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Abstract

Metric learning has attracted a lot of interest over the last decade, but the
generalization ability of such methods has not been thoroughly studied. In
this paper, we introduce an adaptation of the notion of algorithmic robust-
ness (previously introduced by Xu and Mannor) that can be used to derive
generalization bounds for metric learning. We further show that a weak
notion of robustness is in fact a necessary and sufficient condition for a met-
ric learning algorithm to generalize. To illustrate the applicability of the
proposed framework, we derive generalization results for a large family of
existing metric learning algorithms, including some sparse formulations that
are not covered by previous results.

Keywords: Metric learning, Algorithmic robustness, Generalization bounds

1. Introduction

Metric learning consists in automatically adjusting a distance or similar-
ity function using training examples. The resulting metric is tailored to the
problem of interest and can lead to dramatic improvement in classification,
clustering or ranking performance. For this reason, metric learning has at-
tracted a lot of interest for the past decade (see [1, 2] for recent surveys).
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amaury.habrard@univ-st-etienne.fr (Amaury Habrard)
1Most of the work in this paper was carried out while the author was affiliated with

Laboratoire Hubert Curien UMR 5516, Université de Saint-Etienne, France.
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Existing approaches rely on the principle that pairs of examples with the same
(resp. different) labels should be close to each other (resp. far away) under a
good metric. Learning thus generally consists in finding the best parameters
of the metric function given a set of labeled pairs.2 Many methods focus on
learning a Mahalanobis distance, which is parameterized by a positive semi-
definite (PSD) matrix and can be seen as finding a linear projection of the
data to a space where the Euclidean distance performs well on the training
pairs (see for instance [3, 4, 5, 6, 7, 8, 9]). More flexible metrics have also been
considered, such as similarity functions without PSD constraint [10, 11, 12].
The resulting distance or similarity is used to improve the performance of a
metric-based algorithm such as k-nearest neighbors [5, 7], linear separators
[12, 13], K-Means clustering [3] or ranking [9].

Despite the practical success of metric learning, little work has gone into
a formal analysis of the generalization ability of the resulting metrics on un-
seen data. The main reason for this lack of results is that metric learning
violates the common assumption of independent and identically distributed
(IID) data. Indeed, the training pairs are generally given by an expert and/or
extracted from a sample of individual instances, by considering all possible
pairs or only a subset based for instance on the nearest or farthest neighbors
of each example, some criterion of diversity [14] or a random sample. Online
learning algorithms [15, 6, 10] can still offer some guarantees in this setting,
but only in the form of regret bounds assessing the deviation between the
cumulative loss suffered by the online algorithm and the loss induced by the
best hypothesis that can be chosen in hindsight. These may be converted
into proper generalization bounds under restrictive assumptions [16]. Apart
from these results on online metric learning, very few papers have looked at
the generalization ability of batch methods. The approach of Bian and Tao
[17, 18] uses a statistical analysis to give generalization guarantees for loss
minimization approaches, but their results rely on restrictive assumptions on
the distribution of the examples and do not take into account any regulariza-
tion on the metric. Jin et al. [19] adapted the framework of uniform stability
[20] to regularized metric learning. However, their approach is based on a
Frobenius norm regularizer and cannot be applied to other type of regulariza-
tion, in particular sparsity-inducing norms [21] that are used in many recent

2Some methods use triplets (x, y, z) such that x should be closer to y than to z, where
x and y share the same label, but not z.
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metric learning approaches [22, 8, 23, 9]. Independently and in parallel to our
work,3 Cao et al. [25] proposed a framework based on Rademacher analysis,
which is general but rather complex and limited to pair constraints.

In this paper, we propose to study the generalization ability of metric
learning algorithms according to a notion of algorithmic robustness. This
framework, introduced by Xu et al. [26, 27], allows one to derive general-
ization bounds when the variation in the loss associated with two “close”
training and testing examples is bounded. The notion of closeness relies on a
partition of the input space into different regions such that two examples in
the same region are considered close. Robustness has been successfully used
to derive generalization bounds in the classic supervised learning setting,
with results for SVM, LASSO, etc. We propose here to adapt algorithmic
robustness to metric learning. We show that, in this context, the problem of
non-IIDness of the training pairs/triplets can be worked around by simply
assuming that they are built from an IID sample of labeled examples. More-
over, following [27], we provide a notion of weak robustness that is necessary
and sufficient for metric learning algorithms to generalize well, confirming
that robustness is a fundamental property. We illustrate the applicability of
the proposed framework by deriving generalization bounds, using very few
approach-specific arguments, for a family of problems that is larger than what
is considered in previous work [19, 17, 18, 25]. In particular, results apply to
a vast choice of regularizers, without any assumption on the distribution of
the examples and using a simple proof technique.

The rest of the paper is organized as follows. We introduce some pre-
liminaries and notations in Section 2. Our notion of algorithmic robustness
for metric learning is presented in Section 3. The necessity and sufficiency
of weak robustness is shown in Section 4. Section 5 illustrates the wide ap-
plicability of our framework by deriving bounds for existing metric learning
formulations. Section 6 discusses the merits and limitations of the proposed
analysis compared to related work, and we conclude in Section 7.

2. Preliminaries

2.1. Notations

Let X be the instance space, Y be a finite label set and let Z = X × Y .
In the following, z = (x, y) ∈ Z means x ∈ X and y ∈ Y . Let µ be an

3We posted a preliminary version of the present work on arXiv in 2012 [24].
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unknown probability distribution over Z. We assume that X is a compact
convex metric space w.r.t. a norm ‖ · ‖ such that X ⊂ R

d, thus there exists
a constant R such that ∀x ∈ X, ‖x‖ ≤ R. A similarity or distance function
is a pairwise function f : X ×X → R. In the following, we use the generic
term metric to refer to either a similarity or a distance function. We denote
by s a labeled training sample consisting of n training instances (s1, . . . , sn)
drawn IID from µ. The sample of all possible pairs built from s is denoted
by ps such that ps = {(s1, s1), . . . , (s1, sn), . . . , (sn, sn)}. A metric learning
algorithm A takes as input a finite set of pairs from (Z × Z)n and outputs
a metric. We denote by Aps the metric learned by an algorithm A from a
sample ps of pairs. For any pair of labeled examples (z, z′) and any metric
f , we associate a loss function l(f, z, z′) which depends on the examples and
their labels. This loss is assumed to be nonnegative and uniformly bounded
by a constant B. We define the generalization loss (or true loss) over µ as

L(f) = Ez,z′∼µl(f, z, z
′),

and the empirical loss over the sample ps as

lemp(f) =
1

n2

n
∑

i=1

n
∑

j=1

l(f, si, sj) =
1

n2

∑

(si,sj)∈ps

l(f, si, sj).

