Similarity and prototype based approach for classification of microcalcifications
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Abstract. Our aim is to show the utility of a formal framework of measures of comparison, especially for a
similarity based classification. We present both theoretical and practical arguments and we apply this approach

to a real problem.

1 Introduction

An important number of classification methods are
based on the comparisons of objects : the k-nearest
neighbors (k-NN) method or instance based learn-
ing [8], [1], clustering methods like [10], [11],... The
measure used to compare objects is often a distance.
But, more and more, a similarity or a dissimilarity
measure is chosen.

It is not easy to choose an appropriate measure.
The choice is linked to the problem of the charac-
terization of relevant properties for a classification
task.

In this paper, we use the formalization and the
framework introduced in [6] to deal with measures
of comparison. We test this framework in a chal-
lenging classification problem: the classification of
microcalcifications in mammography. Furthermore,
we test a classification method based on fuzzy pro-
totypes proposed in [13].

2 Similarity based-classification

2.1 The choice of a measure of similarity

A similarity based-classification method has to
solve the problem of the choice of a measure of
similarity or, more generally, a family of measures
of comparison. In [6], we propose to formalize a
measure of comparison between two fuzzy sets as a
function of the common features and the distinctive
features.

Formally, for any set Q of elements, let F(12)
denote the set of fuzzy subsets of 2, f4 the mem-
bership function of any description A in F(Q) and
for any fuzzy set measure M, the definition is:

Definition 1 An M-measure of comparison on )
is a mapping S : F(Q) x F(Q) — [0,1] such that
S(AvB) = FS(M(Am B)vM(B - A)7M(A - B))a
for a given mapping Fs : Rt x RT x RT — [0,1]
and a fuzzy set measure M on F(().

An M-measure of comparison can either evalu-
ate the likeliness of two descriptions (it is called an
M-measure of similitude), or their differences (it is
then called an M-measure of dissimilarity).

We consider the following properties for Fg:

o symmetry: Fs(u,v,w) = Fs(u,w,v)
o reflexivity: Fs(u,0,0) =1

e containment: Fs(u,0,w) = 1 whatever u # 0
and w may be.

o exclusiveness: Fis(0,v,w) = 0 whatever v and
w may be.

e minimality: Fs(u,0,0) =0

The measure of dissimilarity is not defined as the
dual of a measure of similitude, but it has specific
properties.

Definition 2 An M-measure of dissimilarity S on
Q is an M-measure of comparison satisfying the
minimality property and such that Fs(u,v,w) is in-
dependent of u and non decreasing in v and w.

A definite symmetrical M-measure of dissimilarity
satisfying the triangular inequality is a distance.

Definition 3 An M-measure of similitude S on
Q is an M-measure of comparison S such that
Fs(u,v,w) is non decreasing in u, non increasing
in v and w.

The relation given by Tversky [20] and gener-
alized to fuzzy sets [18], [6]: S(A,B) = f(AN
B)/(f(ANB)+af(A=B)+(f(B-A)) a,3 > 0is
an f-measure of similitude if f is a fuzzy set mea-
sure.

In order to classify the different measures more
subtly, we distinguish three types of M -measures of
similitude: satisfiability, inclusion and resemblance.



A measure of resemblance is used for a compar-
ison between the descriptions of two objects, of the
same level of generality, to decide if they have many
common characteristics.

Definition 4 An M-measure of resemblance on
is an M -measure of similitude S which satisfies the
reflexivity and the symmetry properties.

M-measures of resemblance S which satisfy an
additional property of T-transitivity are extensions
of indistinguishability relations [19], [21] to fuzzy
sets. In the case where T' is the minimum, we ob-
tain extensions of measures of similarity.

Measures of resemblance are appropriate for a
case-based reasoning or an instance based-learning.
In clustering methods, distances can be replaced
by a measure of resemblance. More generally,
similarity-based classification methods has to use
resemblance measure as soon as all objects have
the same level of generality.

A measure of satisfiability corresponds to a sit-
uation in which we consider a reference object or
a class and we need to decide if a new object is
compatible with it or satisfies the reference.

Definition 5 An M-measure of satisfiability S on
Q is an M-measure of similitude S satisfying the
containment and the exclusiveness properties and
such that Fs(u,v,w) is independent of w.

Analogy relations [7]: S(A,B) = inf, min(1 —
fe(xz) + fa(z),1), and fuzzy similitude [3]:
S(A,B) = 1 —supy, (=0 fB(z) are particular M-
measure of satisfiability.

Measures of satisfiability have been proven [6]
to be compatible with the contrast model intro-
duced by Tversky, satisfying major properties such
as matching, monotonicity, independence, solvabil-
ity [20].

