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1. Problem statement

Here we consider the standard biased nonparametric regression model in which
case we observe n i.i.d. bivariate random variables (X1, Y1), . . . , (Xn, Yn) with
the common density

f(x, y) =
w(x, y)g(x, y)

µ
, (x, y) ∈ R

2,

where w is a known positive function, g is the density of an unobserved bivariate
random variable (U, V ) and µ = E(w(U, V )) is an unknown real number. We
suppose that the support of U is a finite interval, say [0, 1] for the sake of
simplicity. In this setting, the unknown regression function of interest is defined
by

ϕ(x) = E(V |U = x), x ∈ [0, 1].

1
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The general aim is to estimate some functionals of ϕ from (X1, Y1), . . . , (Xn, Yn).
The direct estimation of ϕ is a well known problem. It has been considered

via different kinds of estimation methods. The most popular of them are the
kernel methods. Important results on their performances can be found in, e.g.,
Ahmad (1995), Sköld (1999), Cristóbal and Alcalá (2000), Wu (2000), Cristóbal
and Alcalá (2001), Cristóbal et al. (2004), Ojeda et al. (2007), Ojeda-Cabrera
and Van Keilegom (2009) and Chaubey et al. (2012). Recently, wavelet methods
based on a multiresolution analysis has been developed for the estimation of ϕ.
Thanks to its powerful local adaptivity against discontinuities, they enjoy nice
asymptotic properties for a wide class of unknown regression functions ϕ. See,
e.g., Chesneau and Shirazi (2014), Chaubey et al. (2013) and Chaubey and
Shirazi (2014). Another recent estimation study via wavelet methods related to
the estimation of ϕ can be found in Chesneau et al. (2014).

This study offers three new theoretical contributions. The first one is the es-
timation of the mth derivative ϕ(m) (assuming that it exists), not just ϕ = ϕ(0).
This is of interest in the detection of structures in ϕ as jump detection and
discontinuities, constructions of confidence intervals, and many other statistical
aspects. See, for instance, Hall (2010) and the references therein. The second
contribution is the construction of an efficient linear wavelet estimator in the
case when the density of U is unknown. The consideration of this case is new
in the context of wavelet estimation. The third contribution concerns the eval-
uation of the performances of our estimators: we adopt the L

p-risk with p ≥ 1,
more general to the L

2-risk (or Mean Integrated Squared Error). To the best
of our knowledge, it has never been investigated in this setting, despite its po-
tential interest to exhibit new phenomena in terms of rates of convergence. In
this study, they are determined assuming that ϕ(m) belongs to the Besov balls;
a wide class of homogeneous and inhomogeneous functions.

The organization of this paper is as follows. The next section describes the
considered wavelet basis, Besov balls and basics on linear wavelet estimation.
The problem of estimating the derivatives of a regression function from biased
data is considered in Section 3, distinguishing the estimation of ϕ when the
density of U is known or not. Here we have constructed efficient linear wavelet
estimators and their performances are demonstrated in terms of rates of con-
vergence under the L

p risk over Besov balls, with p ≥ 1. The proofs are carried
out in Section 4.

2. Preliminaries

This section is devoted to the presentation of the main notions of the study, i.e.,
the wavelet basis, the Besov balls and the linear wavelet estimation in general.
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2.1. Wavelet basis

For any p ≥ 1, we defined the set Lp([0, 1]) by

L
p([0, 1]) =







t : [0, 1] → R; ||t||p =

(

∫

[0,1]

|t(x)|pdx

)1/p

<∞







.

Among the existing constructions of wavelet basis on the unit interval, we con-
sider the one introduced by Cohen et al. (1993). It is briefly described below.

Let φ and ψ be the initial wavelet functions of the Daubechies wavelets family
db2N with N ≥ 5m. These functions are interesting as they are compactly
supported and belong to the class Cm. For any j ≥ 0, we set Λj = {0, . . . , 2j−1}
and, for k ∈ Λj ,

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With appropriate treatment at the boundaries, there exists an integer τ such
that, for any integer ℓ ≥ τ , the family

S = {φℓ,k, k ∈ Λℓ; ψj,k; j ∈ N− {0, . . . , ℓ− 1}, k ∈ Λj}

forms an orthonormal basis of L2([0, 1]).
Therefore, for any integer ℓ ≥ τ and t ∈ L

2([0, 1]), we have the following
wavelet expansion:

t(x) =
∑

k∈Λℓ

cℓ,kφℓ,k(x) +

∞
∑

j=ℓ

∑

k∈Λj

dj,kψj,k(x), x ∈ [0, 1], (2.1)

where cj,k and dj,k are defined by

cj,k =

∫

[0,1]

t(x)φj,k(x)dx, dj,k =

∫

[0,1]

t(x)ψj,k(x)dx. (2.2)

These are approximation and detail wavelet coefficients of t respectively; see,
e.g., Cohen et al. (1993) and Mallat (2009).

Let us now introduce a L
p-norm result related to the approximation term.

Lemma 2.1. Let p ≥ 1. For any sequence of real numbers (θj,k)j,k, there exists
a constant C > 0 such that, for any j ≥ τ ,

∫

[0,1]





∑

k∈Λj

θj,kφj,k(x)





p

dx ≤ C2j(p/2−1)
∑

k∈Λj

|θj,k|
p.

