

Improvement of the power response in contrast imaging with transmit frequency optimization

Sébastien Ménigot, Anthony Novell, Ayache Bouakaz, Jean-Marc Girault

► To cite this version:

Sébastien Ménigot, Anthony Novell, Ayache Bouakaz, Jean-Marc Girault. Improvement of the power response in contrast imaging with transmit frequency optimization. IEEE. IEEE International Ultrasonics Symposium (IUS), Sep 2009, Rome, Italy. IEEE, pp.1 - 4, 2009, 10.1109/ULT-SYM.2009.5441554. hal-01075511

HAL Id: hal-01075511 https://hal.science/hal-01075511

Submitted on 17 Oct 2014 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

1. Introduction

Ultrasound (US) contrast imaging is being investigated for tissue function and for targeted therapeutic applications with microbubble ultrasound contrast agents (UCA). Currently technical challenge consists in seeking for US excitations which should make possible the optimization of the contrast tissue ratio (CTR). This ratio can be maximized if the microbubbles backscattered power is maximized with the transmit signal.

$$CTR = rac{E_{bubbles}}{E_{BMF}}$$
, with $\begin{cases} E_{bubbles} \text{ the microbubbles backscattered} \\ power \\ E_{BMF} \end{cases}$ the tissue backscattered power

We tackled the problem in a simple way by proposing an adaptive imaging technique which seeks the transmit frequency that maximizes the backscattered power. That is to disregard these unknown factors, it seemed more judicious to propose an US excitation whose frequency is selected in an adaptive way.

- 1. Transmit pulse with the frequency f_{old} and a 4 cycles \rightarrow Constant transmit power
- 2. Repeat (1) twenty times
- 3. Compensation of bandwidth transducers
- 4. Linear combination of twenty signals by principal component analysis
- 5. Backscattered power of the new signal
- 6. Optimal frequency f_{new} computed by the optimization algorithm \rightarrow maximizing backscattered power **Two different optimization algorithms**
 - Golden section search (GSS) Choose two frequencies (f_1 and f_2) around the maximum power. Reduce the intervals with a third frequency f_3
 - Gradient ascent (GA) steps proportional to the gradient of energy

$$\rightarrow \mathbf{I}_{k+1} = \mathbf{I}_k + \alpha_k \nabla \mathbf{E}(\mathbf{I}_k)$$

7. $f_{old} = f_{new}$ and return to (1)

E-Mail: sebastien.menigot@etu.univ-tours.fr jean-marc.girault@univ-tours.fr

Improvement of the power response in contrast imaging with transmit frequency optimization Sébastien Ménigot, Anthony Novell, Ayache Bouakaz and Jean-Marc Girault

Université François Rabelais de Tours, Tours, France INSÉRM, U930, Tours, France CNRS, ERL 3106, Tours, France

- cattered

3. Materials

Microbubbles

- Microbulles SonoVueTM: mean diameter of 4.5 μ m with shell thickness of 1 nm ; Resonance frequency : $f_R = 2.1$ MHz ► Concentration: 1/2000 diluted solution of SonovueTM
- Immersed in a blood mimicking fluid (BMF)

Acoustical Measurements

- Arbitrary function generator piloted by Matlab®
- 2 perpendicular transducers :
 - Emission : 2.25 MHz BW 74%
 - 2. Reception : 3.5 MHz BW 63%

4. Results : simulation

erec	IPressure	Frequency
	244 kPa	2.25 MHz
	222 kPa	1.65 MHz
	370 kPa	2.25 MHz
	308 kPa	1.48 MHz

5. Results : experiments

increases.

The CTR is optimized with the maximization of backscattered power in around 10 iterations.

6. Discussion

In vitro, the power is computed for a cloud of microbubbles. To cancel the movements of the cloud, we repeat the experiment. A high number of repetition and a high number of iterations could destroy the microbubbles and thus the power could decrease. A trade-off must be found to avoid the destruction of the microbubbles. By proposing a close loop system whose frequency adapt itself with the perfused media, throughout the examination, the optimization system adapt itself to the remaining bubbles population thus allowing an increase of the 37% examination duration.

7. Conclusion & future prospects

- gain increases the CTR.
- Increase of the 37% examination duration
- maximization
- Simultaneous adaptation in frequency and in amplitude

Acknowledgement: This work was supported by Agence Nationale de la Recherche. Project ANR 07, Tecsan 015, MONitoring response to THERapy with a novel ultrasound technology

The optimization permits to increase the backscattering energy. This

Simultaneous tissue echo minimization and microbubbles echo