paper, we focus on strictly stationary sequences satisfying some mixing conditions (see next section).

1.3. Mixing conditions. We present the mixing conditions involved in the paper.

Let A and B be two sub-σ-algebras of F, where (Ω, F, µ) is a probability space. We define the α-mixing coefficients as introduced by Rosenblatt in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]:

α(A, B) := sup {|µ(A ∩ B) -µ(A)µ(B)| , A ∈ A, B ∈ B} .
The ρ-mixing coefficients were introduced by Hirschfeld [START_REF] Hirschfeld | A connection between correlation and contingency[END_REF] and are defined by

ρ(A, B) := sup |Corr(f, g)| , f ∈ L 2 (A), g ∈ L 2 (B), f = 0, g = 0 , where Corr(f, g) := [E(f g) -E(f )E(g)] [ f -E(f ) L 2 g -E(g) L 2 ] -1 .
The coefficients are related by the inequalities

(1.5) 4α(A, B) ρ(A, B).
For a strictly stationary sequence (X k ) k∈Z and n 0 we define α

X (n) = α(n) = α(F 0 -∞ , F ∞ n ) where F v u is the σ-algebra generated by X k with u k v (if u = -∞ or v = ∞,
the corresponding inequality is strict). In the same way we define coefficients ρ X (n).

When there will be no ambiguity, we shall simply write α(n) and ρ(n). We say that the sequence (X k ) k∈Z is α-mixing if lim n→+∞ α(n) = 0, and similarily we define ρ-mixing sequences.

α-mixing sequences were considered in the mentioned references, while ρ-mixing sequences first appeared in [START_REF] Kolmogorov | On a strong mixing condition for stationary Gaussian processes[END_REF]. Inequality (1.5) translated in terms of mixing coefficients of a sequence states that for each positive integer n,

4α(n) ρ(n).
In particular, a ρ-mixing sequence is α-mixing.

1.4. τ -dependence coefficient. In order to define the τ -dependence coefficients of a stationary sequence, we first need a result about conditional probability (see Theorem 33.3 of [START_REF] Billingsley | Probability and measure[END_REF]). Lemma 1.2. Let (Ω, F, µ) be a probability space, M a sub-σ-algebra of F and X a real-valued random variable with distribution µ X . There exists a function

µ X|M from B(R) × Ω to [0, 1] such that (1) For any ω ∈ Ω, µ X|M (•, ω) is a probability measure on B(R). (2) For any A ∈ B(R), µ X|M (A, •) is a version of E[1 {X∈A} | M].
We now introduce the τ -dependence coefficients as in [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF]. We denote by Λ 1 (R) the collection of 1-Lipschitz functions from R to R and define the quantity

W (µ X|M ) := sup f (x)µ X|M (dx) -f (x)µ X (dx) , f ∈ Λ 1 (R) .
For an integrable random variable X and a sub-σ-algebra M, the coefficient τ is defined by

(1.6) τ (M, X) = W (µ X|M ) 1 .
This definition can be extended to random variables with values in finite dimensional vector spaces. If d is a positive integer, we endow R d with the norm x -y := n j=1 |x j -y j | and define Λ 1 (R d ) as the set of 1-Lipschitz functions from R d to R. Definition 1.3. Let (Ω, F, µ) be a probability space, M a sub-σ-algebra of F and X an R d -valued random variable. We define

(1.7) τ (M, X) := sup {τ (M, f (X)), f ∈ Λ 1 (E)} .
We can now introduce the τ -mixing coefficient for a sequence of real-valued random variables.

Definition 1.4. Let (X i ) i 1 be a sequence of random variables and (M i ) i 1 a sequence of sub-σ-algebras of F. For any positive integer k, define

(1.8) τ (i) := max p,l 1 1 l sup {τ (M p , (X j 1 , . . . , X j l )), p + i j 1 < • • • < j l } .
In the sequel, we shall focus on the case

M i := σ(X k , k i).
Notation 1.5. Let X : Ω → R be a random variable. We denote Q X (•) the inverse function defined by Q X (u) := inf {t, µ {|X| > t} u}. If (f • T j ) j 0 is a strictly stationary sequence and (α(n)) n 1 is its sequence of α-mixing coefficients, we denote by α -1 (u) the number of indices n for which α(n) u. More generally, if (δ i ) i 0 is a non-increasing sequence of non-negative numbers, we define

