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This paper deals with the problem of estimating the derivatives of a regression function based on biased data. We develop two different linear wavelet estimators according to the knowledge of the "biased density" of the design. The new estimators are analyzed with respect to their L p risk with p ≥ 1 over Besov balls. Fast polynomial rates of convergence are obtained.

Problem statement

Here we consider the standard biased nonparametric regression model in which case we observe n i.i.d. bivariate random variables (X 1 , Y 1 ), . . . , (X n , Y n ) with the common density f (x, y) = w(x, y)g(x, y) µ ,

(x, y) ∈ R 2 ,
where w is a known positive function, g is the density of an unobserved bivariate random variable (U, V ) and µ = E(w(U, V )) is an unknown real number. We suppose that the support of U is a finite interval, say [0, 1] for the sake of simplicity. In this setting, the unknown regression function of interest is defined by

ϕ(x) = E(V |U = x), x ∈ [0, 1].
The general aim is to estimate some functionals of ϕ from (X 1 , Y 1 ), . . . , (X n , Y n ).

The direct estimation of ϕ is a well known problem. It has been considered via different kinds of estimation methods. The most popular of them are the kernel methods. Important results on their performances can be found in, e.g., [START_REF] Ahmad | On multivariate kernel estimation for samples from weighted distributions[END_REF], [START_REF] Sköld | Kernel regression in the presence of size-bias[END_REF], [START_REF] Cristóbal | Nonparametric regression estimators for length biased data[END_REF], [START_REF] Wu | Local polynomial regression with selection biased data[END_REF], [START_REF] Cristóbal | An overview of nonparametric contributions to the problem of functional estimation from biased data[END_REF], Cristóbal et al. (2004), [START_REF] Ojeda | it A bootstrap based model checking for selection-biased data[END_REF], [START_REF] Ojeda-Cabrera | Goodness-of-fit tests for parametric regression with selection biased data[END_REF] and [START_REF] Chaubey | Generalized kernel regression estimator for dependent size-biased data[END_REF]. Recently, wavelet methods based on a multiresolution analysis has been developed for the estimation of ϕ. Thanks to its powerful local adaptivity against discontinuities, they enjoy nice asymptotic properties for a wide class of unknown regression functions ϕ. See, e.g., [START_REF] Chesneau | Nonparametric wavelet regression based on biased data[END_REF], [START_REF] Chaubey | Wavelet-based estimation of regression function for dependent biased data under a given random design[END_REF] and [START_REF] Chaubey | On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing[END_REF]. Another recent estimation study via wavelet methods related to the estimation of ϕ can be found in Chesneau et al. (2014).

This study offers three new theoretical contributions. The first one is the estimation of the m th derivative ϕ (m) (assuming that it exists), not just ϕ = ϕ (0) . This is of interest in the detection of structures in ϕ as jump detection and discontinuities, constructions of confidence intervals, and many other statistical aspects. See, for instance, [START_REF] Hall | Nonparametric estimation of derivatives with applications[END_REF] and the references therein. The second contribution is the construction of an efficient linear wavelet estimator in the case when the density of U is unknown. The consideration of this case is new in the context of wavelet estimation. The third contribution concerns the evaluation of the performances of our estimators: we adopt the L p -risk with p ≥ 1, more general to the L 2 -risk (or Mean Integrated Squared Error). To the best of our knowledge, it has never been investigated in this setting, despite its potential interest to exhibit new phenomena in terms of rates of convergence. In this study, they are determined assuming that ϕ (m) belongs to the Besov balls; a wide class of homogeneous and inhomogeneous functions.

The organization of this paper is as follows. The next section describes the considered wavelet basis, Besov balls and basics on linear wavelet estimation. The problem of estimating the derivatives of a regression function from biased data is considered in Section 3, distinguishing the estimation of ϕ when the density of U is known or not. Here we have constructed efficient linear wavelet estimators and their performances are demonstrated in terms of rates of convergence under the L p risk over Besov balls, with p ≥ 1. The proofs are carried out in Section 4.

Preliminaries

This section is devoted to the presentation of the main notions of the study, i.e., the wavelet basis, the Besov balls and the linear wavelet estimation in general.
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Wavelet basis

For any p ≥ 1, we defined the set L p ([0, 1]) by

L p ([0, 1]) =    t : [0, 1] → R; ||t|| p = [0,1] |t(x)| p dx 1/p < ∞    .
Among the existing constructions of wavelet basis on the unit interval, we consider the one introduced by [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. It is briefly described below.

