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Introduction

Metric learning consists in automatically adjusting a distance or similarity function using training examples. The resulting metric is tailored to the problem of interest and can lead to dramatic improvement in classification, clustering or ranking performance. For this reason, metric learning has attracted a lot of interest for the past decade (see [START_REF] Bellet | A Survey on Metric Learning for Feature Vectors and Structured Data[END_REF][START_REF] Kulis | Metric Learning: A Survey[END_REF] for recent surveys).

Existing approaches rely on the principle that pairs of examples with the same (resp. different) labels should be close to each other (resp. far away) under a good metric. Learning thus generally consists in finding the best parameters of the metric function given a set of labeled pairs. 2 Many methods focus on learning a Mahalanobis distance, which is parameterized by a positive semidefinite (PSD) matrix and can be seen as finding a linear projection of the data to a space where the Euclidean distance performs well on the training pairs (see for instance [START_REF] Xing | Distance Metric Learning with Application to Clustering with Side-Information[END_REF][START_REF] Schultz | Learning a Distance Metric from Relative Comparisons[END_REF][START_REF] Davis | Information-theoretic metric learning[END_REF][START_REF] Jain | Online Metric Learning and Fast Similarity Search[END_REF][START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classification[END_REF][START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF][START_REF] Mcfee | Metric Learning to Rank[END_REF]). More flexible metrics have also been considered, such as similarity functions without PSD constraint [START_REF] Chechik | An Online Algorithm for Large Scale Image Similarity Learning[END_REF][START_REF] Qamar | Generalized Cosine and Similarity Metrics: A supervised learning approach based on nearest-neighbors[END_REF][START_REF] Bellet | Similarity Learning for Provably Accurate Sparse Linear Classification[END_REF]. The resulting distance or similarity is used to improve the performance of a metric-based algorithm such as k-nearest neighbors [START_REF] Davis | Information-theoretic metric learning[END_REF][START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classification[END_REF], linear separators [START_REF] Bellet | Similarity Learning for Provably Accurate Sparse Linear Classification[END_REF][START_REF] Guo | Guaranteed Classification via Regularized Similarity Learning[END_REF], K-Means clustering [START_REF] Xing | Distance Metric Learning with Application to Clustering with Side-Information[END_REF] or ranking [START_REF] Mcfee | Metric Learning to Rank[END_REF].

Despite the practical success of metric learning, little work has gone into a formal analysis of the generalization ability of the resulting metrics on unseen data. The main reason for this lack of results is that metric learning violates the common assumption of independent and identically distributed (IID) data. Indeed, the training pairs are generally given by an expert and/or extracted from a sample of individual instances, by considering all possible pairs or only a subset based for instance on the nearest or farthest neighbors of each example, some criterion of diversity [START_REF] Kar | Similarity-based Learning via Data Driven Embeddings[END_REF] or a random sample. Online learning algorithms [START_REF] Shalev-Shwartz | Online and batch learning of pseudo-metrics[END_REF][START_REF] Jain | Online Metric Learning and Fast Similarity Search[END_REF][START_REF] Chechik | An Online Algorithm for Large Scale Image Similarity Learning[END_REF] can still offer some guarantees in this setting, but only in the form of regret bounds assessing the deviation between the cumulative loss suffered by the online algorithm and the loss induced by the best hypothesis that can be chosen in hindsight. These may be converted into proper generalization bounds under restrictive assumptions [START_REF] Wang | Generalization Bounds for Online Learning Algorithms with Pairwise Loss Functions[END_REF]. Apart from these results on online metric learning, very few papers have looked at the generalization ability of batch methods. The approach of Bian and Tao [START_REF] Bian | Learning a Distance Metric by Empirical Loss Minimization[END_REF][START_REF] Bian | Constrained Empirical Risk Minimization Framework for Distance Metric Learning[END_REF] uses a statistical analysis to give generalization guarantees for loss minimization approaches, but their results rely on restrictive assumptions on the distribution of the examples and do not take into account any regularization on the metric. Jin et al. [START_REF] Jin | Regularized Distance Metric Learning: Theory and Algorithm[END_REF] adapted the framework of uniform stability [START_REF] Bousquet | Stability and Generalization[END_REF] to regularized metric learning. However, their approach is based on a Frobenius norm regularizer and cannot be applied to other type of regularization, in particular sparsity-inducing norms [START_REF] Xu | Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem[END_REF] that are used in many recent metric learning approaches [START_REF] Rosales | Learning Sparse Metrics via Linear Programming[END_REF][START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF][START_REF] Qi | An Efficient Sparse Metric Learning in High-Dimensional Space via l1-Penalized Log-Determinant Regularization[END_REF][START_REF] Mcfee | Metric Learning to Rank[END_REF]. Independently and in parallel to our work, 3 Cao et al. [START_REF] Cao | Generalization Bounds for Metric and Similarity Learning[END_REF] proposed a framework based on Rademacher analysis, which is general but rather complex and limited to pair constraints.

In this paper, we propose to study the generalization ability of metric learning algorithms according to a notion of algorithmic robustness. This framework, introduced by Xu et al. [START_REF] Xu | Robustness and Generalization[END_REF][START_REF] Xu | Robustness and Generalization[END_REF], allows one to derive generalization bounds when the variation in the loss associated with two "close" training and testing examples is bounded. The notion of closeness relies on a partition of the input space into different regions such that two examples in the same region are considered close. Robustness has been successfully used to derive generalization bounds in the classic supervised learning setting, with results for SVM, LASSO, etc. We propose here to adapt algorithmic robustness to metric learning. We show that, in this context, the problem of non-IIDness of the training pairs/triplets can be worked around by simply assuming that they are built from an IID sample of labeled examples. Moreover, following [START_REF] Xu | Robustness and Generalization[END_REF], we provide a notion of weak robustness that is necessary and sufficient for metric learning algorithms to generalize well, confirming that robustness is a fundamental property. We illustrate the applicability of the proposed framework by deriving generalization bounds, using very few approach-specific arguments, for a family of problems that is larger than what is considered in previous work [START_REF] Jin | Regularized Distance Metric Learning: Theory and Algorithm[END_REF][START_REF] Bian | Learning a Distance Metric by Empirical Loss Minimization[END_REF][START_REF] Bian | Constrained Empirical Risk Minimization Framework for Distance Metric Learning[END_REF][START_REF] Cao | Generalization Bounds for Metric and Similarity Learning[END_REF]. In particular, results apply to a vast choice of regularizers, without any assumption on the distribution of the examples and using a simple proof technique.