Measures of satisfiability are appropriate for
rule base systems. For example, in [4] or in [2] ob-
jects are classified by means of a decision tree. In a
decision tree, a node represents a test on the cho-
sen attribute during the learning stage; each edge
of this node is associated with a value of the at-
tribute. The classification of a new object comes to
find consecutive edges from the root to the leaves.
In [4] and in [2], the comparison between the value
of an attribute of the new example with test-values
associated with each edge is realized by means of a
measure of satisfiability.

A measure of inclusion also concerns a situa-
tion with a reference object and measures if the
points common to A and B are important with re-
gard to A.

Definition 6 An M-measure of inclusion S on Q
is an M-measure of similitude satisfying the re-
flexivity and the exclusiveness properties such that
Fs(u,v,w) is independent of v.

As an example of M-measure of inclusion, we
can find the degree introduced by Sanchez [17]:
S(A,B) =|ANB|/|A|=M(ANB)/(M(AN B) +
M (A — B)) with the sigma-count as M.

Measures of inclusion are appropriate to
database management. For example, [12] et [16]
use measures of inclusion for their database system
in order to compare different classes.

2.2 Description of the classification method

Before the very step of classification, objects has to
be compared in order to construct a prototype for
each class.

2.2.1 Construction of a fuzzy prototype

According to E. Rosch [14], objects do not repre-
sent all in a same manner the category they belong.
They are spread along a scale of typicality. Accord-
ing to Rosch and Mervis [15] :

[-.] categories tend to become defined in
terms of prototypes or prototypical in-
stances that contain the attributes most
representative of items inside and least
representative of items outside the cate-

gory.(p-30)

Then, the notion of prototype is linked to the no-
tion of typicality. Zadeh [22] has also emphasized
this aspect: the typicality is a question of degree
and it implies that the concept of prototype is a
fuzzy concept.

In our method, we need to determine the typi-
cality of each value appearing in a learning database
in order to construct a fuzzy prototype.

Degree of typicality We consider that the de-
gree of typicality of an object depends positively on
its total resemblance to others objects of its class
(internal resemblance) and on its total dissimilarity
to objects of other classes (external dissimilarity).
The term “resemblance” refers here to measures of
resemblance. Indeed, objects are compared two by
two in order to determine their total resemblance
to others objects of its class. This situation of com-
parison corresponds to a situation where objects are
considered to have the same level of generality. No
value can be taken as a reference. So, this situa-
tion needs a measure of resemblance as a measure
of similitude.

Let X be a set of objects. We suppose that
there exists a partition given on X composed by
crisp classes C;. The typicality of the value v of an



attribute A of an object O of the class C; is com-
puted as follows :

Step 1. Compute the resemblance r(v,v;) between
v and the value v; of the attribute A for any
example of the same class C;. The global re-
semblance R(v) relative to the set of values
of A present in examples, is obtained in ag-
gregating the degrees r(v,v;) computed as
above described.

Step 2. Compute the dissimilarity d(v,v;) between
v and the value v; of the attribute A for any
example of class Cj, different from C;. The
total dissimilarity D(v) relative to the set
of values of A present in examples, is ob-
tained in aggregating the degrees d(v,v;)
computed as above described.

Step 3. The aggregation of this two values, R(v) et
D(v), gives the typicality T'(v) of v, accord-

ing to the attribute A, for the class C;.

Fuzzy prototype Degrees of typicality partici-
pate in the construction of a fuzzy prototype of
a given class. For an attribute A, the degree of
typicality of each value of A is computed for each
class. Then, the fuzzy prototype is composed by
the most typical value(s) for each attribute of a
considered class. That is to say that a fuzzy pro-
totype is a virtual object described by means of
the same attributes that those pertaining to the
learning database. The values taken by the fuzzy
prototype are the most typical.

A prototype, as said Zadeh [22], is not a unique
object or a group of objects. It is more a fuzzy
schema enabling to generate a set of objects be-
cause of the synthesized information it contains.
For Desclés [9], this generation of objects is pos-
sible by means of successive determination of the
prototype.

The prototype is intrinsically interesting be-
cause of its power of description. This power can
be used for a classification process.

2.2.2 Classification

A new object with an unknown class is classified
thanks to a comparison with each prototype of each
class. Indeed, a prototype can be considered as a
rule describing a class [5]. For example, the proto-
type of the class “scientific student” might be: very
good in mathematics, physics, medium in literature
and foreign language. In other words, if math-
ematics = very good, and physics = very good,
and literature = medium and foreign language =
medium then class = scientific student.

The classification process is based on the ques-
tion: does the new object satisfy a prototype? This

question entails the use of a measure of satisfia-
bility for each comparison. The computed degrees
of satisfiability are aggregated in order to obtain a
total degree of satisfiability of a new object for a
prototype.