The proof can be found in, e.g., (Härdle et al., 1998, Proposition 8.3).
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2.2. Besov balls

For the sake of simplicity, we consider the following wavelet sequential definition
of the Besov balls. We say that t ∈ Bs

q,r(M) with s ∈ (0, N), q ≥ 1, r ≥ 1 and
M > 0 if there exists a constant C > 0 (depending on M) such that cj,k and
dj,k (2.2) satisfy

2τ(1/2−1/q)

(

∑

k∈Λτ

|cτ,k|
q

)1/q

+







∞
∑

j=τ






2j(s+1/2−1/q)





∑

k∈Λj

|dj,k|
q





1/q






r





1/r

≤ C,

with the usual modifications if q = ∞ or r = ∞.
In wavelet estimation, the Besov balls are particularly interesting because

they contain a wide variety of homogeneous and inhomogeneous functions. For
particular choices of s, p and r, Bs

q,r(M) correspond to standard balls of function
spaces, as the Hölder and Sobolev balls (see, e.g., Meyer (1992) and Härdle et
al. (1998)).

The following lemma presents a standard inclusion for Besov balls which will
be useful in the proofs of our main results.

Lemma 2.2. For any p ≥ 1, q ≥ 1, M > 0 and s ∈ (max(1/q− 1/p, 0), N), we
have

Bs
q,r(M) ⊆ Bs∗

p,r(M),

with s∗ = s+min(1/p− 1/q, 0).

See (Härdle et al., 1998, Corollary 9.2).

2.3. Linear wavelet estimation

The idea of the linear wavelet estimation is to estimate the approximation
wavelet coefficients cj,k of an unknown function t and project these estimators
on S at a suitable level j0. They are of the form:

t̂(x) =
∑

k∈Λj0

ĉj0,kφj0,k(x), (2.3)

where ĉj,k denotes an estimator for cj,k constructed from n observations.
Such estimators generally enjoy good theoretical properties under the Lp-risk;

see, for instance, Härdle et al. (1998), Chapter 10 and Chaubey et al. (2011).
In this study, this L

p-risk is considered: we aim to construct linear wavelet
estimators ϕ̂(m) of the form (2.3) such that, for any ϕ(m) ∈ Bs

q,r(M),

lim
n→∞

E

(

‖ϕ̂(m) − ϕ(m)‖pp

)

= 0,

as fast as possible.
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3. Results

This section is devoted to the linear wavelet estimation of the three following
related problems:

1. the estimation of ϕ(m) when h is known,
2. the estimation of h and
3. the estimation of ϕ(m) when h is unknown,

where h denotes the marginal probability density function of the random vari-
able U.

3.1. Assumptions

The following assumptions will be used in our main results:

• We have

ϕ(u)(0) = ϕ(u)(1) = 0, u ∈ {0, . . . ,m}. (3.1)

• There exists a constant C1 > 0 such that

sup
x∈[0,1]

|ϕ(m)(x)| ≤ C1. (3.2)

• There exist two constants C2 > 0 and c2 > 0 such that

inf
(x,y)∈[0,1]×R

w(x, y) ≥ c2, sup
(x,y)∈[0,1]×R

w(x, y) ≤ C2. (3.3)

• There exist two constants c3 > 0 and C3 > 0 such that

c3 ≤ inf
x∈[0,1]

h(x), sup
x∈[0,1]

h(x) ≤ C3. (3.4)

• There exists a constant C4 > 0 such that

sup
x∈[0,1]

∫

R

y2pg(x, y)dy ≤ C4. (3.5)

Despite their restrictive natures, these assumptions are satisfied by wide class
of functions ϕ(m), h(x), w(x, y) and g(x, y).

3.2. Estimation of ϕ(m) when h is known

When h is known, we consider the linear wavelet estimator ϕ̂
(m)
1 of ϕ(m) defined

by

ϕ̂
(m)
1 (x) =

∑

k∈Λj0

ĉ
(m)
j0,k

φj0,k(x), x ∈ [0, 1], (3.6)
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where

ĉ
(m)
j,k = (−1)m

µ̂

n

n
∑

i=1

Yi
w(Xi, Yi)h(Xi)

(φj,k)
(m)(Xi), (3.7)

(φj,k)
(m)(x) = 2j/22mjφ(m)(2jx− k) ,

µ̂ =

(

1

n

∑

i=1

1

w(Xi, Yi)

)−1

(3.8)

and j0 is an integer chosen a posteriori. The form of the estimator ĉ
(m)
j,k is

motivated by writing c
(m)
j,k =

∫

[0,1]
ϕ(m)(x)φj,k(x)dx in the present context as an

appropriate expectation with respect to density f .

The estimator ĉ
(m)
j,k satisfies the moment inequality described below.

Proposition 3.1. Let p ≥ 1. Suppose that the assumptions in Subsection

3.1 hold. Let ĉ
(m)
j,k be given by (3.7) with j such that 2j ≤ n and c

(m)
j,k =

∫

[0,1]
ϕ(m)(x)φj,k(x)dx. Then there exists a constant C > 0 such that

E

(

(ĉ
(m)
j,k − c

(m)
j,k )2p

)

≤ C

(

22jm

n

)p

.