The rest of the paper is organized as follows. We introduce some preliminaries and notations in Section 2. Our notion of algorithmic robustness for metric learning is presented in Section 3. The necessity and sufficiency of weak robustness is shown in Section 4. Section 5 illustrates the wide applicability of our framework by deriving bounds for existing metric learning formulations. Section 6 discusses the merits and limitations of the proposed analysis compared to related work, and we conclude in Section 7.

Preliminaries

Notations

Let X be the instance space, Y be a finite label set and let Z = X × Y . In the following, z = (x, y) ∈ Z means x ∈ X and y ∈ Y . Let µ be an unknown probability distribution over Z. We assume that X is a compact convex metric space w.r.t. a norm • such that X ⊂ R d , thus there exists a constant R such that ∀x ∈ X, x ≤ R. A similarity or distance function is a pairwise function f : X × X → R. In the following, we use the generic term metric to refer to either a similarity or a distance function. We denote by s a labeled training sample consisting of n training instances (s 1 , . . . , s n ) drawn IID from µ. The sample of all possible pairs built from s is denoted by p s such that p s = {(s 1 , s 1 ), . . . , (s 1 , s n ), . . . , (s n , s n )}. A metric learning algorithm A takes as input a finite set of pairs from (Z × Z) n and outputs a metric. We denote by A ps the metric learned by an algorithm A from a sample p s of pairs. For any pair of labeled examples (z, z ′ ) and any metric f , we associate a loss function l(f, z, z ′ ) which depends on the examples and their labels. This loss is assumed to be nonnegative and uniformly bounded by a constant B. We define the generalization loss (or true loss) over µ as

L(f ) = E z,z ′ ∼µ l(f, z, z ′ ),
and the empirical loss over the sample p s as

l emp (f ) = 1 n 2 n i=1 n j=1 l(f, s i , s j ) = 1 n 2 
(s i ,s j )∈ps l(f, s i , s j ).

We are interested in bounding the deviation between l emp (f ) and L(f ).

Algorithmic Robustness in Classic Supervised Learning

The notion of algorithmic robustness, introduced by Xu and Mannor [START_REF] Xu | Robustness and Generalization[END_REF][START_REF] Xu | Robustness and Generalization[END_REF] in the context of classic supervised learning, is based on the deviation between the loss associated with two training and testing instances that are "close". Formally, an algorithm is said (K, ǫ(s))-robust if there exists a partition of the space Z = X × Y into K disjoint subsets such that for every training and testing instances belonging to the same region of the partition, the variation in their associated loss is bounded by a term ǫ(s). From this definition, the authors have proved a bound for the difference between the empirical loss and the true loss that has the form

ǫ(s) + B 2K ln 2 + 2 ln 1/δ n , (1) 
with probability 1-δ. This bound depends on K and ǫ(s). The latter should tend to zero as K increases to ensure that (1) also goes to zero when n → ∞. 4When considering metric spaces, the partition of Z can be obtained by the notion of covering number [START_REF] Kolmogorov | ǫ-entropy and ǫ-capacity of sets in functional spaces[END_REF].

Definition 1. For a metric space (X, ρ), and T ⊂ X, we say that

T ⊂ T is a γ-cover of T , if ∀t ∈ T , ∃ t ∈ T such that ρ(t, t ′ ) ≤ γ. The γ-covering number of T is N (γ, T, ρ) = min{| T | : T is a γ -cover of T }.
When X is a compact convex space, for any γ > 0, the quantity N (γ, X, ρ) is finite leading to a finite cover. If we consider the space Z, note that the label set can be partitioned into |Y | sets. Thus, Z can be partitioned into |Y |N (γ, X, ρ) subsets such that if two instances z 1 = (x 1 , y 1 ), z 2 = (x 2 , y 2 ) belong to the same subset, then y 1 = y 1 and ρ(x 1 , x 2 ) ≤ γ.

Robustness and Generalization for Metric Learning

We present here our adaptation of robustness to metric learning. The idea is to use the partition of Z at the pair level: if a new test pair of examples is close to a training pair, then the loss value for each pair must be close. Two pairs are close when each instance of the first pair fall into the same subset of the partition of Z as the corresponding instance of the other pair, as shown in Figure 1. A metric learning algorithm with this property is said robust. This notion is formalized as follows.

Definition 2. An algorithm

A is (K, ǫ(•)) robust for K ∈ N and ǫ(•) : (Z × Z) n → R if Z can be partitioned into K disjoints sets, denoted by {C i } K i=1
, such that for all sample s ∈ Z n and the pair set p(s) associated to this sample, the following holds:

∀(s 1 , s 2 ) ∈ p(s), ∀z 1 , z 2 ∈ Z, ∀i, j = 1, . . . , K : if s 1 , z 1 ∈ C i and s 2 , z 2 ∈ C j then |l(A ps , s 1 , s 2 ) -l(A ps , z 1 , z 2 )| ≤ ǫ(p s ). ( 2 
) z z z z ′ Ci ′ z 1 z 2 Ci Cj

Classic robustness

Robustness for metric learning In this example, we use a cover based on the L 1 norm. In the classic definition, if any example z ′ falls in the same region C i as a training example z, then the deviation between their loss must be bounded. In the metric learning definition proposed in this work, for any pair (z, z ′ ) and a training pair (z 1 , z 2 ), if z, z 1 belong to some region C i and z ′ , z 2 to some region C j , then the deviation between the loss of these two pairs must be bounded.