Let φ and ψ be the initial wavelet functions of the Daubechies wavelets family db2N with N ≥ 5m. These functions are interesting as they are compactly supported and belong to the class C m . For any j ≥ 0, we set Λ j = {0, . . . , 2 j -1} and, for k ∈ Λ j ,

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
With appropriate treatment at the boundaries, there exists an integer τ such that, for any integer ℓ ≥ τ , the family

S = {φ ℓ,k , k ∈ Λ ℓ ; ψ j,k ; j ∈ N -{0, . . . , ℓ -1}, k ∈ Λ j } forms an orthonormal basis of L 2 ([0, 1]).
Therefore, for any integer ℓ ≥ τ and t ∈ L 2 ([0, 1]), we have the following wavelet expansion:

t(x) = k∈Λ ℓ c ℓ,k φ ℓ,k (x) + ∞ j=ℓ k∈Λj d j,k ψ j,k (x),
x ∈ [0, 1],

(2.1) where c j,k and d j,k are defined by

c j,k = [0,1] t(x)φ j,k (x)dx, d j,k = [0,1] t(x)ψ j,k (x)dx. (2.2)
These are approximation and detail wavelet coefficients of t respectively; see, e.g., [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing (Third Edition): The Sparse Way[END_REF].

Let us now introduce a L p -norm result related to the approximation term.

Lemma 2.1. Let p ≥ 1. For any sequence of real numbers (θ j,k ) j,k , there exists a constant C > 0 such that, for any j ≥ τ ,

[0,1]   k∈Λj θ j,k φ j,k (x)   p dx ≤ C2 j(p/2-1) k∈Λj |θ j,k | p .
The proof can be found in, e.g., (Härdle et al., 1998, Proposition 8.3).
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Besov balls

For the sake of simplicity, we consider the following wavelet sequential definition of the Besov balls. We say that t ∈ B s q,r (M ) with s ∈ (0, N ), q ≥ 1, r ≥ 1 and M > 0 if there exists a constant C > 0 (depending on M ) such that c j,k and

d j,k (2.2) satisfy 2 τ (1/2-1/q) k∈Λτ |c τ,k | q 1/q +    ∞ j=τ   2 j(s+1/2-1/q)   k∈Λj |d j,k | q   1/q    r    1/r ≤ C, with the usual modifications if q = ∞ or r = ∞.
In wavelet estimation, the Besov balls are particularly interesting because they contain a wide variety of homogeneous and inhomogeneous functions. For particular choices of s, p and r, B s q,r (M ) correspond to standard balls of function spaces, as the Hölder and Sobolev balls (see, e.g., [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]).

The following lemma presents a standard inclusion for Besov balls which will be useful in the proofs of our main results.

Lemma 2.2. For any p ≥ 1, q ≥ 1, M > 0 and s ∈ (max(1/q -1/p, 0), N ), we have B s q,r (M ) ⊆ B s * p,r (M ), with s * = s + min(1/p -1/q, 0). See (Härdle et al., 1998, Corollary 9.2).

Linear wavelet estimation

The idea of the linear wavelet estimation is to estimate the approximation wavelet coefficients c j,k of an unknown function t and project these estimators on S at a suitable level j 0 . They are of the form:

t(x) = k∈Λj 0 ĉj0,k φ j0,k (x), (2.3)
where ĉj,k denotes an estimator for c j,k constructed from n observations. Such estimators generally enjoy good theoretical properties under the L p -risk; see, for instance, [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF], Chapter 10 and [START_REF] Chaubey | On linear wavelet density estimation: Some recent developments[END_REF].

In this study, this L p -risk is considered: we aim to construct linear wavelet estimators φ(m) of the form (2.3) such that, for any ϕ (m) ∈ B s q,r (M ),

lim n→∞ E φ(m) -ϕ (m) p p = 0,
as fast as possible.
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Results

This section is devoted to the linear wavelet estimation of the three following related problems:

1. the estimation of ϕ (m) when h is known, 2. the estimation of h and 3. the estimation of ϕ (m) when h is unknown, where h denotes the marginal probability density function of the random variable U.

Assumptions

The following assumptions will be used in our main results:

• We have

ϕ (u) (0) = ϕ (u) (1) = 0, u ∈ {0, . . . , m}. (3.1)
• There exists a constant

C 1 > 0 such that sup x∈[0,1] |ϕ (m) (x)| ≤ C 1 . (3.2) • There exist two constants C 2 > 0 and c 2 > 0 such that inf (x,y)∈[0,1]×R w(x, y) ≥ c 2 , sup (x,y)∈[0,1]×R w(x, y) ≤ C 2 . ( 3 

.3)

• There exist two constants c 3 > 0 and C 3 > 0 such that

c 3 ≤ inf x∈[0,1] h(x), sup x∈[0,1] h(x) ≤ C 3 . (3.4) • There exists a constant C 4 > 0 such that sup x∈[0,1] R y 2p g(x, y)dy ≤ C 4 . (3.5)
Despite their restrictive natures, these assumptions are satisfied by wide class of functions ϕ (m) , h(x), w(x, y) and g(x, y).