Theorem 3.1 below investigates the rate of convergence attained by ϕ̂
(m)
1

under the L
p-risk assuming that ϕ(m) ∈ Bs

q,r(M).

Theorem 3.1. Let p ≥ 1. Suppose that the assumptions in Subsection 3.1 hold
and that ϕ(m) ∈ Bs

q,r(M) with M > 0, q ≥ 1, r ≥ 1 and s ∈ (max(1/q −

1/p, 0), N). Let ϕ̂
(m)
1 be defined by (3.6) with j0 such that

2j0 = [n1/(2s∗+2m+1)], (3.9)

s∗ = s+min(1/p− 1/q, 0) (where [a] denotes the integer part of a).
Then there exists a constant C > 0 such that

E

(

‖ϕ̂
(m)
1 − ϕ(m)‖pp

)

≤ Cn−s∗p/(2s∗+2m+1).

The integer j0 is chosen to minimize the Lp-risk of ϕ̂
(m)
1 . Note that, for m = 0

and p = 2, Theorem 3.1 becomes (Chesneau and Shirazi, 2014, Theorem 4.1,
p = 2).

Remark 3.1. It follows from Theorem 3.1, the Markov inequality and the Borel-
Cantelli lemma that, for p > 2 + (2m+ 1)/s∗, we have

lim
n→∞

‖ϕ̂
(m)
1 − ϕ(m)‖pp = 0 almost surely.

When h is unknown, the estimator ϕ̂
(m)
1 (3.6) is not appropriate since it de-

pends on h in its construction. To solve this problem, a first step is to investigate
the estimation of h from (X1, Y1), . . . (Xn, Yn). This is done in the next section.
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3.3. Estimation of h

This problem of estimating h from (X1, Y1), . . . (Xn, Yn) is close to the standard
weighted density estimation problem. See, e.g., Ahmad (1995) for kernel meth-
ods and Ramirez and Vidakovic (2010) for wavelet methods. However, to the
best of our knowledge, it has never been considered in our bivariate context.

We define the linear wavelet estimator ĥ of h by

ĥ(x) =
∑

k∈Λj1

ĉj1,kφj1,k(x), x ∈ [0, 1], (3.10)

where

ĉj,k =
µ̂

n

n
∑

i=1

1

w(Xi, Yi)
φj,k(Xi), (3.11)

µ̂ is given by (3.8) and j1 is an integer chosen a posteriori.

Theorem 3.2 below investigates the rate of convergence attained by ĥ under
the L

p risk assuming that h ∈ Bs
q,r(M).

Theorem 3.2. Let p ≥ 1. Suppose that the assumptions (3.3) and (3.4) hold
and that h ∈ Bs

q,r(M) with M > 0, q ≥ 1, r ≥ 1 and s ∈ (max(1/q−1/p, 0), N).

Let ĥ be defined by (3.10) with j0 such that

2j1 = [n1/(2s∗+1)], (3.12)

s∗ = s+min(1/p− 1/q, 0).
Then there exists a constant C > 0 such that

E

(

‖ĥ− h‖pp

)

≤ Cn−s∗p/(2s∗+1).

The rate of convergence n−s∗p/(2s∗+1) corresponds to the one obtained for
standard density estimation under the L

p-risk. See, for instance, Donoho et al.
(1996) and (Härdle et al., 1998, Chapter 10).

We are now able to investigate the estimation of ϕ(m) when h is unknown

via a plug-in approach using ϕ̂
(m)
1 (3.6) and ĥ (3.10).

3.4. Estimation of ϕ(m) when h is unknown

In the case where h is unknown, we propose the linear wavelet estimator ϕ̂
(m)
2

of ϕ(m) defined by

ϕ̂
(m)
2 (x) =

∑

k∈Λj2

c̃
(m)
j2,k

φj2,k(x), x ∈ [0, 1], (3.13)

where

c̃
(m)
j,k = (−1)m

µ̂

[n/2]

[n/2]
∑

i=1

Yi

w(Xi, Yi)ĥ(Xi)
1{|ĥ(Xi)|≥c3/2}(φj,k)

(m)(Xi), (3.14)
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j2 is an integer chosen a posteriori, µ̂ is given by (3.8), 1 denotes the indicator

function, c3 refers to (3.4), ĥ is given by (3.10) but defined with the random
variables ((X[n/2]+1, Y[n/2]+1), . . . , (Xn, Yn)) and an integer j2 chosen a posteri-
ori.

The construction of c̃
(m)
j,k follows the ”plug-in spirit” of the NES estimator

introduced by Pensky and Vidakovic (2001). It is an adaptation of the version
developed in (Chesneau, 2014, Subsection 3.3) in the present context.

Theorem 3.3 below investigates the rate of convergence attained by ϕ̂
(m)
2

under the L
p risk assuming that ϕ(m) ∈ Bs

q,r(M).