We are interested in bounding the deviation between lemp(f) and L(f).

2.2. Algorithmic Robustness in Classic Supervised Learning

The notion of algorithmic robustness, introduced by Xu and Mannor
[26, 27] in the context of classic supervised learning, is based on the deviation
between the loss associated with two training and testing instances that
are “close”. Formally, an algorithm is said (K, ǫ(s))-robust if there exists a
partition of the space Z = X ×Y into K disjoint subsets such that for every
training and testing instances belonging to the same region of the partition,
the variation in their associated loss is bounded by a term ǫ(s). From this
definition, the authors have proved a bound for the difference between the
empirical loss and the true loss that has the form

ǫ(s) + B

√

2K ln 2 + 2 ln 1/δ

n
, (1)
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with probability 1−δ. This bound depends on K and ǫ(s). The latter should
tend to zero asK increases to ensure that (1) also goes to zero when n → ∞.4

When considering metric spaces, the partition of Z can be obtained by the
notion of covering number [28].

Definition 1. For a metric space (X, ρ), and T ⊂ X, we say that T̂ ⊂ T
is a γ-cover of T , if ∀t ∈ T , ∃t̂ ∈ T̂ such that ρ(t, t′) ≤ γ. The γ-covering
number of T is

N (γ, T, ρ) = min{|T̂ | : T̂ is a γ − cover of T}.

When X is a compact convex space, for any γ > 0, the quantity N (γ,X, ρ)
is finite leading to a finite cover. If we consider the space Z, note that the
label set can be partitioned into |Y | sets. Thus, Z can be partitioned into
|Y |N (γ,X, ρ) subsets such that if two instances z1 = (x1, y1), z2 = (x2, y2)
belong to the same subset, then y1 = y1 and ρ(x1, x2) ≤ γ.

3. Robustness and Generalization for Metric Learning

We present here our adaptation of robustness to metric learning. The idea
is to use the partition of Z at the pair level: if a new test pair of examples is
close to a training pair, then the loss value for each pair must be close. Two
pairs are close when each instance of the first pair fall into the same subset of
the partition of Z as the corresponding instance of the other pair, as shown
in Figure 1. A metric learning algorithm with this property is said robust.
This notion is formalized as follows.

Definition 2. An algorithm A is (K, ǫ(·)) robust for K ∈ N and ǫ(·) : (Z ×
Z)n → R if Z can be partitioned into K disjoints sets, denoted by {Ci}Ki=1,
such that for all sample s ∈ Zn and the pair set p(s) associated to this sample,
the following holds:
∀(s1, s2) ∈ p(s), ∀z1, z2 ∈ Z, ∀i, j = 1, . . . , K : if s1, z1 ∈ Ci and s2, z2 ∈ Cj

then
|l(Aps , s1, s2)− l(Aps , z1, z2)| ≤ ǫ(ps). (2)

4This point will be made clear by the examples provided in Section 5.
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Figure 1: Illustration of the robustness property in the classic and metric learning settings.
In this example, we use a cover based on the L1 norm. In the classic definition, if any
example z′ falls in the same region Ci as a training example z, then the deviation between
their loss must be bounded. In the metric learning definition proposed in this work, for
any pair (z, z′) and a training pair (z1, z2), if z, z1 belong to some region Ci and z′, z2 to
some region Cj , then the deviation between the loss of these two pairs must be bounded.

K and ǫ(·) quantify the robustness of the algorithm and depend on the
training sample. The property of robustness is required for every training
pair of the sample; we will later see that this property can be relaxed.

Note that this definition of robustness can be easily extended to triplet
based metric learning algorithms. Instead of considering all the pairs ps
from an IID sample s, we take the admissible triplet set trips of s such that
(s1, s2, s3) ∈ trips means s1 and s2 share the same label while s1 and s3 have
different ones, with the interpretation that s1 must be more similar to s2 than
to s3. The robustness property can then be expressed by: ∀(s1, s2, s3) ∈
trips, ∀z1, z2, z3 ∈ Z, ∀i, j, k = 1, . . . , K : if s1, z1 ∈ Ci, s2, z2 ∈ Cj and
s3, z3 ∈ Ck then

|l(Atrips , s1, s2, s3)− l(Atrips , z1, z2, z3)| ≤ ǫ(trips). (3)

3.1. Generalization of robust algorithms

We now give a PAC generalization bound for metric learning algorithms
fulfilling the property of robustness (Definition 2). We first begin by present-
ing a concentration inequality that will help us to derive the bound.
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Proposition 1 ([29]). Let (|N1|, . . . , |NK |) an IID multinomial random vari-
able with parameters n and (µ(C1), . . . , µ(CK)). By the Breteganolle-Huber-

Carol inequality we have: Pr
{

∑K

i=1

∣

∣

∣

|Ni|
n

− µ(Ci)
∣

∣

∣
≥ λ

}

≤ 2K exp
(

−nλ2

2

)

,

hence with probability at least 1− δ,

K
∑

i=1

∣

∣

∣

∣

Ni

n
− µ(Ci)

∣

∣

∣

∣

≤
√

2K ln 2 + 2 ln(1/δ)

n
. (4)

We now give our first result on the generalization of metric learning al-
gorithms.

Theorem 1. If a learning algorithm A is (K, ǫ(·))-robust and the training
sample is made of the pairs ps obtained from a sample s generated by n IID
draws from µ, then for any δ > 0, with probability at least 1− δ we have:

|L(Aps)− lemp(Aps)| ≤ ǫ(ps) + 2B

√

2K ln 2 + 2 ln 1/δ

n
.