Estimation of ϕ (m) when h is known

When h is known, we consider the linear wavelet estimator φ(m) where

1 of ϕ (m) defined by φ(m) 1 (x) = k∈Λj 0 ĉ(m) j0,k φ j0,k (x), x ∈ [0, 1], ( 3 
ĉ(m) j,k = (-1) m μ n n i=1 Y i w(X i , Y i )h(X i ) (φ j,k ) (m) (X i ), (3.7) (φ j,k ) (m) (x) = 2 j/2 2 mj φ (m) (2 j x -k) , μ = 1 n i=1 1 w(X i , Y i ) -1 (3.8)
and j 0 is an integer chosen a posteriori. The form of the estimator ĉ(m) j,k is motivated by writing c

(m) j,k = [0,1] ϕ (m) (x)φ j,k (x)
dx in the present context as an appropriate expectation with respect to density f . The estimator ĉ(m) j,k satisfies the moment inequality described below. Proposition 3.1. Let p ≥ 1. Suppose that the assumptions in Subsection 3.1 hold. Let ĉ(m) j,k be given by (3.7) with j such that 2 j ≤ n and c

(m) j,k = [0,1] ϕ (m) (x)φ j,k (x)dx. Then there exists a constant C > 0 such that E (ĉ (m) j,k -c (m) j,k ) 2p ≤ C 2 2jm n p .
Theorem 3.1 below investigates the rate of convergence attained by φ(m)

1
under the L p -risk assuming that ϕ (m) ∈ B s q,r (M ). Theorem 3.1. Let p ≥ 1. Suppose that the assumptions in Subsection 3.1 hold and that ϕ (m) ∈ B s q,r (M ) with M > 0, q ≥ 1, r ≥ 1 and s ∈ (max(1/q -1/p, 0), N ). Let φ(m) 1 be defined by (3.6) with j 0 such that

2 j0 = [n 1/(2s * +2m+1) ],
(3.9) s * = s + min(1/p -1/q, 0) (where [a] denotes the integer part of a).

Then there exists a constant C > 0 such that

E φ(m) 1 -ϕ (m) p p ≤ Cn -s * p/(2s * +2m+1) .
The integer j 0 is chosen to minimize the L p -risk of φ(m) 1 . Note that, for m = 0 and p = 2, Theorem 3.1 becomes (Chesneau and Shirazi, 2014, Theorem 4.1, p = 2).

Remark 3.1. It follows from Theorem 3.1, the Markov inequality and the Borel-Cantelli lemma that, for p > 2 + (2m + 1)/s * , we have

lim n→∞ φ(m) 1 -ϕ (m) p p = 0 almost surely.
When h is unknown, the estimator φ(m) 1 (3.6) is not appropriate since it depends on h in its construction. To solve this problem, a first step is to investigate the estimation of h from (X 1 , Y 1 ), . . . (X n , Y n ). This is done in the next section.
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Estimation of h

This problem of estimating h from (X 1 , Y 1 ), . . . (X n , Y n ) is close to the standard weighted density estimation problem. See, e.g., [START_REF] Ahmad | On multivariate kernel estimation for samples from weighted distributions[END_REF] for kernel methods and [START_REF] Ramirez | Wavelet density estimation for stratified size-biased sample[END_REF] for wavelet methods. However, to the best of our knowledge, it has never been considered in our bivariate context.

We define the linear wavelet estimator ĥ of h by ĥ

(x) = k∈Λj 1 ĉj1,k φ j1,k (x), x ∈ [0, 1], (3.10) where ĉj,k = μ n n i=1 1 w(X i , Y i ) φ j,k (X i ), (3.11)
μ is given by (3.8) and j 1 is an integer chosen a posteriori. Theorem 3.2 below investigates the rate of convergence attained by ĥ under the L p risk assuming that h ∈ B s q,r (M ). Theorem 3.2. Let p ≥ 1. Suppose that the assumptions (3.3) and (3.4) hold and that h ∈ B s q,r (M ) with M > 0, q ≥ 1, r ≥ 1 and s ∈ (max(1/q -1/p, 0), N ). Let ĥ be defined by (3.10) with j 0 such that

2 j1 = [n 1/(2s * +1) ],
(3.12)

s * = s + min(1/p -1/q, 0).
Then there exists a constant C > 0 such that E ĥ -h p p ≤ Cn -s * p/(2s * +1) .