K and ǫ(•) quantify the robustness of the algorithm and depend on the training sample. The property of robustness is required for every training pair of the sample; we will later see that this property can be relaxed.

Note that this definition of robustness can be easily extended to triplet based metric learning algorithms. Instead of considering all the pairs p s from an IID sample s, we take the admissible triplet set trip s of s such that (s 1 , s 2 , s 3 ) ∈ trip s means s 1 and s 2 share the same label while s 1 and s 3 have different ones, with the interpretation that s 1 must be more similar to s 2 than to s 3 . The robustness property can then be expressed by:

∀(s 1 , s 2 , s 3 ) ∈ trip s , ∀z 1 , z 2 , z 3 ∈ Z, ∀i, j, k = 1, . . . , K : if s 1 , z 1 ∈ C i , s 2 , z 2 ∈ C j and s 3 , z 3 ∈ C k then |l(A trips , s 1 , s 2 , s 3 ) -l(A trips , z 1 , z 2 , z 3 )| ≤ ǫ(trip s ).
(3)

Generalization of robust algorithms

We now give a PAC generalization bound for metric learning algorithms fulfilling the property of robustness (Definition 2). We first begin by presenting a concentration inequality that will help us to derive the bound.

Proposition 1 ([29]

). Let (|N 1 |, . . . , |N K |) an IID multinomial random variable with parameters n and (µ(C 1 ), . . . , µ(C K )). By the Breteganolle-Huber-Carol inequality we have: P r

K i=1 |N i | n -µ(C i ) ≥ λ ≤ 2 K exp -nλ 2 2 , hence with probability at least 1 -δ, K i=1 N i n -µ(C i ) ≤ 2K ln 2 + 2 ln(1/δ) n . (4) 
We now give our first result on the generalization of metric learning algorithms.

Theorem 1. If a learning algorithm A is (K, ǫ(•))-robust and the training sample is made of the pairs p s obtained from a sample s generated by n IID draws from µ, then for any δ > 0, with probability at least 1δ we have:

|L(A ps ) -l emp (A ps )| ≤ ǫ(p s ) + 2B 2K ln 2 + 2 ln 1/δ n .
Proof Let N i be the set of index of points of s that fall into the

C i . (|N 1 |, . . . , |N K |)
is a IID random variable with parameters n and (µ(C 1 ), . . . , µ(C K )). We have:

|L(A ps ) -l emp (A ps )| = K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i )µ(C j ) - 1 n 2 n i,j=1 l(A ps , s i , s j ) (a) ≤ K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i )µ(C j )- K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i ) |N j | n + K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i ) |N j | n - 1 n 2 n i,j=1 l(A ps , s i , s j ) (b) ≤ K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i )(µ(C j ) - |N j | n ) + K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) µ(C i ) |N j | n - K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) |N i ||N j | n + K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 )|z 1 ∈ C i , z 2 ∈ C j ) |N i ||N j | n - 1 n 2 n i,j=1 l(A ps , s i , s j ) (c) ≤ B K j=1 µ(C j ) - |N j | n + K i=1 µ(C i ) - |N i | n + 1 n 2 K i,j=1 so∈N i s l ∈N j max z∈C i max z ′ ∈C j |l(A ps , z, z ′ ) -l(A ps , s o , s l )| (d) ≤ ǫ(p s ) + 2B K i=1 |N i | n -µ(C i ) (e) ≤ ǫ(p s ) + 2B 2K ln 2 + 2 ln 1/δ n .
Inequalities (a) and (b) are due to the triangle inequality, (c) uses the fact that l is bounded by B, that K i=1 µ(C i ) = 1 by definition of a multinomial random variable and that K j=1

|N j | n = 1 by definition of the N j . Lastly, (d) is due to the hypothesis of robustness (Equation 2) and (e) to the application of Proposition 1.

✷

The previous bound depends on K which is given by the cover chosen for Z. If for any K, the associated ǫ(•) is a constant (i.e. ǫ K (s) = ǫ K ) for any s, we can obtain a bound that holds uniformly for all K:

|L(A ps ) -l emp (A ps )| ≤ inf K≥1 ǫ K + 2B 2K ln 2 + 2 ln 1/δ n .
For triplet based metric learning algorithms, by following the definition of robustness given by Equation 3 and adapting straightforwardly the losses to triplets such that they output zero for non admissible ones, Theorem 1 can be easily extended to obtain the following generalization bound:

|L(A trips ) -l emp (A trips )| ≤ ǫ(trip s ) + 3B
2K ln 2 + 2 ln 1/δ n .

(5)

Pseudo-robustness

The previous study requires the robustness property to be satisfied for every training pair. In this section, we show that it is possible to relax the robustness such that it must hold only for a subset of the possible pairs, while still providing generalization guarantees.

Definition 3. An algorithm A is (K, ǫ(•), pn (•)) pseudo-robust for K ∈ N, ǫ(•) : (Z × Z) n → R and pn (•) : (Z × Z) n → {1, . . . , n 2 }, if Z can be partitioned into K disjoints sets, denoted by {C i } K i=1
, such that for all s ∈ Z n IID from µ, there exists a subset of training pairs samples ps ⊆ p s , with |p s | = pn (p s ), such that the following holds:

∀(s 1 , s 2 ) ∈ ps , ∀z 1 , z 2 ∈ Z, ∀i, j = 1, . . . , K: if s 1 , z 1 ∈ C i and s 2 , z 2 ∈ C j then |l(A ps , s 1 , s 2 ) -l(A ps , z 1 , z 2 )| ≤ ǫ(p s ). (6) 
We can easily observe that (K, ǫ(•))-robust is equivalent to (K, ǫ(•), n 2 ) pseudorobust. The following theorem gives the generalization guarantees associated with the pseudo-robustness property.