Proof LetNi be the set of index of points of s that fall into the Ci. (|N1|, . . . , |NK |)
is a IID random variable with parameters n and (µ(C1), . . . , µ(CK)). We
have:

|L(Aps)− lemp(Aps)|

=

∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)µ(Cj)−
1

n2

n
∑

i,j=1

l(Aps , si, sj)

∣

∣

∣

∣

∣

(a)

≤
∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)µ(Cj)−

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)
|Nj|
n

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)
|Nj|
n

− 1

n2

n
∑

i,j=1

l(Aps , si, sj)

∣

∣

∣

∣

∣
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(b)

≤
∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)(µ(Cj)−
|Nj|
n

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)µ(Ci)
|Nj|
n

−

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)
|Ni||Nj|

n

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i,j=1

Ez1,z2∼µ (l(Aps , z1, z2)|z1 ∈ Ci, z2 ∈ Cj)
|Ni||Nj|

n
− 1

n2

n
∑

i,j=1

l(Aps , si, sj)

∣

∣

∣

∣

∣

(c)

≤ B

(∣

∣

∣

∣

∣

K
∑

j=1

µ(Cj)−
|Nj|
n

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i=1

µ(Ci)−
|Ni|
n

∣

∣

∣

∣

∣

)

+

∣

∣

∣

∣

∣

∣

1

n2

K
∑

i,j=1

∑

so∈Ni

∑

sl∈Nj

max
z∈Ci

max
z′∈Cj

|l(Aps , z, z
′)− l(Aps , so, sl)|

∣

∣

∣

∣

∣

∣

(d)

≤ ǫ(ps) + 2B
K
∑

i=1

∣

∣

∣

∣

|Ni|
n

− µ(Ci)

∣

∣

∣

∣

(e)

≤ ǫ(ps) + 2B

√

2K ln 2 + 2 ln 1/δ

n
.

Inequalities (a) and (b) are due to the triangle inequality, (c) uses the fact
that l is bounded by B, that

∑K

i=1 µ(Ci) = 1 by definition of a multinomial

random variable and that
∑K

j=1
|Nj |
n

= 1 by definition of the Nj. Lastly, (d) is
due to the hypothesis of robustness (Equation 2) and (e) to the application
of Proposition 1. ✷

The previous bound depends on K which is given by the cover chosen for
Z. If for any K, the associated ǫ(·) is a constant (i.e. ǫK(s) = ǫK) for any s,
we can obtain a bound that holds uniformly for all K:

|L(Aps)− lemp(Aps)| ≤ inf
K≥1

[

ǫK + 2B

√

2K ln 2 + 2 ln 1/δ

n

]

.

For triplet based metric learning algorithms, by following the definition
of robustness given by Equation 3 and adapting straightforwardly the losses
to triplets such that they output zero for non admissible ones, Theorem 1
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can be easily extended to obtain the following generalization bound:

|L(Atrips)− lemp(Atrips)| ≤ ǫ(trips) + 3B

√

2K ln 2 + 2 ln 1/δ

n
. (5)

3.2. Pseudo-robustness

The previous study requires the robustness property to be satisfied for
every training pair. In this section, we show that it is possible to relax the
robustness such that it must hold only for a subset of the possible pairs, while
still providing generalization guarantees.

Definition 3. An algorithm A is (K, ǫ(·), p̂n(·)) pseudo-robust for K ∈ N,
ǫ(·) : (Z × Z)n → R and p̂n(·) : (Z × Z)n → {1, . . . , n2}, if Z can be
partitioned into K disjoints sets, denoted by {Ci}Ki=1, such that for all s ∈ Zn

IID from µ, there exists a subset of training pairs samples p̂s ⊆ ps, with
|p̂s| = p̂n(ps), such that the following holds:
∀(s1, s2) ∈ p̂s, ∀z1, z2 ∈ Z, ∀i, j = 1, . . . , K: if s1, z1 ∈ Ci and s2, z2 ∈ Cj

then
|l(Aps , s1, s2)− l(Aps , z1, z2)| ≤ ǫ(ps). (6)

We can easily observe that (K, ǫ(·))-robust is equivalent to (K, ǫ(·), n2) pseudo-
robust. The following theorem gives the generalization guarantees associated
with the pseudo-robustness property.

Theorem 2. If a learning algorithm A is (K, ǫ(·), p̂n(·)) pseudo-robust, the
training pairs ps come from a sample generated by n IID draws from µ, then
for any δ > 0, with probability at least 1− δ we have:

|L(Aps)− lemp(Aps)| ≤
p̂n(ps)

n2
ǫ(ps)+B(

n2 − p̂n(ps)

n2
+2

√

2K ln 2 + 2 ln 1/δ

n
).

Proof It is similar to that of Theorem 1 and is given in Appendix A. ✷

This notion of pseudo-robustness is very relevant to metric learning. In-
deed, it is often difficult and potentially damaging to optimize the metric with
respect to all possibles pairs, and it has been observed in practice that focus-
ing on a subset of carefully-selected pairs (e.g., defined according to nearest-
neighbors) gives much better generalization performance [7, 12]. Theorem 2
confirms that this principle is well-founded: as long as the robustness prop-
erty is fulfilled for a (large enough) subset of the pairs, the resulting metric
has generalization guarantees. Note that this notion of pseudo-robustness
can be also easily adapted to triplet based metric learning.
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4. Necessity of Robustness

We prove here that a notion of weak robustness is actually necessary and
sufficient to generalize in a metric learning setup. This result is based on an
asymptotic analysis following the work of Xu and Mannor [27]. We consider
pairs of instances coming from an increasing sample of training instances
s = (s1, s2, . . .) and from a sample of test instances t = (t1, t2, . . .) such that
both samples are assumed to be drawn IID from a distribution µ. We use
s(n) and t(n) to denote the first n examples of the two samples respectively,
while s∗ denotes a fixed sequence of examples.

We use L(f, pt(n)) =
1
n2

∑

(si,sj)∈pt(n)
l(f, si, sj) to refer to the average loss

given a set of pairs for any learned metric f , and L(f) = Ez,z′∼µl(f, z, z
′) for

the expected loss.
We first define a notion of generalizability for metric learning.

Definition 4. Given a training pair set ps∗ coming from a sequence of ex-
amples s∗, a metric learning method A generalizes w.r.t. ps∗ if

lim
n

∣

∣

∣
L(Aps∗(n)

)− L(Aps∗(n)
, ps∗(n))

∣

∣

∣
= 0.

Furthermore, a learning method A generalizes with probability 1 if it gener-
alizes with respect to the pairs ps of almost all samples s IID from µ.

Note this notion of generalizability implies convergence in mean. We then
introduce the notion of weak robustness for metric learning.

Definition 5. Given a set of training pairs ps∗ coming from a sequence of
examples s∗, a metric learning method A is weakly robust with respect to ps∗
if there exists a sequence of {Dn ⊆ Zn} such that Pr(t(n) ∈ Dn) → 1 and

lim
n

{

max
ŝ(n)∈Dn

∣

∣

∣
L(Aps∗(n)

, pŝ(n))− L(Aps∗(n)
, ps∗(n))

∣

∣

∣

}

= 0.