The rate of convergence n -s * p/(2s * +1) corresponds to the one obtained for standard density estimation under the L p -risk. See, for instance, [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and (Härdle et al., 1998, Chapter 10).

We are now able to investigate the estimation of ϕ (m) when h is unknown via a plug-in approach using φ(m)

1

(3.6) and ĥ (3.10).

Estimation of ϕ (m) when h is unknown

In the case where h is unknown, we propose the linear wavelet estimator φ(m)

2 of ϕ (m) defined by φ(m) 2 (x) = k∈Λj 2 c(m) j2,k φ j2,k (x), x ∈ [0, 1], (3.13) where c(m) j,k = (-1) m μ [n/2] [n/2] i=1 Y i w(X i , Y i ) ĥ(X i ) 1 {| ĥ(Xi)|≥c3/2} (φ j,k ) (m) (X i ), (3.14)
imsart-generic ver. 2011/01/24 file: deriv-biased-fin.tex date: October 16, 2014 j 2 is an integer chosen a posteriori, μ is given by (3.8), 1 denotes the indicator function, c 3 refers to (3.4), ĥ is given by (3.10) but defined with the random variables ((

X [n/2]+1 , Y [n/2]+1 ), . . . , (X n , Y n ))
and an integer j 2 chosen a posteriori.

The construction of c(m) j,k follows the "plug-in spirit" of the NES estimator introduced by [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF]. It is an adaptation of the version developed in (Chesneau, 2014, Subsection 3.3) in the present context.

Theorem 3.3 below investigates the rate of convergence attained by φ(m) 2 under the L p risk assuming that ϕ (m) ∈ B s q,r (M ). Theorem 3.3. Let p ≥ 1 and p * = max(p, 2). Suppose that the assumptions in Subsection 3.

1 hold, ϕ (m) ∈ B s1 q1,r1 (M 1 ) with M 1 > 0, q 1 ≥ 1, r 1 ≥ 1, s ∈ (max(1/q 1 -1/p * , 0), N ), and h ∈ B s2 q2,r2 (M 2 ) with M 2 > 0, q 2 ≥ 1, r 2 ≥ 1 and s 2 ∈ (max(1/q 2 -1/p * , 0), N ). Let φ(m)
2 be defined by (3.13) and (3.14) with j 1 , j 2 such that

2 j1 = [n 1/(2so+1) ], s o = s 2 + min(1/p * -1/q 2 , 0), (3.15)
and

2 j2 = [n 2so/((2so+1)(2s * +2m+1)) ], s * = s 1 + min(1/p * -1/q 1 , 0) (3.16)
Then there exists a constant C > 0 such that

E φ(m) 2 -ϕ (m) p p ≤ Cn -2s * sop/((2so+1)(2s * +2m+1)) .
Again, the definitions of the integers j 1 and j 2 are based on theoretical consideration; they are chosen to minimize the L p -risk of φ(m)

2 . An interest of Theorem 3.3 is to measure the influences of the smoothness of h in the linear wavelet estimation of ϕ (m) . For p = 2, note that the obtained rate of convergence corresponds to the one obtained in the unbiased case (Chesneau, 2014, Theorem 3). 

Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depend on φ or ψ.

Proof of Proposition 3.1 The proof is a generalization of (Chesneau et al., 2014, Proposition 4 (ii)) to the m th derivatives and the L p -norm. We obtain the desired result via the Rosenthal inequality presented below (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

imsart-generic ver. 2011/01/24 file: deriv-biased-fin.tex date: October 16, 2014 Lemma 4.1 (Rosenthal's inequality). Let n be a positive integer, γ ≥ 2 and U 1 , . . . , U n be n i.i.d. random variables such that E(U 1 ) = 0 and E(|U 1 | γ ) < ∞. Then there exists a constant C > 0 such that

E n i=1 U i γ ≤ C max nE(|U 1 | γ ), n γ/2 E(U 2 1 ) γ/2 . Observe that ĉ(m) j,k -c (m) j,k = μ µ (-1) n µ n n i=1 Y i w(X i , Y i )h(X i ) (φ j,k ) (m) (X i ) -c (m) j,k + c (m) j,k μ 1 µ - 1 μ .
Using the triangular inequality, by (3.2) and ( 3.