Theorem 2. If a learning algorithm A is (K, ǫ(•), pn (•)) pseudo-robust, the training pairs p s come from a sample generated by n IID draws from µ, then for any δ > 0, with probability at least 1δ we have:

|L(A ps ) -l emp (A ps )| ≤ pn (p s ) n 2 ǫ(p s ) + B( n 2 -pn (p s ) n 2 + 2 2K ln 2 + 2 ln 1/δ n ).
Proof It is similar to that of Theorem 1 and is given in Appendix A. ✷

This notion of pseudo-robustness is very relevant to metric learning. Indeed, it is often difficult and potentially damaging to optimize the metric with respect to all possibles pairs, and it has been observed in practice that focusing on a subset of carefully-selected pairs (e.g., defined according to nearestneighbors) gives much better generalization performance [START_REF] Weinberger | Distance Metric Learning for Large Margin Nearest Neighbor Classification[END_REF][START_REF] Bellet | Similarity Learning for Provably Accurate Sparse Linear Classification[END_REF]. Theorem 2 confirms that this principle is well-founded: as long as the robustness property is fulfilled for a (large enough) subset of the pairs, the resulting metric has generalization guarantees. Note that this notion of pseudo-robustness can be also easily adapted to triplet based metric learning.

Necessity of Robustness

We prove here that a notion of weak robustness is actually necessary and sufficient to generalize in a metric learning setup. This result is based on an asymptotic analysis following the work of Xu and Mannor [START_REF] Xu | Robustness and Generalization[END_REF]. We consider pairs of instances coming from an increasing sample of training instances s = (s 1 , s 2 , . . .) and from a sample of test instances t = (t 1 , t 2 , . . .) such that both samples are assumed to be drawn IID from a distribution µ. We use s(n) and t(n) to denote the first n examples of the two samples respectively, while s * denotes a fixed sequence of examples.

We use

L(f, p t(n) ) = 1 n 2
(s i ,s j )∈p t(n) l(f, s i , s j ) to refer to the average loss given a set of pairs for any learned metric f , and L(f ) = E z,z ′ ∼µ l(f, z, z ′ ) for the expected loss.

We first define a notion of generalizability for metric learning.

Definition 4. Given a training pair set p s * coming from a sequence of examples s * , a metric learning method A generalizes w.r.t.

p s * if lim n L(A p s * (n) ) -L(A p s * (n) , p s * (n) ) = 0.
Furthermore, a learning method A generalizes with probability 1 if it generalizes with respect to the pairs p s of almost all samples s IID from µ.

Note this notion of generalizability implies convergence in mean. We then introduce the notion of weak robustness for metric learning. Definition 5. Given a set of training pairs p s * coming from a sequence of examples s * , a metric learning method A is weakly robust with respect to p s * if there exists a sequence of

{D n ⊆ Z n } such that Pr(t(n) ∈ D n ) → 1 and lim n max ŝ(n)∈Dn L(A p s * (n) , p ŝ(n) ) -L(A p s * (n) , p s * (n) ) = 0.

Furthermore, a learning method A is almost surely weakly robust if it is robust with respect to almost all s.

Recall that the definition of robustness requires the labeled sample space to be partitioned into disjoints subsets such that if some instances of pairs of train/test examples belong to the same partition, then they have similar loss. Weak robustness is a generalization of this notion where we consider the average loss of testing and training pairs: if for a large (in the probabilistic sense) subset of data, the testing loss is close to the training loss, then the algorithm is weakly robust. From Proposition 1, we can see that if for any fixed ǫ > 0 there exists K such that an algorithm A is (K, ǫ) robust, then A is weakly robust. We now give the main result of this section about the necessity of robustness.

Theorem 3. Given a fixed sequence of training examples s * , a metric learning method

A generalizes with respect to p s * if and only if it is weakly robust with respect to p s * .

Proof Following [START_REF] Xu | Robustness and Generalization[END_REF], the sufficiency is obtained by the fact that the testing pairs are obtained from a sample t(n) constituted of n IID instances. We give the proof in Appendix B.

For the necessity, we need the following lemma which is a direct adaptation of a result introduced in [27] (Lemma 2). We provide the proof in Appendix C for the sake of completeness.

Lemma 1. Given s * , if a learning method is not weakly robust w.r.t. p s * , there exists ǫ * , δ * > 0 such that the following holds for infinitely many n:

Pr(|L(A p s * (n) , p t(n) ) -L(A p * s (n) , p s * (n) )| ≥ ǫ * ) ≥ δ * . (7) 
Now, recall that l is positive and uniformly bounded by B, thus by the McDiarmid inequality (recalled in Appendix D) we have that for any ǫ, δ > 0 there exists an index n * such that for any n > n * , with probability at least 1δ, we have

| 1 n 2 (t i ,t j )∈p t(n) l(A p s * (n) , t i , t j ) -L(A p s * (n) )| ≤ ǫ. This implies the convergence L(A p s * (n) , p t(n) ) -L(A p s * (n) ) P r
→ 0, and thus from a given index:

|L(A p s * (n) , p t(n) ) -L(A p s * (n) )| ≤ ǫ * 2 . ( 8 
)
Now, by contradiction, suppose algorithm A is not weakly robust, Lemma 1 implies Equation 7 holds for infinitely many n. This combined with Equation 8 implies that for infinitely many n:

|L(A p s * (n) , p t(n) ) -L(A p s * (n) , p s * (n) )| ≥ ǫ * 2
which means A does not generalize, thus the necessity of weak robustness is established. ✷

The following corollary follows immediately from Theorem 3.

Corollary 1. A metric learning method A generalizes with probability 1 if and only if it is almost surely weakly robust.