Furthermore, a learning method A is almost surely weakly robust if it is robust
with respect to almost all s.

Recall that the definition of robustness requires the labeled sample space
to be partitioned into disjoints subsets such that if some instances of pairs
of train/test examples belong to the same partition, then they have similar
loss. Weak robustness is a generalization of this notion where we consider the
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average loss of testing and training pairs: if for a large (in the probabilistic
sense) subset of data, the testing loss is close to the training loss, then the
algorithm is weakly robust. From Proposition 1, we can see that if for any
fixed ǫ > 0 there exists K such that an algorithm A is (K, ǫ) robust, then
A is weakly robust. We now give the main result of this section about the
necessity of robustness.

Theorem 3. Given a fixed sequence of training examples s∗, a metric learn-
ing method A generalizes with respect to ps∗ if and only if it is weakly robust
with respect to ps∗.

Proof Following [27], the sufficiency is obtained by the fact that the testing
pairs are obtained from a sample t(n) constituted of n IID instances. We
give the proof in Appendix B.

For the necessity, we need the following lemma which is a direct adap-
tation of a result introduced in [27] (Lemma 2). We provide the proof in
Appendix C for the sake of completeness.

Lemma 1. Given s∗, if a learning method is not weakly robust w.r.t. ps∗,
there exists ǫ∗, δ∗ > 0 such that the following holds for infinitely many n:

Pr(|L(Aps∗(n)
, pt(n))− L(Ap∗

s
(n), ps∗(n))| ≥ ǫ∗) ≥ δ∗. (7)

Now, recall that l is positive and uniformly bounded by B, thus by the
McDiarmid inequality (recalled in Appendix D) we have that for any ǫ, δ > 0
there exists an index n∗ such that for any n > n∗, with probability at least
1− δ, we have | 1

n2

∑

(ti,tj)∈pt(n)
l(Aps∗(n)

, ti, tj)− L(Aps∗(n)
)| ≤ ǫ. This implies

the convergence L(Aps∗(n)
, pt(n)) − L(Aps∗(n)

)
Pr→ 0, and thus from a given

index:

|L(Aps∗(n)
, pt(n))− L(Aps∗(n)

)| ≤ ǫ∗

2
. (8)

Now, by contradiction, suppose algorithmA is not weakly robust, Lemma 1
implies Equation 7 holds for infinitely many n. This combined with Equa-
tion 8 implies that for infinitely many n:

|L(Aps∗(n)
, pt(n))− L(Aps∗(n)

, ps∗(n))| ≥
ǫ∗

2

which means A does not generalize, thus the necessity of weak robustness is
established. ✷
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The following corollary follows immediately from Theorem 3.

Corollary 1. A metric learning method A generalizes with probability 1 if
and only if it is almost surely weakly robust.

5. Examples of Robust Metric Learning Algorithms

We first restrict our attention to Mahalanobis distance learning algo-
rithms of the following form:

min
M�0

c‖M‖+ 1
n2

∑

(si,sj)∈ps

g(yij[1− f(M, xi, xj)]), (9)

where si = (xi, yi), sj = (xj, yj), yij = 1 if yi = yj and −1 otherwise,
f(M, xi, xj) = (xi − xj)

TM(xi − xj) is the Mahalanobis distance parameter-
ized by the d×d PSD matrixM, ‖·‖ some matrix norm and c a regularization
parameter. The loss function l(f, si, sj) = g(yij[1 − f(M, xi, xj)]) outputs a
small value when its input is large positive and a large value when it is large
negative. We assume g to be nonnegative and Lipschitz continuous with Lip-
schitz constant U . Lastly, g0 = supsi,sj

g(yij[1 − f(0, xi, xj)]) is the largest
loss when M is 0. The general form (9) encompasses many existing metric
learning formulations. For instance, in the case of the hinge loss and Frobe-
nius norm regularization, we recover [19], while the family of formulations
studied in [30] corresponds to a trace norm regularizer.

To prove the robustness of (9), we will use the following theorem, which is
based on the geometric intuition behind robustness. It essentially says that
if a metric learning algorithm achieves approximately the same testing loss
for testing pairs that are close to each other, then it is robust.

Theorem 4. Fix γ > 0 and a metric ρ of Z. Suppose A satisfies:
∀z1, z2, z′1, z′2 : z1, z2 ∈ s, ρ(z1, z

′
1) ≤ γ, ρ(z2, z

′
2) ≤ γ,

|l(Aps , z1, z2)− l(Aps , z
′
1, z

′
2)| ≤ ǫ(ps)

and N (γ/2,Z, ρ) < ∞. Then A is (N (γ/2,Z, ρ), ǫ(ps))-robust.

Proof By definition of covering number, we can partition X in N (γ/2, X, ρ)
subsets such that each subset has a diameter less or equal to γ. Furthermore,
since Y is a finite set, we can partition Z into |Y |N (γ/2, X, ρ) subsets {Ci}
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such that z1, z
′
1 ∈ Ci ⇒ ρ(z1, z

′
1) ≤ γ. Therefore, ∀z1, z2, z′1, z′2 : z1, z2 ∈

s, ρ(z1, z
′
1) ≤ γ, ρ(z2, z

′
2) ≤ γ,

|l(Aps , z1, z2)− l(Aps , z
′
1, z

′
2)| ≤ ǫ(ps),

this implies z1, z2 ∈ s, z1, z
′
1 ∈ Ci, z2, z

′
2 ∈ Cj ⇒ |l(Aps , z1, z2)−l(Aps , z

′
1, z

′
2)| ≤

ǫ(ps), which establishes the theorem. ✷

We provide a similar theorem for triplet-based approaches in Appendix
E. This theorem provides a roadmap for deriving generalization guarantees
based on the robustness framework. Indeed, given a partition of the input
space, one must bound the deviation between the loss for any pair of examples
with corresponding elements belonging to the same partitions. This bound is
generally a constant that depends on the problem to solve and the thinness of
the partition defined by γ. This bound tends to zero as γ → 0, which ensures
the consistency of the approach. While this framework is rather general, the
price to pay is the relative looseness of the bounds, as discussed in Section 6.