δ -1 (u) := inf {k ∈ N, δ k u}.
We can compare the τ -dependence coefficient with the α-mixing coefficients. The following is a simplified version of Lemma 7 of [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF]. Lemma 1.6. Let (f •T j ) j 0 be a strictly stationary sequence. Then for each integer i, the following inequality holds:

(1.9) τ (i) 2 2α(i) 0 Q f (u)du.
In [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF], "Application 1: causal linear processes" (p. 871), Dedecker and Prieur provide an example of a process whose τ -dependence coefficients converge to 0 as fast as 2 -i but α i = 1/4 for each positive integer i.

Main results

Mixing sequences.

In this subsection, we give sufficient mixing conditions which guarantee the convergence of the sequence (W n (f )) n 1 to a Brownian motion in the space H 0 1/2-1/p [0, 1], p > 2. We refer the reader to Notations 1.5 and A.2.

Theorem 2.1. Let p > 2 and let (f • T j ) j 0 be a strictly stationary centered sequence such that (2.1)

lim t→∞ t p-1 1 0 Q f (u)1 (τ /2) -1 • G -1 f (u)Q f (u) > t du = 0. Then (2.2) W n (f ) → σ(f )W in distribution in H 0 1/2-1/p [0, 1],
where

σ 2 (f ) = Var(f ) + 2 ∞ k=1 Cov(f, f • T k ).
Using the comparison between α and τ , we can deduce a condition in the spirit of that of Doukhan, Massart and Rio (see [START_REF] Doukhan | Invariance principles for absolutely regular empirical processes[END_REF]). One can also derive it from the tightness criterion (1.4) and Theorem 6.2 of [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF].

Corollary 2.2. Let p > 2 and let (f • T j ) j 0 be a strictly stationary centered sequence such that

(2.3) lim t→∞ t p-1 1 0 Q f (u)1 α -1 (u)Q f (u) > t du = 0. Then (2.4) W n (f ) → σ(f )W in distribution in H 0 1/2-1/p [0, 1], where σ 2 (f ) = lim n→∞ σ 2 n (f )/n. Remark 2.3. Assume that the sequence (f •T j ) j 0 is independent and that t p µ {|f | > t} → 0. Then the condition of Theorem 2.1 is satisfied. Indeed, since Q f (U ) is distributed as |f | if U is uniformly distributed on [0, 1], both conditions (2.2) and (2.4) read (2.5) lim t→∞ t p-1 E [|f | 1 {|f | > t}] = 0.
As

t p-1 E [|f | 1 {|f | > t}] = t p-1 ∞ 0 µ {|f | > max {u, t}} du = t p µ {|f | > t} + t p-1 ∞ t µ {|f | > u} du t p µ {|f | > t} + sup s t s p µ {|f | > s} /(p -1), condition (2.5
) is satisfied hence we can derive the result by Račkauskas and Suquet in the i.i.d. case from Theorem 2.1.This contrasts with Theorem 17 of [START_REF] Hamadouche | Invariance principles in Hölder spaces[END_REF], from which we can only deduce the result by Lamperti (cf. [START_REF] Lamperti | On convergence of stochastic processes[END_REF]) in the i.i.d. case.

Remark 2.4. Assume that Q f (u) Cu -1/a for some a > p (this is the case if f admits a finite weak moment of order a). If α(k) = o(k -a(p-1)/(a-p) ) or τ (k) = o(k -(a-1)(p-1)/(a-p) ), then condition (2.1) holds. If f is bounded, these sufficient conditions can be weakened respectively to α(k) = o(k -(p-1) ) and τ (k) = o(k -(p-1) ).

We conclude this subsection by a result on ρ-mixing sequences.

Theorem 2.5. Let p > 2 and let (f • T j ) j 0 be a strictly stationary centered sequence such that

t p µ {|f | > t} → 0 as t → +∞ and ∞ i=0 ρ(2 i ) < ∞. Then (2.6) W n (f ) → σ(f )W in distribution in H 0 1/2-1/p [0, 1], where σ 2 (f ) = lim n→∞ σ 2 n (f )/n.