Examples of Robust Metric Learning Algorithms

We first restrict our attention to Mahalanobis distance learning algorithms of the following form:

min M 0 c M + 1 n 2 (s i ,s j )∈ps g(y ij [1 -f (M, x i , x j )]), (9) 
where s i = (x i , y i ), s j = (x j , y j ),

y ij = 1 if y i = y j and -1 otherwise, f (M, x i , x j ) = (x i -x j ) T M(x i -x j )
is the Mahalanobis distance parameterized by the d×d PSD matrix M, • some matrix norm and c a regularization parameter. The loss function l(f, s i , s j ) = g(y ij [1f (M, x i , x j )]) outputs a small value when its input is large positive and a large value when it is large negative. We assume g to be nonnegative and Lipschitz continuous with Lipschitz constant U . Lastly, g 0 = sup s i ,s j g(y ij [1f (0, x i , x j )]) is the largest loss when M is 0. The general form (9) encompasses many existing metric learning formulations. For instance, in the case of the hinge loss and Frobenius norm regularization, we recover [START_REF] Jin | Regularized Distance Metric Learning: Theory and Algorithm[END_REF], while the family of formulations studied in [START_REF] Kunapuli | Mirror Descent for Metric Learning: A Unified Approach[END_REF] corresponds to a trace norm regularizer.

To prove the robustness of ( 9), we will use the following theorem, which is based on the geometric intuition behind robustness. It essentially says that if a metric learning algorithm achieves approximately the same testing loss for testing pairs that are close to each other, then it is robust. Theorem 4. Fix γ > 0 and a metric ρ of Z. Suppose A satisfies:

∀z 1 , z 2 , z ′ 1 , z ′ 2 : z 1 , z 2 ∈ s, ρ(z 1 , z ′ 1 ) ≤ γ, ρ(z 2 , z ′ 2 ) ≤ γ, |l(A ps , z 1 , z 2 ) -l(A ps , z ′ 1 , z ′ 2 )| ≤ ǫ(p s ) and N (γ/2, Z, ρ) < ∞. Then A is (N (γ/2, Z, ρ), ǫ(p s ))-robust.
Proof By definition of covering number, we can partition X in N (γ/2, X, ρ) subsets such that each subset has a diameter less or equal to γ. Furthermore, since Y is a finite set, we can partition

Z into |Y |N (γ/2, X, ρ) subsets {C i } such that z 1 , z ′ 1 ∈ C i ⇒ ρ(z 1 , z ′ 1 ) ≤ γ. Therefore, ∀z 1 , z 2 , z ′ 1 , z ′ 2 : z 1 , z 2 ∈ s, ρ(z 1 , z ′ 1 ) ≤ γ, ρ(z 2 , z ′ 2 ) ≤ γ, |l(A ps , z 1 , z 2 ) -l(A ps , z ′ 1 , z ′ 2 )| ≤ ǫ(p s ), this implies z 1 , z 2 ∈ s, z 1 , z ′ 1 ∈ C i , z 2 , z ′ 2 ∈ C j ⇒ |l(A ps , z 1 , z 2 )-l(A ps , z ′ 1 , z ′ 2 )| ≤ ǫ(p s ), which establishes the theorem. ✷
We provide a similar theorem for triplet-based approaches in Appendix E. This theorem provides a roadmap for deriving generalization guarantees based on the robustness framework. Indeed, given a partition of the input space, one must bound the deviation between the loss for any pair of examples with corresponding elements belonging to the same partitions. This bound is generally a constant that depends on the problem to solve and the thinness of the partition defined by γ. This bound tends to zero as γ → 0, which ensures the consistency of the approach. While this framework is rather general, the price to pay is the relative looseness of the bounds, as discussed in Section 6.

Recall that we assume that ∀x ∈ X, x ≤ R for some convenient norm • . Following Theorem 4, we now prove the robustness of (9) when M is the Frobenius norm.

Example 1 (Frobenius norm). Algorithm [START_REF] Mcfee | Metric Learning to Rank[END_REF] with the Frobenius norm

M = M F = d i=1 d j=1 m 2 ij is (|Y |N (γ/2, X, • 2 ), 8U Rγg 0 c )-robust.
Proof Let M * be the solution given training data p s . Thus, due to optimality of M * , we have

c M * F + 1 n 2 (s i ,s j )∈ps g(y ij [1 -f (M, x i , x j )]) ≤ c 0 F + 1 n 2 (s i ,s j )∈ps g(y ij [1 -f (0, x i , x j )]) = g 0 and thus M * F ≤ g 0 /c. We can partition Z as |Y |N (γ/2, X, • 2
) sets, such that if z and z ′ belong to the same set, then y = y ′ and x -

x ′ 2 ≤ γ. Now, for z 1 , z 2 , z ′ 1 , z ′ 2 ∈ Z, if y 1 = y ′ 1 , x 1 -x ′ 1 2 ≤ γ, y 2 = y ′ 2 and x 2 -x ′ 2 2 ≤ γ, then: |g(y 12 [1 -f (M * , x 1 , x 2 )]) -g(y ′ 12 [1 -f (M * , x ′ 1 , x ′ 2 )])| ≤ U |(x 1 -x 2 ) T M * (x 1 -x 2 ) -(x ′ 1 -x ′ 2 ) T M * (x ′ 1 -x ′ 2 )| = U |(x 1 -x 2 ) T M * (x 1 -x 2 ) -(x 1 -x 2 ) T M * (x ′ 1 -x ′ 2 ) + (x 1 -x 2 ) T M * (x ′ 1 -x ′ 2 )| -(x ′ 1 -x ′ 2 ) T M * (x ′ 1 -x ′ 2 )| = U |(x 1 -x 2 ) T M * (x 1 -x 2 -(x ′ 1 + x ′ 2 )) + (x 1 -x 2 -(x ′ 1 + x ′ 2 )) T M * (x ′ 1 + x ′ 2 )| ≤ U (|(x 1 -x 2 ) T M * (x 1 -x ′ 1 )| + |(x 1 -x 2 ) T M * (x ′ 2 -x 2 )| + |(x 1 -x ′ 1 ) T M * (x ′ 1 + x ′ 2 )| + |(x ′ 2 -x 2 ) T M * (x ′ 1 + x ′ 2 )|) ≤ U ( x 1 -x 2 2 M * F x 1 -x ′ 1 2 + x 1 -x 2 2 M * F x ′ 2 -x 2 2 + x 1 -x ′ 1 2 M * F x ′ 1 -x ′ 2 2 + x ′ 2 -x 2 2 M * F x ′ 1 -x ′ 2 2 ) ≤ 8U Rγg 0 c
Hence, the example holds by Theorem 4. ✷