Recall that we assume that ∀x ∈ X, ‖x‖ ≤ R for some convenient norm
‖ · ‖. Following Theorem 4, we now prove the robustness of (9) when ‖M‖
is the Frobenius norm.

Example 1 (Frobenius norm). Algorithm (9) with the Frobenius norm

‖M‖ = ‖M‖F =
√

∑d

i=1

∑d

j=1 m
2
ij is (|Y |N (γ/2, X, ‖ · ‖2), 8URγg0

c
)-robust.

Proof Let M∗ be the solution given training data ps. Thus, due to optimal-
ity of M∗, we have

c‖M∗‖F +
1

n2

∑

(si,sj)∈ps

g(yij[1− f(M, xi, xj)]) ≤

c‖0‖F +
1

n2

∑

(si,sj)∈ps

g(yij[1− f(0, xi, xj)]) = g0

and thus ‖M∗‖F ≤ g0/c. We can partition Z as |Y |N (γ/2, X, ‖·‖2) sets, such
that if z and z′ belong to the same set, then y = y′ and ‖x− x′‖2 ≤ γ. Now,
for z1, z2, z

′
1, z

′
2 ∈ Z, if y1 = y′1, ‖x1 − x′

1‖2 ≤ γ, y2 = y′2 and ‖x2 − x′
2‖2 ≤ γ,

13



then:

|g(y12[1− f(M∗, x1, x2)])− g(y′12[1− f(M∗, x′
1, x

′
2)])|

≤ U |(x1 − x2)
TM∗(x1 − x2)− (x′

1 − x′
2)

TM∗(x′
1 − x′

2)|
= U |(x1 − x2)

TM∗(x1 − x2)− (x1 − x2)
TM∗(x′

1 − x′
2)

+ (x1 − x2)
TM∗(x′

1 − x′
2)| − (x′

1 − x′
2)

TM∗(x′
1 − x′

2)|
= U |(x1 − x2)

TM∗(x1 − x2 − (x′
1 + x′

2)) +

(x1 − x2 − (x′
1 + x′

2))
TM∗(x′

1 + x′
2)|

≤ U(|(x1 − x2)
TM∗(x1 − x′

1)|+ |(x1 − x2)
TM∗(x′

2 − x2)|
+ |(x1 − x′

1)
TM∗(x′

1 + x′
2)|+ |(x′

2 − x2)
TM∗(x′

1 + x′
2)|)

≤ U(‖x1 − x2‖2‖M∗‖F‖x1 − x′
1‖2 + ‖x1 − x2‖2‖M∗‖F‖x′

2 − x2‖2
+ ‖x1 − x′

1‖2‖M∗‖F‖x′
1 − x′

2‖2 + ‖x′
2 − x2‖2‖M∗‖F‖x′

1 − x′
2‖2)

≤ 8URγg0
c

Hence, the example holds by Theorem 4. ✷

Note that for the special case of Example 1, a generalization bound (with
same order of convergence rate) based on uniform stability was derived in
[19]. However, it is known that sparse algorithms are not stable [21], and
thus stability-based analysis fails to assess the generalization ability of recent
sparse metric learning approaches [22, 23, 8, 9, 30]. The key advantage of
robustness over stability is that we can obtain bounds similar to the Frobenius
case for arbitrary p-norms (or even any regularizer which is bounded below
by some p-norm) using equivalence of norms arguments. To illustrate this,
we show the robustness when ‖M‖ is the ℓ1 norm (used in [22, 23]) which
promotes sparsity at the entry level, the ℓ2,1 norm (used e.g. in [8]) which
induces sparsity at the column/row level, and the trace norm (used e.g. in
[9, 30]) which favors low-rank matrices.5 The proofs are reminiscent of that of
Example 1 and can be found in Appendix F and Appendix G, respectively.

Example 2 (ℓ1 norm). Algorithm (9) with ‖M‖ = ‖M‖1 is (|Y |N (γ,X , ‖·
‖1), 8URγg0

c
)-robust.

5In the last two cases, the linear projection space of the data induced by the learned
Mahalanobis distance is of lower dimension than the original space, allowing more efficient
computations and reduced memory usage.
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Example 3 (ℓ2,1 norm and trace norm). Consider Algorithm (9) with

‖M‖ = ‖M‖2,1 =
∑d

i=1 ‖mi‖2, where mi is the i-th column of M. This
algorithm is (|Y |N (γ,X , ‖ · ‖2), 8URγg0

c
)-robust. The same holds for the trace

norm ‖M‖∗, which is the sum of the singular values of M.

Some metric learning algorithms have kernelized versions, for instance [4,
5]. In the following example we show robustness for a kernelized formulation.

Example 4 (Kernelization). Consider the kernelized version of (9):

min
M�0

c‖M‖H + 1
n2

∑

(si,sj)∈ps

g(yij[1− f(M, φ(xi), φ(xj))]), (10)

where φ(·) is a feature mapping to a kernel space H, ‖ · ‖H the norm function
of H and k(·, ·) the kernel function. Consider a cover of X by ‖ · ‖2 (X being

compact) and let fH(γ)
△
= maxa,b∈X,‖a−b‖2≤γ(k(a, a) + k(b, b) − 2k(a, b)) and

Bγ = maxx∈X
√

k(x, x). If the kernel function is continuous, Bγ and fH are

finite for any γ > 0 and thus Algorithm 10 is (|Y |N (γ,X, ‖ · ‖2), 8UBγ

√
fHg0

c
)-

robust.

Proof Given in Appendix H. ✷

Finally, we illustrate the flexibility of our framework by deriving bounds
for another form of metric as well as for formulations based on triplet con-
straints.

Example 5. Consider Algorithm (9) with the bilinear similarity f(M, xi, xj) =
xT
i Mxj instead of the Mahalanobis distance, as studied in [10, 11, 12]. For

the regularizers considered in Examples 1 – 3, we can improve the robustness
to 2URγg0/c. For sake of completeness, the proof is given in Appendix I.

Example 6. Using triplet-based robustness (Equation 3), we can show the
robustness of two popular triplet-based metric learning approaches [4, 8] for
which no generalization guarantees were known (to the best of our knowledge).
These algorithms have the following form:

min
M�0

c‖M‖+ 1

|trips|
∑

(si,sj ,sk)∈trips

[1−(xi−xk)
TM(xi−xk)+(xi−xj)

TM(xi−xj)]+,
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where ‖M‖ = ‖M‖F in [4] or ‖M‖ = ‖M‖1,2 in [8]. These methods are
(N (γ,Z, ‖ · ‖2), 16URγg0

c
)-robust. The proof is given in Appendix J, the addi-

tional factor 2 comes from the use of triplets instead of pairs. This example
illustrates that robustness results for triplet-based approaches can be derived
from contraint-based methods.