3): |μ/µ| ≤ C 2 /c 2 , |μ| ≤ C 2 , and |c (m) j,k | ≤ C 1 , we obtain |ĉ (m) j,k -c (m) j,k | ≤ C (-1) n µ n n i=1 Y i w(X i , Y i )h(X i ) (φ j,k ) (m) (X i ) -c (m) j,k + 1 μ - 1 µ .
The inequality:

(x + y) 2p ≤ 2 2p-1 (x 2p + y 2p ), (x, y) ∈ R 2 , gives E (ĉ (m) j,k -c (m) j,k ) 2p ≤ C(Q 1 + Q 2 ), (4.1) 
where

Q 1 = E   1 n n i=1 (-1) m µ Y i w(X i , Y i )h(X i ) (φ j,k ) (m) (X i ) -c (m) j,k 2p   and Q 2 = E 1 μ - 1 µ 2p .
Now we investigate upper bounds for Q 1 and Q 2 .

Upper bound for Q 1 . Note that

Q 1 = 1 n 2p E   n i=1 U i 2p   ,
with Upper bound for Q 2 . We can write 

U i = (-1) m µ Y i w(X i , Y i )h(X i ) (φ j,k ) (m) (X i ) -c (m) j,k , i ∈ {1, . . . , n}. Since (X 1 , Y 1 ), . . . , (X n , Y n ) are i.i.d.,
Q 2 = 1 n 2p E   n i=1 U i 2p   , with U i = 1 w(X i , Y i ) - 1 µ , i ∈ 
Q 2 ≤ C 1 n 2p max nE(U 2p 1 ), n p (E(U 2 1 )) p ≤ C 1 n p . (4.4)
It follows from (4.1), (4.3) and (4.4) that

E (ĉ (m) j,k -c (m) j,k ) 2p ≤ C 2 2jmp n p + 1 n p ≤ C 2 2jm n p .
Thus Proposition 3.1 is proved.

Proof of Theorem 3.1. We expand ϕ (m) on S as in (2.1) at the level ℓ = j 0 given by (3.9):

ϕ (m) (x) = k∈Λj 0 c (m) j0,k φ j0,k (x) + ∞ j=j0 k∈Λj d (m) j,k ψ j,k (x), where c (m) j0,k = [0,1] ϕ (m) (x)φ j0,k (x)dx and d (m) j,k = [0,1] ϕ (m) (x)ψ j,k (x)dx. Using the inequality: ||f + g|| p p ≤ 2 p-1 (||f || p p + ||g|| p p ), f, g ∈ L p ([0, 1]), we have E φ(m) 1 -ϕ (m) p p ≤ C(A 1 + A 2 ), (4.5)
where

A 1 = E   k∈Λj 0 ĉ(m) j0,k -c (m) j0,k φ j0,k p p   , A 2 = ∞ j=j0 k∈Λj d (m) j,k ψ j,k p p .
Let us now investigate upper bounds for A 1 and A 2 .
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Upper bound for A 1 . It follows from Lemma 2.1, the Hölder inequality, Proposition 3.1 and Card(Λ j ) = 2 j that

A 1 ≤ C2 j0(p/2-1) k∈Λj 0 E |ĉ (m) j0,k -c (m) j0,k | p ≤ C2 j0(p/2-1) k∈Λj 0 E (ĉ (m) j0,k -c (m) j0,k ) 2p 1/2 ≤ C2 j0(p/2-1) 2 j0 2 2j0m n p/2 ≤ C 2 j0(1+2m) n p/2 . (4.6)
Upper bound for A 2 . Using Lemma 2.2 and proceeding as in (Donoho et al., 1996, eq (24)), we have

A 2 ≤ C2 -j0s * p . (4.7)
It follows from (4.5), (4.6) and (4.7) that

E φ(m) 1 -ϕ (m) p p ≤ C 2 j0(1+2m) n p/2
+ 2 -j0s * p ≤ Cn -s * p/(2s * +2m+1) .

Hence, Theorem 3.1 is proved.

Proof of Theorem 3.2. We use a similar approach here as in the proof of Theorem 3.1. We expand h on S as (2.1) at the level ℓ = j 1 given by (3.12):

h(x) = k∈Λj 1 c j1,k φ j1,k (x) + ∞ j=j1 k∈Λj d j,k ψ j,k (x), where c j1,k = [0,1] h(x)φ j1,k (x)dx and d j,k = [0,1] h(x)ψ j,k (x)dx. The inequality: ||f + g|| p p ≤ 2 p-1 (||f || p p + ||g|| p p ), f, g ∈ L p ([0, 1]), yields E ĥ -h p p ≤ C(B 1 + B 2 ), (4.8) 
where