A counter-example.

In this subsection, we show that boundedness of the sequence of pth moments of the normalized partial sums is not enough to guarantee tightness in H 1/2-1/p [0, 1]. Theorem 2.6. Let p > 2. There exists a strictly stationary sequence (f • T j ) j 0 such that

• the finite dimensional distributions of (W n (f )) n 1 converge to those of a standard Brownian motion, • the sequence (E |S n (f )| p /n p/2 ) n 1 is bounded and

• the process (W n (f )) n 1 is not tight in H 1/2-1/p [0, 1].
Remark 2.7. The constructed process has no reason to be α-mixing. However, this proves that in general, establishing tightness in H 0 1/2-1/p [0, 1] of (W n (f )) n 1 cannot be done by proving boundedness in L p of the sequence (W n (f )) n 1 . Thus other methods need to be used.

Let us recall that a sequence (c n ) n 1 is slowly varying if there exists a continuous function h : R * + → R * + such that c n = h(n) for each positive integer n and for each positive x, lim t→∞ h(tx)/h(t) = 1.

Remark 2.8. If p > 2 and (f • T j ) j 0 is a strictly stationary centered sequence such that the finite dimensional distributions of (σ -1 n S pl n (f )) n 1 converge to those of a standard Brownian motion, the sequence (σ 2 n (f )/n) n 1 is slowly varying, and the sequence

(E |S n (f )| p /σ p n ) n 1 is bounded, then for each γ < 1/2 -1/p the se- quence (σ -1 n S pl n (f )) n 1 converges in distribution in H 0 α [0, 1]
to a standard Brownian motion. This can be seen using tightness criterion (1.3), Markov's inequality and boundedness in L p of σ -1 n max 1 j n |S j (f )| n 1 (by Serfling arguments, see [START_REF] Serfling | Moment inequalities for the maximum cumulative sum[END_REF]).

Proofs

Proof of Theorem 2.1. Notice that (2.1) implies finiteness of

1 0 Q 2 f (u)(τ /2) -1 • G -1
f (u)du, hence condition (5.5) in [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF]. This implies the convergence of σ 2 n (f )/n n 1 to σ(f ). Since θ(k) is smaller than τ (k), Corollary 1 in [START_REF] Dedecker | A new covariance inequality and applications[END_REF] shows that the function f satisfies the projective criterion by Dedecker and Rio (see [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]), from which the convergence of the finite dimensional distributions follows. It remains to check tightness of (W n (f )) n 1 in H 0 1/2-1/p [0, 1]. We shall check that (1.4) is satisfied. To this aim, we apply Theorem A.3 for each k ∈ {1, . . . , log[nδ]} with some r > p, N := 2 k and λ := ε2 kα n 1/p . This gives

n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| > 5ε2 kα n 1/p n log[nδ] k=1 2 -k 4r r/2 s 2 k (f ) r ε2 kα n 1/p -r + + n log[nδ] k=1 (ε2 kα n 1/p ) -1 1 0 Q(u)1 R(u) ε2 kα n 1/p /r du.
By (2.1), the quantity C :=

f 1 0 (τ /2) -1 (u)Q f • G f (u)du is finite. In view of (A.3), we thus have (3.1) n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| > 5ε2 kα n 1/p 4•(4r) r/2 C r/2 n log[nδ] k=1 2 -k 2 kr/2 ε2 kα n 1/p -r + + n 1-1/p log[nδ] k=1 (ε2 kα ) -1 1 0 Q(u)1 R(u) ε2 kα n 1/p /r du =: (I) + (II).
A simple computation shows that

(3.2) (I) K(r, p, ε)δ r/p-1 ,
and for the second term, we have the upper bound

(3.3) (II) K(α, ε)n (p-1)/p 1 0 Q(u)1 (τ /2) -1 • G -1 f (u)Q(u) εn 1/p /r du.
Since r > p, the condition (1.4) is satisfied in view of (3.1), (3.2), (3.3) and (2.1).