6. Discussion

This section discusses the bounds derived from the proposed framework
and put then into perspective with other approaches.

As seen in the previous section, our approach is rather general and allows
one to derive generalization bounds for many metric learning methods. The
counterpart of this generality is the relative looseness of the resulting bounds:
although the O(1/

√
n) convergence rate is the same as in the alternative

frameworks presented below, the covering number constants are difficult to
estimate and can be large. Therefore, these bounds are useful to establish the
consistency of a metric learning approach but do not provide sharp estimates
of the generalization loss. This is in accordance with the original robustness
bounds introduced in [26, 27].

The guarantees proposed in [17, 18] can be tighter but hold only under
strong assumptions on the distribution of examples. Morever, these results
only apply to a specific metric learning formulation and it is not clear how
they can be adapted to more general forms. Bounds based on uniform sta-
bility [19] are also tighter and can deal with various loss functions, but fail
to address sparsity-inducing regularizers. This is known to be a general lim-
itation of stability-based analysis [21].

More recently, independently and in parallel to our work, generalization
bounds for metric learning based on Rademacher analysis have been proposed
[25, 13]. These bounds are tighter than the ones obtained with robustness
and can tackle some sparsity-inducing regularizers. Their derivation is how-
ever more involved as it requires to compute Rademacher average estimates
related to the matrix dual norm. For this reason, their analysis is limited
to matrix norm regularization, while our framework can essentially accom-
modate any regularizer that is bounded below by a matrix norm (following
the same proof technique as in Section 5). Furthermore, robustness is flex-
ible enough to tackle other settings (such as triplet-based constraints), as
illustrated in Section 5.
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We conclude this discussion by noting that the proposed framework can
be used to obtain generalization bounds for linear classifiers that use the
learned metrics, following the work of [12, 13].

7. Conclusion

We proposed a new theoretical framework for evaluating the generaliza-
tion ability of metric learning based on the notion of algorithm robustness
originally introduced in [27]. We showed that a weak notion of robustness
characterizes the generalizability of metric learning algorithms, justifying
that robustness is fundamental for such algorithms. The proposed frame-
work has an intuitive geometric meaning and allows us to derive general-
ization bounds for a large class of algorithms with different regularizations
(such as sparsity inducing norms), showing that it has a wider applicability
than existing frameworks. Moreover, few algorithm-specific arguments are
needed. The price to pay is the relative looseness of the resulting bounds.

A perspective of this work is to take advantage of the generality and flex-
ibility of the robustness framework to tackle more complex metric learning
settings, for instance other regularizers regularizers (such as the LogDet di-
vergence used in [5, 6]), methods that learn multiple metrics (e.g., [31, 32]),
and metric learning for domain adaptation [33, 34]. It is also promising to
investigate whether robustness could be used to derive guarantees for online
algorithms such as [15, 6, 10].

Another exciting direction for future work is to investigate new metric
learning algorithms based on the robustness property. For instance, given a
partition of the labeled input space and for any two regions, such an algorithm
could minimize the maximum loss over pairs of examples belonging to each
region. This is reminiscent of concepts from robust optimization [35] and
could be useful to deal with noisy settings.

Appendix A. Proof of Theorem 2 (pseudo-robustness)

Proof From the proof of Theorem 1, we can easily deduce that:

|L(Aps)− lemp(Aps)| ≤ 2B
K
∑

i=1

| |Ni|
n

− µ(Ci)|+
∣

∣

∣

∑K
i,j=1 Ez1,z2∼µ (l(Aps , z1, z2) |z1 ∈ Ci, z2 ∈ Cj)

|Ni||Nj |
n

− 1
n2

∑n
i,j=1 l(Aps , si, sj)

∣

∣

∣
.
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Then, we have

≤ 2B
K
∑

i=1

| |Ni|
n

− µ(Ci)|+
∣

∣

∣

∣

∣

∣

1

n2

K
∑

i,j=1

∑

(so,sl)∈p̂(s)

∑

so∈Ni

∑

sl∈Nj

max
z∈Ci

max
z′∈Cj

|l(Aps , z, z
′)− l(Aps , so, sl)|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

n2

K
∑

i,j=1

∑

(so,sl) 6∈p̂(s)

∑

so∈Ni

∑

sl∈Nj

max
z∈Ci

max
z′∈Cj

|l(Aps , z, z
′)− l(Aps , so, sl)|

∣

∣

∣

∣

∣

∣

≤ p̂n(ps)

n2
ǫ(ps) + B

(

n2 − p̂n(ps)

n2
+ 2

√

2K ln 2 + 2 ln 1/δ

n

)

.

The second inequality is obtained by the triangle inequality, the last one
is obtained by the application of Proposition 1, the hypothesis of pseudo-
robustness and the fact that l is positive and bounded by B, thus we have
|l(Aps , z, z

′)− l(Aps , so, sl)| ≤ B. ✷

Appendix B. Proof of sufficiency of Theorem 3

Proof The proof of sufficiency closely follows the first part of the proof of
Theorem 8 in [27]. When A is weakly robust, there exits a sequence {Dn}
such that for any δ, ǫ > 0 there exists N(δ, ǫ) such that for all n > N(δ, ǫ),
Pr(t(n) ∈ Dn) > 1− δ and

max
ŝ(n)∈Dn

∣

∣

∣
L(Aps∗(n)

, pŝ(n))− L(Aps∗(n)
, ps∗(n))

∣

∣

∣
< ǫ. (B.1)

Therefore for any n > N(δ, ǫ),

|L(Aps∗(n)
)− L(Aps∗(n)

, ps∗(n))|
= |Et(n)(L(Aps∗(n)

, pt(n)))− L(Aps∗(n)
, ps∗(n))|

= |Pr(t(n) 6∈ Dn)E(L(Aps∗(n)
, pt(n))|t(n) 6∈ Dn)

+Pr(t(n) ∈ Dn)E(L(Aps∗(n)
, pt(n))|t(n) ∈ Dn)− L(Aps∗(n)

, ps∗(n))|
≤ Pr(t(n) 6∈ Dn)|E(L(Aps∗(n)