Theorem 3.3. Let p ≥ 1 and p∗ = max(p, 2). Suppose that the assumptions
in Subsection 3.1 hold, ϕ(m) ∈ Bs1

q1,r1(M1) with M1 > 0, q1 ≥ 1, r1 ≥ 1,
s ∈ (max(1/q1 − 1/p∗, 0), N), and h ∈ Bs2

q2,r2(M2) with M2 > 0, q2 ≥ 1, r2 ≥ 1

and s2 ∈ (max(1/q2−1/p∗, 0), N). Let ϕ̂
(m)
2 be defined by (3.13) and (3.14) with

j1, j2 such that

2j1 = [n1/(2so+1)], so = s2 +min(1/p∗ − 1/q2, 0), (3.15)

and

2j2 = [n2so/((2so+1)(2s∗+2m+1))], s∗ = s1 +min(1/p∗ − 1/q1, 0) (3.16)

Then there exists a constant C > 0 such that

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖pp

)

≤ Cn−2s∗sop/((2so+1)(2s∗+2m+1)).

Again, the definitions of the integers j1 and j2 are based on theoretical con-

sideration; they are chosen to minimize the Lp-risk of ϕ̂
(m)
2 . An interest of Theo-

rem 3.3 is to measure the influences of the smoothness of h in the linear wavelet
estimation of ϕ(m). For p = 2, note that the obtained rate of convergence cor-
responds to the one obtained in the unbiased case (Chesneau, 2014, Theorem
3).

Remark 3.2. Similar arguments to Remark 3.1 give, for p such that 2s∗sop/((2so+
1)(2s∗ + 2m+ 1)) > 1,

lim
n→∞

‖ϕ̂
(m)
2 − ϕ(m)‖pp = 0 almost surely.

4. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its
value may change from one term to another and may depend on φ or ψ.

Proof of Proposition 3.1 The proof is a generalization of (Chesneau et
al., 2014, Proposition 4 (ii)) to the mth derivatives and the Lp-norm. We obtain
the desired result via the Rosenthal inequality presented below (see Rosenthal
(1970)).
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Lemma 4.1 (Rosenthal’s inequality). Let n be a positive integer, γ ≥ 2 and
U1, . . . , Un be n i.i.d. random variables such that E(U1) = 0 and E(|U1|

γ) <∞.
Then there exists a constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

γ)

≤ Cmax
(

nE(|U1|
γ), nγ/2

(

E(U2
1 )
)γ/2

)

.

Observe that

ĉ
(m)
j,k − c

(m)
j,k

=
µ̂

µ

(

(−1)n
µ

n

n
∑

i=1

Yi
w(Xi, Yi)h(Xi)

(φj,k)
(m)(Xi)− c

(m)
j,k

)

+ c
(m)
j,k µ̂

(

1

µ
−

1

µ̂

)

.

Using the triangular inequality, by (3.2) and (3.3): |µ̂/µ| ≤ C2/c2, |µ̂| ≤ C2, and

|c
(m)
j,k | ≤ C1, we obtain

|ĉ
(m)
j,k − c

(m)
j,k | ≤ C

(∣

∣

∣

∣

∣

(−1)n
µ

n

n
∑

i=1

Yi
w(Xi, Yi)h(Xi)

(φj,k)
(m)(Xi)− c

(m)
j,k

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1

µ̂
−

1

µ

∣

∣

∣

∣

)

.

The inequality: (x+ y)2p ≤ 22p−1(x2p + y2p), (x, y) ∈ R
2, gives

E

(

(ĉ
(m)
j,k − c

(m)
j,k )2p

)

≤ C(Q1 +Q2), (4.1)

where

Q1 = E





(

1

n

n
∑

i=1

(

(−1)mµ
Yi

w(Xi, Yi)h(Xi)
(φj,k)

(m)(Xi)− c
(m)
j,k

)

)2p




and

Q2 = E

(

(

1

µ̂
−

1

µ

)2p
)

.

Now we investigate upper bounds for Q1 and Q2.
Upper bound for Q1. Note that

Q1 =
1

n2p
E





(

n
∑

i=1

Ui

)2p


 ,

with

Ui = (−1)mµ
Yi

w(Xi, Yi)h(Xi)
(φj,k)

(m)(Xi)− c
(m)
j,k , i ∈ {1, . . . , n}.

Since (X1, Y1), . . . , (Xn, Yn) are i.i.d., U1, . . . , Un are also i.i.d.. Let us now show
that E(U1) = 0. Using the definition of f(x, y), the equality

∫

R
yg(x, y)dy =
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ϕ(x)h(x) and m integrations by parts with (3.1), we obtain

E

(

(−1)mµ
Y1

w(X1, Y1)h(X1)
(φj,k)

(m)(X1)

)

=

∫

R

∫

[0,1]

(−1)mµ
y

w(x, y)h(x)
(φj,k)

(m)(x)f(x, y)dxdy

= (−1)m
∫

R

∫

[0,1]

µ
y

w(x, y)h(x)
(φj,k)

(m)(x)
w(x, y)g(x, y)

µ
dxdy

= (−1)m
∫

[0,1]

1

h(x)
(φj,k)

(m)(x)

(∫

R

yg(x, y)dy

)

dx

= (−1)m
∫

[0,1]

1

h(x)
(φj,k)

(m)(x)ϕ(x)h(x)dx

= (−1)m
∫

[0,1]

ϕ(x)(φj,k)
(m)(x)dx =

∫

[0,1]

ϕ(m)(x)φj,k(x)dx = c
(m)
j,k .