Note that for the special case of Example 1, a generalization bound (with same order of convergence rate) based on uniform stability was derived in [START_REF] Jin | Regularized Distance Metric Learning: Theory and Algorithm[END_REF]. However, it is known that sparse algorithms are not stable [START_REF] Xu | Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem[END_REF], and thus stability-based analysis fails to assess the generalization ability of recent sparse metric learning approaches [START_REF] Rosales | Learning Sparse Metrics via Linear Programming[END_REF][START_REF] Qi | An Efficient Sparse Metric Learning in High-Dimensional Space via l1-Penalized Log-Determinant Regularization[END_REF][START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF][START_REF] Mcfee | Metric Learning to Rank[END_REF][START_REF] Kunapuli | Mirror Descent for Metric Learning: A Unified Approach[END_REF]. The key advantage of robustness over stability is that we can obtain bounds similar to the Frobenius case for arbitrary p-norms (or even any regularizer which is bounded below by some p-norm) using equivalence of norms arguments. To illustrate this, we show the robustness when M is the ℓ 1 norm (used in [START_REF] Rosales | Learning Sparse Metrics via Linear Programming[END_REF][START_REF] Qi | An Efficient Sparse Metric Learning in High-Dimensional Space via l1-Penalized Log-Determinant Regularization[END_REF]) which promotes sparsity at the entry level, the ℓ 2,1 norm (used e.g. in [START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF]) which induces sparsity at the column/row level, and the trace norm (used e.g. in [START_REF] Mcfee | Metric Learning to Rank[END_REF][START_REF] Kunapuli | Mirror Descent for Metric Learning: A Unified Approach[END_REF]) which favors low-rank matrices. 5 The proofs are reminiscent of that of Example 1 and can be found in Appendix F and Appendix G, respectively.

Example 2 (ℓ 1 norm). Algorithm [START_REF] Mcfee | Metric Learning to Rank[END_REF] 

with M = M 1 is (|Y |N (γ, X , • 1 ), 8U Rγg 0 c )-robust.
Example 3 (ℓ 2,1 norm and trace norm). Consider Algorithm [START_REF] Mcfee | Metric Learning to Rank[END_REF] with

M = M 2,1 = d i=1 m i 2
, where m i is the i-th column of M. This algorithm is (|Y |N (γ, X , • 2 ), 8U Rγg 0 c )-robust. The same holds for the trace norm M * , which is the sum of the singular values of M. Some metric learning algorithms have kernelized versions, for instance [START_REF] Schultz | Learning a Distance Metric from Relative Comparisons[END_REF][START_REF] Davis | Information-theoretic metric learning[END_REF]. In the following example we show robustness for a kernelized formulation.

Example 4 (Kernelization). Consider the kernelized version of (9):

min M 0 c M H + 1 n 2 (s i ,s j )∈ps g(y ij [1 -f (M, φ(x i ), φ(x j ))]), ( 10 
)
where φ( 

(|Y |N (γ, X, • 2 ), 8U Bγ √ f H g 0 c )- robust.
Proof Given in Appendix H. ✷ Finally, we illustrate the flexibility of our framework by deriving bounds for another form of metric as well as for formulations based on triplet constraints.

Example 5. Consider Algorithm [START_REF] Mcfee | Metric Learning to Rank[END_REF] with the bilinear similarity f (M, x i , x j ) = x T i Mx j instead of the Mahalanobis distance, as studied in [START_REF] Chechik | An Online Algorithm for Large Scale Image Similarity Learning[END_REF][START_REF] Qamar | Generalized Cosine and Similarity Metrics: A supervised learning approach based on nearest-neighbors[END_REF][START_REF] Bellet | Similarity Learning for Provably Accurate Sparse Linear Classification[END_REF]. For the regularizers considered in Examples 1 -3, we can improve the robustness to 2U Rγg 0 /c. For sake of completeness, the proof is given in Appendix I. Example 6. Using triplet-based robustness (Equation 3), we can show the robustness of two popular triplet-based metric learning approaches [START_REF] Schultz | Learning a Distance Metric from Relative Comparisons[END_REF][START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF] for which no generalization guarantees were known (to the best of our knowledge). These algorithms have the following form:

min M 0 c M + 1 |trip s | (s i ,s j ,s k )∈trips [1-(x i -x k ) T M(x i -x k )+(x i -x j ) T M(x i -x j )] + ,
where M = M F in [START_REF] Schultz | Learning a Distance Metric from Relative Comparisons[END_REF] or M = M 1,2 in [START_REF] Ying | Sparse Metric Learning via Smooth Optimization[END_REF]. These methods are (N (γ, Z, • 2 ), 16U Rγg 0 c )-robust. The proof is given in Appendix J, the additional factor 2 comes from the use of triplets instead of pairs. This example illustrates that robustness results for triplet-based approaches can be derived from contraint-based methods.

Discussion

This section discusses the bounds derived from the proposed framework and put then into perspective with other approaches.

As seen in the previous section, our approach is rather general and allows one to derive generalization bounds for many metric learning methods. The counterpart of this generality is the relative looseness of the resulting bounds: although the O(1/ √ n) convergence rate is the same as in the alternative frameworks presented below, the covering number constants are difficult to estimate and can be large. Therefore, these bounds are useful to establish the consistency of a metric learning approach but do not provide sharp estimates of the generalization loss. This is in accordance with the original robustness bounds introduced in [START_REF] Xu | Robustness and Generalization[END_REF][START_REF] Xu | Robustness and Generalization[END_REF]. The guarantees proposed in [START_REF] Bian | Learning a Distance Metric by Empirical Loss Minimization[END_REF][START_REF] Bian | Constrained Empirical Risk Minimization Framework for Distance Metric Learning[END_REF] can be tighter but hold only under strong assumptions on the distribution of examples. Morever, these results only apply to a specific metric learning formulation and it is not clear how they can be adapted to more general forms. Bounds based on uniform stability [START_REF] Jin | Regularized Distance Metric Learning: Theory and Algorithm[END_REF] are also tighter and can deal with various loss functions, but fail to address sparsity-inducing regularizers. This is known to be a general limitation of stability-based analysis [START_REF] Xu | Sparse Algorithms Are Not Stable: A No-Free-Lunch Theorem[END_REF].