, pt(n))|t(n) 6∈ Dn)− L(Aps∗(n)
, ps∗(n))|+

Pr(t(n) ∈ Dn)|E(L(Aps∗(n)
, pt(n))|t(n) ∈ Dn)− L(Aps∗(n)

, ps∗(n))|
≤ δB + max

ŝ(n)∈Dn

|L(Aps∗(n)
, pŝ(n))− L(Aps∗(n)

, ps∗(n))|

≤ δB + ǫ.
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The first inequality holds because the testing samples t(n) consist of n in-
stances IID from µ. The second equality is obtained by conditional expec-
tation. The next inequality uses the positiveness and the upper bound B of
the loss function. Finally, we apply Equation B.1. We thus conclude that A
generalizes for ps∗ because ǫ and δ can be chosen arbitrary. ✷

Appendix C. Proof of Lemma 1

Proof This proof follows the same principle as the proof of Lemma 2 from
[27]. By contradiction, assume ǫ∗ and δ∗ do not exist. Let ǫv = δv = 1/v for
v = 1, 2, ..., then there exists a non decreasing sequence {N(v)}∞v=1 such that
for all v, if n ≥ N(v) then Pr(|L(Aps∗(n)

, pt(n))−L(Aps∗(n)
, ps∗(n))| ≥ ǫv) < δv.

For each n we define

Dv
n , {ŝ(n)|L(Aps∗(n)

, pŝ(n))− L(Aps∗(n)
, ps∗(n))| < ǫv}.

For each n ≥ N(v) we have

Pr(t(n) ∈ Dv
n) = 1− Pr(|L(Aps∗(n)

, pt(n))− L(Aps∗(n)
, ps∗(n))| ≥ ǫv) > 1− δv.

For n ≥ N(1), define Dn , D
v(n)
n , where v(n) = max(v|N(v) ≤ n; v ≤ n).

Thus for all, n ≥ N(1) we have Pr(t(n) ∈ Dn) > 1− δv(n) and

sup
ŝ(n)∈Dn

|L(Aps∗(n)
, pŝ(n))− L(Aps∗(n)

, ps∗(n))| < ǫv(n).

Note that v(n) tends to infinity, it follows that δv(n) → 0 and ǫv(n) → 0.
Therefore, Pr(t(n) ∈ Dn) → 1 and

lim
n→∞

{ sup
ŝ(n)∈Dn

|L(Aps∗(n)
, pŝ(n))− L(Aps∗(n)

, ps∗(n))|} = 0.

That is A is weakly robust. w.r.t. ps which is a desired contradiction. ✷

Appendix D. Mc Diarmid inequality

Let X1, . . . , Xn be n independent random variables taking values in X
and let Z = f(X1, . . . , Xn). If for each 1 ≤ i ≤ n, there exists a constant ci
such that

sup
x1,...,xn,x

′

i∈X
|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci, ∀1 ≤ i ≤ n,

then for any ǫ > 0, Pr[|Z − E[Z]| ≥ ǫ] ≤ 2 exp

( −2ǫ2
∑n

i=1 c
2
i

)

.
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Appendix E. Robustness Theorem for Triplet-based Approaches

We give here an adaptation of Theorem 4 for triplet-based approaches.
The proof follows the same principle as the one of Theorem 4.

Theorem 5. Fix γ > 0 and a metric ρ of Z. Suppose A satisfies:
∀z1, z2, z3, , z′1, z′2, z′3 : z1, z2, z3 ∈ s, ρ(z1, z

′
1) ≤ γ, ρ(z2, z

′
2) ≤ γ, ρ(z3, z

′
3) ≤ γ,

|l(Atrips , z1, z2, z3)− l(Atripps , z
′
1, z

′
2, z

′
3)| ≤ ǫ(trips)

and N (γ/2,Z, ρ) < ∞. Then A is (N (γ/2,Z, ρ), ǫ(trips))-robust.

Appendix F. Proof of Example 2 (ℓ1 norm)

Proof Let M∗ be the solution given training data ps. Due to optimality of
M∗, we have ‖M∗‖1 ≤ g0/c. We can partition Z as |Y |N (γ/2, X, ‖ · ‖1) sets,
such that if z and z′ belong to the same set, then y = y′ and ‖x− x′‖1 ≤ γ.
Now, for z1, z2, z

′
1, z

′
2 ∈ Z, if y1 = y′1, ‖x1−x′

1‖1 ≤ γ, y2 = y′2 and ‖x2−x′
2‖1 ≤

γ, then:

|g(y12[1− f(M∗, x1, x2)])− g(y′12[1− f(M∗, x′
1, x

′
2)])|

≤ U(|(x1 − x2)
TM∗(x1 − x′

1)|+ |(x1 − x2)
TM∗(x′

2 − x2)|
+ |(x1 − x′

1)
TM∗(x′

1 + x′
2)|+ |(x′

2 − x2)
TM∗(x′

1 + x′
2)|)

≤ U(‖x1 − x2‖∞‖M∗‖1‖x1 − x′
1‖1 + ‖x1 − x2‖∞‖M∗‖1‖x′

2 − x2‖1
+ ‖x1 − x′

1‖1‖M∗‖1‖x′
1 − x′

2‖∞ + ‖x′
2 − x2‖1‖M∗‖1‖x′

1 − x′
2‖∞)

≤ 8URγg0
c

.

✷

Appendix G. Proof of Example 3 (ℓ2,1 norm and trace norm)

Proof Let M∗ be the solution given training data ps. Due to optimality
of M∗, we have ‖M∗‖2,1 ≤ g0/c. We can partition Z in the same way as
in the proof of Example 1 and use the inequality ‖M∗‖F ≤ ‖M∗‖2,1 (from
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Theorem 3 of [36, 37]) to derive the same bound:

|g(y12[1− f(M∗, x1, x2)])− g(y′12[1− f(M∗, x′
1, x

′
2)])|

≤ U(‖x1 − x2‖2‖M∗‖F‖x1 − x′
1‖2 + ‖x1 − x2‖2‖M∗‖F‖x′

2 − x2‖2
+ ‖x1 − x′

1‖2‖M∗‖F‖x′
1 − x′

2‖2 + ‖x′
2 − x2‖2‖M∗‖F‖x′

1 − x′
2‖2)

≤ U(‖x1 − x2‖2‖M∗‖2,1‖x1 − x′
1‖2 + ‖x1 − x2‖2‖M∗‖2,1‖x′

2 − x2‖2
+ ‖x1 − x′

1‖2‖M∗‖2,1‖x′
1 − x′

2‖2 + ‖x′
2 − x2‖2‖M∗‖2,1‖x′

1 − x′
2‖2)

≤ 8URγg0
c

.