B 1 = E   k∈Λj 1 (ĉ j1,k -c j1,k ) φ j1,k p p   , B 2 = ∞ j=j1 k∈Λj d j,k ψ j,k p p .
Let us now investigate upper bounds for B 1 and B 2 .
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Upper bound for B 1 . First of all, by the definition of f (x, y) and (3.11), observe that

E µ μ ĉj,k = E µ w(X 1 , Y 1 ) φ j,k (X 1 ) = R [0,1] µ w(x, y) φ j,k (x)f (x, y)dxdy = R [0,1] µ w(x, y) φ j,k (x) w(x, y)g(x, y) µ dxdy = [0,1] φ j,k (x) R g(x, y)dy dx = [0,1] φ j,k (x)h(x)dx = c j,k .
Proceeding as in the proof of Proposition 3.1 but with "1" instead of "Y i " and m = 0, under (3.3) and (3.4) only, we prove the existence of a constant C > 0 such that

E (ĉ j1,k -c j1,k ) 2p ≤ C 1 n p , (4.9) 
It follows from Lemma 2.1, the Hölder inequality, (4.9) and Card(Λ j ) = 2 j that + 2 -j1s * p ≤ Cn -s * p/(2s * +1) .

B 1 ≤ C2 j1(p/2-1) k∈Λj 1 E (|ĉ j1,k -c j1,k | p ) ≤ C2 j1(p/2-1) k∈Λj 1 E (ĉ j1,k -c j1,k ) 2p 1/2 ≤ C2 j1(p/2-1) 2 j1 1 n p/2 ≤ C 2 j1 n p/2 . ( 4 
Thus Theorem 3.2 is proved.

Proof of Theorem 3.3. Firstly, let us consider the case p ≥ 2. We expand ϕ (m) on S as (2.1) at the level ℓ = j 2 given by (3.16): where

ϕ (m) (x) = k∈Λj 2 c (m) j2,k φ j2,k (x) + ∞ j=j2 k∈Λj d (m) j,k ψ j,k (x).
D 1 = 2 j2(p/2-1) k∈Λj 2 E |c (m) j2,k - ĉ(m) j2,k | p and D 2 = 2 j2(p/2-1) k∈Λj 2 E |ĉ (m) j2,k -c (m) j2,k | p .
Upper bound for D 2 . Proceeding as in (4.6), we obtain 

D 2 ≤ C2 j2(p/2-1) Card(Λ j2 ) 2 j2mp [n/2] p/2 ≤ C2 j2p/2 2 j2mp 1 n p/2 . ( 4 
|c (m) j2,k - ĉ(m) j2,k | = (-1) m μ [n/2] [n/2] i=1 Y i w(X i , Y i ) (φ j,k ) (m) (X i ) 1 ĥ(X i ) 1 {| ĥ(Xi)|≥c3/2} - 1 h(X i ) ≤ C 1 [n/2] [n/2] i=1 |Y i | w(X i , Y i ) |(φ j,k ) (m) (X i )| 1 ĥ(X i ) 1 {| ĥ(Xi)|≥c3/2} - 1 h(X i )
.

Owing to the triangular inequality, | ĥ(

X i )| < c 3 /2 ⊆ | ĥ(X i ) -h(X i )| > c 3 /2 ,
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(3.4) and the Markov inequality, we have 1 ĥ(X i )

1 {| ĥ(Xi)|≥c3/2} - 1 h(X i ) ≤ 1 h(X i ) ĥ(X i ) -h(X i ) ĥ(X i ) 1 {| ĥ(Xi)|≥c3/2} + 1 {| ĥ(Xi)|<c3/2} ≤ 1 c 3 2 c 3 ĥ(X i ) -h(X i ) + 1 {| ĥ(Xi)-h(Xi)|>c3/2} ≤ C| ĥ(X i ) -h(X i )|.
Hence

|c (m) j2,k - ĉ(m) j2,k | ≤ CF j2,k,n ,
where

F j,k,n = 1 [n/2] [n/2] i=1 |Y i | w(X i , Y i ) |(φ j,k ) (m) (X i )|| ĥ(X i ) -h(X i )|. Let us now introduce W n = ((X [n/2]+1 , Y [n/2]+1 ) . . . , (X n , Y n )).
Using the inequality: |x + y| p ≤ 2 p-1 (|x| p + |y| p ), (x, y) ∈ R 2 , we arrive at

D 1 ≤ C2 j2(p/2-1) k∈Λj 2 E(|F j2,k,n | p ) ≤ C(D 1,1 + D 1,2 ), (4.16) 
where

D 1,1 = 2 j2(p/2-1) k∈Λj 2 E (E (|F j2,k,n -E (F j2,k,n |W n ) | p |W n )) and D 1,2 = 2 j2(p/2-1) k∈Λj 2 E (|E (F j2,k,n |W n ) | p ) .
Before bounding D 1,1 and D and (3.5), we arrive at