Therefore E(U1) = 0.
Let u ∈ {2, 2p}. Using the inequality: (x+ y)u ≤ 2u−1(xu + yu), (x, y) ∈ R

2,
the Hölder inequality, (3.3), (3.4), (3.5), the definition of f(x, y), (φj,k)

(m)(x) =
2j/22mjφ(m)(2j − k), a change of variables and 2j ≤ n, we have

E(Uu
1 ) ≤ 2u−1

E

((

(−1)mµ
Y1

w(X1, Y1)h(X1)
(φj,k)

(m)(X1)

)u

+ (c
(m)
j,k )u

)

≤ 2uE

((

(−1)mµ
Y1

w(X1, Y1)h(X1)
(φj,k)

(m)(X1)

)u)

≤ CE

(

(

Y1(φj,k)
(m)(X1)

)u 1

w(X1, Y1)

)

= C

∫

R

∫

[0,1]

(

y(φj,k)
(m)(x)

)u 1

w(x, y)
f(x, y)dxdy

= C

∫

R

∫

[0,1]

(

y(φj,k)
(m)(x)

)u 1

w(x, y)

w(x, y)g(x, y)

µ
dxdy

≤ C

∫

[0,1]

(∫

R

yug(x, y)dy

)

(

(φj,k)
(m)(x)

)u

dx

≤ C

∫

[0,1]

(

(φj,k)
(m)(x)

)u

dx = C2jmu2j(u−2)/2

∫

[0,1]

(φ(m)(x))udx

≤ C2jmun(u−2)/2. (4.2)

It follows from Lemma 4.1 with U1, . . . , Un and γ = 2p, and (4.2) that

Q1 ≤ C
1

n2p
max

(

nE(U2p
1 ), np(E(U2

1 ))
p
)

≤ C
1

n2p
max

(

n22jmpnp−1, np(22jm)p
)

≤ C
22jmp

np
. (4.3)

imsart-generic ver. 2011/01/24 file: deriv-biased-fin.tex date: October 16, 2014



Chaubey et al./On the estimation of a regression function based on biased data 11

Upper bound for Q2. We can write

Q2 =
1

n2p
E





(

n
∑

i=1

Ui

)2p


 ,

with

Ui =
1

w(Xi, Yi)
−

1

µ
, i ∈ {1, . . . , n}.

Since (X1, Y1), . . . , (Xn, Yn) are i.i.d., U1, . . . , Un are also i.i.d.. Moreover, from
(Chesneau et al., 2014, Proposition 2 (i)), we have E(U1) = 0. Using (3.3), for
any u ∈ {2, 2p}, we arrive at E(Uu

1 ) ≤ C. Thus, Lemma 4.1 with γ = 2p yields

Q2 ≤ C
1

n2p
max

(

nE(U2p
1 ), np(E(U2

1 ))
p
)

≤ C
1

np
. (4.4)

It follows from (4.1), (4.3) and (4.4) that

E

(

(ĉ
(m)
j,k − c

(m)
j,k )2p

)

≤ C

(

22jmp

np
+

1

np

)

≤ C

(

22jm

n

)p

.

Thus Proposition 3.1 is proved.

Proof of Theorem 3.1. We expand ϕ(m) on S as in (2.1) at the level ℓ = j0
given by (3.9):

ϕ(m)(x) =
∑

k∈Λj0

c
(m)
j0,k

φj0,k(x) +

∞
∑

j=j0

∑

k∈Λj

d
(m)
j,k ψj,k(x),

where c
(m)
j0,k

=
∫

[0,1]
ϕ(m)(x)φj0,k(x)dx and d

(m)
j,k =

∫

[0,1]
ϕ(m)(x)ψj,k(x)dx.

Using the inequality: ||f + g||pp ≤ 2p−1(||f ||pp + ||g||pp), f, g ∈ L
p([0, 1]), we

have
E

(

‖ϕ̂
(m)
1 − ϕ(m)‖pp

)

≤ C(A1 +A2), (4.5)

where

A1 = E



‖
∑

k∈Λj0

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)

φj0,k‖
p
p



 , A2 = ‖

∞
∑

j=j0

∑

k∈Λj

d
(m)
j,k ψj,k‖

p
p.

Let us now investigate upper bounds for A1 and A2.
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Upper bound for A1. It follows from Lemma 2.1, the Hölder inequality, Propo-
sition 3.1 and Card(Λj) = 2j that

A1 ≤ C2j0(p/2−1)
∑

k∈Λj0

E

(

|ĉ
(m)
j0,k

− c
(m)
j0,k

|p
)

≤ C2j0(p/2−1)
∑

k∈Λj0

(

E

(

(ĉ
(m)
j0,k

− c
(m)
j0,k

)2p
))1/2

≤ C2j0(p/2−1)2j0
(

22j0m

n

)p/2

≤ C

(

2j0(1+2m)

n

)p/2

. (4.6)

Upper bound for A2. Using Lemma 2.2 and proceeding as in (Donoho et al.,
1996, eq (24)), we have

A2 ≤ C2−j0s∗p. (4.7)

It follows from (4.5), (4.6) and (4.7) that

E

(

‖ϕ̂
(m)
1 − ϕ(m)‖pp

)

≤ C

(

(

2j0(1+2m)

n

)p/2

+ 2−j0s∗p

)

≤ Cn−s∗p/(2s∗+2m+1).