For the trace norm, we use the classic result ‖M∗‖F ≤ ‖M‖∗, which allows
us to prove the same result by replacing ‖ · ‖2,1 by ‖ · ‖∗ in the proof above.
✷

Appendix H. Proof of Example 4 (Kernelization)

Proof We assume H to be an Hilbert space with an inner product operator
〈·, ·〉. The mapping φ(·) is continuous from X to H. The norm ‖·‖H : H → R

is defined as ‖w‖H =
√

〈w,w〉 for all w ∈ H, for matrices ‖M‖H we take the
entry wise norm by considering a matrix as a vector, corresponding to the
Frobenius norm. The kernel function is defined as k(x1, x2) = 〈φ(x1), φ(x2)〉.

Bγ and fH(γ) are finite by the compactness of X and continuity of k(·, ·).
Let M∗ be the solution given training data ps, by the optimality of M∗ and
using the same trick as the other examples we have: ‖M∗‖H ≤ g0/c. Then,
by considering a partition of Z into |Y |N (γ/2, X, ‖ · ‖2) disjoint subsets
such that if (x1, y1) and (x2, y2) belong to the same set then y1 = y2 and
‖x1 − x2‖2 ≤ γ. We have then,

|g(yij[1− f(M∗, φ(x1), φ(x2))])− g(yij[1− f(M∗, φ(x′
1), φ(x

′
2))])|

≤ U(|(φ(x1)− φ(x2))
TM∗(φ(x1)− φ(x′

1))|+
|(φ(x1)− φ(x2))

TM∗(φ(x′
2)− φ(x2))|+

|(φ(x1)− φ(x′
1))

TM∗(φ(x′
1) + φ(x′

2))|+
|(φ(x′

2)− φ(x2))
TM∗(φ(x′

1) + φ(x′
2))|)

≤ U(|φ(x1)
TM∗(φ(x1)− φ(x′

1))|+ |φ(x2)
TM∗(φ(x1)− φ(x′

1))|+
|φ(x1)

TM∗(φ(x′
2)φ(x2))|+ |φ(x2)

TM∗(φ(x′
2)− φ(x2))|+

|(φ(x1)− φ(x′
1))

TM∗φ(x′
1)|+ |(φ(x1)− φ(x′

1))
TM∗φ(x′

2)|+
|(φ(x′

2)− φ(x2))
TM∗φ(x′

1)|+ |(φ(x′
2)− φ(x2))

TM∗φ(x′
2)|). (H.1)
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Then, note that

|φ(x1)
TM∗(φ(x1)− φ(x′

1))|
≤

√

〈φ(x1), φ(x1)〉‖M∗‖H
√

〈φ(x′
1)− φ(x′

2), φ(x
′
1)− φ(x′

2)〉
≤ Bγ

go
c

√

fH(γ).

Thus, by applying the same principle to all the terms in the right part of
inequality (H.1), we obtain:

|g(yij[1−f(M∗, φ(x1), φ(x2))])−g(yij[1−f(M∗, φ(x′
1), φ(x

′
2))])| ≤

8UBγ

√

fH(γ)g0
c

.

Appendix I. Proof of Example 5

Let M∗ be the solution given training data ps, by the optimality of M∗,
we get ‖M∗‖ ≤ g0/c and we consider the same partition of Z as in the proof
of Example 1. We can then obtain easily:

|g(y12[1− f(M∗, x1, x2)])− g(y′12[1− f(M∗, x′
1, x

′
2)])|

≤ U |x′
1M

∗x′
2 − x1M

∗x2|
≤ U |x′

1M
∗x′

2 − x1M
∗x′

2|+ U |x1M
∗x′

2 − x1M
∗x2|

≤ U(‖x′
1 − x1‖2‖M∗‖F‖x′

2‖2 + ‖x1‖2‖M∗‖F‖x′
2 − x2‖2) ≤

2URγg0
c

.

The proof is given for the Frobenius norm but can be easily adapted to the
use of ℓ1 and ℓ2,1 norms using similar arguments as in the proofs of Appendix
F and Appendix G.

Appendix J. Proof of Example 6

We consider the following loss

g([1− (xi − xk)
TM(xi − xk) + (xi − xj)

TM(xi − xj)])

= [1− (xi − xk)
TM(xi − xk) + (xi − xj)

TM(xi − xj)]+.

Using the Let M∗ be the solution given training data trips formed of triplets.
As usual, due to optimality of M∗, using the same tricks as above, we get
‖M∗‖ ≤ g0/c. Then, by considering a partition of Z into |Y |N (γ/2, X, ‖·‖2),
three partitions C1, C2, C3 and z1, z2, z3, z

′
1, z

′
2, z

′
3 ∈ Z such that z1, z

′
1 ∈ C1,
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z2, z
′
2 ∈ C2 and z3, z

′
3 ∈ C3 with y1 = y′1 = y2 = y′2, y3 = y′3, y3 6= y1, and

‖x1 − x′
1‖1 ≤ γ, ‖x2 − x′

2‖1 ≤ γ, ‖x3 − x′
3‖1 ≤ γ, we have:

|g([1− (x1 − x3)
TM∗(x1 − x3) + (x1 − x2)

TM∗(x1 − x2)])−
g([1− (x′

1 − x′
3)

TM∗(x′
1 − x′

3) + (x′
1 − x′

2)
TM∗(x′

1 − x′
2)])|

≤ U |(x′
1 − x′

3)
TM∗(x′

1 − x′
3)− (x1 − x3)

TM∗(x1 − x3) +

(x1 − x2)
TM∗(x1 − x2)− (x′

1 − x′
2)

TM∗(x′
1 − x′

2)|
≤ U |(x′

1 − x′
3)

TM∗(x′
1 − x′

3)− (x1 − x3)
TM∗(x1 − x3)|+

U |(x1 − x2)
TM∗(x1 − x2)− (x′

1 − x′
2)

TM∗(x′
1 − x′

2)|

≤ 8URγg0
c

+
8URγg0

c
=

16URγg0
c

.

The first inequality is due to the U -lipschitz property of g, the second comes
from the triangle inequality and the last one follows the same construction
as in the proof of Example 1. Then, by Theorem 5, the example holds. ✷
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