3 Application

3.1 Description of the problem

One woman in 8 in the United States and one
woman in 10 in Europe will have a breast cancer
during her life. Nowadays, mammography is the
primary diagnostic procedure for the early detec-
tion of breast cancer. Microcalcification clusters
are an important element in the detection of breast
cancer. This kind of finding is the direct expression
of pathologies which may be benign or malignant.
The objective is to help radiologists to increase their
sensitivity in both detection and characterization
task.

The description of microcalcifications is not an
easy task, even for an expert. If some of them are
easy to detect and to identify, some others are more
ambiguous. The texture of the image, the small size
of objects to be detected (less than one millime-
ter), the various aspects they have, the radiological
noise, are parameters which impact the detection
and the characterization tasks (Figure 1).

malignant cases benign cases
Figure 1 — Imprecision and uncertainty of the
contours of microcalcifications

More generally, mammographic images present
two kinds of ambiguity: imprecision and uncer-
tainty. The imprecision on the contour of an object
comes from the fuzzy aspect of the borders: the
expert can define approximately the contour but
certainly not with a high spatial precision. The
uncertainty comes from the microcalcification su-
perimpositions: because objects are built from the
superimpositions of several 3D structures on a sin-
gle image, we may have a doubt about the contour
position.



Following the human reasoning, the classical im-
age processing chain for image interpretation has
three steps :

e Detection / segmentation of objects

e Object characterization / extraction and
transformation of the image information

e Classification / diagnostic

An algorithm, proposed in [2], has been de-
veloped in order to characterize microcalcification
clusters, following these steps.

3.2 Our goal

The challenging problem is to design an algorithm
to recognize a malignant cluster of microcalcifica-
tions in order to help radiologists to detect auto-
matically the breast cancer. Identification and con-
touring of the microcalcifications are performed be-
fore analyzing clusters. This first stage is illustrated
in Figure 2.

Figure 2 — Contours of microcalcifications

In this paper, we focus on the microcalcifica-
tions classification. The two first steps of image
interpretation are considered to be solved. Then,
we dispose of the microcalcifications descriptions,
classified in round or not, small or not, long-shaped
or not. A learning database and a test database
are supposed to be given for each characterization
(round or not, small or not, long-shaped or not).
Our goals are:

e to describe each class (round or not, small or
not, long-shaped or not) by a fuzzy prototype
e to classify an unknown microcalcification by

comparing it with each fuzzy prototype.

The sizes of learning and test databases are
given in Tab 1.

Learning database | Test database
Round 28 39
Not round 66 69
Long 42 43
Not long 100 93
Small 107 118
Not small 43 41

Tab 1 - Size of learning and test database.

Each microcalcification is described by means of 7
fuzzy attributes. These 7 attributes enable to de-
scribe more precisely:

e the contrast (1 attribute)

e the shape (3 attributes) :
pacityl, compacity?2.

elongation, com-

e the dimension (2 attributes)
perimeter.

e the volume (1 attribute)

surface,

Figure 3 gives an example of a microcalcification
classified “small”. Among seven attributes, only
two are presented here: surface and compacity.
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Figure 3 — Description of a microcalcification by
means of fuzzy values.

We present here the best prototypes obtained
for the class “round” and “not round” (Figure 4),
regarding the rate of classification totalized. The
results of our method and of A-NN method of clas-
sification for different classes are given in Tab 2.

Our method | k-NN

Round/Not round 82.41 79.63
Long/Not long 80.88 73.53
Small/Not small 93.71 91.82

Tab 2 — Results of classification in percent of
well-classified.
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Figure 4 — Prototypes of the classes

1.2

0.8
0.6
0.4
0.2

Fsurface

1.2

0.8
0.6
0.4
0.2

fLenghtening

1.2

0.8
0.6
0.4
0.2

fCompacityl

1.2

0.8
0.6
0.4
0.2

fCompacity2

1.2

0.8
0.6
0.4
0.2

JPerimeter

0 5 10 15 20 25 30 35 40 45 50

NOT ROUND

surface

| | | |
100 150 200 250 300

Lenghtening
| | | |

50 100 150 200 250

Compacityl

| |

0 5 10 15 20

Compacity2

| | | | |

0 5 10 15 20 25 30

Perimeter

“round” and “not round”



4 Conclusion

The formal framework of comparison measures we
have proposed has been tested with a real prob-
lem. This test has confirmed that this framework
is performant. Furthermore, degrees of typicality
based on comparison measures are effective for the
construction of fuzzy prototypes. These prototypes
are also effective for a classification problem.
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