E |Y 1 | u w(X 1 , Y 1 ) u |(φ j2,k ) (m) (X 1 )| u | ĥ(X 1 ) -h(X 1 )| u W n ≤ CE |Y 1 | u w(X 1 , Y 1 ) |(φ j2,k ) (m) (X 1 )| u | ĥ(X 1 ) -h(X 1 )| u W n = C R [0,1] |y| u w(x, y) |(φ j,k ) (m) (x)| u | ĥ(x) -h(x)| u f (x, y)dxdy = C R [0,1] |y| u w(x, y) |(φ j,k ) (m) (x)| u | ĥ(x) -h(x)| u w(x, y)g(x, y) µ dxdy ≤ C [0,1] |(φ j,k ) (m) (x)| u | ĥ(x) -h(x)| u R |y| u g(x, y)dy dx ≤ C [0,1] |(φ j,k ) (m) (x)| u | ĥ(x) -h(x)| u dx.
The Hölder inequality with the exponents (p/u, p/(p -u)) (and the usual modification if u = p), (φ j,k ) (m) (x) = 2 j/2 2 mj φ (m) (2 j -k) and a change of variables imply that

[0,1] |(φ j,k ) (m) (x)| u | ĥ(x) -h(x)| u dx ≤ [0,1] |(φ j,k ) (m) (x)| pu/(p-u) dx (p-u)/p || ĥ -h|| u p = 2 ju/2 2 jmu [0,1] |φ (m) (2 j x -k)| pu/(p-u) dx (p-u)/p
|| ĥ -h|| u p ≤ C2 ju/2 2 jmu 2 -j(p-u)/p || ĥ -h|| u p . Therefore

E |Y 1 | u w(X 1 , Y 1 ) u |(φ j2,k ) (m) (X 1 )| u | ĥ(X 1 ) -h(X 1 )| u W n ≤ C2 ju/2 2 jmu 2 -j(p-u)/p || ĥ -h|| u p .
(4.17)

Let us now bound D 1,2 .

Upper bound for D 1,2 . By (4.17) with u = 1, we have Upper bound for D 1,1 . Note that Let u ∈ {2, p}. The inequality: (x + y) u ≤ 2 u-1 (x u + y u ), (x, y) ∈ R 2 , the Hölder inequality and (4.17) imply that

E (F j2,k,n |W n ) = E |Y 1 | w(X 1 , Y 1 ) |(φ j2,k ) (m) (X 1 )|| ĥ(X 1 ) -h(X 1 )| W n ≤ C2 j2/2 2 j2m 2 -j2(p-1)/p || ĥ -h|| p . Hence D 1,2 ≤ C2 j2(p/2-1) Card(Λ j2 )2 j2p/2 2 j2mp 2 -j2(p-1) E ĥ -h p p ≤ C2 (mp+1)j2 E ĥ -h p p . ( 4 
E (|F j2,k,n -E (F j2,k,n |W n ) | p |W n ) = 1 [n/2] p E   [n/2] i=1 U i p W n   , with U i = |Y i | w(X i , Y i ) |(φ j2,k ) (m) (X i )|| ĥ(X i )-h(X i )|-E (F j2,k,n |W n ) , i ∈ 
E (U u 1 |W n ) ≤ 2 u E |Y 1 | u w(X 1 , Y 1 ) u |(φ j2,k ) (m) (X 1 )| u | ĥ(X 1 ) -h(X 1 )| u W n
≤ C2 j2u/2 2 j2mu 2 -j2(p-u)/p || ĥ -h|| u p .

Thus, thanks to Lemma 4.1 with γ = p, we have

E (|F j2,k,n -E (F j2,k,n |W n ) | p |W n ) ≤ C 1 n p max nE(U p 1 |W n ), n p/2 (E(U 2 1 |W n )) p/2
≤ C 1 n p max n2 j2p/2 2 jmp || ĥ -h|| p p , n p/2 (2 j2 2 2mj2 2 -j2(p-2)/p || ĥ -h|| 2 p ) p/2 ≤ C 1 n p 2 j2mp max n2 j2p/2 , n p/2 2 j2 || ĥ -h|| p p .

Hence, by 2 j2 ≤ n, D 1,1 ≤ C 1 n p 2 j2(p/2-1) Card(Λ j2 )2 j2mp max n2 j2p/2 , n p/2 2 j2 E || ĥ -h|| p p ≤ C2 (mp+1)j2 1 n p max n2 j2(p-1) , n p/2 2 j2p/2 E || ĥ -h|| p p ≤ C2 (mp+1)j2 -ϕ (m) p p ≤ C 2 j2p/2 2 j2mp max E ĥ -h p p , 1 n p/2 + 2 -j2s * p .