More recently, independently and in parallel to our work, generalization bounds for metric learning based on Rademacher analysis have been proposed [START_REF] Cao | Generalization Bounds for Metric and Similarity Learning[END_REF][START_REF] Guo | Guaranteed Classification via Regularized Similarity Learning[END_REF]. These bounds are tighter than the ones obtained with robustness and can tackle some sparsity-inducing regularizers. Their derivation is however more involved as it requires to compute Rademacher average estimates related to the matrix dual norm. For this reason, their analysis is limited to matrix norm regularization, while our framework can essentially accommodate any regularizer that is bounded below by a matrix norm (following the same proof technique as in Section 5). Furthermore, robustness is flexible enough to tackle other settings (such as triplet-based constraints), as illustrated in Section 5.

We conclude this discussion by noting that the proposed framework can be used to obtain generalization bounds for linear classifiers that use the learned metrics, following the work of [START_REF] Bellet | Similarity Learning for Provably Accurate Sparse Linear Classification[END_REF][START_REF] Guo | Guaranteed Classification via Regularized Similarity Learning[END_REF].

Conclusion

We proposed a new theoretical framework for evaluating the generalization ability of metric learning based on the notion of algorithm robustness originally introduced in [START_REF] Xu | Robustness and Generalization[END_REF]. We showed that a weak notion of robustness characterizes the generalizability of metric learning algorithms, justifying that robustness is fundamental for such algorithms. The proposed framework has an intuitive geometric meaning and allows us to derive generalization bounds for a large class of algorithms with different regularizations (such as sparsity inducing norms), showing that it has a wider applicability than existing frameworks. Moreover, few algorithm-specific arguments are needed. The price to pay is the relative looseness of the resulting bounds.

A perspective of this work is to take advantage of the generality and flexibility of the robustness framework to tackle more complex metric learning settings, for instance other regularizers regularizers (such as the LogDet divergence used in [START_REF] Davis | Information-theoretic metric learning[END_REF][START_REF] Jain | Online Metric Learning and Fast Similarity Search[END_REF]), methods that learn multiple metrics (e.g., [START_REF] Wang | Parametric Local Metric Learning for Nearest Neighbor Classification[END_REF][START_REF] Shi | Sparse Compositional Metric Learning[END_REF]), and metric learning for domain adaptation [START_REF] Kulis | What you saw is not what you get: Domain adaptation using asymmetric kernel transforms[END_REF][START_REF] Geng | DAML: Domain Adaptation Metric Learning[END_REF]. It is also promising to investigate whether robustness could be used to derive guarantees for online algorithms such as [START_REF] Shalev-Shwartz | Online and batch learning of pseudo-metrics[END_REF][START_REF] Jain | Online Metric Learning and Fast Similarity Search[END_REF][START_REF] Chechik | An Online Algorithm for Large Scale Image Similarity Learning[END_REF].

Another exciting direction for future work is to investigate new metric learning algorithms based on the robustness property. For instance, given a partition of the labeled input space and for any two regions, such an algorithm could minimize the maximum loss over pairs of examples belonging to each region. This is reminiscent of concepts from robust optimization [START_REF] Ben-Tal | Robust Optimization[END_REF] and could be useful to deal with noisy settings.

Appendix A. Proof of Theorem 2 (pseudo-robustness) Proof From the proof of Theorem 1, we can easily deduce that:

|L(A ps ) -l emp (A ps )| ≤ 2B K i=1 | |N i | n -µ(C i )|+ K i,j=1 E z 1 ,z 2 ∼µ (l(A ps , z 1 , z 2 ) |z 1 ∈ C i , z 2 ∈ C j ) |N i ||N j | n -1 n 2
n i,j=1 l(A ps , s i , s j ) .

Then, we have The second inequality is obtained by the triangle inequality, the last one is obtained by the application of Proposition 1, the hypothesis of pseudorobustness and the fact that l is positive and bounded by B, thus we have 

≤ 2B K i=1 | |N i | n -µ(C i )| + 1 n 2 K i,

Figure 1 :

 1 Figure 1: Illustration of the robustness property in the classic and metric learning settings.In this example, we use a cover based on the L 1 norm. In the classic definition, if any example z ′ falls in the same region C i as a training example z, then the deviation between their loss must be bounded. In the metric learning definition proposed in this work, for any pair (z, z ′ ) and a training pair (z 1 , z 2 ), if z, z 1 belong to some region C i and z ′ , z 2 to some region C j , then the deviation between the loss of these two pairs must be bounded.

△

  = max a,b∈X, a-b 2 ≤γ (k(a, a) + k(b, b) -2k(a, b)) and B γ = max x∈X k(x, x). If the kernel function is continuous, B γ and f H are finite for any γ > 0 and thus Algorithm 10 is