Proof of Corollary 2.2. It suffices to check that condition (2.3) implies (2.1). Notice that by (1.9), we have for a fixed v,

(3.4) inf {i | τ (i)/2 v} inf i | G -1 (2(α(i))) v = inf {i | α(i) G(v)/2} hence (τ /2) -1 (v) α -1 (G(v)/2). Taking v = G -1 (u) for a fixed u, we get (3.5) (τ /2) -1 • G -1 (u) α -1 (u/2).
Since the function u → α -1 (u) is non-increasing, the inclusion

(τ /2) -1 • G -1 (u)Q f (u) > t ⊂ α -1 (u/2)Q f (u/2) > t .
takes place. As a consequence, we obtain

(3.6) t p-1 1 0 Q f (u)1 (τ /2) -1 • G -1 f (u)Q f (u) > t du t p-1 1 0 Q f (u/2)1 α -1 (u/2)Q f (u/2) > t du,
which concludes the proof of Corollary 2.2.

Proof of Theorem 2.5. Theorem 4.1. of [START_REF] Peligrad | Invariance principles for mixing sequences of random variables[END_REF] guarantees the existence of the limit of the sequence (σ 2 n /n) n 1 and [START_REF] Qi | A remark on the invariance principle for ρ-mixing sequences of random variables[END_REF] gives the convergence of the finite dimensional distributions. Therefore, the proof will be finished if we check the convergence (1.4). We apply for Theorem A.4 for each 1 k log[nδ] with a q > p, N := 2 k x := ε2 kα n 1/p and A := 2 kα n 1/p η, where η is fixed (notice that since

(3.7) E [|f | 1 {|f | A}] = Aµ {|f | A} + +∞ A µ {|f | t} dt C(p, f )A 1-p ,
we have for n n(η, p, ε, f ) and 1 k log[nδ],

(3.8) 2 • 2 k • E [|f | 1 {|f | A}] 2C(p, f )(η2 kα n 1/p ) 1-p ε2 kα n 1/p = x, hence (A.5) is satisfied). This yields (3.9) n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| ε2 kα n 1/p n log[nδ] k=1 µ |f | 2 kα n 1/p + + K exp K ∞ i=0 ρ(2 i ) n log[nδ] k=1 2 -k 2 kq/2 (ε2 kα n 1/p ) -q f q 2 + + Kn log[nδ] k=1 exp K k i=0 ρ 2/q (2 i ) (ε2 kα n 1/p ) -q f 1 |f | η2 kα n 1/p q q .
Since for some constant C depending only on f and p, the bound

(3.10) f 1 |f | η2 kα n 1/p q q C(η2 kα n 1/p ) q-p
is valid, we derive from (3.9) the inequality

n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| ε2 kα n 1/p ε -p η -p sup t n 1/p t p µ {|f | t} ∞ k=1 2 -kpα + + K exp K ∞ i=0 ρ(2 i ) δ q/p-1 • 1 2 q/p -1 ε -q f q 2 + + KCε -q η q-p log[nδ] k=1 exp K k i=0 ρ 2/q (2 i ) 2 -kpα .
Since lim t→∞ t p µ {|f | > t} = 0, we obtain for each δ and η lim sup

n→∞ n log[nδ] k=1 2 -k µ max 1 i 2 k |S i (f )| > ε2 kα n 1/p K exp K ∞ i=0 ρ(2 i ) (2δ) q/p-1 ε -q f q 2 + + KCε -q η q-p ∞ k=1 exp K k i=0 ρ 2/q (2 i ) 2 -kpα ,
from which (1.4) follows (the convergence of the last series is ensured by the ratio test and the convergence to 0 of ρ 2/q (2 k )).

Proof of Theorem 2.6. We assume that (Ω, F, µ, T ) is a non-atomic invertible measure preserving system. We shall first construct a function g such that:

(1) the sequence (E |S n (g -g • T )| p /n p/2 ) n 1 is bounded and (2) the process (W n (g -g • T )) n 1 is not tight in H 0 1/2-1/p [0, 1]. We then consider f := m+g-g•T , where m is such that (m•T j ) j 0 is a martingale difference sequence with m ∈ L p and m = 0. This will guarantee the convergence of the finite dimensional distributions of (W n (f )) n 1 to those of a scalar multiple of a standard Brownian motion, and Burkholder's inequality ensures boundedness of the sequence (E |S n (f )| p /n p/2 ) n 1 . We use a construction similar to that given in [START_REF] Volný | On the invariance principle and the law of iterated logarithm for stationary processes[END_REF]. Let us consider two increasing sequences of integer (K l ) l 1 and (N l ) l 1 satisfying for each l 2:

lim l→+∞ N l l ′ >l K l ′ /N l ′ = 0; (3.11) 4N -1/p l • l • N l-1 < 1; (3.12) l i=1 K 1/2 i K 1/2 l+1 ; (3.13) +∞ l=1 K l K 1/2 l+1 < ∞. (3.14)
We also assume that 4K l N l for each l.

Let us fix an integer l. Using Rokhlin's lemma, we can find a set A l ∈ F such that the set T i A l , 0 i N l -1 are pairwise disjoint and µ

N l -1 i=0 T i A l 1/2.
By (3.21), we have

g -g • T n p +∞ l=1 g l -g l • T n p C p   i(n)-1 l=1 K 1/2 l + K 1/2 i(n) + nK -1/2 i(n)+1 + +∞ l=i(n)+2 nK -1/2 l   3C p √ n + C p √ n +∞ l=i(n)+1 K l K 1/2 l+1 C p 3 + +∞ l=1 K l K 1/2 l+1 √ n,
where we used (3.13) in the second inequality and condition (3.14) ensures finiteness of the right hand side in this inequality. This concludes the proof of Theorem 2.6.
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A. Appendix

For the reader's convenience, we state deviation inequalities for τ -dependent and ρ-mixing sequences. Theorem A.3. Let (f • T j ) j 0 be a strictly stationary sequence of centered and square integrable random variables. Let R := ((τ /2) -1 • G -1 f )Q f and S = R -1 . For any λ > 0, any integer N 1 and any r 1, (A.2) µ max

1 i N |S i (f )| 5λ 4 1 + λ 2 rs 2 N (f ) -r/2 + 4N λ S(λ/r) 0 Q f (u)du, and 
(A.3) s 2 N (f ) 4N f 1 0 (τ /2) -1 (u)Q f • G f (u)du.
For ρ-mixing sequences, Shao (Theorem 1.2, [START_REF]Maximal inequalities for partial sums of ρ-mixing sequences[END_REF]) showed the following inequality.

1 The final publication is available at Springer via http://dx.doi.org/10.1007/s10959-015-0633-9

Theorem A.4. Let (f • T j ) j 0 be a strictly stationary sequence of centered random variables and q 2. Then there exists a constant K depending only on q and the sequence (ρ(n)) n 1 such that for each integer N and x > 0, (A.4) µ max

1 i N |S i (f )| x N µ {|f | A} + Kx -q   N q/2 exp   K [log N ] i=0 ρ(2 i )   f q 2 + N exp   K [log N ] i=0 ρ 2/q (2 i )   f 1 {|f | A} q q   .
where A satisfies

(A.5) 2N • E [|f | 1 {|f | A}] x.

Notation A. 1 .

 1 If (f •T j ) j 0 is a (strictly stationary) sequence of random variables,• T i , f • T j ) . Notation A.2. Let Y be an integrable random variable. We denote by G Y the generalized inverse of x → x 0 Q Y (u)du.The following Fuk-Nagaev inequality was established in Theorem 2 of[START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF].

We define

Assume that ω ∈ A l and N l -

Applying U -k on both sides of the previous inequality for 0 k N l -K l and taking the maximum over these k, we obtain

This implies

, the following inequality takes place:

By condition (3.12), we conclude that

By (3.16) and (3.17), we get

Combining the previous inequality with (3.15), we obtain for each integer l,

and by (3.11), the inequality

holds for l large enough. We deduce that for such integers l and each δ ∈ (0, 1),

Notice that for a fixed integer l 1, the equalities

take place. This implies that

. Let us define

and the following upper bound follows:

Treating in a similar manner the function g l -g l , we observe that the following inequality holds:

where C p depends only on p (neither on n, nor on l). For a fixed integer n, we denote by i(n) the unique integer satisfying the inequalities K i(n) n < K i(n)+1 .