(4.22)

Since h ∈ B s2 q2,r2 (M 2 ) with M 2 > 0, q 2 ≥ 1, r 2 ≥ 1 and s 2 ∈ (max(1/q 2 -1/p, 0), N ), with j 1 as (3.15), Theorem 3.2 ensures the existance of a constant C > 0 such that E ĥ -h p p ≤ C(n -[n/2]) -sop/(2so+1) ≤ Cn -sop/(2so+1) .

Therefore, chosing j 2 as (3.16), it follows from (4. ≤ C n -4s * so/((2so+1)(2s * +2m+1)) p/2 = Cn -2s * sop/((2so+1)(2s * +2m+1)) .

This completes the proof of Theorem 3.3.

  Remark 3.2. Similar arguments to Remark 3.1 give, for p such that 2s * s o p/((2s o + 1)(2s * + 2m + 1))

  imsart-generic ver. 2011/01/24 file: deriv-biased-fin.tex date: October 16, 2014 Using the inequality: ||f + g|| p p ≤ 2 p-1 (||f || p p + ||g|| p p ), f, g ∈ L p ([0Upper bound for E. Proceeding as in (4.7), we obtain E ≤ C2 -j2s * p . (4.13) Upper bound for D. Let ĉ(m) j2,k be (3.7) with n = [n/2] and j = j 2 (3.16). The inequality |x + y| p ≤ 2 p-1 (|x| p + |y| p ), (x, y) ∈ R 2 , and Lemma 2.1 yield D ≤ C(D 1 + D 2 ), (4.14)

. 15 )

 15 Upper bound for D 1 . Using the triangular inequality, the definition of c

≤

  C 2 j2p/2 2 j2mp n -sop/(2so+1) + 2 -j2s * p ≤ Cn -2s * sop/((2so+1)(2s * +2m+1)) .(4.23)The case p ∈ [1, 2) is an immediate consequence: using the Hölder inequality with the exponent 2/p ≥ 1 and (4.23) with p = 2, we obtain E φ

  U 1 , . . . , U n are also i.i.d.. Let us now show that E(U 1 ) = 0. Using the definition of f (x, y), the equality R yg(x, y)dy =
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  {1, . . . , n}.Since (X 1 , Y 1 ), . . . , (X n , Y n ) are i.i.d., U 1 , . . . , U n are also i.i.d.. Moreover, from(Chesneau et al., 2014, Proposition 2 (i)), we have E(U 1 ) = 0. Using (3.3), for any u ∈ {2, 2p}, we arrive at E(U u 1 ) ≤ C. Thus, Lemma 4.1 with γ = 2p yields

  .10)

	Upper bound for B 2 . Proceeding as in (4.7), we obtain
		B 2 ≤ C2 -j1s * p .	(4.11)
	It follows from (4.8), (4.10) and (4.11) that
	E ĥ -h p p ≤ C	n 2 j1	p/2

  {1, . . . , n}.We aim to apply Lemma 4.1 to U 1 , . . . , U [n/2] with the expectation conditionally to W n .First of all, note that, conditionally toW n , U 1 , . . . , U [n/2] are i.i.d. with E(U 1 |W n ) = 0.

  E || ĥ -h|| p p . (4.19) Putting (4.16), (4.18) and (4.19) together and using p ≥ 2, we getD 1 ≤ C2 (mp+1)j2 E || ĥ -h|| p p ≤ C2 j2p/2 2 j2mp E || ĥ -h|| p p .

		Combining (4.12), (4.13) and (4.21), we obtain	
	E	φ(m) 2	
				(4.20)
		By (4.14), (4.15) and (4.20) together, we arrive at	
		D ≤ C2 j2p/2 2 j2mp max E ĥ -h p p ,	1 n p/2 .	(4.21)
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ϕ(x)h(x) and m integrations by parts with (3.1), we obtain

Therefore E(U 1 ) = 0. Let u ∈ {2, 2p}. Using the inequality: (x + y) u ≤ 2 u-1 (x u + y u ), (x, y) ∈ R 2 , the Hölder inequality, (3.3), (3.4), (3.5), the definition of f (x, y), (φ j,k ) (m) (x) = 2 j/2 2 mj φ (m) (2 j -k), a change of variables and 2 j ≤ n, we have

It follows from Lemma 4.1 with U 1 , . . . , U n and γ = 2p, and (4.2) that