3 Proof

 3 |l(A ps , z, z ′ )l(A ps , s o , s l )| ≤ B. ✷ Appendix B.Proof of sufficiency of Theorem The proof of sufficiency closely follows the first part of the proof of Theorem 8 in[START_REF] Xu | Robustness and Generalization[END_REF]. When A is weakly robust, there exits a sequence {D n } such that for any δ, ǫ > 0 there exists N (δ, ǫ) such that for all n > N (δ, ǫ),Pr(t(n) ∈ D n ) > 1δ and max ŝ(n)∈Dn L(A p s * (n) , p ŝ(n) ) -L(A p s * (n) , p s * (n) ) < ǫ. (B.1)Therefore for any n > N (δ, ǫ),|L(A p s * (n) ) -L(A p s * (n) , p s * (n) )| = |E t(n) (L(A p s * (n) , p t(n) )) -L(A p s * (n) , p s * (n) )| = | Pr(t(n) ∈ D n )E(L(A p s * (n) , p t(n) )|t(n) ∈ D n ) + Pr(t(n) ∈ D n )E(L(A p s * (n) , p t(n) )|t(n) ∈ D n ) -L(A p s * (n) , p s * (n) )| ≤ Pr(t(n) ∈ D n )|E(L(A p s * (n) , p t(n) )|t(n) ∈ D n ) -L(A p s * (n) , p s * (n) )| + Pr(t(n) ∈ D n )|E(L(A p s * (n) , p t(n) )|t(n) ∈ D n ) -L(A p s * (n) , p s * (n) )| ≤ δB + maxŝ(n)∈Dn |L(A p s * (n) , p ŝ(n) ) -L(A p s * (n) , p s * (n) )| ≤ δB + ǫ.

  •) is a feature mapping to a kernel space H, • H the norm function of H and k(•, •) the kernel function. Consider a cover of X by • 2 (X being compact) and let f H (γ)

  j=1 (so,s l )∈p(s)so∈N i s l ∈N j max z∈C i max z ′ ∈C j |l(A ps , z, z ′ )l(A ps , s o , s l )| + (so,s l ) ∈p(s) so∈N i s l ∈N j max z∈C i max z ′ ∈C j |l(A ps , z, z ′ )l(A ps , s o , s l )|

	1	K			
	n 2 i,j=1 ≤ pn (p s ) n 2 ǫ(p s ) + B	n 2 -pn (p s ) n 2	+ 2	2K ln 2 + 2 ln 1/δ n	.

Some methods use triplets (x, y, z) such that x should be closer to y than to z, where x and y share the same label, but not z.

We posted a preliminary version of the present work on arXiv in 2012[START_REF] Bellet | Robustness and Generalization for Metric Learning[END_REF].

This point will be made clear by the examples provided in Section

In the last two cases, the linear projection space of the data induced by the learned Mahalanobis distance is of lower dimension than the original space, allowing more efficient computations and reduced memory usage.

The first inequality holds because the testing samples t(n) consist of n instances IID from µ. The second equality is obtained by conditional expectation. The next inequality uses the positiveness and the upper bound B of the loss function. Finally, we apply Equation B.1. We thus conclude that A generalizes for p s * because ǫ and δ can be chosen arbitrary. ✷

Appendix C. Proof of Lemma 1

Proof This proof follows the same principle as the proof of Lemma 2 from [START_REF] Xu | Robustness and Generalization[END_REF]. By contradiction, assume ǫ * and δ * do not exist. Let ǫ v = δ v = 1/v for v = 1, 2, ..., then there exists a non decreasing sequence {N (v)} ∞ v=1 such that for all v, if n ≥ N (v) then Pr(|L(A

For each n we define

For each n ≥ N (v) we have

For n ≥ N (1), define

n , where v(n) = max(v|N (v) ≤ n; v ≤ n). Thus for all, n ≥ N (1) we have Pr(t(n

That is A is weakly robust. w.r.t. p s which is a desired contradiction. ✷

Appendix D. Mc Diarmid inequality

Let X 1 , . . . , X n be n independent random variables taking values in X and let

Appendix E. Robustness Theorem for Triplet-based Approaches

We give here an adaptation of Theorem 4 for triplet-based approaches. The proof follows the same principle as the one of Theorem 4.

Theorem 5. Fix γ > 0 and a metric ρ of Z. Suppose A satisfies:

and

Proof Let M * be the solution given training data p s . Due to optimality of M * , we have M * 1 ≤ g 0 /c. We can partition Z as |Y |N (γ/2, X, • 1 ) sets, such that if z and z ′ belong to the same set, then y = y ′ and x - [START_REF] Feng | Equivalence constants for certain matrix norms[END_REF][START_REF] Klaus | Isometries for the vector (p,q) norm and the induced (p,q) norm[END_REF]) to derive the same bound:

For the trace norm, we use the classic result M * F ≤ M * , which allows us to prove the same result by replacing • 2,1 by • * in the proof above. ✷

Appendix H. Proof of Example 4 (Kernelization)

Proof We assume H to be an Hilbert space with an inner product operator

w, w for all w ∈ H, for matrices M H we take the entry wise norm by considering a matrix as a vector, corresponding to the Frobenius norm. The kernel function is defined as k(x 1 , x 2 ) = φ(x 1 ), φ(x 2 ) .

B γ and f H (γ) are finite by the compactness of X and continuity of k(•, •). Let M * be the solution given training data p s , by the optimality of M * and using the same trick as the other examples we have: M * H ≤ g 0 /c. Then, by considering a partition of Z into |Y |N (γ/2, X, • 2 ) disjoint subsets such that if (x 1 , y 1 ) and (x 2 , y 2 ) belong to the same set then y 1 = y 2 and x 1x 2 2 ≤ γ. We have then,

Then, note that

Thus, by applying the same principle to all the terms in the right part of inequality (H.1), we obtain:

Appendix I. Proof of Example 5

Let M * be the solution given training data p s , by the optimality of M * , we get M * ≤ g 0 /c and we consider the same partition of Z as in the proof of Example 1. We can then obtain easily:

The proof is given for the Frobenius norm but can be easily adapted to the use of ℓ 1 and ℓ 2,1 norms using similar arguments as in the proofs of Appendix F and Appendix G.

Appendix J. Proof of Example 6

We consider the following loss

Using the Let M * be the solution given training data trip s formed of triplets. As usual, due to optimality of M * , using the same tricks as above, we get M * ≤ g 0 /c. Then, by considering a partition of

The first inequality is due to the U -lipschitz property of g, the second comes from the triangle inequality and the last one follows the same construction as in the proof of Example