Hence, Theorem 3.1 is proved.

Proof of Theorem 3.2. We use a similar approach here as in the proof of
Theorem 3.1. We expand h on S as (2.1) at the level ℓ = j1 given by (3.12):

h(x) =
∑

k∈Λj1

cj1,kφj1,k(x) +

∞
∑

j=j1

∑

k∈Λj

dj,kψj,k(x),

where cj1,k =
∫

[0,1]
h(x)φj1,k(x)dx and dj,k =

∫

[0,1]
h(x)ψj,k(x)dx.

The inequality: ||f + g||pp ≤ 2p−1(||f ||pp + ||g||pp), f, g ∈ L
p([0, 1]), yields

E

(

‖ĥ− h‖pp

)

≤ C(B1 +B2), (4.8)

where

B1 = E



‖
∑

k∈Λj1

(ĉj1,k − cj1,k)φj1,k‖
p
p



 , B2 = ‖

∞
∑

j=j1

∑

k∈Λj

dj,kψj,k‖
p
p.

Let us now investigate upper bounds for B1 and B2.
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Upper bound for B1. First of all, by the definition of f(x, y) and (3.11),
observe that

E

(

µ

µ̂
ĉj,k

)

= E

(

µ

w(X1, Y1)
φj,k(X1)

)

=

∫

R

∫

[0,1]

µ

w(x, y)
φj,k(x)f(x, y)dxdy

=

∫

R

∫

[0,1]

µ

w(x, y)
φj,k(x)

w(x, y)g(x, y)

µ
dxdy

=

∫

[0,1]

φj,k(x)

(∫

R

g(x, y)dy

)

dx =

∫

[0,1]

φj,k(x)h(x)dx = cj,k.

Proceeding as in the proof of Proposition 3.1 but with ”1” instead of ”Yi” and
m = 0, under (3.3) and (3.4) only, we prove the existence of a constant C > 0
such that

E
(

(ĉj1,k − cj1,k)
2p
)

≤ C
1

np
, (4.9)

It follows from Lemma 2.1, the Hölder inequality, (4.9) and Card(Λj) = 2j

that

B1 ≤ C2j1(p/2−1)
∑

k∈Λj1

E (|ĉj1,k − cj1,k|
p)

≤ C2j1(p/2−1)
∑

k∈Λj1

(

E
(

(ĉj1,k − cj1,k)
2p
))1/2

≤ C2j1(p/2−1)2j1
1

np/2
≤ C

(

2j1

n

)p/2

. (4.10)

Upper bound for B2. Proceeding as in (4.7), we obtain

B2 ≤ C2−j1s∗p. (4.11)

It follows from (4.8), (4.10) and (4.11) that

E

(

‖ĥ− h‖pp

)

≤ C

(

(

2j1

n

)p/2

+ 2−j1s∗p

)

≤ Cn−s∗p/(2s∗+1).

Thus Theorem 3.2 is proved.

Proof of Theorem 3.3. Firstly, let us consider the case p ≥ 2. We expand
ϕ(m) on S as (2.1) at the level ℓ = j2 given by (3.16):

ϕ(m)(x) =
∑

k∈Λj2

c
(m)
j2,k

φj2,k(x) +

∞
∑

j=j2

∑

k∈Λj

d
(m)
j,k ψj,k(x).
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Using the inequality: ||f + g||pp ≤ 2p−1(||f ||pp + ||g||pp), f, g ∈ L
p([0, 1]), we get

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖pp

)

≤ C(D + E), (4.12)

where

D = E



‖
∑

k∈Λj2

(

c̃
(m)
j2,k

− c
(m)
j2,k

)

φj0,k‖
p
p



 , E = ‖

∞
∑

j=j2

∑

k∈Λj

d
(m)
j,k ψj,k‖

p
p.

Upper bound for E. Proceeding as in (4.7), we obtain

E ≤ C2−j2s∗p. (4.13)

Upper bound for D. Let ĉ
(m)
j2,k

be (3.7) with n = [n/2] and j = j2 (3.16). The

inequality |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R
2, and Lemma 2.1 yield

D ≤ C(D1 +D2), (4.14)

where
D1 = 2j2(p/2−1)

∑

k∈Λj2

E

(

|c̃
(m)
j2,k

− ĉ
(m)
j2,k

|p
)

and
D2 = 2j2(p/2−1)

∑

k∈Λj2

E

(

|ĉ
(m)
j2,k

− c
(m)
j2,k

|p
)

.

Upper bound for D2. Proceeding as in (4.6), we obtain

D2 ≤ C2j2(p/2−1) Card(Λj2)
2j2mp

[n/2]p/2
≤ C2j2p/22j2mp 1

np/2
. (4.15)

Upper bound for D1. Using the triangular inequality, the definition of c̃
(m)
j2,k

(3.14) and (3.3), we arrive at

|c̃
(m)
j2,k

− ĉ
(m)
j2,k

|

=

∣

∣

∣

∣

∣

∣

(−1)m
µ̂

[n/2]

[n/2]
∑

i=1

Yi
w(Xi, Yi)

(φj,k)
(m)(Xi)

(

1

ĥ(Xi)
1{|ĥ(Xi)|≥c3/2} −

1

h(Xi)

)

∣

∣

∣

∣

∣

∣

≤ C
1

[n/2]

[n/2]
∑

i=1

|Yi|

w(Xi, Yi)
|(φj,k)

(m)(Xi)|

∣

∣

∣

∣

∣

1

ĥ(Xi)
1{|ĥ(Xi)|≥c3/2} −

1

h(Xi)

∣

∣

∣

∣

∣

.

Owing to the triangular inequality,
{

|ĥ(Xi)| < c3/2
}

⊆
{

|ĥ(Xi)− h(Xi)| > c3/2
}

,

imsart-generic ver. 2011/01/24 file: deriv-biased-fin.tex date: October 16, 2014



Chaubey et al./On the estimation of a regression function based on biased data 15

(3.4) and the Markov inequality, we have

∣

∣

∣

∣

∣

1

ĥ(Xi)
1{|ĥ(Xi)|≥c3/2} −

1

h(Xi)

∣

∣

∣

∣

∣

≤
1

h(Xi)

(∣

∣

∣

∣

∣

ĥ(Xi)− h(Xi)

ĥ(Xi)

∣

∣

∣

∣

∣

1{|ĥ(Xi)|≥c3/2} + 1{|ĥ(Xi)|<c3/2}

)

≤
1

c3

(

2

c3

∣

∣

∣ĥ(Xi)− h(Xi)
∣

∣

∣+ 1{|ĥ(Xi)−h(Xi)|>c3/2}

)

≤ C|ĥ(Xi)− h(Xi)|.

Hence

|c̃
(m)
j2,k

− ĉ
(m)
j2,k

| ≤ CFj2,k,n,

where

Fj,k,n =
1

[n/2]

[n/2]
∑

i=1

|Yi|

w(Xi, Yi)
|(φj,k)

(m)(Xi)||ĥ(Xi)− h(Xi)|.

Let us now introduce Wn = ((X[n/2]+1, Y[n/2]+1) . . . , (Xn, Yn)). Using the in-
equality: |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R

2, we arrive at

D1 ≤ C2j2(p/2−1)
∑

k∈Λj2

E(|Fj2,k,n|
p) ≤ C(D1,1 +D1,2), (4.16)

where

D1,1 = 2j2(p/2−1)
∑

k∈Λj2

E (E (|Fj2,k,n − E (Fj2,k,n|Wn) |
p|Wn))

and
D1,2 = 2j2(p/2−1)

∑

k∈Λj2

E (|E (Fj2,k,n|Wn) |
p) .

Before bounding D1,1 and D1,2, let us prove a general moment inequality.
General moment inequality. Let u ∈ [1, p]. Using (3.3), the definition of f(x, y)
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and (3.5), we arrive at

E

(

|Y1|
u

w(X1, Y1)u
|(φj2,k)

(m)(X1)|
u|ĥ(X1)− h(X1)|

u

∣

∣

∣

∣

Wn

)

≤ CE

(

|Y1|
u

w(X1, Y1)
|(φj2,k)

(m)(X1)|
u|ĥ(X1)− h(X1)|

u

∣

∣

∣

∣

Wn

)

= C

∫

R

∫

[0,1]

|y|u

w(x, y)
|(φj,k)

(m)(x)|u|ĥ(x)− h(x)|uf(x, y)dxdy

= C

∫

R

∫

[0,1]

|y|u

w(x, y)
|(φj,k)

(m)(x)|u|ĥ(x)− h(x)|u
w(x, y)g(x, y)

µ
dxdy

≤ C

∫

[0,1]

|(φj,k)
(m)(x)|u|ĥ(x)− h(x)|u

(∫

R

|y|ug(x, y)dy

)

dx

≤ C

∫

[0,1]

|(φj,k)
(m)(x)|u|ĥ(x)− h(x)|udx.

The Hölder inequality with the exponents (p/u, p/(p− u)) (and the usual mod-
ification if u = p), (φj,k)

(m)(x) = 2j/22mjφ(m)(2j − k) and a change of variables
imply that

∫

[0,1]

|(φj,k)
(m)(x)|u|ĥ(x)− h(x)|udx

≤

(

∫

[0,1]

|(φj,k)
(m)(x)|pu/(p−u)dx

)(p−u)/p

||ĥ− h||up

= 2ju/22jmu

(

∫

[0,1]

|φ(m)(2jx− k)|pu/(p−u)dx

)(p−u)/p

||ĥ− h||up

≤ C2ju/22jmu2−j(p−u)/p||ĥ− h||up .

Therefore

E

(

|Y1|
u

w(X1, Y1)u
|(φj2,k)

(m)(X1)|
u|ĥ(X1)− h(X1)|

u

∣

∣

∣

∣

Wn

)

≤ C2ju/22jmu2−j(p−u)/p||ĥ− h||up . (4.17)

Let us now bound D1,2.
Upper bound for D1,2. By (4.17) with u = 1, we have

E (Fj2,k,n|Wn) = E

(

|Y1|

w(X1, Y1)
|(φj2,k)

(m)(X1)||ĥ(X1)− h(X1)|

∣

∣

∣

∣

Wn

)

≤ C2j2/22j2m2−j2(p−1)/p||ĥ− h||p.

Hence

D1,2 ≤ C2j2(p/2−1) Card(Λj2)2
j2p/22j2mp2−j2(p−1)

E

(

‖ĥ− h‖pp

)

≤ C2(mp+1)j2E

(

‖ĥ− h‖pp

)

. (4.18)
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Upper bound for D1,1. Note that

E (|Fj2,k,n − E (Fj2,k,n|Wn) |
p|Wn) =

1

[n/2]p
E





∣

∣

∣

∣

∣

∣

[n/2]
∑

i=1

Ui

∣

∣

∣

∣

∣

∣

p∣
∣

∣

∣

∣

∣

Wn



 ,

with

Ui =
|Yi|

w(Xi, Yi)
|(φj2,k)

(m)(Xi)||ĥ(Xi)−h(Xi)|−E (Fj2,k,n|Wn) , i ∈ {1, . . . , n}.

We aim to apply Lemma 4.1 to U1, . . . , U[n/2] with the expectation conditionally
to Wn.

First of all, note that, conditionally to Wn, U1, . . . , U[n/2] are i.i.d. with
E(U1|Wn) = 0.

Let u ∈ {2, p}. The inequality: (x + y)u ≤ 2u−1(xu + yu), (x, y) ∈ R
2, the

Hölder inequality and (4.17) imply that

E (Uu
1 |Wn) ≤ 2uE

(

|Y1|
u

w(X1, Y1)u
|(φj2,k)

(m)(X1)|
u|ĥ(X1)− h(X1)|

u

∣

∣

∣

∣

Wn

)

≤ C2j2u/22j2mu2−j2(p−u)/p||ĥ− h||up .

Thus, thanks to Lemma 4.1 with γ = p, we have

E (|Fj2,k,n − E (Fj2,k,n|Wn) |
p|Wn)

≤ C
1

np
max

(

nE(Up
1 |Wn), n

p/2(E(U2
1 |Wn))

p/2
)

≤ C
1

np
max

(

n2j2p/22jmp||ĥ− h||pp, n
p/2(2j222mj22−j2(p−2)/p||ĥ− h||2p)

p/2
)

≤ C
1

np
2j2mp max

(

n2j2p/2, np/22j2
)

||ĥ− h||pp.

Hence, by 2j2 ≤ n,

D1,1 ≤ C
1

np
2j2(p/2−1) Card(Λj2)2

j2mp max
(

n2j2p/2, np/22j2
)

E

(

||ĥ− h||pp

)

≤ C2(mp+1)j2

(

1

np
max

(

n2j2(p−1), np/22j2p/2
)

)

E

(

||ĥ− h||pp

)

≤ C2(mp+1)j2E

(

||ĥ− h||pp

)

. (4.19)

Putting (4.16), (4.18) and (4.19) together and using p ≥ 2, we get

D1 ≤ C2(mp+1)j2E

(

||ĥ− h||pp

)

≤ C2j2p/22j2mp
E

(

||ĥ− h||pp

)

. (4.20)

By (4.14), (4.15) and (4.20) together, we arrive at

D ≤ C2j2p/22j2mp max

(

E

(

‖ĥ− h‖pp

)

,
1

np/2

)

. (4.21)
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Combining (4.12), (4.13) and (4.21), we obtain

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖pp

)

≤ C

(

2j2p/22j2mp max

(

E

(

‖ĥ− h‖pp

)

,
1

np/2

)

+ 2−j2s∗p

)

.(4.22)

Since h ∈ Bs2
q2,r2(M2) with M2 > 0, q2 ≥ 1, r2 ≥ 1 and s2 ∈ (max(1/q2 −

1/p, 0), N), with j1 as (3.15), Theorem 3.2 ensures the existance of a constant
C > 0 such that

E

(

‖ĥ− h‖pp

)

≤ C(n− [n/2])−sop/(2so+1) ≤ Cn−sop/(2so+1).

Therefore, chosing j2 as (3.16), it follows from (4.22) that

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖pp

)

≤ C
(

2j2p/22j2mpn−sop/(2so+1) + 2−j2s∗p
)

≤ Cn−2s∗sop/((2so+1)(2s∗+2m+1)). (4.23)

The case p ∈ [1, 2) is an immediate consequence: using the Hölder inequality
with the exponent 2/p ≥ 1 and (4.23) with p = 2, we obtain

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖pp

)

≤
(

E

(

‖ϕ̂
(m)
2 − ϕ(m)‖22

))p/2

≤ C
(

n−4s∗so/((2so+1)(2s∗+2m+1))
)p/2

= Cn−2s∗sop/((2so+1)(2s∗+2m+1)).

This completes the proof of Theorem 3.3.
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